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Abstract

In Ultra-Wide Band (UWB) communications based on Time Hopping (TH) Impulse Radio, one of

the most frequently studied receivers is the correlation receiver. The Multi-User Interference (MUI) at

the output of this receiver is sometimes modeled as a Gaussian random variable. In order to justify this

assumption, the conditions of validity of the Central Limit Theorem (CLT) have to be studied in an

asymptotic regime where the number of interferers and the processing gain grow toward infinity at the

same rate, the channel degree being kept constant. An asymptotic study is made in this paper based on

the so-called Lindeberg’s condition for the CLT for martingales. We consider non synchronized users

sending their signals over independent multi-path channels. These users may also have different powers.

It is shown that when the frame length grows and the repetition factor is kept constant, then the MUI

does not converge in distribution toward a Gaussian random variable. On the other hand, this convergence

can be established if the repetition factor grows at the rate of the frame length. In this last situation,

closed form expressions for the Signal to Interference plus Noise Ratio are given for TH Pulse Amplitude

Modulation (PAM) and Pulse Position Modulation (PPM) UWB transmissions.
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I. INTRODUCTION

Ultra-Wide Band (UWB) systems [1] are spread spectrum multiple-access communication systems

characterized by the fact that the transmitted signals have a very large bandwidth, at least one fourth the

value of the center frequency [2], and a low spectral density. Thanks to their low spectral density, these

systems could coexist with existing narrow band transmission systems. They can also use profitably the

channel multipath diversity. In addition, the high time resolution they are able to provide makes possible

the implementation of applications that require an accurate localization.

One class of UWB modulation techniques, termed the Impulse Radio (IR) techniques, consists in

transmitting pulses with a duration at the scale of a nanosecond at moments that are subject to a Time

Hopping (TH) pattern. In such systems, one symbol interval is divided into Ns frames of Nh time slots

each, one pulse being usually transmitted per frame. The position of the time slot that a pulse occupies

within a frame follows a TH pseudo-random code specific to the user. Because one information symbol

is carried by Ns successive pulses, Ns is called the repetition factor. Symbol encoding can be done either

through Pulse Position Modulation (PPM) or through Pulse Amplitude Modulation (PAM). In binary

PPM systems [3], the positions of the Ns pulses that code a symbol undergo an additional time delay

within their time slots according to whether a one or a zero is transmitted. In PAM, (see for instance

[4]), these pulses occupy fixed positions in their slots. Their amplitudes are modulated by the symbol to

be transmitted.

A large number of contributions studied the performance of the correlation receiver, a receiver known

for its low complexity and for its ability to collect multi-path diversity (see [3], [5], [6], [7], [8], [4] to

name these). In a multi-access transmission, the term that affects the most the receiver performance is

usually the residual Multi-User Interference (MUI) at its output. In some situations, it is valid to model

this MUI term as a Gaussian random variable. References [5] and [6] consider PPM transmissions and

resort to the Gaussian approximation of the MUI to provide analytical performance expressions. TH-

PAM is one of the modulations considered in [4], where the Gaussian approximation of the distribution

of the MUI plus the Inter Symbol Interference (ISI) is discussed. References [9] [7] [8] [10] criticize the

MUI Gaussian approximation in the context of PPM transmissions over frequency non selective channels

(which usually represent free space communications).

The Gaussian property simplifies the performance calculation, and furthermore, Gaussian noises are

well handled by a large number of forward error coding and decoding techniques. From a probabilistic

point of view, the Gaussian approximation can be justified naturally by a Central Limit Theorem (CLT)
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argument. This will be the approach adopted in this paper. To obtain a CLT, one has to define an asymptotic

regime where the number of interfering users grows to infinity while the contribution of every interferer to

the total MUI becomes infinitesimal. Let us characterize our asymptotic regime beginning with frequency

occupation considerations. We denote by Tw the effective pulse width and by Tc the duration of a time

slot, i.e., the so-called chip time interval. The frequency band of an UWB signal is of the order of 1/Tw

and the data symbol rate is equal to 1/(NsNhTc). As a spread spectrum system, the UWB system will

then have a processing gain of NsNhTc/Tw. By a language abuse, we shall ignore in this paper the

factor Tc/Tw and call ”processing gain” the integer N = NsNh. Denoting by K the number of users

supported by the system, the total number of symbols per second carried by the UWB signal is equal

to K/(NsNhTc). In these conditions, it is reasonable to consider the ratio of the number of transmitted

symbols per second to the system bandwidth KTw/(NTc) as a system load. Let us drop again the factor

