
A CLT FOR INFORMATION-THEORETIC STATISTICS OF

NON-CENTERED GRAM RANDOM MATRICES

WALID HACHEM, MALIKA KHAROUF, JAMAL NAJIM AND JACK W. SILVERSTEIN

Abstract. In this article, we study the fluctuations of the random variable:

In(ρ) =
1

N
log det (ΣnΣ

∗

n + ρIN ) , (ρ > 0)

where Σn = n−1/2D
1/2
n XnD̃

1/2
n + An, as the dimensions of the matrices go to infinity

at the same pace. Matrices Xn and An are respectively random and deterministic N ×n
matrices; matrices Dn and D̃n are deterministic and diagonal, with respective dimensions
N×N and n×n; matrixXn = (Xij) has centered, independent and identically distributed
entries with unit variance, either real or complex.

We prove that when centered and properly rescaled, the random variable In(ρ) satisfies
a Central Limit Theorem and has a Gaussian limit. The variance of In(ρ) depends on
the moment EX2

ij of the variables Xij and also on its fourth cumulant κ = E|Xij |
4 − 2−

|EX2

ij |
2.

The main motivation comes from the field of wireless communications, where In(ρ)
represents the mutual information of a multiple antenna radio channel. This article closely
follows the companion article ”A CLT for Information-theoretic statistics of Gram random
matrices with a given variance profile”, Ann. Appl. Probab. (2008) by Hachem et al.,
however the study of the fluctuations associated to non-centered large random matrices
raises specific issues, which are addressed here.
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Limit Theorem.
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1. Introduction

The model, the statistics, and the literature. Consider a N × n random matrix Σn =
(ξnij) which has the expression

Σn =
1√
n
D

1
2
nXnD̃

1
2
n +An , (1.1)

where An = (anij) is a deterministic N × n matrix, Dn and D̃n are diagonal deterministic
matrices with nonnegative entries, with respective dimensions N×N and n×n; Xn = (Xij) is
a N×n matrix with the entries Xij ’s being centered, independent and identically distributed
(i.i.d.) random variables with unit variance E|Xij |2 = 1 and finite 16th moment.

Consider the following linear statistics of the eigenvalues:

In(ρ) =
1

N
log det (ΣnΣ

∗
n + ρIN ) =

1

N

N
∑

i=1

log(λi + ρ) ,
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where IN is the N × N identity matrix, ρ > 0 is a given parameter and the λi’s are the
eigenvalues of matrix ΣnΣ

∗
n (Σ∗

n stands for the Hermitian adjoint of Σn). This functional,
known as the mutual information for multiple antenna radio channels, is fundamental in
wireless communication as it characterizes the performance of a (coherent) communication
over a wireless Multiple-Input Multiple-Output (MIMO) channel with gain matrix Σn. When
Σn follows the model described by (1.1), the deterministic matrix An accounts for the so-

called specular component, while Dn and D̃n account for the correlations in certain bases at
the receiving and emitting sides, respectively.

Since the seminal work of Telatar [37], the study of the mutual information In(ρ) of a
MIMO channel (and other performance indicators) in the regime where the dimensions of the
gain matrix grow to infinity at the same pace has turned to be extremely fruitful. However,
non-centered channel matrices have been comparatively less studied from this point of view,
as their analysis is more difficult due to the presence of the deterministic matrix An. First
order results can be found in Girko [15, 16]; Dozier and Silverstein [11, 12] established
convergence results for the spectral measure; and the systematic study of the convergence of
In(ρ) for a correlated Rician channel has been undertaken by Hachem et al. in [20, 13], etc.
The fluctuations of In are important as well, for the computation of the outage probability
of a MIMO channel for instance. With the help of the replica method, Taricco [35, 36]
provided a closed-form expression for the asymptotic variance of In when the elements of
Xn are Gaussian.

The purpose of this article is to establish a Central Limit Theorem (CLT) for In(ρ) in
the following regime

n→ ∞ and 0 < lim inf
N

n
≤ lim sup

N

n
<∞ ,

(simply denoted by n→ ∞ in the sequel) under mild assumptions for matrices Xn, An, Dn

and D̃n.

The contributions of this article are twofold. From a wireless communication perspective,
the fluctuations of In are established, regardless of the Gaussianity of the entries and the
CLT conjectured by Tarrico is fully proven. Also, this article concludes a series of studies
devoted to Rician MIMO channels, initiated in [20] where a deterministic equivalent of the
mutual information was provided, and continued in [13] where the computation of the ergodic
capacity was addressed and an iterative algorithm proposed.

From a mathematical point of view, the study of the fluctuations of In is the first attempt
(up to our knowledge) to establish a CLT for a linear statistics of the eigenvalues of a Gram
non-centered matrix (so-called signal plus noise model in [11, 12]). It complements (but does
not supersede) the CLT established in [21] for a centered Gram matrix with a given variance
profile. The fact that matrix Σn is non-centered (EΣn = An) raises specific issues, from a
different nature than those addressed in close-by results [1, 4, 21], etc. These issues arise
from the presence in the computations of bilinear forms u∗nQn(z) vn where at least one of the
vectors un or vn is deterministic. Often, the deterministic vector is related to the columns
of matrix An, and has to be dealt with in such a way that the assumption over the spectral
norm of An is exploited.

Another important contribution of this paper is to establish the CLT regardless of specific
assumptions on the real or complex nature of the underlying random variables. It is in
particular not assumed that the random variables are Gaussian, neither that whenever the
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random variables Xij are complex, their second moment EX2
ij is zero; nor is assumed that

the random variables are circular1. As we shall see, all these assumptions, if assumed, would
have resulted in substantial simplifications. As a reward however, we obtain a variance
expression which smoothly depends upon EX2

ij whose value is 1 in the real case, and zero in
the complex case where the real and imaginary parts are not correlated.

Interestingly, the mutual information In has a strong relationship with the Stieltjes trans-
form fn(z) =

1
NTrace(ΣnΣ

∗
n − zIN )−1 of the spectral measure of ΣnΣ

∗
n:

In(ρ) = log ρ+

∫ ∞

ρ

(

1

w
− fn(−w)

)

dw .

Accordingly, the study of the fluctuations of In is also an important step toward the study
of general linear statistics of ΣnΣ

∗
n’s eigenvalues which can be expressed via the Stieltjes

transform:

1

N
Trace h(ΣnΣn) =

1

N

N
∑

i=1

h(λi) = − 1

2iπ

∮

C

h(z)fn(z)dz ,

for some well-chosen contour C (see for instance [4]).

Fluctuations for particular linear statistics (and general classes of linear statistics) of large
random matrices have been widely studied: CLTs for Wigner matrices can be traced back
to Girko [14] (see also [17]). Results for this class of matrices have also been obtained by
Khorunzhy et al. [27], Boutet de Monvel and Khorunzhy [7], Johansson [24], Sinai and
Sochnikov [33], Soshnikov [34], Cabanal-Duvillard [8], Guionnet [18], Anderson and Zeitouni
[1], Mingo and Speicher [29], Chatterjee [9], Lytova and Pastur [28], etc. The case of Gram
matrices has been studied in Arharov [2], Jonsson [25], Bai and Silverstein [4], Hachem et
al. [21], and also in [28, 29, 9]. Fluctuation results dedicated to wireless communication
applications have been developed in the centered case (An = 0) by Debbah and Müller
[10] and Tulino and Verdù [38] (based on Bai and Silverstein [4]), Hachem et al. [19] (for
Gaussian entries) and [21]. Other fluctuation results either based on the replica method or on
saddle-point analysis have been developed by Moustakas, Sengupta and coauthors [30, 31],
and Tarrico [35, 36].

Presentation of the results. We first introduce the fundamental equations needed to
express the deterministic approximation of the mutual information and the variance in the
CLT.

Fundamental equations, deterministic equivalents. We collect here resuls from [20]. The
following system of equations










δn(z) = 1
nTrDn

(

−z(IN + δ̃n(z)Dn) +An(In + δn(z)D̃n)
−1A∗

n

)−1

δ̃n(z) = 1
nTr D̃n

(

−z(In + δn(z)D̃n) +A∗
n(IN + δ̃n(z)Dn)

−1An

)−1 , z ∈ C− R
+

(1.2)

1A random variable X ∈ C is circular if the distribution of X is equal to the distribution of ρX for every
ρ ∈ C, |ρ| = 1. This assumption is very often relevant in wireless communication and has an important
consequence; it implies that all the cross moments E|X|kXℓ (ℓ ≥ 1) are zero.
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admits a unique solution (δn, δ̃n) in the class of Stieltjes transforms of nonnegative measures2

with support in R+. Matrices Tn(z) and T̃n(z) defined by










Tn(z) =
(

−z(IN + δ̃n(z)Dn) +An(In + δnD̃n)
−1A∗

n

)−1

T̃n(z) =
(

−z(In + δn(z)D̃n) +A∗
n(IN + δ̃nDn)

−1An

)−1 (1.3)

are approximations of the resolvent Qn(z) = (ΣnΣ
∗
n − zIN )−1 and the co-resolvent Q̃n(z) =

(Σ∗
nΣn − zIn)

−1 in the sense that (
a.s.−−→ stands for almost sure convergence):

1

n
Tr (Qn(z)− Tn(z))

a.s.−−−−→
n→∞

0, z ∈ C− R
+

which readily gives a deterministic approximation of the Stieltjes transform N−1TrQn(z) of

the spectral measure of ΣnΣ
∗
n in terms of Tn (and similarly for Q̃n and T̃n). Also proven in

[22] is the convergence of bilinear forms

u∗n(Qn(z)− Tn(z))vn
a.s.−−−−→

n→∞
0, z ∈ C− R

+ (1.4)

where (un) and (vn) are sequences of N × 1 deterministic vectors with bounded Euclidean
norms, which complements the picture of Tn approximating Qn.

Matrices Tn = (tij ; 1 ≤ i, j ≤ N) and T̃n = (t̃ij ; 1 ≤ i, j ≤ n) will play a fundamental
role in the sequel and enable us to express a deterministic equivalent to EIn(ρ). Define Vn(ρ)
by:

Vn(ρ) =
1

N
log det

(

ρ(IN + δ̃nDn) +An(In + δnD̃n)
−1A∗

n

)

+
1

N
log det(In + δnD̃n)−

ρn

N
δnδ̃n , (1.5)

where δn and δ̃n are evaluated at z = −ρ. Then the difference E In(ρ)− Vn(ρ) goes to zero
as n→ ∞.

In order to study the fluctuations N(In(ρ) − Vn(ρ)) and to establish a CLT, we study
separately the quantity N(In(ρ)−EIn(ρ)) from which the fluctuations arise and the quantity
N(EIn(ρ)− Vn(ρ)) which yields a bias.

The fluctuations. In every case where the fluctuations of the mutual information have been
studied, the variance of N (In(ρ)− Vn(ρ)) always proved to take a remarkably simple closed-
form expression (see for instance [30, 36, 38] and in a more mathematical flavour [19, 21]).
The same phenomenon again occurs for the matrix model Σn under consideration. Drop the
subscripts N,n and let

γ =
1

n
TrDTDT , γ̃ =

1

n
Tr D̃T̃ D̃T̃ , γ =

1

n
TrDTDT̄ , γ̃ =

1

n
Tr D̃T̃ D̃ ¯̃T , (1.6)

where M̄ stands for the (elementwise) conjugate of matrix M . Let

ϑ = E(Xij)
2 and κ = E|Xij |4 − 2− |ϑ|2 .

2In fact, δn is the Stieltjes transform of a measure with total mass equal to n−1TrDn while δ̃n is the
Stieltjes transform of a measure with total mass equal to n−1TrD̃n.
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Let

Θn = − log

(

(

1− 1

n
TrD

1
2TA(I + δD̃)−1D̃(I + δD̃)−1A∗TD

1
2

)2

− ρ2γγ̃

)

− log

(

∣

∣

∣

∣

1− ϑ
1

n
TrD

1
2 T̄ Ā(I + δD̃)−1D̃(I + δD̃)−1A∗TD

1
2

∣

∣

∣

∣

2

− |ϑ|2ρ2γ γ̃
)

+ κ
ρ2

n2

∑

i

d2i t
2
ii

∑

j

d̃2j t̃
2
jj ,

where di = [Dn]ii, d̃j = [D̃n]jj , and all the needed quantities are evaluated at z = −ρ. The
CLT can then be expressed as:

N√
Θn

(In − EIn) D−−−−→
n→∞

N (0, 1) ,

where
D−→ stands for convergence in distribution. Although complicated at first sight, vari-

ance Θn encompasses the case of standard real random variables (ϑ = 1), standard complex
random variables (ϑ = 0) and all the intermediate cases 0 < |ϑ| < 1. Moreover, Θn often
takes simpler forms if the variables are Gaussian, real, etc. (see for instance Remark 2.2).

The bias. When the entries of Xn are complex Gaussian with independent and identically
distributed real and imaginary parts, κ = ϑ = 0, and it has already been proven in [13] that
E In(ρ)− Vn(ρ) = O(n−2). When any of κ or ϑ is non zero, a bias term Bn(ρ) 6= 0 appears
in the sense that

N (EIn(ρ)− Vn(ρ))− Bn(ρ) −−−−→
n→∞

0 .

We establish the existence of this bias and provide its expression in the case where A = 0.

Outline of the article. In Section 2, we provide the main assumptions and state the
main results of the paper: Definition of the variance Θn and asymptotic fluctuations of
N (In(ρ)− EIn(ρ)) (Theorem 2.2), asymptotic bias ofN (EIn(ρ)− Vn(ρ)) (Proposition 2.3).
Notations, important estimates and classical results are provided in Section 3. Sections 4,
5 and 6 are devoted to the proof of Theorem 2.2. In Section 4, the general framework of
the proof is exposed; in Section 5, the central part of the CLT and of the identification of
the variance are established; remaining proofs are provided in Section 6. Finally, proof of
Proposition 2.3 (bias) is provided in Section 7.

Acknowlegment. Hachem and Najim’s work was partially supported by the French Agence
Nationale de la Recherche, project SESAME n◦ ANR-07-MDCO-012-01. Silverstein’s work
was supported by the U.S. Army Research Office under Grant W911NF-09-1-0266.

2. The Central Limit Theorem for In(ρ)

2.1. Notations, assumptions and first-order results. Let i =
√
−1. As usual, R+ =

{x ∈ R : x ≥ 0}. Denote by
P−→ the convergence in probability of random variables and by

D−→ the convergence in distribution of probability measures. Denote by diag(ai; 1 ≤ i ≤ k)
the k × k diagonal matrix whose diagonal entries are the ai’s. Element (i, j) of matrix M
will be either denoted mij or [M ]ij depending on the notational context. If M is a n × n
square matrix, diag(M) = diag(mii; 1 ≤ i ≤ n). Denote by MT the matrix transpose of M ,
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by M∗ its Hermitian adjoint, by M̄ the (elementwise) conjugate of matrix M , by Tr(M) its
trace and det(M) its determinant (if M is square). When dealing with vectors, ‖ · ‖ will
refer to the Euclidean norm. In the case of matrices, ‖ · ‖ will refer to the spectral norm.
We shall denote by K a generic constant that does not depend on n and that might change
from a line to another. If (un) is a sequence of real numbers, then un = O(vn) stands for
|un| ≤ K|vn| where constant K does not depend on n.