Tw/Tc and define our load by the factor K/N . Our asymptotic regime is then characterized by the fact

that N → ∞ and the number of users K → ∞ in such a way that K/N converges toward a constant

α > 0, in other words, the number of contributors grow, thus permitting to consider CLT results, but the

number of symbols per second per Hertz transmitted by the whole system is constant. This general point

of view is often adopted in asymptotic studies for DS-CDMA systems (see for instance [11]).

As N = NsNh, we have to be specific about the behavior of the repetition factor Ns and the frame

length Nh as N → ∞. It will be shown that the MUI term at the receiver output does not converge

in distribution toward a Gaussian law if Nh is the only factor of N that grows to infinity while Ns is

kept constant. Alternatively, the asymptotic normality of the MUI will be ensured if Ns and Nh grow

in such a way that Ns/Nh converges toward a constant ρ > 0. These results will be established through

the study of the so-called Lindeberg’s condition of the CLT for martingales [12]. In our setting, this

condition is necessary and sufficient for ensuring the convergence of the MUI distribution toward the

Gaussian distribution.

These results show that at high processing gains, the Gaussian character of the MUI term is obtained

through repetition. However, in the second case, we also show that the MUI variance grows with ρ. It

can even be shown independently that if Ns/Nh → ∞, in other words if Ns grows much faster than Nh,

then the MUI variance grows toward infinity.

In practice, a trade-off appears. Assuming N is large enough, when Ns is too small, the Gaussian

approximation might not be valid because it would be appropriate to consider Ns as fixed while Nh → ∞.

The problem here is that non Gaussian MUI often induces higher Bit Error Rates (BER) than Gaussian

MUI at a given Signal to Interference and Noise Ratio (SINR). Alternatively, if we let Ns grow, then it
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would be possible to use the model N → ∞ and Ns/Nh → ρ > 0. Here, the MUI can be considered as

Gaussian, but if ρ is too large, the MUI variance will be large and this results again in a BER increase.

In section II of this paper, the problem is stated in a PAM setting. Non synchronized users with

possibly different powers, which send their data over independent multi-path channels, are considered.

The convergence of the MUI term distribution is treated in section III. A closed form expression of the

asymptotic Signal to Interference plus Noise Ratio (SINR) at the receiver output is given – see Equation

(20) – when this interference is Gaussian. In section IV, results equivalent to those of section III are

given in the TH-PPM case. Some simulations are finally presented in section V.

In the sequel, P will denote the probability measure, 1S(x) the indicator function of the set S , i.e., 1S(x) =

1 if x ∈ S otherwise 1S(x) = 0, and δ(k) the Kronecker delta function δ(0) = 1 and δ(k) = 0 if k 6= 0.

The σ–field generated by a sequence X1, X2, . . . of random variables will be denoted σ(X1, X2, . . .).

The conditional expectation given σ(X) will be denoted E [ . |σ(X)] or E [ . |X] equivalently. For two

real functions f1(t) and f2(t), we denote by rf1f2
(t) the function rf1f2

(t) =
∫

f1(u)f2(u − t)du and by

Rf1f2
(t) the auto-correlation function of rf1f2

(t), i.e., Rf1f2
(t) =

∫

rf1f2
(u)rf1f2

(u − t)du. For reasons

that will become apparent in section III, random variables related with the MUI will be denoted with the

superscript (K).

II. PROBLEM FORMULATION

A. The Signal Model

We begin by considering a Time Hopping - PAM (TH-PAM) UWB system. The information symbol

a
(K)
k,m of user k (where k ∈ {1, . . . ,K}) at symbol interval m has its values in the set {−1, 1}. This symbol

is repeated over Ns frames, each with a duration Tf = NhTc. The time hopping code for this user is

represented by the sequence (c
(K)
k,l )l∈Z which elements are discrete random variables equally distributed

on {0, . . . , Nh − 1}. The random variables {c(K)
k,l } k=1,...,K

l∈Z

are furthermore assumed independent. In the

case the receiver is synchronized on user k, the contribution of this user to the received signal will be

written

y
(K)
k (t) =

√

E (K)
k

Ns

∑

m

a
(K)
k,m

Ns−1
∑

r=0

g
(K)
k (t − mNsTf − rTf − c

(K)
k,mNs+rTc) . (1)

In this expression, E (K)
k is a constant specific to user k and g

(K)
k (t) is the composite channel associated

to this user. It is written

g
(K)
k (t) =

D
∑

l=1

γ
(K)
k,l w(t − τ

(K)
k,l ) (2)
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where w(t) is the unit-energy basic pulse waveform with a time support included in [0, Tc), γ
(K)
k =

[γ
(K)
k,1 , . . . , γ

(K)
k,D ] is the vector of random zero mean path amplitudes of the radio channel for the signal

of user k, τ
(K)
k = [τ

(K)
k,1 , . . . , τ

(K)
k,D ] is the vector of the corresponding random path delays, and D is a

uniform upper bound on the number of paths. We assume that the delays τ
(K)
k,1 are positive, the channel

impulse response being causal, and are uniformly bounded with probability one. As a consequence,

g
(K)
k (t) is supported by the interval [0, LTc) where L ∈ N

∗ is a uniform upper bound on the lengths of

these time supports in chip intervals. We shall need the following assumption on the path amplitudes and

delays : for any measurable real function f(x, y), we have

E
[

γ
(K)
k,l1

γ
(K)
k,l2

f
(

τ
(K)
k,l1

, τ
(K)
k,l2

)]

= δ(l1 − l2)E

[

γ
(K)
k,l1

2
f
(

τ
(K)
k,l1

, τ
(K)
k,l1

)

]

. (3)

This assumption is not restrictive and is satisfied in particular by the so called modified Saleh-Valenzuela

model [13], [14], frequently used for representing the UWB channel1. This is due to the fact that in this

model, the amplitudes can be written as γ
(K)
k,l = b

(K)
k,l ρ

(K)
k,l where the random variables

{

b
(K)
k,l

}

indexed

by l are independent and have their values in {−1, 1} with probabilities 1/2, and furthermore, they are

independent from the random variables
{

ρ
(K)
k,l , τ

(K)
k,l

}

.

Let the channel of user k be represented by the vector h
(K)
k = [γ

(K)
k , τ

(K)
k ]. We assume that the K

vectors {h(K)
k }k=1,...,K are independent but not necessarily identically distributed. Furthermore, for a

given k, the random variables {γ(K)
k,l }l=1,...,D are assumed to satisfy

D
∑

l=1

E

[

γ
(K)
k,l

2
]

= 1 . (4)

In these conditions, it is easy to see that E (K)
k is the energy per received symbol for user k. The users

powers E (K)
k will be furthermore assumed uniformly bounded, i.e.,

∃ Esup > 0 : sup
K

max
k=1,...,K

(E (K)
k ) < Esup . (5)

Assuming that the receiver is perfectly synchronized on user 1, the received signal is written as

y(K)(t) = y
(K)
1 (t) +

K
∑

k=2

y
(K)
k (t − ∆

(K)
k ) + v(t) (6)

where v(t) is a Gaussian noise having a spectral density of N0/2 in the frequency band of w(t). The

delay ∆
(K)
k accounts for the absence of synchronization between user k and user 1. It can be checked that

for every k, the process y
(K)
k (t) is a periodically correlated process with the period NsNhTc. Therefore,

1Note that modified Saleh-Valenzuela channels have infinite impulse responses. However, truncating these impulse responses

to LTc with L large enough has no practical incidence on the results.
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it is natural to assume that the delays {∆(K)
k }k=2,...,K are random variables uniformly distributed over

the interval [0, NsNhTc). Moreover, these delays are independent. Independence assumptions boil down

to the independence of the set
{

{a(K)
k,m} k=1,...,K

m∈Z

, {c(K)
k,l } k=1,...,K

l∈Z

, {h(K)
k }k=1,...,K , {∆(K)

k }k=2,...,K , v(t)
}

.