Recall that

Σn =
1√
n
D1/2

n XnD̃
1/2
n +An , (2.1)

denote Dn = diag(di, 1 ≤ i ≤ N) and D̃n = diag(d̃j , 1 ≤ j ≤ n). When no confusion can
occur, we shall often drop subscripts and superscripts n for readability. Recall also that the
asymptotic regime of interest is:

n→ ∞ and 0 < lim inf
N

n
≤ lim sup

N

n
<∞ ,

and will be simply denoted by n→ ∞ in the sequel. We can assume without loss of generality
that there exist nonnegative real numbers ℓ− and ℓ+ such that:

0 < ℓ− ≤ N

n
≤ ℓ+ < ∞ as n→ ∞ . (2.2)

Assumption A-1. The random variables (Xn
ij ; 1 ≤ i ≤ N, 1 ≤ j ≤ n , n ≥ 1) are complex,

independent and identically distributed. They satisfy

EXn
11 = 0, E|Xn

11|2 = 1 and E|Xn
11|16 <∞ .

Remark 2.1. (Gaussian distributions) If X11 is a standard complex or real Gaussian random
variable, then κ = 0. More precisely, in the complex case, Re(X11) and Im(X11) are inde-
pendent real Gaussian random variables, then ϑ = κ = 0; in the real case, then ϑ = 1 while
κ = 0.

Assumption A-2. The family of deterministic N × n complex matrices (An, n ≥ 1) is
bounded for the spectral norm:

amax = sup
n≥1

‖An‖ <∞ .

Assumption A-3. The families of real deterministic N ×N and n× n matrices (Dn) and

(D̃n) are diagonal with non-negative diagonal elements, and are bounded for the spectral
norm as n→ ∞:

dmax = sup
n≥1

‖Dn‖ <∞ and d̃max = sup
n≥1

‖D̃n‖ <∞ .

Moreover,

dmin = inf
n

1

n
TrDn > 0 and d̃min = inf

n

1

n
Tr D̃n > 0 .

Theorem 2.1 (First order results - [20, 13]). Consider the N × n matrix Σn given by (2.1)
and assume that A-1, A-2 and A-3 hold true. Then, the system (1.2) admits a unique

solution (δn, δ̃n) in the class of Stieltjes transforms of nonnegative measures. Moreover,

1

n
Tr (Qn(z)− Tn(z))

a.s.−−−−→
n→∞

0 and
1

n
Tr
(

Q̃n(z)− T̃n(z)
)

a.s.−−−−→
n→∞

0 for any z ∈ C− R
+.
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2.2. The Central Limit Theorem. In this section, we state the CLT then provide the
asymptotic bias in some particular cases.

Theorem 2.2 (The CLT). Consider the N × n matrix Σn given by (2.1) and assume that

A-1, A-2 and A-3 hold true. Recall the definitions of δ and δ̃ given by (1.2), T and T̃ given
by (1.3), γ, γ̃, γ and γ̃ given by (1.6). Let ρ > 0. All the considered quantities are evaluated
at z = −ρ. Define ∆n and ∆n as

∆n =

(

1− 1

n
TrD

1
2TA(I + δD̃)−2D̃A∗TD

1
2

)2

− ρ2γγ̃

and

∆n =

∣

∣

∣

∣

1− ϑ
1

n
TrD

1
2 T̄ Ā(I + δD̃)−2D̃A∗TD

1
2

∣

∣

∣

∣

2

− |ϑ|2ρ2γ γ̃.

Then the real numbers

Θn = − log∆n − log∆n + κ
ρ2

n2

N
∑

i=1

d2i t
2
ii

n
∑

j=1

d̃2j t̃
2
jj (2.3)

are well-defined and satisfy:

0 < lim inf
n

Θn ≤ lim sup
n

Θn < ∞ (2.4)

as n→ ∞. Let

In(ρ) =
1

N
log det (ΣnΣ

∗
n + ρIN ) ,

then the following convergence holds true:

N√
Θn

(In(ρ)− EIn(ρ)) D−−−−→
n→∞

N (0, 1) .

Remark 2.2. (Simpler forms for the variance) We consider here special cases where the
variance Θn takes a simpler form.

(1) The standard complex Gaussian case. Assume that the Xij ’s are standard complex
Gaussian random variables, i.e. that both the real and imaginary parts of Xij are
independent real Gaussian random variables, each with variance 1/2. In this case,
ϑ = κ = 0 and Θn is equal to − log∆n, and we in particular recover the variance
formula given in [36].

(2) The standard real case. Assume that the Xij ’s are standard real random variables,
assume also that A has real entries. Then ∆n and ∆n are equal.

(3) The ’signal plus noise’ model. In this case, Dn = IN and D̃n = In, which already
yields simplifications in the variance expression. In the case where ϑ = 0, the variance
is:

Θn = − log
(

(

1− n−1(1 + δ)−2 TrTAA∗T
)2 − ρ2γγ̃

)

+
κρ2

n2

∑

i

d2i t
2
ii

∑

j

d̃2j t̃
2
jj .

As one may easily check, the first term of the variance only depends upon the
spectrum of AA∗. The second term however also depends on the eigenvectors of
AA∗ (see for instance [26]).

A full study of the asymptotic bias turns out to be extremely involved and would have
substantially increased the volume of this paper. In the following proposition, we restrict
our study to two important particular cases:
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Proposition 2.3 (The bias - particular cases). Assume that the setting of Theorem 2.2
holds true.

(i) If the random variables (Xn
ij ; i, j, n) are complex with Re(Xn

ij) and Im(Xn
ij) indepen-

dent, both with distribution N (0, 1/2), then:

N (EIn(ρ)− Vn(ρ)) = O
(

1

N

)

.

(ii) If An = 0, let the quantities γ and γ̃ be evaluated at z = −ρ and consider

Bn = −κ
2
ρ2γγ̃ +

1

2
log(1 − |ϑ|2ρ2γγ̃). (2.5)

Then

N (EIn(ρ)− Vn(ρ))− Bn −−−−→
n→∞

0.

Remark 2.3. Observe that T (z) = [−z(I + δ̃(z)D)]−1 and T̃ (z) = [−z(I + δ(z)D̃)]−1 when
A = 0. It is interesting to notice that Bn coincides in that case with −0.5 × the sum of the
two last terms at the right hand side (r.h.s.) of (2.3).

Proof of Proposition 2.3 is deferred to Section 7.

3. Notations and classical results

3.1. Further notations. We denote by Y the N × n matrix n−1/2D1/2XD̃1/2; by (ηj),
(aj) and (yj) the columns of matrices Σ, A and Y . Denote by Σj, Aj , and Yj the matrices
Σ, A, and Y where column j has been removed. The associated resolvent is Qj(z) =
(ΣjΣ

∗
j − zIN )−1. We shall often write Q, Qj , T for Q(z), Qj(z), T (z), etc. We denote by

D̃j matrix D̃ where row and column j have been removed. We also denote by A1:j and Σ1:j

the N × j matrices A1:j = [a1, · · · , aj] and Σ1:j = [η1, · · · , ηj ]. Denote by Ej the conditional
expectation with respect to the σ-field Fj generated by the vectors (yℓ, 1 ≤ ℓ ≤ j). By
convention, E0 = E.

We introduce here intermediate quantities of constant use in the rest of the paper. For
1 ≤ j ≤ n, let:

b̃j(z) =
−1

z
(

1 + a∗jQj(z)aj +
d̃j

n TrDQj(z)
) ,

ej(z) = η∗jQj(z)ηj −
( d̃j
n

TrDQj(z) + a∗jQj(z)aj

)

= y∗jQj(z)yj −
d̃j
n

TrDQj(z) + a∗jQj(z)yj + y∗jQj(z)aj . (3.1)

3.2. Important identities. Recall the following classical identity for the inverse of a per-
turbed matrix (see [23, Section 0.7.4]):

(A+XRY )
−1

= A−1 −A−1X
(

R−1 + Y A−1X
)−1

Y A−1 . (3.2)
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Identities involving the resolvents. The following identity expresses the diagonal elements
q̃jj(z) = [Q̃(z)]jj of the co-resolvent; the two following ones are obtained from (3.2).

q̃jj(z) =
−1

z(1 + η∗jQj(z)ηj)
, (3.3)

Q(z) = Qj(z)−
Qj(z)ηjη

∗
jQj(z)

1 + η∗jQj(z)ηj

= Qj(z) + zq̃jj(z)Qj(z)ηjη
∗
jQj(z) (3.4)

Qj(z) = Q(z) +
Q(z)ηjη

∗
jQ(z)

1− η∗jQ(z)ηj
(3.5)

1 + η∗jQj(z)ηj =
1

1− η∗jQ(z)ηj
(3.6)

Notice that

q̃jj(z) = b̃j(z) + zq̃jj(z)b̃j(z)ej(z) . (3.7)

and that 0 < b̃j(−ρ), q̃jj(−ρ) < ρ−1. These facts will be repeatedly used in the remainder.
A useful consequence of (3.4) is:

η∗jQ(z) =
η∗jQj(z)

1 + η∗jQj(z)ηj
= −zq̃jj(z)η∗jQj(z) . (3.8)

Identities involving the deterministic equivalents T and T̃ . Define the N × N matrix Tj(z)
as

Tj(z) =
(

−z(IN + δ̃(z)D) +Aj(In−1 + δ(z)D̃j)
−1A∗

j

)−1

, (3.9)

where δ and δ̃ are defined in (1.2). Notice that matrix Tj is not obtained in general by

solving the analogue of system (1.3) where A is replaced with Aj and when D̃ is truncated

accordingly. This matrix naturally pops up when expressing the diagonal elements t̃jj of T̃ .
Indeed, we obtain (see Appendix A.1):

t̃jj(z) =
−1

z
(

1 + a∗jTj(z)aj + d̃jδ(z)
) . (3.10)

Let b be a given N × 1 vector. The following identity is also shown in Appendix A.1:

− zt̃ℓℓ(z)a
∗
ℓTℓ(z)b =

a∗ℓT (z)b

1 + d̃ℓδ(z)
. (3.11)

Thanks to (3.2), we also have

T̃ (z) = −z−1(I + δ(z)D̃)−1 + z−1(I + δ(z)D̃)−1A∗T (z)A(I + δ(z)D̃)−1. (3.12)

3.3. Important estimates. We gather in this section matrix estimates which will be of
constant use in the sequel. In all the remainder, z will belong to the open negative real axis,
and will be fixed to z = −ρ until Section 7.

Let A and B be two square matrices. Then

|Tr(AB)| ≤
√

Tr(AA∗)
√

Tr(BB∗) (3.13)
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When B is Hermitian non negative, then a consequence of Von Neumann’s trace theorem is

|Tr(AB)| ≤ ‖A‖ TrB . (3.14)

The following lemma gives an estimate for a rank-one perturbation of the resolvent ([21,
Lemma 6.3] and [32, Lemma 2.6]):

Lemma 3.1. The resolvents Q and the perturbed resolvent Qj satisfy for z = −ρ:

|Tr A (Q−Qj)| ≤
‖A‖
ρ

for any N ×N matrix A.

The following results describe the asymptotic behaviour of quadratic forms based on the
resolvent.

Lemma 3.2 (Bai and Silverstein, Lemma 2.7 in [3]). Let x = (x1, · · · , xn) be a n× 1 vector
where the xi are centered i.i.d. complex random variables with unit variance. Let M be a
n × n deterministic complex matrix. Then for any p ≥ 2, there exists a constant Kp for
which

E|x∗Mx− TrM |p ≤ Kp

(

(

E|x1|4 TrMM∗
)p/2

+ E|x1|2p Tr(MM∗)p/2
)

Remark 3.1. There are some important consequences of the previous lemma. Let (Mn) be a
sequence of n×n deterministic matrices with bounded spectral norm and (xn) be a sequence
of random vectors as in the statement of Lemma 3.2. Then for any p ∈ [2; 8],

max

(

E

∣

∣

∣

∣

x∗
nMnxn

n
− TrMn

n

∣

∣

∣

∣

p

,E|ej |p
)

≤ K

np/2
(3.15)

where ej is given by (3.1) (the estimate E|ej |p = O(n−p/2) is proven in Appendix A.2).

Remark 3.2. By replacing E|x1|4 with maxi E|xi|4 and E|x1|2p with maxi E|xi|2p, Lemma 3.2
can be extended to the case where elements of vector x are independent but not necessarily
identically distributed [5, Lemma B.26]. Accordingly, the results of this paper remain true
when the Xij are independent but not necessarily identically distributed, provided E|Xij |2 =
1, EX2

ij = ϑ, and E|Xij |4 − 2− |ϑ|2 = κ for all i, j, and supn maxi,j E|Xij |16 <∞.

The following theorem is proven is Appendix A.3:

Theorem 3.3. Assume that the setting of Theorem 2.2 holds true. Let (un) and (vn) be
two sequences of deterministic complex N × 1 vectors bounded in the Euclidean norm:

sup
n≥1

max (‖un‖, ‖vn‖) <∞,

and let (Un) be a sequence of deterministic N ×N matrices with bounded spectral norms:

sup
n≥1

‖Un‖ <∞.

Then,

(1) There exists a constant K for which
n
∑

j=1

E|u∗nQjaj |2 ≤ K.
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(2) The following holds true:
∣

∣

∣

∣

1

n
TrU(T − EQ)

∣

∣

∣

∣

≤ K

n
.

(3) For every p ∈ [1, 2], there exists a constant Kp such that:

E |u∗n(Q− T )vn|2p ≤ Kp

np
.

(4) For every p ∈ [1, 2], there exists a constant Kp such that:

E |u∗n(Qj − Tj)vn|2p ≤ Kp

np
.

(5) There exists a constant K such that

E |TrU(Q− EQ)|2 < K.

The following results stem from Lemma 3.2 and Theorem 3.3 and will be of constant use
in the sequel. Recalling (3.7) and (3.15) along with the bounds on q̃jj and b̃j , we have for
any p ∈ [2, 8]

E

∣

∣

∣q̃jj − b̃j

∣

∣

∣

p

≤ K

np/2
. (3.16)

Of course, the counterpart of Theorem 3.3 for the co-resolvent Q̃ and matrix T̃ holds true.
In particular, taking the vectors un and vn as the jth canonical vector of Cn yields the
following estimate for any p ∈ [2, 4]:

E
∣

∣q̃jj − t̃jj
∣

∣

p ≤ K

np/2
. (3.17)

The following two lemmas, proven in Appendices A.4 and A.5, provide some important
bounds:

Lemma 3.4. Assume that the setting of Theorem 2.2 holds true. Then, the following quan-
tities satisfy:

dmin

ρ+dmaxd̃max+a2
max

≤ δn ≤ ℓ
+
dmax

ρ , d̃min

ρ+ℓ+dmaxd̃max+a2
max

≤ δ̃n ≤ d̃max

ρ ,

dmin

(ρ+dmaxd̃max+a2
max)

2
≤ 1

n
TrDT 2 ≤ ℓ

+
dmax

ρ2 , d̃min

(ρ+ℓ+dmaxd̃max+a2
max)

2
≤ 1

n
Tr D̃T̃ 2 ≤ d̃max

ρ2 ,

d
2
min

ℓ+(ρ+dmaxd̃max+a2
max)

2
≤ γn ≤ ℓ

+
d
2
max

ρ2 ,
d̃
2

min

(ρ+ℓ+dmaxd̃max+a2
max)

2 ≤ γ̃n ≤ d̃
2

max

ρ2

d
2
min

ℓ+(ρ+dmaxd̃max+a2
max)

2
≤ 1

n

N
∑

i=1

d2i t
2
ii ≤ ℓ

+
d
2
max

ρ2 ,
d̃
2

min

(ρ+ℓ+dmaxd̃max+a2
max)

2 ≤ 1

n

n
∑

j=1

d̃2j t̃
2
jj ≤ d̃

2

max

ρ2 .