In the sequel, we shall drop for convenience the index 1 and the superscript (K) when denoting the

quantities relative to user 1.

B. The Correlation Receiver

Assuming a perfect knowledge of
√
Eg(t) at the receiver, the output of the correlation receiver for

symbol a0 is

x =

√

E
Ns

Ns−1
∑

r=0

∫

y(K)(t)g(t − rNhTc − crTc)dt , (7)

and the decided symbol is â0 = sign(x). By using the expression (6) of y(K)(t), we get x = xu +xISI +

x
(K)
MUI + xAWGN where

xu =
E
Ns

a0

Ns−1
∑

r1,r2=0

rgg ((r1 − r2)NhTc + (cr1
− cr2

)Tc) (8)

is the ”useful signal” term,

xISI =
E
Ns

∑

m6=0

am

Ns−1
∑

r1,r2=0

rgg ((r1 − r2)NhTc + (cr1
− cmNs+r2

)Tc − mNsNhTc) (9)

is the ISI term,

x
(K)
MUI =

K
∑

k=2

x
(K)
k (10)

is the MUI term,

x
(K)
k =

√

EE (K)
k

Ns

∑

m

a
(K)
k,m

Ns−1
∑

r1,r2=0

rg(K)

k g

(

(r1 − r2)NhTc + (cr1
− c

(K)
k,mNs+r2

)Tc − mNsNhTc − ∆
(K)
k

)

(11)

is the contribution of the signal of user k to the MUI term, and

xAWGN =

√

E
Ns

Ns−1
∑

r=0

∫

v(t)g(t − rNhTc − crTc)dt . (12)

is the term due to the Additive White Gaussian Noise (AWGN) v(t).
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III. INTERFERENCE ASYMPTOTIC ANALYSIS

As said in the introduction, we study here the asymptotic regime where the processing gain N and

the number of users K grow toward infinity in such a way that K/N → α, a quantity that we designate

by the system load. All SINR expressions will naturally depend on the channel vector of user 1, which

is assumed to be known at the receiver side. In order to simplify our presentation, we shall treat the

channel vector of user 1 as a fixed vector in the sequel.

We begin by studying the asymptotic behavior of the terms xu, xISI, and xAWGN. The following

proposition describes the asymptotic behavior of the useful term xu. The proof is given in appendix

A.

Proposition 1: As Nh → ∞, xu converges in probability toward Ea0rgg(0).

Let us interpret this result. From (8), the useful term is written as xu = Ea0rgg(0) + Ea0zg where

zg =
1

Ns

Ns−1
∑

r1,r2=0

r1 6=r2

rgg ((r1 − r2)NhTc + (cr1
− cr2

)Tc) (13)

accounts for the Inter Frame Interference (IFI) within the same symbol. Proposition 1 says that this IFI

becomes negligible when the frame length is large.

The next proposition is relative the term xISI. Its proof is rather similar to the proof of Proposition 1,

therefore it will be skipped :

Proposition 2: As N grows toward infinity, xISI converges to zero in probability.

This result can be interpreted intuitively. We recall that the channel lengths measured in chip intervals

are uniformly bounded by the constant L. Therefore, as the processing gain grows large, the ISI becomes

negligible. Indeed, only the first L chips in a symbol can be corrupted by the interference due to the

previous symbol. It is well known that ISI is negligible when the channel length is much smaller than

the symbol duration.