Lemma 3.5. Assume that the setting of Theorem 2.2 holds true. Then

sup
n

1

n
TrD1/2TA(I + δD̃)−2D̃A∗TD

1
2 < 1.

Moreover, the sequence (∆n) as defined in Theorem 2.2 satisfies

∆n ≥ ρ

nδ
TrDT 2 ρ

nδ̃
Tr D̃T̃ 2

and
lim inf

n
∆n > 0 .
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3.4. Other important results. The main result we shall rely on to establish the Central
Limit Theorem is the following CLT for martingales:

Theorem 3.6 (CLT for martingales, Th. 35.12 in [6]). Let γ
(n)
1 , γ

(n)
2 , . . . , γ

(n)
n be a martin-

gale difference sequence with respect to the increasing filtration F (n)
1 , . . . ,F (n)

n . Assume that
there exists a sequence of real positive numbers Υ2

n such that

1

Υ2
n

n
∑

j=1

Ej−1γ
(n)
j

2 P−−−−→
n→∞

1 . (3.18)

Assume further that the Lyapounov condition ([6, Section 27]) holds true:

∃δ > 0,
1

Υ
2(1+δ)
n

n
∑

j=1

E

∣

∣

∣
γ
(n)
j

∣

∣

∣

2+δ

−−−−→
n→∞

0 .

Then Υ−1
n

∑n
j=1 γ

(n)
j converges in distribution to N (0, 1).

Remark 3.3. Note that if moreover lim infn Υ
2
n > 0, it is sufficient to prove:

n
∑

j=1

Ej−1γ
(n)
j

2
−Υ2

n
P−−−−→

n→∞
0 , (3.19)

instead of (3.18).

We now state a covariance identity (the proof of which is straightforward and therefore
omitted) for quadratic forms based on non-centered vectors. This identity explains to some
extent the various terms obtained in the variance.

Let x = (x1, · · · , xN )T be a N × 1 vector where the xi are centered i.i.d. complex random
variables with unit variance. Let y = N−1/2D1/2x where D is a N×N diagonal nonnegative
deterministic matrix. LetM = (mij) and P = (pij) be N×N deterministic complex matrices
and let u be a N × 1 deterministic vector.

If M is an N ×N matrix, vdiag(M) stands for the N × 1 vector [M11, · · · ,MNN ]T .

Denote by Υ(M) the random variable:

Υ(M) = (y + u)∗M(y + u) .

Then EΥ(M) = 1
N TrDM + u∗Mu and the covariance between Υ(M) and Υ(P ) is:

E [(Υ(M)− EΥ(M)) (Υ(P )− EΥ(P ))]

=
1

N2
Tr(MDPD) +

1

N
(u∗MDPu+ u∗PDMu)

+
|E[x21]|2
N2

Tr(MDPTD) +
E[x21]

N
u∗PDMT ū+

E[x̄21]

N
uTMTDPu

+
E[|x1|2x1]
N3/2

(

u∗PD3/2vdiag(M) + u∗MD3/2vdiag(P )
)

+
E[|x1|2x̄1]
N3/2

(

vdiag(P )TD3/2Mu+ vdiag(M)TD3/2Pu
)

+
κ

N2

N
∑

i=1

d2iimiipii , (3.20)

where κ = E|x1|4 − 2− |Ex21|2.
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Remark 3.4. Identity (3.20) is the cornerstone for the proof of the CLT; it is the counterpart
of Identity (1.15) in [4]. The complexity of Identity (3.20) with respect to [4, Identity (1.15)]
lies in 8 extra terms and stems from two elements:

(1) The fact that matrix Σ is non-centered.
(2) The fact that the random variables Xij ’s are either real and complex with no par-

ticular assumption on their second moment (in particular, EX2
ij can be non zero in

the complex case).

It is this identity which induces to a large extent all the computations in the present article.

4. Proof of Theorem 2.2 (part I)

Decomposition of In − EIn, Cumulant and cross-moments terms in the variance

4.1. Decomposition of In − EIn as a sum of martingale differences. Denote by

Γj =
η∗jQjηj −

(

d̃j

n TrDQj + a∗jQjaj

)

1 +
d̃j

n TrDQj + a∗jQjaj
.

With this notation at hand, the decomposition of In − EIn as

In − EIn =

n
∑

j=1

(Ej − Ej−1) log(1 + Γj) (4.1)

follows verbatim from [21, Section 6.2]. Moreover, it is a matter of bookkeeping to establish
the following (cf. [21, Section 6.4]):

n
∑

j=1

Ej−1 ((Ej − Ej−1) log(1 + Γj))
2 −

n
∑

j=1

Ej−1(EjΓj)
2 P−−−−→

n→∞
0 . (4.2)

Hence, the details are omitted. In view of Theorem 3.6, Eq. (3.19), (4.1) and (4.2), the CLT
will be established if one proves the following 3 results:

(1) (Lyapounov condition)

∃δ > 0,

n
∑

j=1

E |EjΓj |2+δ −−−−→
n→∞

0 ,

(2) (Martingale increments and variance)

n
∑

j=1

Ej−1(EjΓj)
2 −Θn

P−−−−→
n→∞

0 .

(3) (estimates over the variance)

0 < lim inf
n

Θn ≤ lim sup
n

Θn <∞

It is straightforward (and hence omitted) to verify Lyapounov condition. The convergence
toward the variance is the cornerstone of the proof of the CLT: The rest of this section
together with much of Section 5 are devoted to establish it. The estimates over the variance
Θn, also central to apply Theorem 3.6, are established in Section 6.2.
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Notice that Ej−1(EjΓj)
2 = Ej−1(Ejρb̃jej)

2. We prove hereafter that

n
∑

j=1

Ej−1(Ejρb̃jej)
2 −

n
∑

j=1

ρ2t̃2jjEj−1(Ejej)
2 P−−−−→

n→∞
0 . (4.3)

The inequality E|b̃j − t̃jj |2 ≤ 2E|b̃j − q̃jj |2 + 2E|q̃jj − t̃jj |2 in conjunction with Estimates

(3.16) and (3.17) yield E|b̃j − t̃jj |2 = O(n−1). Moreover,

E

∣

∣

∣Ej−1(Ejρb̃jej)
2 − Ej−1(ρt̃jjEjej)

2
∣

∣

∣ ≤ E

∣

∣

∣

∣

(

Ejρb̃jej

)2

−
(

Ejρt̃jjej
)2
∣

∣

∣

∣

= E

∣

∣

∣

(

Ej(ρb̃j − ρt̃jj)ej

)(

Ej(ρb̃j + ρt̃jj)ej

)∣

∣

∣ ≤ E

∣

∣

∣(ρb̃j − ρt̃jj)ej

(

Ej(ρb̃j + ρt̃jj)ej

)∣

∣

∣

≤ Kn−3/2

using Cauchy-Schwarz inequality and (3.15). This implies (4.3). Let ς = E(|X2
11|X11). Using

Identity (3.20), we develop the quantity Ej−1(Ejej)
2:

n
∑

j=1

ρ2t̃2jjEj−1(Ejej)
2

=
κ

n2

n
∑

j=1

ρ2d̃2j t̃
2
jj

N
∑

i=1

d2i [EjQj ]
2
ii

+
4

n

n
∑

j=1

ρ2d̃
3/2
j t̃2jj Re

(

ς
a∗j (EjQj)D

3/2vdiag(EjQj)√
n

)

+
1

n

n
∑

j=1

ρ2 t̃2jj

(

d̃2j
n

Tr(EjQj)D(EjQj)D + 2d̃ja
∗
j (EjQj)D(EjQj)aj

)

+
1

n

n
∑

j=1

ρ2 t̃2jj

(

|ϑ|2
d̃2j
n

Tr(EjQj)D(EjQ̄j)D + 2Re
(

ϑd̃ja
∗
j (EjQj)D(EjQ̄j)āj

)

)

△
=

n
∑

j=1

χ1j +

n
∑

j=1

χ2j +

n
∑

j=1

χ3j +

n
∑

j=1

χ4j .

4.2. Key lemmas for the identification of the variance. The remainder of the proof
of Theorem 2.2 is devoted to find deterministic equivalents for the terms

∑n
j=1 χℓj for ℓ =

1, 2, 3, 4.

Lemma 4.1. Assume that the setting of Theorem 2.2 holds true, then:

n
∑

j=1

χ1j −
κρ2

n2

N
∑

i=1

n
∑

j=1

d2i t
2
iid̃

2
j t̃

2
jj

P−−−−→
n→∞

0 .
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Proof. Write

1

n

N
∑

i=1

d2i [EjQj ]
2
ii −

1

n

N
∑

i=1

d2i [EjQj]iitii =

1

n

N
∑

i=1

d2i [EjQj]iiEj([Qj ]ii − [Q]ii) +
1

n

N
∑

i=1

d2i [EjQj ]ii([EjQ]ii − tii) = ε1,j + ε2,j .

The term |ε1,j | = n−1|Ej [TrD
2 diag(EjQj)(Qj −Q)]| is of order O(n−1) thanks to Lemma

3.1. Moreover, E|ε2,j | = O(n−1/2) by the analogue of (3.17) for the diagonal elements of the
resolvent. Hence,

n
∑

j=1

χ1j −
κρ2

n

n
∑

j=1

d̃2j t̃
2
jj

(

1

n

N
∑

i=1

d2i [EjQj ]iitii

)

P−−−−→
n→∞

0 .

Iterating the same arguments, we can replace the remaining term Ej [Qj]ii by tii to obtain
the desired result. �

Lemma 4.2. Assume that the setting of Theorem 2.2 holds true. Then:

n
∑

j=1

χ2j
P−−−−→

n→∞
0 .

Proof. We have

E

∣

∣

∣

∣

∣

∣

n
∑

j=1

χ2j

∣

∣

∣

∣

∣

∣

≤ K

n

n
∑

j=1

E

∣

∣

∣

∣

a∗j (EjQj)D
3/2 vdiag(Qj)√

n

∣

∣

∣

∣

≤ K

n

n
∑

j=1

E

∣

∣

∣

∣

a∗jQjD
3/2 vdiag(T )√

n

∣

∣

∣

∣

+
K

n

n
∑

j=1

E

∣

∣

∣

∣

a∗j (EjQj)D
3/2 vdiag(Q − T )√

n

∣

∣

∣

∣

+
K

n

n
∑

j=1

E

∣

∣

∣

∣

a∗j (EjQj)D
3/2 vdiag(Qj −Q)√

n

∣

∣

∣

∣

. (4.4)

The first term satisfies

n
∑

j=1

E

∣

∣

∣

∣

a∗jQjD
3/2 vdiag(T )√

n

∣

∣

∣

∣

≤ √
n





n
∑

j=1

E

∣

∣

∣

∣

a∗jQjD
3/2 vdiag(T )√

n

∣

∣

∣

∣

2




1/2

.

As ‖n−1/2D3/2vdiag(T )‖ = (n−1
∑N

i=1 d
3
i t

2
ii)

1/2 ≤ K, Theorem 3.3-(1) can be applied, and

the first term at the r.h.s. of (4.4) is of order n−1/2. We now deal with the second term at
the r.h.s.

E

∣

∣

∣

∣

a∗j (EjQj)D
3/2 vdiag(Q− T )√

n

∣

∣

∣

∣

≤ K E

∥

∥

∥

∥

vdiag(Q − T )√
n

∥

∥

∥

∥

≤
(

K

n

N
∑

i=1

E|qii − tii|2
)1/2

≤ K√
n
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by (3.17). We now consider the third term. Since ‖a∗j (EjQj)D
3/2‖ is uniformly bounded,

1

n

n
∑

j=1

E

∣

∣

∣

∣

a∗j (EjQj)D
3/2 vdiag(Qj −Q)√

n

∣

∣

∣

∣

=
1

n3/2

n
∑

j=1

E

∣

∣

∣Tr
(

diag(a∗j (EjQj)D
3/2)(Qj −Q)

)∣

∣

∣ ≤ K√
n

by Lemma 3.1. �

Lemma 4.3. Assume that the setting of Theorem 2.2 holds true, then:

n
∑

j=1

χ3j + log

(

(

1− 1

n
TrD

1
2 TA(I + δD̃)−2D̃A∗TD

1
2

)2

− ρ2γγ̃

)

P−−−−→
n→∞

0.

Lemma 4.4. Assume that the setting of Theorem 2.2 holds true, then:

n
∑

j=1

χ4j + log

(

∣

∣

∣

∣

1− ϑ
1

n
TrD

1
2 T̄ Ā(I + δD̃)−2D̃A∗TD

1
2

∣

∣

∣

∣

2

− |ϑ|2ρ2γ γ̃
)

P−−−−→
n→∞

0 .

The core of the paper is devoted to the proof of Lemma 4.3. This proof is provided in
Section 5. The proof of Lemma 4.4 follows the same canvas with minor differences. Elements
of this proof are given in Section 6.

5. Proof of Theorem 2.2 (part II)

This section is devoted to the proof of Lemma 4.3. We begin with the following lemma
which implies that

∑n
j=1 χ3j can be replaced by its expectation.

Lemma 5.1. For any N × 1 vector a with bounded Euclidean norm, we have,

max
j

var(a∗(EjQ)D(EjQ)a) = O(n−1) and max
j

var (Tr (EjQ)D(EjQ)D) = O(1).

Proof of Lemma 5.1 is postponed to Appendix B.1. Observe that:

n
∑

i=1

χ3j =
1

n

n
∑

j=1

ρ2t̃2jj

(

d̃2j
n

Tr(EjQj)D(EjQj)D + 2d̃ja
∗
j (EjQj)D(EjQj)aj

)

=
1

n

n
∑

j=1

ρ2t̃2jj

(

d̃2j
n

Tr(EjQ)D(EjQ)D + 2d̃ja
∗
j (EjQj)D(EjQj)aj

)

+O(n−1) ,

due to Lemma 3.1. Consider the following notations:

ψj =
1

n
TrE [(EjQ)D(EjQ)D] =

1

n
TrE [(EjQ)DQD] ,

ζkj = E [a∗k(EjQ)D(EjQ)ak] = E [a∗k(EjQ)DQak] ,

θkj = E [a∗k(EjQk)D(EjQk)ak] = E [a∗k(EjQk)DQkak] ,

ϕj =
1

n

j
∑

k=1

ρ2d̃k t̃
2
kkθkj .
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Thanks to Lemma 5.1, we only need to show that

1

n

n
∑

j=1

(

ρ2t̃2jj d̃
2
jψj + 2ρ2d̃j t̃

2
jjθjj

)

+ log∆n −−−−→
n→∞

0 . (5.1)

There are structural links between the various quantities ψj , ζkj , θkj and ϕj . The idea be-
hind the proof is to establish the equations between these quantities. Solving these equations

will yield explicit expressions which will enable to identify 1
n

∑n
j=1

(

ρ2t̃2jj d̃
2
jψj + 2ρ2d̃j t̃

2
jjθjj

)

as the deterministic quantity − log∆n up to a vanishing error term.