Let us consider now the AWGN term xAWGN. The proof of the following proposition is given in appendix

B :

Proposition 3: As Nh → ∞, xAWGN converges in distribution toward a Gaussian zero mean random

variable with variance

σ2
AWGN =

N0

2
Ergg(0) .

From (12), it can be clearly seen that conditionally to the code vector c = [c0, . . . , cNs−1], the distri-

bution of this term is Gaussian. Without conditioning on c, this distribution is not Gaussian in general.
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Nevertheless, Proposition 3 asserts that this distribution converges weakly to the Gaussian distribution in

the asymptotic regime as Nh → ∞.

We now turn to the main part of the paper, which consists in the asymptotic study of the MUI term.

At this point, an assumption on the energies per symbol of the users is needed. Denoting by E (K)
the

empirical mean E (K)
= 1

K−1

∑K
k=2 E

(K)
k of the energies of the interferers, we shall assume that E (K)

converges to a limit E as K → ∞.

In appendices C and D, it is shown that the variance of the contribution x
(K)
k to the MUI term is given

by Eq. (25) and satisfies by consequence

E

[

x
(K)
k

2
]

=
EE (K)

k

Tc

(

(

2

3N2
h

− 4

3NsN2
h

) L
∑

l=−L

Rwg(lTc) +
1

NsNh
Rwg(0)

)

+ f1(Ns, Nh) (14)

where |f1(Ns, Nh, E (K)
k )| < C1

(

1
N2

s N2
h

+ 1
NsN3

h

)

and C1 = 34 E2
supRwg(0)L

4/Tc.

Turning to the variance σ
(K)
MUI

2
of the MUI term x

(K)
MUI, we get then

σ
(K)
MUI

2
=

K
∑

k=2

E

[

x
(K)
k

2
]

=
EE (K)

Tc

K − 1

N

(

(

2

3

Ns

Nh
− 4

3

1

Nh

) L
∑

l=−L

Rwg(lTc) + Rwg(0)

)

+ f2(Ns, Nh)

(15)

where |f2(Ns, Nh)| < C1
K
N

(

1
N + 1

N2
h

)

.

Let us consider now the asymptotic regime where N = NsNh → ∞ while K/N → α > 0. The first

case we consider is the case where N grows in such a way that Nh/Ns → 0 :

Proposition 4: If N = NsNh → ∞ while K/N → α > 0 and Nh/Ns → 0, then σ
(K)
MUI

2
→ ∞.

This proposition follows directly from Equation (15).

Let us give an intuitive interpretation of this result. Assume for the sake of illustration that Nh = 1 and

Ns > 1. In this situation, time hopping is absent and our system would be a ”DS-CDMA” system in

which all spreading vectors are equal to [1, 1, . . . , 1] ! In this system, if Ns → ∞ and K → ∞, it is clear

that all interferers contributions will sum up without any attenuation due to despreading, and therefore,

the MUI variance will grow toward infinity. What Proposition 4 asserts is that this will be more generally

the case if Nh/Ns → 0 : in this situation, time hopping will not be able to separate users contributions

reliably in the asymptotic regime due to the small size of the frames.

The two following cases that we shall consider correspond to the situation where Ns is kept constant

while Nh → ∞, then to the situation where both Ns and Nh grow toward infinity in such a way that

Ns/Nh → ρ > 0. In both situations, the MUI variance will converge to a finite value. Whether this

asymptotic MUI will be Gaussian or not will be our main issue.
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As is well known, the asymptotic normality is generally established through a Central Limit Theorem.

One classical form of this theorem is the following : consider a sequence z1, z2, . . . of centered independent

and identically distributed random variables with finite variance σ2. Then as K → ∞, the random variable

sK = 1√
K

∑K
k=1 zk converges in distribution toward a Gaussian centered random variable with variance

σ2. In the setting of this paper, if this version of the CLT was to be used, the asymptotic normality of

x
(K)
MUI =

∑K
k=2 x

(K)
k would have to be established by identifying

√
Kx

(K)
k with zk. However, this cannot

be done because in our asymptotic study, as K grows, Ns and/or Nh grow, and this results in a change in

the probability distribution of
√

Kx
(K)
k through the change of the distributions of of c

(K)
k and ∆

(K)
k . In

our case, the random variables x
(K)
k are formally arranged in a so called triangular array (x

(K)
k ) k=2,...,K

K=2,...,∞

,

and we have to see whether the sums x
(K)
MUI performed along the rows of the array converge in distribution

toward the Gaussian law. One additional difference with the classical form of the CLT shown above is

that the random variables (x
(K)
k )k=2,...,K on row K are not independent. Indeed, Eq. (11) shows that all

these random variables depend on the code vector c of user 1. Because of this dependence, we are led

to use the CLT for martingales, which generalizes the CLT for independent random variables.