Proof of (5.1) is broken down into four steps. In the first step, we establish an equation
between ζkj , ψj and ϕj (up to O(n−1/2)): Eq. (5.7). In the second step, we establish an
equation between ψj and ϕj : Eq. (5.11). In the third step, we establish an equation between
ζkj , ψj and θkj : Eq. (5.12). Gathering these results, we obtain a 2× 2 linear system (5.15)
whose solutions are ψj and ϕj . In the fourth step, we solve this system and finally establish
(5.1).

5.1. Step 1: Expression of ζkj = E[a∗k(EjQ)DQak]. Writing

Q = T + T (T−1 −Q−1)Q = T + T
(

ρδ̃D +A(I + δD̃)−1A∗ − ΣΣ∗
)

Q , (5.2)

we have:

ζkj = E

[

a∗kEj

[

T + T
(

ρδ̃D +A(I + δD̃)−1A∗ − ΣΣ∗
)

Q
]

DQak

]

,

= E[a∗kTDQak] + ρδ̃ E[a∗kTD(EjQ)DQak]

+ E[a∗kTA(I + δD̃)−1A∗(EjQ)DQak]− E[a∗kT (EjΣΣ
∗Q)DQak] , (5.3)

△
= a∗kTDTak + ρδ̃ E[a∗kTD(EjQ)DQak] +X + Z + ε , (5.4)

where X and Z are the last two terms at the r.h.s. of (5.3) and where |ε| = O(n−1/2) by
Theorem 3.3-(3). Beginning with X , we have

X =

n
∑

ℓ=1

E[a∗kTaℓa
∗
ℓ (EjQ)DQak]

1 + δd̃ℓ

=

n
∑

ℓ=1

E[a∗kTaℓa
∗
ℓ (EjQℓ)DQak]

1 + δd̃ℓ
−

n
∑

ℓ=1

E[ρt̃ℓℓa
∗
kTaℓa

∗
ℓ (EjQℓηℓη

∗
ℓQℓ)DQak]

1 + δd̃ℓ
+ ε1 ,

=

n
∑

ℓ=1

E[a∗kTaℓa
∗
ℓ (EjQℓ)DQak]

1 + δd̃ℓ
−

n
∑

ℓ=1

E[ρt̃ℓℓa
∗
kTaℓa

∗
ℓ (EjQℓaℓη

∗
ℓQℓ)DQak]

1 + δd̃ℓ
+ ε1 + ε2 ,

=

n
∑

ℓ=1

E[a∗kTaℓa
∗
ℓ (EjQℓ)DQak]

1 + δd̃ℓ
−

n
∑

ℓ=1

E[ρt̃ℓℓa
∗
kTaℓa

∗
ℓTℓaℓ(Ejη

∗
ℓQℓ)DQak]

1 + δd̃ℓ
+ ε1 + ε2 + ε3 ,

△
= X1 +X2 + ε1 + ε2 + ε3 ,
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where

ε1 = −
n
∑

ℓ=1

E[a∗kTaℓ(Ej (ρq̃ℓℓ − ρt̃ℓℓ)a
∗
ℓQℓηℓη

∗
ℓQℓ)DQak]

1 + δd̃ℓ
, (5.5)

ε2 = −
n
∑

ℓ=1

E[ρt̃ℓℓa
∗
kTaℓa

∗
ℓ (EjQℓyℓη

∗
ℓQℓ)DQak]

1 + δd̃ℓ
,

ε3 = −
n
∑

ℓ=1

E[ρt̃ℓℓa
∗
kTaℓ(Ejaℓ(Qℓ − Tℓ)aℓ η∗ℓQℓ)DQak]

1 + δd̃ℓ
.

Using (3.3) and (3.8), ε1 can be written as:

ε1 = E

[

Ej

(

a∗kTA diag(ξℓ) (I + δD̃)−1Σ∗Q
)

DQak

]

,

where ξℓ = ρ(q̃ℓℓ−t̃ℓℓ)(1+η∗ℓQℓηℓ)a
∗
ℓQℓηℓ. Recalling that ‖Σ∗Q‖ is bounded, we obtain |ε1| ≤

KE‖a∗kTAdiag(ξℓ)‖ ≤ K(
∑n

ℓ=1 |[a∗kTA]ℓ|2Eξ2ℓ )1/2 ≤ K/
√
n by (3.17) and the boundedness

of E|X11|16 (Assumption A1). We show similarly that ε2 and ε3 (with the help of Theorem
3.3-(4)) are of order O(n−1/2). We now develop X2 as:

X2 = −
n
∑

ℓ=1

E[ρt̃ℓℓ a
∗
kTaℓ a

∗
ℓTℓaℓ a∗ℓ (EjQℓ)DQak]

1 + δd̃ℓ
−

j
∑

ℓ=1

E[ρt̃ℓℓ a
∗
kTaℓ a

∗
ℓTℓaℓ y∗ℓ (EjQℓ)DQak]

1 + δd̃ℓ
,

△
= U1 + U2 .

The term U2 can be expressed as:

U2 =

j
∑

ℓ=1

E[ρ2 t̃ℓℓq̃ℓℓ a
∗
kTaℓ a

∗
ℓTℓaℓ y∗ℓ (EjQℓ)DQℓηℓ η

∗
ℓQℓak]

1 + δd̃ℓ
,

=

j
∑

ℓ=1

E[ρ2 t̃2ℓℓ a
∗
kTaℓ a

∗
ℓTℓaℓ y∗ℓ (EjQℓ)DQℓηℓ η

∗
ℓQℓak]

1 + δd̃ℓ
+O(n−1/2) .

Write ηℓη
∗
ℓ = aℓa

∗
ℓ + aℓy

∗
ℓ + yℓy

∗
ℓ + yℓa

∗
ℓ . The term in aℓa

∗
ℓ is zero. Turning to the term in

aℓy
∗
ℓ , we have E|y∗ℓ (EjQℓ)DQℓaℓ y

∗
ℓQℓak| = O(n−1), hence

j
∑

ℓ=1

∣

∣E[ρ2 t̃2ℓℓ a
∗
kTaℓ a

∗
ℓTℓaℓ y∗ℓ (EjQℓ)DQℓaℓ y

∗
ℓQℓak]

∣

∣

1 + δd̃ℓ
≤ K

n

j
∑

ℓ=1

|a∗kTaℓ| ≤ K√
n
.

Moreover,

j
∑

ℓ=1

∣

∣E[ρ2 t̃2ℓℓ a
∗
kTaℓ a

∗
ℓTℓaℓ y∗ℓ (EjQℓ)DQℓyℓ y

∗
ℓQℓak]

∣

∣

1 + δd̃ℓ

=

j
∑

ℓ=1

∣

∣

∣E

[

ρ2t̃2ℓℓ a
∗
kTaℓ a

∗
ℓTℓaℓ

(

y∗ℓ (EjQℓ)DQℓyℓ − d̃ℓn
−1TrD(EjQℓ)DQℓ

)

y∗ℓQℓak

]∣

∣

∣

1 + δd̃ℓ

≤ K

n

j
∑

ℓ=1

|a∗kTaℓ| = O(n−1/2) .
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The term in yℓa
∗
ℓ is written as

j
∑

ℓ=1

E[ρ2t̃2ℓℓ a
∗
kTaℓ a

∗
ℓTℓaℓ y∗ℓ (EjQℓ)DQℓyℓ a

∗
ℓQℓak]

1 + δd̃ℓ
= ψj

j
∑

ℓ=1

E[ρ2d̃ℓt̃
2
ℓℓ a

∗
kTaℓ a

∗
ℓTℓaℓ a∗ℓQℓak]

1 + δd̃ℓ
+ε

where ε = O(n−1) by Lemmas 5.1 and 3.1. The remaining term in the r.h.s. can be handled
by the following lemma which is proven in appendix B.2:

Lemma 5.2. Let (u) = (un)n∈N be a sequence of vectors with bounded Euclidean norms.
Let (αℓ)1≤ℓ≤n = (αℓ,n)1≤ℓ≤n be an array of bounded real numbers. Then:

j
∑

ℓ=1

αℓ u
∗Taℓ E [aℓQℓu] =

j
∑

ℓ=1

αℓ u
∗Taℓ a

∗
ℓTu

ρt̃ℓℓ(1 + d̃ℓδ)
+O(n−1/2) .

Applying this lemma with u = ak and αℓ = ρ2t̃2ℓℓd̃ℓ(1 + d̃ℓ)
−1aℓTℓaℓ, we obtain

U2 = ψj

j
∑

ℓ=1

ρd̃ℓt̃ℓℓ a
∗
kTaℓ a

∗
ℓTℓaℓ a∗ℓTak

(1 + δd̃ℓ)2
+O(n−1/2).

Gathering these results, and using the identity (1− ρt̃ℓℓa
∗
ℓTℓaℓ) = ρt̃ℓℓ(1 + d̃ℓδ) (see (3.10)),

we obtain

X =

n
∑

ℓ=1

ρt̃ℓℓ a
∗
kTaℓ E[a

∗
ℓ (EjQℓ)DQak]+ψj

j
∑

ℓ=1

ρd̃ℓt̃ℓℓ a
∗
kTaℓ a

∗
ℓTℓaℓ a∗ℓTak

(1 + d̃ℓδ)2
+O(n−1/2). (5.6)

We now turn to the term Z in (5.4).

Z = −
n
∑

ℓ=1

E[a∗kT (Ejρq̃ℓℓηℓη
∗
ℓQℓ)DQak] = −

n
∑

ℓ=1

ρt̃ℓℓE[a
∗
kT (Ejηℓη

∗
ℓQℓ)DQak] + ε ,

where

ε =

n
∑

ℓ=1

E[a∗kT
(

Ej ρ(q̃ℓℓ − t̃ℓℓ)ηℓη
∗
ℓQℓ

)

DQak]

satisfies ε = O(n−1/2) (same arguments as for ε1 in (5.5)). Writing ηℓη
∗
ℓ = aℓa

∗
ℓ + yℓy

∗
ℓ +

aℓy
∗
ℓ + yℓa

∗
ℓ , we obtain:

Z = −
n
∑

ℓ=1

ρt̃ℓℓ a
∗
kTaℓ E[a

∗
ℓ (EjQℓ)DQak]

−





j
∑

ℓ=1

ρt̃ℓℓ E[a
∗
kTyℓ y

∗
ℓ (EjQℓ)DQak] +

1

n

n
∑

ℓ=j+1

ρt̃ℓℓd̃ℓ E[a
∗
kTD(EjQℓ)DQak]





−
j
∑

ℓ=1

ρt̃ℓℓ a
∗
kTaℓ E[y

∗
ℓ (EjQℓ)DQak]−

j
∑

ℓ=1

ρt̃ℓℓ E[a
∗
kTyℓ a

∗
ℓ (EjQℓ)DQak] +O(n−1/2)

△
= Z1 + Z2 + Z3 + Z4 +O(n−1/2).
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The term Z1 cancels with the first term in the decomposition of X (first term at the r.h.s. of
(5.6)). The term Z2 can be written as:

Z2 = −





j
∑

ℓ=1

ρt̃ℓℓ E[a
∗
kTyℓ y

∗
ℓ (EjQℓ)DQℓak] +

1

n

n
∑

ℓ=j+1

ρt̃ℓℓd̃ℓ E[a
∗
kTD(EjQℓ)DQak]





+

j
∑

ℓ=1

ρ2t̃2ℓℓ E[a
∗
kTyℓ y

∗
ℓ (EjQℓ)DQℓηℓ η

∗
ℓQℓak] + ε

△
= W1 +W2 + ε ,

where ε follows from the substitution of ρq̃ℓℓ with ρt̃ℓℓ and satisfies ε = O(n−1/2) as in (5.5).
Consider first W1:

W1 = −





1

n

j
∑

ℓ=1

ρt̃ℓℓd̃ℓE[a
∗
kTD(EjQℓ)DQℓak] +

1

n

n
∑

ℓ=j+1

ρt̃ℓℓd̃ℓE[a
∗
kTD(EjQℓ)DQak]



 .

Write:

(EjQℓ)DQℓ − (EjQ)DQ = (EjQℓ)D(Qℓ −Q) + (EjQℓ − EjQ)DQ .

Using (3.5) and (3.6),

1

n

j
∑

ℓ=1

ρt̃ℓℓd̃ℓ |E[a∗kTD(EjQℓ)D(Qℓ −Q)ak]| ≤ K

n

j
∑

ℓ=1

(

E|(1 + η∗ℓQℓηℓ)|2
)1/2 (

E|η∗ℓQak|2
)1/2

≤ K√
n
(Ea∗kQΣ1:jΣ

∗
1:jQak)

1/2 = O(n−1/2) ,

and the same arguments apply to the term (EjQℓ − EjQ)DQ. Hence,

W1 = −ρδ̃E[a∗kTD(EjQ)DQak] +O(n−1/2).

Turning to W2, we have:

j
∑

ℓ=1

ρ2t̃2ℓℓ E[a
∗
kTyℓ y

∗
ℓ (EjQℓ)DQℓyℓ a

∗
ℓQℓak]

=

j
∑

ℓ=1

ρ2t̃2ℓℓ E
[

a∗kTyℓ

(

y∗ℓ (EjQℓ)DQℓyℓ −
d̃ℓ
n

TrD(EjQℓ)DQℓ

)

a∗ℓQℓak

]

whose modulus is of order O(n−1/2). The term

j
∑

ℓ=1

ρ2 t̃2ℓℓE[a
∗
kTyℓy

∗
ℓ (EjQℓ)DQℓaℓy

∗
ℓQℓak]

can be handled similarly.

The term

j
∑

ℓ=1

ρ2t̃2ℓℓE[a
∗
kTyℓy

∗
ℓ (EjQℓ)DQℓaℓa

∗
ℓQℓak] =

1

n

j
∑

ℓ=1

ρ2 t̃2ℓℓd̃ℓE[a
∗
kTD(EjQℓ)DQℓaℓa

∗
ℓQℓak]
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is bounded by Kn−1/2. Finally,

W2 =

j
∑

ℓ=1

ρ2 t̃2ℓℓE[y
∗
ℓQℓaka

∗
kTyℓ y

∗
ℓ (EjQℓ)DQℓyℓ] +O(n−1/2) ,

(a)
= ψj a

∗
kTDTak

1

n

j
∑

ℓ=1

ρ2t̃2ℓℓd̃
2
ℓ +O(n−1/2) ,

where (a) follows by standard arguments as those already developed.

The term Z3 satisfies

Z3 =

j
∑

ℓ=1

ρ2t̃2ℓℓa
∗
kTaℓE[y

∗
ℓ (EjQℓ)DQℓηℓ η

∗
ℓQℓak] +O(n−1/2).

Writing ηℓη
∗
ℓ = yℓy

∗
ℓ + aℓy

∗
ℓ + aℓa

∗
ℓ + yℓa

∗
ℓ and relying arguments as those already developed,

one can check that the only non-negligible contribution stems from the term containing yℓa
∗
ℓ .

Hence,

Z3 = ψj

j
∑

ℓ=1

ρ2t̃2ℓℓd̃ℓa
∗
kTaℓE[a

∗
ℓQℓak] +O(n−1/2) ,

= ψj

j
∑

ℓ=1

ρt̃ℓℓd̃ℓa
∗
kTaℓa

∗
ℓTak

1 + d̃ℓδ
+O(n−1/2) ,

by Lemma (5.2). Similarly,

Z4 =

j
∑

ℓ=1

ρ2 t̃2ℓℓ E[a
∗
kTyℓ a

∗
ℓ (EjQℓ)DQℓηℓ η

∗
ℓQℓak] +O(n−1/2) ,

= a∗kTDTak
1

n

j
∑

ℓ=1

ρ2d̃ℓt̃
2
ℓℓE[a

∗
ℓ (EjQℓ)DQℓaℓ] +O(n−1/2) ,

= a∗kTDTakϕj +O(n−1/2) .

Gathering these results, we obtain

Z = −
n
∑

ℓ=1

ρt̃ℓℓ a
∗
kTaℓE[a

∗
ℓ (EjQℓ)DQak]− ρδ̃ E[a∗kTD(EjQ)DQak]

+ ψj a
∗
kTDTak

1

n

j
∑

ℓ=1

ρ2 t̃2ℓℓd̃
2
ℓ + ψj

j
∑

ℓ=1

ρt̃ℓℓd̃ℓa
∗
kTaℓa

∗
ℓTak

1 + d̃ℓδ
+ a∗kTDTak ϕj +O(n−1/2).

Plugging this and Eq. (5.6) into (5.4), and noticing that ρt̃ℓℓ(aℓTℓaℓ(1 + d̃ℓδ)
−1 + 1) =

(1 + d̃ℓδ)
−1, we obtain:

ζkj = a∗kTDTak + ψj

(

j
∑

ℓ=1

a∗kTaℓ d̃ℓ a
∗
ℓTak

(1 + d̃ℓδ)2
+ a∗kTDTak

1

n

j
∑

ℓ=1

ρ2t̃2ℓℓd̃
2
ℓ

)

+ a∗kTDTak ϕj +O(n−1/2) . (5.7)
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5.2. Step 2: Expression of ψj = n−1 TrE[(EjQ)DQD]. Using Identity (5.2), we obtain:

ψj =
1

n
TrE[TDQD] +

ρδ̃

n
TrE[TD(EjQ)DQD]

+
1

n
TrE[TA(I + δD̃)−1A∗(EjQ)DQD]− 1

n
TrE[T (EjΣΣ

∗Q)DQD] , (5.8)

=
1

n
TrDTDT +

ρδ̃

n
TrE[TD(EjQ)DQD] +X + Z + ε , (5.9)

where X and Z are the last two terms of the r.h.s. of (5.8), and where ε = O(n−1) by
Theorem 3.3-(2). Due to the presence of the multiplying factor n−1, the treatment of X and
Z is simpler here than the treatment of their analogues for ζkj . We skip hereafter the details
related to the bounds over the ε’s. The term X satisfies

X =
1

n

n
∑

ℓ=1

E[a∗ℓ (EjQ)DQDTaℓ]

1 + δd̃ℓ
,

=
1

n

n
∑

ℓ=1

E[a∗ℓ (EjQℓ)DQDTaℓ]

1 + δd̃ℓ
− 1

n

n
∑

ℓ=1

E[ρt̃ℓℓ (Eja
∗
ℓQℓηℓ η

∗
ℓQℓ)DQDTaℓ]

1 + δd̃ℓ
+ ε ,

=
1

n

n
∑

ℓ=1

E[a∗ℓ (EjQℓ)DQDTaℓ]

1 + δd̃ℓ
− 1

n

n
∑

ℓ=1

E[ρt̃ℓℓ a
∗
ℓTℓaℓ a∗ℓ (EjQℓ)DQDTaℓ]

1 + δd̃ℓ

− 1

n

j
∑

ℓ=1

E[ρt̃ℓℓ a
∗
ℓTℓaℓ y∗ℓ (EjQℓ)DQDTaℓ]

1 + δd̃ℓ
+ ε′ ,

where max(|ε|, |ε′|) = O(n−1/2). As 1− ρt̃ℓℓa
∗
ℓTℓaℓ = ρt̃ℓℓ(1 + d̃ℓδ),

X =
1

n

n
∑

ℓ=1

E[ρt̃ℓℓ a
∗
ℓ (EjQℓ)DQDTaℓ]−

1

n

j
∑

ℓ=1

E[ρt̃ℓℓ a
∗
ℓTℓaℓ y∗ℓ (EjQℓ)DQDTaℓ]

1 + δd̃ℓ
+O(n−1/2) ,

=
1

n

n
∑

ℓ=1

E[ρt̃ℓℓ a
∗
ℓ (EjQℓ)DQDTaℓ] +

1

n

j
∑

ℓ=1

E[ρ2 t̃2ℓℓ a
∗
ℓTℓaℓ y∗ℓ (EjQℓ)DQℓηℓ η

∗
ℓQℓDTaℓ]

1 + δd̃ℓ
+O(n−1/2) ,

=
1

n

n
∑

ℓ=1

E[ρt̃ℓℓ a
∗
ℓ (EjQℓ)DQDTaℓ] +

ψj

n

j
∑

ℓ=1

d̃ℓ a
∗
ℓTaℓ a

∗
ℓTDTaℓ

(1 + δd̃ℓ)3
+O(n−1/2) , (5.10)



CLT FOR CERTAIN STATISTICS OF GRAM RANDOM MATRICES 23

where (3.11) is used to obtain the last equation. The term Z can be expressed as:

Z = − 1

n

n
∑

ℓ=1

TrE[ρt̃ℓℓT (Ejηℓη
∗
ℓQℓ)DQD] +O(n−1/2) ,

= − 1

n

n
∑

ℓ=1

E[ρt̃ℓℓa
∗
ℓ (EjQℓ)DQDTaℓ]

−





1

n

j
∑

ℓ=1

E[ρt̃ℓℓy
∗
ℓ (EjQℓ)DQDTyℓ] +

1

n

n
∑

ℓ=j+1

1

n
TrE[ρd̃ℓt̃ℓℓTD(EjQℓ)DQD]





− 1

n

j
∑

ℓ=1

E[ρt̃ℓℓy
∗
ℓ (EjQℓ)DQDTaℓ]−

1

n

j
∑

ℓ=1

E[ρt̃ℓℓa
∗
ℓ (EjQℓ)DQDTyℓ] +O(n−1/2) ,

△
= Z1 + Z2 + Z3 + Z4 +O(n−1/2).

The term Z1 cancels with the first term in the r.h.s. of X ’s decomposition (5.10). The terms
Z2, Z3 and Z4 satisfy:

Z2 = −ρδ̃
n

TrE[TD(EjQ)DQD] +
1

n

j
∑

ℓ=1

E[ρ2 t̃2ℓℓy
∗
ℓ (EjQℓ)DQℓηℓ η

∗
ℓQℓDTyℓ] +O(n−1/2)

= −ρδ̃
n

TrE[TD(EjQ)DQD] + ψj
1

n
TrDTDT

1

n

j
∑

ℓ=1

ρ2d̃2ℓ t̃
2
ℓℓ +O(n−1/2) ,

Z3 =
1

n

j
∑

ℓ=1

E[ρ2 t̃2ℓℓy
∗
ℓ (EjQℓ)DQℓηℓ η

∗
ℓQℓDTaℓ] +O(n−1/2)

= ψj
1

n

j
∑

ℓ=1

ρd̃ℓt̃ℓℓ
a∗ℓTDTaℓ

1 + d̃ℓδ
+O(n−1/2) (see Th.3.3-(4) and (3.11)),

Z4 =
1

n

j
∑

ℓ=1

E[ρ2 t̃2ℓℓa
∗
ℓ (EjQℓ)DQℓηℓ η

∗
ℓQℓDTyℓ] +O(n−1/2)

=
1

n
TrDTDT

1

n

j
∑

ℓ=1

ρ2d̃ℓt̃
2
ℓℓE[a

∗
ℓ (EjQℓ)DQℓaℓ] +O(n−1/2).

Plugging these terms in (5.9), we obtain:

ψj = γ + ψj

(

1

n

j
∑

ℓ=1

a∗ℓTDTaℓ

(

d̃ℓ a
∗
ℓTaℓ

(1 + δd̃ℓ)3
+

ρd̃ℓt̃ℓℓ

1 + d̃ℓδ

)

+
γ

n

j
∑

ℓ=1

ρ2d̃2ℓ t̃
2
ℓℓ

)

+ γϕj +O(n−1/2) ,

= γ + ψj

(

1

n

j
∑

ℓ=1

d̃ℓ a
∗
ℓTDTaℓ

(1 + δd̃ℓ)2
+
γ

n

j
∑

ℓ=1

ρ2d̃2ℓ t̃
2
ℓℓ

)

+ γϕj +O(n−1/2) , (5.11)

using (3.10) and (3.11).
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5.3. Step 3: Relation between ζkj and θkj for k ≤ j. The term ζkj can be written as

ζkj = E[a∗kEj(Qk − ρq̃kkQkηkη
∗
kQk)D(Qk − ρq̃kkQkηkη

∗
kQk)ak]

= θkj − ρt̃kkE[a
∗
kEj(Qkηkη

∗
kQk)DQkak]− ρt̃kk E[a∗kEj(Qk)DQkηk η

∗
kQkak]

+ ρ2 t̃2kk E[a
∗
kEj(Qkηkη

∗
kQk)DQkηk η

∗
kQkak] +O(n−1/2)

△
= θkj +X1 +X2 +X3 +O(n−1/2) .

Using similar arguments as those developed previously, we get:

X1 = −ρt̃kka∗kTkak E[a∗kEj(Qk)DQkak] +O(n−1/2) = −ρt̃kka∗kTkak θkj +O(n−1/2),

X2 = −ρt̃kka∗kTkak θkj +O(n−1/2) .

As k ≤ j,

X3 = ρ2t̃2kk (a∗kTkak)2 E[η∗kEj(Qk)DQkηk] +O(n−1/2) ,

= ρ2t̃2kk (a∗kTkak)2
(

θkj + d̃kψj

)

+O(n−1/2) .

Using (3.10) and (3.11), we finally obtain:

ζkj = ρ2 t̃2kk(1 + d̃kδ)
2 θkj + d̃k

(

a∗kTak

1 + d̃kδ

)2

ψj +O(n−1/2) . (5.12)

5.4. Step 4: A system of perturbed linear equations in (ψj , ϕj). Proof of (5.1).
Combining (5.12) with (5.7), we obtain

ρ2d̃k t̃
2
kkθkj = d̃k

a∗kTDTak

(1 + d̃kδ)2

+

(

j
∑

ℓ=1

d̃k a
∗
kTaℓ d̃ℓ a

∗
ℓTak

(1 + d̃kδ)2(1 + d̃ℓδ)2
+

d̃k a
∗
kTDTak

(1 + d̃kδ)2
1

n

j
∑

ℓ=1

ρ2t̃2ℓℓd̃
2
ℓ − d̃2k

(a∗kTak)
2

(1 + d̃kδ)4

)

ψj

+
d̃k a

∗
kTDTak

(1 + d̃kδ)2
ϕj +O(n−1/2) (5.13)

which implies that ϕj =
1
n

∑j
k=1 ρ

2d̃k t̃
2
kkθkj satisfies

(1− Fj)ϕj − (Gj + FjMj)ψj = Fj +O(n−1/2)

where

Fj =
1

n

j
∑

k=1

a∗kTDTak d̃k

(1 + d̃kδ)2
,

Mj =
1

n

j
∑

ℓ=1

ρ2 t̃2ℓℓd̃
2
ℓ , (5.14)

Gj =
1

n

j
∑

k=1

j
∑

ℓ=1
ℓ 6=k

d̃kd̃ℓ |a∗kTaℓ|
2

(1 + d̃kδ)2(1 + d̃ℓδ)2
.

With these new notations, equation (5.11) is rewritten

−γϕj + (1− Fj − γMj)ψj = γ +O(n−1/2),
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and we end up with a system of two perturbed linear equations in (ϕj , ψj):
{

(1− Fj)ϕj − (Gj + FjMj)ψj = Fj +O(n−1/2)

−γϕj + (1− Fj − γMj)ψj = γ +O(n−1/2)
. (5.15)

The determinant of this system is ∆j = (1 − Fj)
2 − γMj − γGj . The following lemma

establishes the link between the ∆j ’s and ∆n as defined in Theorem 2.2.

Lemma 5.3. Recall the definition of ∆n :

∆n =

(

1− 1

n
TrD

1
2TA(I + δD̃)−2D̃A∗TD

1
2

)2

− ρ2γγ̃ .

The determinants ∆j decrease as j goes from 1 to n; moreover, ∆n coincides with ∆n.

Proof of Lemma 5.3 is postponed to Appendix B.3.

Solving this system of equations and using the lemma in conjunction with the fact
lim inf ∆n > 0, established in Lemma 3.5, we obtain:

[

ϕj

ψj

]

=
1

∆j

[

Fj(1 − Fj) + γGj

γ

]

+ εj ,

where ‖εj‖ = O(n−1/2). Replacing into (5.13), we obtain

2ρ2d̃j t̃
2
jjθjj

n
= 2(Fj−Fj−1) + (Gj−Gj−1 + 2Mj(Fj−Fj−1))ψj + 2(Fj−Fj−1)ϕj +O(n−3/2)

= 2(Fj − Fj−1) +
γ(Gj −Gj−1) + 2γMj(Fj − Fj−1)

∆j

+
2(Fj − Fj−1)(Fj(1 − Fj) + γGj)

∆j
+O(n−3/2)

which leads to

1

n

n
∑

j=1

(

ρ2t̃2jj d̃
2
jψj + 2ρ2d̃j t̃

2
jjθjj

)

=

n
∑

j=1

2(Fj − Fj−1)(1 − Fj) + γ(Mj −Mj−1) + γ(Gj −Gj−1)

∆j
+O(n−1/2).