It can be seen from Eq. (11) that x
(K)
k is measurable with respect to the σ–field generated by the

random variables c, (a
(K)
k,m)m, (c

(K)
k,l )l, and ∆

(K)
k . Given the sequence of increasing σ–fields F (K)

k =

σ

(

c,
{

(a
(K)
n,m)m, (c

(K)
n,l )l,∆

(K)
n

}

n=2,...,k

)

, the partial sum x
(K)
MUI,k =

∑k
n=2 x

(K)
n is therefore measurable

with respect to F (K)
k . Furthermore, one can notice that E

[∣

∣

∣x
(K)
MUI,k

∣

∣

∣

]

< ∞ and that the conditional

expectation E
[

x
(K)
MUI,k+1

∣

∣

∣F (K)
k

]

is equal to x
(K)
MUI,k with probability one. In these conditions, the se-

quence x
(K)
MUI,2, . . . , x

(K)
MUI,K is called a martingale relative to the σ–fields F (K)

2 , . . . ,F (K)
K [12, page 458].

The CLT for martingales takes the following form: let σ
(K)
k (c)2 be the random variable σ

(K)
k (c)2 =

E

[

x
(K)
k

2
∣

∣

∣

∣

F (K)
k−1

]

= E

[

x
(K)
k

2
∣

∣

∣

∣

c

]

, where the last equality can be deduced from Eq. (11), and let

σ(K)(c)2 =
∑K

k=2 σ
(K)
k (c)2. Assume that σ(K)(c)2 converges in probability as K → ∞ to some positive

deterministic quantity σ2. Assume that the so-called Lindeberg condition is satisfied :

∀ε > 0, lim
K→∞

K
∑

k=2

E

[

x
(K)
k

2
1|x(K)

k |≥ε

]

= 0 . (16)

Then x
(K)
MUI converges in distribution toward the centered normal distribution with variance σ2 [12, Th.

35.12].

In our situation, the asymptotic behavior of σ(K)(c)2 is described by the following proposition:
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Proposition 5: . Assume that N → ∞, K/N → α > 0, and Ns/Nh → ρ ≥ 0. Then

σ(K)2(c) → σ2
MUI =

EE
Tc

α

(

2ρ

3

L
∑

l=−L

Rwg(lTc) + Rwg(0)

)

(17)

in probability.

The proof of this proposition is in Appendix F. Notice that σ2
MUI is also the limit of σ

(K)
MUI

2
given by Eq.

(15) as can be expected.

We now treat the case where Ns is kept constant while Nh → ∞:

Proposition 6: Assume Nh → ∞ while Ns is kept constant. Then as K → ∞ and K/N → α > 0, the

variance σ(K)2 converges in probability to EE
Tc

αRwg(0). Moreover, x
(K)
MUI does not converge in distribution

toward a Gaussian random variable.

The limiting variance EE
Tc

αRwg(0) can be deduced directly from Proposition 5. In order to prove the

second part of the Proposition, we use the following result, shown in [15] by a refinement of a result

of [16]: if σ(K)(c)2 converges in probability to a deterministic σ2, if the conditional distribution func-

tions F
(K)
k (x) = P

(

x
(K)
k ≤ x

∣

∣

∣F (K)
k−1

)