On the other hand,∆j−1−∆j = 2(Fj−Fj−1)(1−Fj)+γ(Mj−Mj−1)+γ(Gj−Gj−1)+O(n−2),
hence, due to Lemma 5.3 and to lim inf ∆n > 0,

1

n

n
∑

j=1

(

ρ2t̃2jj d̃
2
jψj + 2ρ2d̃j t̃

2
jjθjj

)

=

n
∑

j=1

∆j−1 −∆j

∆j
+O(n−1/2)

=
n
∑

j=1

log

(

1 +
∆j−1 −∆j

∆j

)

+O(n−1/2)

=
n
∑

j=1

log
∆j−1

∆j
+O(n−1/2) = − log(∆n) +O(n−1/2)

which proves (5.1). Lemma 4.3 is proven.



26 HACHEM ET AL.

6. Proof of Theorem 2.2 (part III)

In this section, we complete the proof of Theorem 2.2. Proof of Lemma 4.4 is very close to
the proof of Lemma 4.3; we therefore only provide its main landmarks. We finally establish
the main estimates over (Θn).

6.1. Elements of proof for Lemma 4.4. Proof of Lemma 4.4 relies on the following
counterpart of Lemma 3.2:

Lemma 6.1. Assume that the setting of Lemma 3.2 holds true; and let Ex2 = ϑ. Then for
any p ≥ 2,

E|xTMx− ϑTrM |p ≤ Kp

(

(

E|x1|4 TrMM∗
)p/2

+ E|x1|2p Tr(MM∗)p/2
)

.

Proof. The result is obtained upon noticing that

xTMx =
1

4

3
∑

k=0

ik
(

ikx̄+ x
)∗
M
(

ikx̄+ x
)

and using Lemma 3.2. �

Here are the main steps of the proof. Introducing the notations

ψ
j

=
1

n
TrE

[

(EjQ)DQ̄D
]

,

ζ
kj

= E
[

a∗k(EjQ)DQ̄āk
]

,

θkj = E
[

a∗k(EjQk)DQ̄kāk
]

,

ϕ
j

=
1

n

j
∑

k=1

ρ2d̃k t̃
2
kkθkj ,

and adapting Lemma 5.1, we only need to prove that:

1

n

n
∑

j=1

(

ρ2t̃2jj d̃
2
j |ϑ|2ψj

+ 2ρ2d̃j t̃
2
jj Re

(

ϑθjj
)

)

+ log∆n −−−−→
n→∞

0 .

Similar derivations as those performed in Steps 1-3 in Section 5 yield the perturbed system:
{

(1− ϑF j)ϕj
− (ϑ̄Gj + |ϑ|2F jMj)ψj

= F j +O(n−1/2)

−ϑγϕ
j
+ (1− ϑ̄F̄ j − γ|ϑ|2Mj)ψj

= γ +O(n−1/2)
,

where

F j =
1

n

j
∑

k=1

a∗kTDT̄ āk d̃k

(1 + d̃kδ)2
∈ C, Gj =

1

n

j
∑

k=1

j
∑

ℓ=1
ℓ 6=k

d̃kd̃ℓ (a
∗
kTaℓ)

2

(1 + d̃kδ)2(1 + d̃ℓδ)2
∈ R ,

Mj =
1

n

j
∑

ℓ=1

ρ2 t̃2ℓℓd̃
2
ℓ .

The determinant of this system is:

∆j =
∣

∣1− ϑF j

∣

∣

2 − |ϑ|2γ
(

Mj +Gj

)

.
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By (3.13), 0 ≤ γ ≤ γ; furthermore, |ϑ| ≤ 1, |F j | ≤ Fj , and |Gj | ≤ Gj . As a result,

∆j ≥ ∆j . Hence, by Lemma 5.3, the perturbation remains of order O(n−1/2) after solving
the system. Performing the same derivations as in Step 4 in Section 5, it can be established
that ∆n = ∆n. We finally end up with:

1

n

n
∑

j=1

(

ρ2t̃2jj d̃
2
j |ϑ|2ψj

+ 2ρ2d̃j t̃
2
jj Re

(

ϑθjj
)

)

=

n
∑

j=1

∆j−1 −∆j

∆j

+O(n−1/2) ,

= − log(∆n) +O(n−1/2) ,

which is the desired result.

6.2. Estimates over Θn. In order to conclude the proof of Theorem 2.2, it remains to
prove that 0 < lim infn Θn ≤ lim supn Θn <∞.

Consider first the upper bound. By Lemma 3.5, supn(− log∆n) < ∞. As ∆n ≥ ∆n,
log∆n is defined and supn(− log∆n) < ∞. By Lemma 3.4, the cumulant term in the
expression of Θn is bounded, hence lim supn Θn <∞.

We now prove that lim inf Θn > 0. To this end, write:

Θn =

n
∑

j=1

(

∆j−1 −∆j

∆j
+

∆j−1 −∆j

∆j

)

+ κ
ρ2

n2

N
∑

i=1

d2i t
2
ii

n
∑

j=1

d̃2j t̃
2
jj +O(n−1/2) ,

=

n
∑

j=1

(

γ(Gj −Gj−1)

∆j
+

|ϑ|2γ(Gj −Gj−1)

∆j

)

+

n
∑

j=1

(

2(Fj − Fj−1)(1 − Fj)

∆j
+

2Re
(

ϑ(F j − F j−1)(1− ϑ̄F̄ j)
)

∆j

)

+
ρ2

n

n
∑

j=1

d̃2j t̃
2
jj

(

γ

∆j
+ |ϑ|2

γ

∆j

+
κ

n

N
∑

i=1

d2i t
2
ii

)

+O(n−1/2) ,

△
= Z1,n + Z2,n + Z3,n +O(n−1/2) .

We prove in the sequel that Z1,n ≥ 0, Z2,n ≥ 0, and that lim infn Z3,n > 0. It has already
been noticed that ∆j ≥ ∆j ; moreover, it can be proven by direct computation that |Gj −
Gj−1| ≤ Gj −Gj−1, hence Z1,n ≥ 0. As

(1− Fj)−
γ(Mj +Gj)

1− Fj
≤
∣

∣1− ϑF j

∣

∣−
|ϑ|2γ

(

Mj +Gj

)

∣

∣1− ϑF j

∣

∣

,

this implies that ∆−1
j |1 − ϑF j | ≤ ∆−1

j (1 − Fj). Noticing in addition that |F j − F j−1| ≤
Fj − Fj−1, we get Z2,n ≥ 0. The cumulant κ = E|X11|4 − 2 − |ϑ|2 satisfies κ ≥ −1 − |ϑ|2,
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hence

Z3,n ≥ ρ2

n2

n
∑

j=1

d̃2j t̃
2
jj

((

1

∆j
− 1

)

+ |ϑ|2
(

1

∆j

− 1

)) N
∑

i=1

d2i t
2
ii

+
ρ2

n

n
∑

j=1

d̃2j t̃
2
jj

( 1

n∆j

N
∑

k,ℓ=1
k 6=ℓ

d2k |tkl|2 +
1

n∆j

N
∑

k,ℓ=1
k 6=ℓ

d2k (tkl)
2
)

,

≥ ρ2

n2

n
∑

j=1

d̃2j t̃
2
jj

((

1

∆j
− 1

)

+ |ϑ|2
(

1

∆j

− 1

)) N
∑

i=1

d2i t
2
ii =

ρ2

n2

n
∑

j=1

d̃2j t̃
2
jjpj

N
∑

i=1

d2i t
2
ii .

As the term pj is linear in |ϑ|2 ∈ [0, 1], pj ≥ min
(

∆−1
j (1−∆j),∆

−1
j +∆−1

j − 2
)

. We have

∆j∆j ≤
(

(1 − Fj)
2 − γ(Mj +Gj)

) (

(1 + Fj)
2 + γ(Mj +Gj)

)

,

= (1− F 2
j )

2 − γ2(Mj +Gj)
2 − 4γFj(Mj +Gj) ≤ 1 .

Hence ∆−1
j + ∆−1

j − 2 ≥ ∆−1
j + ∆j − 2 = ∆−1

j (1 − ∆j)
2. As 1 − ∆j ≥ γMj, we get

pj ≥ γ2M2
j , which implies that

Z3,n ≥ ρ2γ2

n2

n
∑

j=1

d̃2j t̃
2
jjM

2
j

N
∑

i=1

d2i t
2
ii = γ2

(

n
∑

j=1

M2
j (Mj −Mj−1)

) 1

n

N
∑

i=1

d2i t
2
ii

=
γ2

3

(

n
∑

j=1

M3
j −M3

j−1

) 1

n

N
∑

i=1

d2i t
2
ii +O(n−1) =

γ2M3
n

3

1

n

N
∑

i=1

d2i t
2
ii +O(n−1) ,

whose liminf is positive by Lemma 3.4.

The estimates over the variance are therefore established. This completes the proof of
Theorem 2.2.

7. Proposition 2.3 (bias): Main steps of the proof

Proof of Proposition 2.3-(i) can be found in [13, Theorem 2]. Let us prove (ii). The same
arguments as in the companion article [21] allow to write the bias term as:

N (EIn(ρ)− Vn(ρ)) =

∫ ∞

ρ

Tr (T (−ω)− EQ(−ω))dω,

Recall that in the centered case where A = 0, T (−ω) and T̃ (−ω) take the simple form

T (−ω) = [ω(IN + δ̃(−ω)D)]−1 and T̃ (−ω) = [ω(IN + δ(−ω)D̃)]−1, which implies that γ = γ
and γ̃ = γ̃. We introduce the following intermediate quantities:

α(−ω) = 1

n
TrDEQ(−ω), α̃(−ω) = 1

n
Tr D̃EQ̃(−ω),

C(−ω) =
(

ω(IN + α̃(−ω)D)
)−1

, C̃(−ω) =
(

ω(In + α(−ω)D̃)
)−1

.

From Theorem 3.3, n−1TrU(C − T ) → 0 and n−1 Tr Ũ(C̃ − T̃ ) → 0 for any sequences of

deterministic matrices U and Ũ with bounded spectral norms.

The proof consists of two steps:



CLT FOR CERTAIN STATISTICS OF GRAM RANDOM MATRICES 29

7.1. Step 1. Given ω > 0, let

βn(ω) =

(

κ+
|ϑ|2

1− ω2|ϑ|2γγ̃

)

Rn(ω)

where

Rn(ω) =
ω3

n TrDT 2

1− ω2γγ̃

(

γ

n
Tr(D̃T̃ )3 − ωγ̃2

n
Tr(DT )3

)

− ω2γ̃

n
TrD2T 3.

The purpose of this step is to show that
∫∞

ρ |βn(ω)|d(ω) <∞ and that

N(EIn(ρ)− Vn(ρ)) −
∫ ∞

ρ

βn(ω)d(ω) −−−−→
n→∞

0 . (7.1)

By inspecting the expression of βn(ω), by using Lemmas 3.4 and 3.5 and by recalling that
1−ω2γγ̃ = ∆n taken at z = −ω, we obtain after a small derivation that |βn(ω)| ≤ K/ω3 on
[ρ,∞) where K does not depend on n nor on ω. This proves the integrability of |βn(ω)|. By
taking up the poof of [21, Inequality (7.10)] with minor modifications, we also show that

|Tr (T (−ω)− EQ(−ω))| ≤ K

ω2

hence, showing

Tr (T (−ω)− EQ(−ω))− β(ω) −−−−→
n→∞

0 (7.2)

and applying the Dominated Convergence Theorem leads to (7.1). In order to show (7.2),
we start by writing for z = −ω

Tr (T − EQ) = Tr (T − C) + Tr (C − EQ) .

Using the decomposition Tr (T − C) = TrC(C−1 − T−1)T = ω
(

α̃− δ̃
)

TrDCT , we obtain

Tr (T − EQ) = ωn
(

α̃− δ̃
) 1

n
TrDCT +Tr(C − EQ) . (7.3)

On the other hand, writing n(α − δ) = TrD(EQ − C) + TrD(C − T ) = TrD(EQ − C) −
ω(α̃− δ̃)TrD2CT and similarly for n(α̃− δ̃), we obtain the system

[

1 ωn−1 TrD2CT

ωn−1Tr D̃2C̃T̃ 1

] [

n(α− δ)

n(α̃− δ̃)

]

=

[

TrD(EQ − C)

Tr D̃(EQ̃− C̃)

]

. (7.4)

Consequently, in order to show (7.2), we need to look for approximations of TrU(EQ − C)

and Tr Ũ(EQ̃− C̃) for deterministic matrices U and Ũ with bounded spectral norms:

Lemma 7.1. Assume that the setting of Proposition 2.3 holds true. Fix z = −ω < 0 and let
(Un)n (resp. (Ũn)n) be a sequence of N ×N (resp. n× n) diagonal deterministic matrices

such that supn max(‖Un‖, ‖Ũn‖) <∞. Then,

TrUn(C − EQ) + κ
ω2γ̃

n
TrUD2T 3 + |ϑ|2 ω2γ̃

1− ω2|ϑ|2γγ̃
1

n
TrUD2T 3 −−−−→

n→∞
0, (7.5)

Tr Ũn(C̃ − EQ̃) + κ
ω2γ

n
Tr ŨD̃2T̃ 3 + |ϑ|2 ω2γ

1− ω2|ϑ|2γγ̃
1

n
Tr ŨD̃2T̃ 3 −−−−→

n→∞
0. (7.6)
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Recalling that n−1 TrU(C−T ) → 0 and taking U = D2T , we have n−1 TrD2CT −γ → 0.

Similarly, n−1 Tr D̃2C̃T̃ − γ̃ → 0. Solving system (7.4) and using this lemma with U = D

and Ũ = D̃, we obtain

n(α̃− δ̃) =
1

1− ω2γγ̃

(

−ωγ̃TrD(EQ− C) + Tr D̃(EQ̃ − C̃)
)

+ ε

=
κ

1− ω2γγ̃

(

ω2γ

n
Tr(D̃T̃ )3 − ω3γ̃2

n
Tr(DT )3

)

+
|ϑ|2

(1 − ω2γγ̃)(1− ω2|ϑ|2γγ̃)

(

ω2γ

n
Tr(D̃T̃ )3 − ω3γ̃2

n
Tr(DT )3

)

+ ε′

where ε, ε′ → 0. Using Lemma 7.1 again in (7.3) with U = I, we obtain (7.2).

The remainder of this paragraph is devoted to the proof of Lemma 7.1.

Recall the following notations:

b̃j(−ω) =
1

ω
(

1 +
d̃j

n TrDQj(−ω)
) and ej(−ω) = η∗jQj(−ω)ηj −

d̃j
n

TrDQj(−ω) .

Starting with

TrU (EQ− C) = TrE[UC(C−1 −Q−1)Q] = −TrE[UCΣΣ∗Q] + ωα̃TrE[UCDQ]

and using (3.8) and (3.7), we obtain TrU (EQ− C) = Z1 + Z2 + Z3 where

Z1 =

n
∑

j=1

E

[

ω2b̃2j ej η
∗
jQjUCηj

]

,

Z2 = −
n
∑

j=1

E

[

ω3q̃jj b̃
2
j e

2
j η

∗
jQjUCηj

]

,

Z3 = ω α̃ETrUCDQ− ω

n

n
∑

j=1

E b̃j d̃j TrDQjUC .

In the remainder, we omit the study of the negligible terms to focus on the deterministic
equivalent formulas; in this spirit, we shall denote by ε a negligible term whose value might
change from line to line.

The term Z1 is

Z1 =

n
∑

j=1

E

[

ω2b̃2j ej

(

η∗jQjUCηj − d̃j
TrDQjUC

n

)]

.

Using Identity (3.20) with M = Qj , P = QjUC and u = 0, we obtain:

Z1 =
1

n

n
∑

j=1

E

[

ω2b̃2j

(

d̃2j
n

TrQjDQjUCD +
|ϑ|2
n
d̃2j TrQjDCUQ̄jD

+
κ

n

N
∑

i=1

d̃2jd
2
i [Qj]ii[QjUC]ii

)]

+ ε.
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It is not difficult to check that

Z2 = −
n
∑

j=1

E

[

ω3b̃3j d̃j
TrDQjUC

n
e2j

]

+ ε.

Turning to Z3, we have

Z3 =
ω

n

n
∑

j=1

E

[

d̃jEq̃jj TrUCDQ− d̃j b̃j TrUCDQj

]

=
ω

n

n
∑

j=1

d̃jE
[

Eq̃jj
(

TrUCDQj − ωq̃jj TrUCDQjηjη
∗
jQj

)

− b̃j TrUCDQj

]

=
ω

n

n
∑

j=1

d̃jE
[

(Eq̃jj − b̃j)TrUCDQj

]

− ω2

n

n
∑

j=1

d̃jEq̃jjE
[

b̃jη
∗
jQjUCDQjηj

]

+ ε.

Replacing b̃j by q̃jj + ωb̃2jej − ω2q̃jj b̃
2
je

2
j , we have

E

[

(Eq̃jj − b̃j)TrUCDQj

]

= E [(Eq̃jj − q̃jj)TrUCDQj] + E

[

ω2q̃jj b̃
2
je

2
j TrUCDQj

]

.

Since

q̃jj − Eq̃jj =
E(η∗jQjηj)− η∗jQjηj

ω(1 + η∗jQjηj)(1 + E(η∗jQjηj))
+ E

[

η∗jQjηj − E(η∗jQjηj)

ω(1 + η∗jQjηj)(1 + E(η∗jQjηj))

]

we have E(q̃jj − Eq̃jj)
2 = O(1/n). Hence

E [(Eq̃jj − q̃jj)TrUCDQj] = E [(Eq̃jj − q̃jj)(TrUCDQj − ETrUCDQj)] = O(n−1/2)

by Theorem 3.3-(5). It follows that E
[

(Eq̃jj − b̃j)TrUCDQj

]

= E

[

ω2b̃3je
2
j TrUCDQj

]

+ε,

hence

Z2 + Z3 = − 1

n

n
∑

j=1

E

[

ω2b̃2j d̃
2
j

1

n
TrQjDQjUCD

]

+ ε.

Taking the sum Z1 + Z2 + Z3, the terms that do not depend on ϑ nor on κ cancel out, and
we are left with

TrU(EQ− C) = |ϑ|2ω2γ̃
1

n
E
[

TrQDCUQ̄D
]

+ κω2γ̃
1

n
TrUD2T 3 + ε.

where we relied on the usual approximations for the diagonal entries of the resolvent (see
Lemma 4.1) to obtain the term in κ. We now briefly characterize the asymptotic behavior

of n−1TrEQDCUQ̄D. Starting with Q = T + ωδ̃TDQ− TΣΣ∗Q, we have

1

n
TrEQDCUQ̄D =

1

n
TrETDCUQ̄D +

ωδ̃

n
TrETDQDCUQ̄D − 1

n
TrETΣΣ∗QDCUQ̄D,
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and

− 1

n
TrETΣΣ∗QDCUQ̄D = − 1

n

n
∑

j=1

Eωq̃jjη
∗
jQjDCUQ̄DTηj

= − 1

n

n
∑

j=1

Eωq̃jjη
∗
jQjDCUQ̄jDTηj

+
1

n

n
∑

j=1

Eω2q̃2jjη
∗
jQjDCUQ̄j η̄j η

T
j DTηj

= −ωδ̃
n

TrETDQDCUQ̄D + |ϑ|2ω2γγ̃
TrEQDCUQ̄D

n
+ ε.

We therefore get

1

n
Tr EQDCUQ̄D =

1
n Tr UD2T 3

1− ω2|ϑ|2γγ̃ + ε

and Convergence (7.5) of lemma 7.1 is shown. Convergence (7.6) is proven similarly. Lemma
7.1 is proven, and Step 1 of the proof of Proposition 2.3-(ii) is established.

7.2. Step 2. The purpose of this step is to show that

R(ω) =
1

2

d

dω

(

ω2γ(−ω)γ̃(−ω)
)

.

Plugging into the expression of βn(ω), it is straightforward to show that
∫∞

ρ βn(ω)d(ω)

coincides with Bn given by (2.5).

Recall that

R(ω) =
ω3γ

1− ω2γγ̃

TrDT 2

n

Tr(D̃T̃ )3

n
− ω4γ̃2

1− ω2γγ̃

TrDT 2

n

Tr(DT )3

n
−ω2γ̃

TrD2T 3

n
= R1+R2+R3

Our method is similar to [19, §V.B]. We start by showing that the derivatives of γ̃(−ω) and
γ(−ω) that we denote respectively as γ̃′ and γ′ are

γ̃′ =
dγ̃(−ω)

dω
= − 2

ω
γ̃ +

2ω

1− ω2γγ̃

Tr(D̃T̃ )3

n

TrDT 2

n

γ′ =
dγ(−ω)

dω
= − 2

ω
γ +

2ω

1− ω2γγ̃

Tr(DT )3

n

Tr D̃T̃ 2

n
.

(7.7)

We have

γ̃′ =
1

n

n
∑

j=1

d̃2j
d

dω

(

1

ω2(1 + d̃jδ(−ω))2

)

= − 2

ω
γ̃ − 2ωδ′

Tr(D̃T̃ )3

n
(7.8)

where we put δ′ = dδ(−ω)/dω. This derivative can be expressed as

δ′ =
1

n

N
∑

i=1

di
d

dω

(

1

ω(1 + diδ̃(−ω))

)

= − δ

ω
− ωγδ̃′

where δ̃′ = dδ̃(−ω)/dω. Similarly, δ̃′ = −ω−1δ̃ − ωγ̃δ′. Combining the two equations, we
obtain

δ′ =
γδ̃ − ω−1δ

1− ω2γγ̃
. (7.9)
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Since T = [ω(I + δ̃D)]−1 and T̃ = [ω(I + δD̃)]−1, we have

T = ω−1IN − δ̃DT, T̃ = ω−1In − δD̃T̃ . (7.10)

This leads to

1

n
TrDT 2 =

1

n
TrDT ((ω−1I − δ̃DT ) = ω−1δ − γδ̃, and

1

n
Tr D̃T̃ 2 = ω−1δ̃ − γ̃δ. (7.11)

Combining with (7.9) and (7.8), we obtain the first equation of (7.7), the second being
obtained similarly. Using the first equation, the term R1 can be expressed as

R1 =
1

2

(

ω2γγ̃′ + 2ωγγ̃
)

.

Turning to R2, we have

R2 = − ω4γ̃2

1− ω2γγ̃

Tr(DT )3

n

TrDT (ω−1I − δ̃DT )

n

= − ω3δγ̃2

1− ω2γγ̃

Tr(DT )3

n
+

ω4δ̃γγ̃2

1− ω2γγ̃

Tr(DT )3

n

(a)
=

ω3γ̃

1− ω2γγ̃

Tr(DT )3

n

Tr D̃T̃ 2

n
− ω2γ̃δ̃

Tr(DT )3

n

(b)
=

1

2

(

ω2γ′γ̃ + 2ωγγ̃
)

− ω2γ̃δ̃
Tr(DT )3

n

where (a) is due to γ̃δ = ω−1δ̃−n−1Tr D̃T̃ 2, see (7.11), and (b) is due to (7.7). Considering
R3, we have by (7.10),

−ω2γ̃δ̃
Tr(DT )3

n
− ω2γ̃

TrD2T 3

n
= −ω2γ̃

TrD2T 2(T + δ̃DT )

n
= −ωγγ̃.

We therefore have R(ω) = 0.5
(

ω2γ′γ̃ + ω2γγ̃′ + 2ωγγ̃
)

= 0.5(ω2γγ̃)′. Proposition 2.3 is
proven.

Appendix A. Proofs for Section 3

A.1. Proofs of Eq. (3.10) and Eq. (3.11). Proof of Eq. (3.10) mainly relies on matrix
identity (3.2) and on the following identity for the inverse of a partitioned matrix (see for
instance [23, Section 0.7.3]):

If A =

[

a11 A12

A21 A22

]

, then
(

A−1
)

11
=
(

a11 −A12A
−1
22 A21

)−1
. (A.1)

To lighten the computations, let us introduce the following notations:

I =
(

In + δ̃D
)−1

, Ĩ =
(

IN−1 + δD̃1

)−1

.

In order to express a diagonal element of T̃ , say t̃11 (without loss of generality), let us
first write:

T̃ =

[

−z(1 + δd̃1) + a∗1Ia1 a∗1IA1

A∗
1Ia1 −zĨ−1 +A∗

1IA1

]−1

.
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Hence, according to (A.1):

1

t̃11
= −z(1 + δd̃1) + a∗1Ia1 − a∗1IA1

[

−zĨ−1 +A∗
1IA1

]−1

A∗
1Ia1

(a)
= −z(1 + δd̃1) + a∗1Ia1 − a∗1IA1

[

−1

z
Ĩ +

1

z
ĨA∗

1T1A1Ĩ
]

A∗
1Ia1

(b)
= −z(1 + δd̃1) + a∗1Ia1 +

1

z
a∗1I

(

T −1
1 + zI−1

)

Ia1

−1

z
a∗1IA1ĨA∗

1

[

IN + zT1I−1
]

Ia1
(b)
= −z(1 + δd̃1) + 2a∗1Ia1 +

1

z
a∗1IT −1

1 Ia1

−1

z
a∗1I

[

T −1
1 + zI−1

] [

IN + zT1I−1
]

Ia1
= −z(1 + δd̃1)− za∗1T1a1 ,

where (a) follows from (3.2), (b) from equalities

T1A1ĨA∗
1 = IN + zT1I−1 and A1ĨA∗

1 = T −1
1 + zI−1

which follow from the mere definition of T1. Finally, (3.10) is established.
Let us now turn to the proof of (3.11). Notice first that T can be expressed as

T =

[

−z(IN + δ̃D) +A1(In−1 + δD̃1)
−1A∗

1 +
a1a

∗
1

1 + δd̃1

]−1

.

Applying (3.2) readily yields:

T = T1 − T1a1
(

1 + δd̃1 + a∗1T1a1
)

a∗1T1 .

It remains to multiply by a∗1 (left), b (right) and to use (3.10) to establish (3.11).

A.2. Proof of Inequality (3.15). We provide here some elements to establish that E|ej |p =

O(n−p/2). Recall the definition (3.1) of ej and write:

E|ej |p ≤ K

{

E

∣

∣

∣

∣

∣

y∗jQjyj −
d̃j
n
TrDQj

∣

∣

∣

∣

∣

p

+ E
∣

∣a∗jQjyj
∣

∣

p
+ E

∣

∣y∗jQjaj
∣

∣

p

}

.

The first term of the r.h.s. can be directly estimated with the help of Lemma 3.2. The two
remaining terms are similar and can be estimated in the following way:

E
∣

∣a∗jQjyj
∣

∣

p
= E

(

y∗jQ
∗
jaja

∗
jQjyj

)p/2

≤ K



E

∣

∣

∣

∣

∣

y∗jQ
∗
jaja

∗
jQjyj −

d2j
n
TrQ∗

jaja
∗
jQj

∣

∣

∣

∣

∣

p/2

+ E

∣

∣

∣

∣

1

n
TrQ∗

jaja
∗
jQj

∣

∣

∣

∣

p/2


 .

The first term of the r.h.s. can be handled with the help of Lemma 3.2 (notice that Q∗
jaja

∗
jQj

is of rank one and has a bounded spectral norm), and the second term is directly of the right
order.
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A.3. Proof of Theorem 3.3. Items (1)–(3) of Theorem 3.3 are shown in [22]. Let us show

Theorem 3.3-(4). Denote by (δj , δ̃j) the solution of System (1.2) when A and D̃ are replaced

with Aj and D̃j respectively. Let Tj and T̃j be the matrices associated to (δj , δ̃j) as in
Eq. (1.3). Then E|u∗(Qj − Tj)v|2p ≤ Kpn

−p by Item (3), and we only need to show that
|u∗(Tj − Tj)v| ≤ K/

√
n. We have

|δ − δj| =
1

n
|TrD(T − Tj)|

≤ 1

n
|TrED(T −Q)|+ 1

n
|TrED(Q −Qj)|+

1

n
|TrED(Qj − Tj)| = O(n−1)

by Item (2) and Lemma 3.1. Moreover,

|δ̃ − δ̃j | ≤
1

n

∣

∣

∣TrED̃(T̃ − Q̃)
∣

∣

∣+
1

n

∣

∣

∣E(Tr D̃Q̃− Tr D̃jQ̃j)
∣

∣

∣+
1

n

∣

∣

∣TrED̃j(Q̃j − T̃j)
∣

∣

∣ .

In order to deal with the middle term at the r.h.s., assume without generality loss that j = 1.
Using the identity in [23, Section 0.7.3] for the inverse of a partitioned matrix, we obtain

Q̃ =

[

q̃11 ×
× Q̃1 + q̃11Q̃1Σ

∗
1η1η

∗
1Σ1Q̃1

]

hence E(Tr D̃Q̃− Tr D̃1Q̃1) = O(1), which shows that |δ̃ − δ̃j | = O(n−1). We now have

u∗(Tj − Tj)v = u∗Tj
(

T−1
j − T −1

j

)

Tjv

= u∗Tj
(

ρ(δ̃j − δ̃)D + (δ − δj)Aj(I + δjD̃j)
−1D̃j(I + δD̃j)

−1A∗
j

)

Tjv = O(n−1)

which proves Item (4). In order to prove Item (5), we develop TrU(Q − EQ) as a sum of
martingale differences:

TrU(Q− EQ) =

n
∑

j=1

(Ej − Ej−1)TrUQ

=
n
∑

j=1

(Ej − Ej−1)TrU(Q−Qj) = −
n
∑

j=1

(Ej − Ej−1)(ρq̃jjη
∗
jQjUQjηj)

by (3.4), hence E |TrU(Q − EQ)|2 =
∑n

j=1 E
∣

∣(Ej − Ej−1)(ρq̃jjη
∗
jQjUQjηj)

∣

∣

2
. We now use

(3.7). We have

E

∣

∣

∣
(Ej − Ej−1)(ρb̃jη

∗
jQjUQjηj)

∣

∣

∣

2

= E

∣

∣

∣

∣

Ej

(

ρb̃j

(

η∗jQjUQjηj − d̃j
TrDQjUQj

n
− a∗jQjUQjaj

))∣

∣

∣

∣

2

= O(n−1)

by Lemma 3.2, and furthermore,

E

∣

∣

∣(Ej − Ej−1)(ρ
2q̃jj b̃jejη

∗
jQjUQjηj)

∣

∣

∣

2

≤ K
(

Ee4j E|η∗jQjUQjηj |4
)1/2

= O(n−1)

by Lemma 3.2 and (3.15). This shows Th.3.3-(5).
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A.4. Proof of Lemma 3.4. The two first upper bounds are easy to obtain, given that δn
and δ̃n are Stieltjes transforms of nonnegative measures with respective total mass n−1TrD
and n−1 Tr D̃. Now TrDT 2 ≤ dmax TrT 2 by Inequality (3.14), which in turn is smaller
than Ndmaxρ

−2, hence the third upper bound, and the other upper bounds can be proven
similarly. Let us now prove the first lower bound.