= P

(

x
(K)
k ≤ x

∣

∣

∣ c

)

are symmetric with probability one, and if

maxk=2,...,K σ
(K)
k (c)2 → 0 in probability as K → ∞, then the Lindeberg condition (16) is also necessary

for convergence of x
(K)
MUI toward the normal law N (0, σ2) ( [15, Main theorem and Eq. (6)]). It can be

seen from the expression (11) of x
(K)
k that P

(

x
(K)
k ≤ x

∣

∣

∣ c

)

is symmetric. Indeed, a
(K)
k,m are independent

with other random variables and equally distributed over {−1, 1}. Moreover, in Appendix G, it is proven

that

max
k=2,...,K

σ
(K)
k (c)2 → 0 (18)

for any value of c (which is stronger than the convergence in probability required in [15]). We therefore

have to show that the random variables {x(K)
k } do not satisfy Lindeberg’s condition. This is done in

appendix H.

Let us give an intuitive interpretation of this fact. The event x
(K)
k 6= 0 represents a collision between the

signal received from user 1 and the signal received from user k. In the model (1) the signal amplitude

of a user is multiplied by 1/
√

Ns which is not an infinitesimal value in the setting of Proposition 6,

therefore, the values taken by the random variable x
(K)
k when x

(K)
k 6= 0 are not infinitesimal. Yet the

variance of this random variable, being of the order 1/Nh (see Equation (14)), is infinitesimal. This is

because the probability of occurrence of a collision between user 1 and user k is also of the order 1/Nh.

Multiplying x
(K)
k by 1|x(K)

k |≥ε for ε small enough will not reduce much this variance, and therefore,

Lindeberg’s condition will not be satisfied.
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Alternatively, assume now that the repetition factor Ns also grows in such a way that Ns/Nh → ρ > 0.

In this case, many of the pulses of the user of interest carrying one information symbol will undergo

collisions, but the effects of these collisions will sum up in such a way that the resulting MUI is

asymptotically Gaussian:

Proposition 7: Assume that Ns

Nh
→ ρ > 0, and that the random variables ‖γ (K)

k ‖2 are uniformly

integrable, i.e., that

lim
a→∞

sup
K

max
k=1,...,K

E
[

‖γ(K)
k ‖2

1‖γ(K)

k ‖>a

]

= 0 . (19)

Then as K → ∞ and K/N → α > 0, x
(K)
MUI converges in distribution toward a Gaussian random variable

with zero mean and variance σ2
MUI given by (17).

The proof of this proposition is given in appendix I.

Notice that the assumption (19) is needed for mathematical purposes only, because it allows inequality

(38) in the proof to be true. It is obvious that for every couple of indices k and K , E
[

‖γ(K)
k ‖2

1‖γ(K)

k ‖>a

]

converges to 0 as a → ∞. Assumption (19) requires this convergence to be uniform. It is satisfied in all

practical cases of interest, and in particular when the vectors γ
(K)
k are identically distributed.

In the asymptotic conditions of Proposition 7, the SINR at the output of the receiver for TH-PAM

signals is

SINRPAM =
E2rgg(0)

2

σ2
AWGN + σ2

MUI

=
Ergg(0)

N0

2 + E
Tcrgg(0)α

(

2ρ
3

∑L
l=−L Rwg(lTc) + Rwg(0)

) . (20)

where σ2
AWGN and σ2

MUI are given by Propositions 3 and 5 respectively. In these asymptotic conditions,

the BER at the output of the receiver is Q(
√

SINRPAM) where Q(.) is the Gaussian tail function.

IV. THE TH-PPM CASE

In the Time Hopping - Pulse Position Modulation (TH-PPM) case, Equation (1) is replaced by

y
(K)
k (t) =

√

E (K)
k

Ns

∑

m

Ns−1
∑

r=0

g
(K)
k (t − mNsTf − rTf − c

(K)
k,mNs+rTc − da

(K)
k,m) , (21)

where the symbols {a(K)
k,m} have their values in {0, 1} and d is the time shift used for position modulation (

[3]). The description of the received signal is otherwise unchanged. The output of the correlation receiver
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for the symbol a0 is here

x =

√

E
Ns

Ns−1
∑

r=0

∫

y(K)(t)p(t − rNhTc − crTc)dt .