TrD = Tr(T
1
2DT

1
2T−1)

(a)

≤ Tr(DT )× ‖T−1‖ ,
≤ Tr(DT )×

(

ρ(1 + δ̃ndmax) + a2
max‖(I + δnD̃)−1‖

)

,

(b)

≤ Tr(DT )×
(

ρ+ dmaxd̃max + a2
max

)

,

where (a) follows from (3.14) and (b) from the upper bound on δ̃n. This readily yields

δn’s lower bound and δ̃n’s lower bound which can be proven similarly. Writing TrD ≤
(TrDT 2)‖T−1‖2, we obtain the lower bounds on n−1 TrDT 2 and n−1 Tr D̃T̃ 2 similarly. The
lower bound for γn follows from the same ideas:
(

1

N
TrD

)2

≤ 1

N
TrD2 =

1

N
Tr(T

1
2D2T

1
2 T−1) ,

≤ 1

N
Tr(T

1
2D2T

1
2 )× ‖T−1‖ =

1

N
Tr(T

1
2DT

1
2T−1T

1
2DT

1
2 )× ‖T−1‖ ,

≤ 1

N
Tr(TDTD)× ‖T−1‖2 ,

and one readily obtains γn’s lower bound (and similarly γ̃n’s lower bound) using Assumption
A-3 and the upper estimate previously obtained for ‖T−1‖.

The two last series of inequalities related to n−1
∑N

i=1 d
2
i t

2
ii and n−1

∑n
j=1 d̃

2
j t̃

2
jj can be

proven with similar arguments (lower bounds are in fact easier to obtain as one can directly
get lower bounds for tii and t̃jj - using (3.10) for instance).

A.5. Proof of Lemma 3.5. From (1.3), TA(I + δD̃)−1A∗ = I − ρT (I + δ̃D). Moreover,

(I + δD̃)−1D̃ = δ−1I − δ−1(I + δD̃)−1. Hence

1

n
TrD1/2TA(I + δD̃)−2D̃A∗TD

1
2 ≤ 1

nδ
TrDTA(I + δD̃)−1A∗T

= 1− ρ

nδ
TrDT 2 − ρ

δ̃

δ
γ (A.2)

which proves the first assertion with the help of the results of Lemma 3.4. Similarly,

1

n
Tr D̃1/2T̃A∗(I + δ̃D)−2DAT̃D̃

1
2 ≤ 1− ρ

nδ̃
Tr D̃T̃ 2 − ρ

δ

δ̃
γ̃ (A.3)

We now show that the left hand sides (l.h.s.) of (A.2) and (A.3) are equal. Using the well
known matrix identity (I + UV )−1U = U(I + V U)−1,

TA(I + δD̃)−1 = ρ−1(I + δ̃D)−1
(

I + ρ−1A(I + δD̃)−1A∗(I + δ̃D)−1
)−1

A(I + δD̃)−1

= ρ−1(I + δ̃D)−1A(I + δD̃)−1
(

I + ρ−1A∗(I + δ̃D)−1A(I + δD̃)−1
)−1

= (I + δ̃D)−1AT̃ .
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Plugging this identity in the l.h.s. of (A.2), and identifying with the l.h.s. of (A.3), we obtain
the result. As a consequence, we have
(

1− 1

n
TrD1/2TA(I + δD̃)−2D̃A∗TD

1
2

)2

≥
(

ρ

nδ
TrDT 2 + ρ

δ̃

δ
γ

)

(

ρ

nδ̃
Tr D̃T̃ 2 + ρ

δ

δ̃
γ̃

)

≥ ρ2γγ̃ +
ρ

nδ
TrDT 2 ρ

nδ̃
Tr D̃T̃ 2

which is the second assertion. By Lemma 3.4, this leads to lim inf ∆n > 0. Lemma 3.5 is
proven.

Appendix B. Additional proofs for Section 5

B.1. Proof of Lemma 5.1. Let us show that maxj var(a
∗
EjQDEjQa) = O(n−1). We have

a∗EjQDEjQa− Ea∗EjQDEjQa =

j
∑

i=1

(Ei − Ei−1)(a
∗
EjQDEjQa)

=

j
∑

i=1

(Ei − Ei−1)
∥

∥

∥D1/2
Ej(Qi − ρq̃iiQiηiη

∗
iQi)a

∥

∥

∥

2

=

j
∑

i=1

(Ei − Ei−1)
[

−2ρRe (a∗(EjQi)D(Ej q̃iiQiηiη
∗
iQi)a)

+‖Ej(ρq̃ii η
∗
iQiaD

1/2Qiηi)‖2
]

△
= 2Re(X) + Z , (B.1)

and the variance of a∗EjQDEjQa is the sum of the variances of these martingale increments.

Consider the term X . Recalling that q̃ii = b̃i − ρq̃iib̃iei,

X = −ρ
j
∑

i=1

(Ei − Ei−1)(b̃i η
∗
iQiaa

∗(EjQi)DQiηi) + ρ2
j
∑

i=1

(Ei − Ei−1)(b̃iq̃iieiη
∗
iQiaa

∗(EjQi)DQiηi)

△
= X1 +X2 .

Let Mi = Qiaa
∗(EjQi)DQi. The term X1 satisfies

E|X1|2 = ρ2
j
∑

i=1

E

∣

∣

∣

∣

∣

Eib̃i

(

y∗iMiyi −
d̃i
n

TrDMi + y∗iMiai + a∗iMiyi

)∣

∣

∣

∣

∣

2

. (B.2)

Since Mi is a rank one matrix,
∑j

i=1 E|y∗iMiyi − d̃iTrDMi/n|2 ≤ K/n. Moreover,

j
∑

i=1

E |y∗iMiai|2 =
1

n

j
∑

i=1

d̃iE
(

a∗QiDQia |a∗(EjQi)DQiai|2
)

≤ K

n

j
∑

i=1

E |a∗(EjQi)DQiai|2 .

The summand at the r.h.s. of the inequality satisfies:

|a∗(EjQi)DQiai|2 ≤ 4
(

|a∗(EjQ)DQai|2 + |a∗(Ej(Qi −Q))D(Qi −Q)ai|2 +

|a∗(EjQ)D(Qi −Q)ai|2 + |a∗(Ej(Qi −Q))DQai|2
)

△
= 4(Wi,1 +Wi,2 +Wi,3 +Wi,4).
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Recalling that A1:j = [a1, · · · , aj ], we have

j
∑

i=1

Wi,1 = a∗(EjQ)DQA1:jA
∗
1:jQD(EjQ)a ≤ K .

Recalling (3.5) and (3.6), and writing ξi = 1+ η∗iQiηi, we have:

Wi,2 ≤ a∗iQηiη
∗
iQai

1− η∗iQηi
× a∗Ej (ξiQηiη

∗
iQ) D

Qηiη
∗
iQ

1− η∗iQηi
D Ej (ξiQηiη

∗
iQ) a .

As ‖(1 − η∗iQηi)
−1Qηiη

∗
iQ‖ = ‖Q − Qi‖ ≤ K and ‖QΣ‖ ≤ K, we have

∑j
i=1 EWi,2 ≤

∑j
i=1 E

[

|a∗Qηi|2|ξi|2
]

. Writing ξi = (ρb̃i)
−1 + ei, and noticing that (ρb̃i)

−1 is bounded, we
obtain:

j
∑

i=1

EWi,2 ≤ 2Ea∗QΣ1:j diag((ρb̃1)
−1, . . . , (ρb̃j)

−1)Σ∗
1:jQa + K

j
∑

i=1

E|ei|2 ≤ K.

The terms Wi,3 and Wi,4 can be handled by similar derivations.

We get that
∑j

i=1 E|y∗iMiai|2 ≤ K/n. The terms a∗iMiyi on the right hand side of (B.2)

satisfy
∑j

i=1 E |a∗iMiyi|2 ≤ Kn−1
∑j

i=1 E|a∗iQia|2 ≤ K/n, which proves that E|X1|2 ≤ K/n.

We now consider X2, which satisfies E|X2|2 ≤ 2ρ4
∑j

i=1 E|b̃iq̃iieiη∗iMiηi|2. We have

j
∑

i=1

E

∣

∣

∣b̃iq̃iieia
∗
iMiai

∣

∣

∣

2

≤ K

j
∑

i=1

EE
(i) |eia∗iMiai|2

≤ K

n

j
∑

i=1

E|a∗iMiai|2 ≤ K

n

j
∑

i=1

E|a∗iQia|2 ≤ K

n
,

where E(i) = E[·|y1, . . . , yi−1, yi+1, . . . , yn]. Moreover,

j
∑

i=1

E

∣

∣

∣
b̃iq̃iieiy

∗
iMiai

∣

∣

∣

2

≤ K

j
∑

i=1

(E|ei|4)1/2(E|y∗iMiai|4)1/2 ≤ K

n

and similarly for the terms in a∗iMiyi and in y∗iMiyi. We get that E|X2|2 = O(n−1). We
now turn to the term Z of equation (B.1). To control the variance of Z, we only need to
control the variances of the terms:

Z1 =

j
∑

i=1

(Ei − Ei−1)(Ej q̃iia
∗Qiyiη

∗
iQi)D(Ej q̃iiQiηia

∗
iQia),

Z2 =

j
∑

i=1

(Ei − Ei−1)‖Ej(q̃iiy
∗
iQiaD

1/2Qiηi)‖2,

Z3 =

j
∑

i=1

(Ei − Ei−1)‖Ej(q̃iia
∗
iQiaD

1/2Qiηi)‖2.
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The first term satisfies

E|Z1|2 ≤ 2

j
∑

i=1

E |(Ej q̃iia
∗Qiyiη

∗
iQi)D(Ej q̃iiQiηia

∗
iQia)|2

≤ 2

j
∑

i=1

E |(Eja
∗Qiyiη

∗
iQi)DQiηia

∗
iQia|2

= 2

j
∑

i=1

E

[

|a∗iQia|2 E(i) |(Eja
∗Qiyiη

∗
iQi)DQiηi|2

]

≤ K

n

j
∑

i=1

E|a∗iQia|2 = O(n−1) ,

where the second inequality comes from E|Ej(X)Ej(Y )|2 = E|Ej(XEj(Y ))|2 ≤ E|XEj(Y )|2.
The terms Z2 and Z3 can be handled similarly; details are omitted. The result is E|Z|2 ≤
K/n.

Hence, var
(

a∗(EjQ)2a
)

= O(n−1). The estimate var (Tr(EjQ)D(EjQ)) = O(1) can be
established similarly.

B.2. Proof of Lemma 5.2. Recalling the expression (3.10) of t̃ℓℓ, we notice that (1 −
ρt̃ℓℓa

∗
ℓTℓaℓ) = ρt̃ℓℓ(1 + d̃ℓδ) is bounded below. It follows from Theorem 3.3-(3) that

j
∑

ℓ=1

αℓ u
∗Taℓ E [a∗ℓQu]

1− ρt̃ℓℓa∗ℓTℓaℓ
=

j
∑

ℓ=1

αℓ u
∗Taℓ a

∗
ℓTu

ρt̃ℓℓ(1 + d̃ℓδ)
+O(n−1/2)

Moreover,

j
∑

ℓ=1

αℓ u
∗Taℓ

(

E [a∗ℓQu]

1− ρt̃ℓℓa∗ℓTℓaℓ
− E [a∗ℓQℓu]

)

=

j
∑

ℓ=1

αℓ u
∗TaℓE

[

a∗ℓQℓu

(

1− ρq̃ℓℓa
∗
ℓQℓηℓ

1− ρt̃ℓℓa∗ℓTℓaℓ
− 1

)]

−
j
∑

ℓ=1

αℓ u
∗Taℓ

E[ρq̃ℓℓa
∗
ℓQℓηℓ y

∗
ℓQℓu]

1− ρt̃ℓℓa∗ℓTℓaℓ
= ε1 + ε2

We have ε1 =
∑j

ℓ=1 αℓ u
∗TaℓE [a∗ℓQℓu ξℓ] where E|ξℓ|p ≤ Kn−p/2 for p ≥ 2. It follows that

|ε1| ≤
(

∑j
ℓ=1 α

2
ℓ |u∗Taℓ|2Eξ2ℓ

)1/2 (
∑j

ℓ=1 E|a∗ℓQℓu|2
)1/2

≤ K/
√
n by Theorem 3.3-(1). By

writing

ε2 = −
j
∑

ℓ=1

αℓ u
∗Taℓ

E [(ρq̃ℓℓa
∗
ℓQℓηℓ − E[ρq̃ℓℓa

∗
ℓQℓηℓ]) y

∗
ℓQℓu]

1− ρt̃ℓℓa∗ℓTℓaℓ
and proceeding similarly to ε1, we obtain |ε2| ≤ K/

√
n, which completes the proof of Lemma

5.2.

B.3. Proof of Lemma 5.3. The Fj increase to Fn = n−1 TrD1/2TA(1+δD̃)−2D̃A∗TD1/2 <
1 by Lemma 3.5. As γ > 0 and Mj and Gj are increasing, ∆j is decreasing. In order to
show that ∆n = ∆n, we only need to show that Mn +Gn = ρ2γ̃. We have

Gn =
1

n
Tr D̃(I + δD̃)−2A∗TAD̃(I + δD̃)−2A∗TA− 1

n

n
∑

k=1

(

d̃k a
∗
kTak

(1 + δd̃k)2

)2
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Recall from (3.10) and (3.11) that (1 + δd̃k)
−2a∗kTak = (1 + δd̃k)

−1 − ρt̃kk. Hence

1

n

n
∑

k=1

(

d̃k a
∗
kTak

(1 + δd̃k)2

)2

=
1

n

n
∑

k=1

ρ2d̃2k t̃
2
kk − 1

n

n
∑

k=1

ρd̃2k t̃kk

(1 + δd̃k)
+

1

n

n
∑

k=1

d̃2k a
∗
kTak

(1 + δd̃k)3

which results in

Mn +Gn =
ρ

n
Tr D̃T̃ D̃(I + δD̃)−1 − 1

n
Tr D̃2(I + δD̃)−3A∗TA

+
1

n
Tr D̃(I + δD̃)−2A∗TAD̃(I + δD̃)−2A∗TA.

Now, one can check with the help of (3.12) that ρ2γ̃ = ρ2n−1 Tr D̃T̃ D̃T̃ is equal to the
r.h.s. of this equation. Lemma 5.3 is proven.
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