where p(t) = g(t) − g(t − d), and the decision rule is â0 = 0 if x > 0 and â0 = 1 otherwise. Here we

have x = xu + xISI + x
(K)
MUI + xAWGN where

xu =
E
Ns

Ns−1
∑

r1,r2=0

rgp ((r1 − r2)NhTc + (cr1
− cr2

)Tc − da0) ,

xISI =
E
Ns

∑

m6=0

Ns−1
∑

r1,r2=0

rgp ((r1 − r2)NhTc + (cr1
− cmNs+r2

)Tc − mNsNhTc − dam) ,

x
(K)
MUI =

K
∑

k=2

x
(K)
k ,

x
(K)
k =

√

EE (K)
k

Ns

∑

m

Ns−1
∑

r1,r2=0

rg(K)

k p

(

(r1 − r2)NhTc + (cr1
− c

(K)
k,mNs+r2

)Tc − mNsNhTc − da
(K)
k,m − ∆

(K)
k

)

,

xAWGN =

√

E
Ns

Ns−1
∑

r=0

∫

v(t)p(t − rNhTc − crTc)dt ,

and these terms have the same meanings as their equivalents of section II-B.

We shall just give the main results concerning the TH-PPM case, as the proofs and the derivations do not

differ much from those of the PAM case. When Nh → ∞, the useful term xu converges in probability

toward Ergp(−da0) = E(1/2 − a0)rpp(0), and the distribution of the AWGN term xAWGN converges

toward the Gaussian distribution with the zero mean and the variance σ2
PPM,AWGN = N0

2 Erpp(0). As for

the MUI term x
(K)
MUI, it does not have a Gaussian limit distribution if Ns is kept constant (cf. Proposition

6). On the other hand, if Ns/Nh → ρ > 0, then (cf. Proposition 7) it has a Gaussian limit distribution

with a zero mean and a variance of

σ2
PPM,MUI =

EE
Tc

α

(

2ρ

3

L
∑

l=−L

Rwp(lTc) + Rwp(0)

)

.

Notice that the only difference between this expression and (17) lies in the fact that g(t) is replaced here

by g(t) − g(t − d). The expression of the output SINR is

SINRPPM =
E2rpp(0)

2

4(σ2
PPM,AWGN + σ2

PPM,MUI)
(22)
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V. SIMULATIONS

In order to give an illustration of the results of the previous sections, we carried out some simulations

for TH-PAM and TH-PPM transmissions. The basic pulse waveform is the second derivative of a Gaussian

pulse with a pulse shape parameter tn = 0.4ns [17]. The time slot number a pulse occupies within a

frame is an independent and identically distributed process with the uniform probability distribution on

the set {0, . . . , Nh − 1}. In TH-PPM, the time shift d satisfies d/tn = 0.5422 as in [1]. The chip period

has been set to Tc = 5 tn for PAM and Tc = 6 tn for PPM. The additional delay of tn in PPM is due to

the presence of the time shift d. The BER resulting from simulations was calculated after having received

more than 100 errors. Because in our results, all expectations are conditioned on the channel of user 1,

this channel is kept fixed while the channels of all other users change at each simulation trial. Moreover,

the transmitted sequences of symbols for all users and the relative delays change at each trial.

In all figures that show Bit Error Rates, the solid line plots indicate the BER versus 2Eb/N0 that result

from the Gaussian approximation in the asymptotic regime, i.e., Q(
√

SINRPAM) or Q(
√

SINRPPM)

where SINRPAM and SINRPPM are given by Equations (20) and (22) respectively. The dashed curves

are the ones obtained by simulation.

The pertinence of the asymptotic regimes described by Propositions 6 and 7 is first tested for single path

channels representing a free space propagation. It is assumed that we have a perfect power control, in

other words E (K)
1 = · · · = E (K)

K = E . Such a scenario has been studied in e.g. [3] [18] in a TH-PPM

context.

In Figure 1, a TH-PAM transmission is considered, the processing gain is set to N = 200 and the number

of users is K = 100, resulting in a load of α = 0.5. One can notice that when Nh = 200 and Ns = 1,

then the transmission conditions can be modeled by the assumptions of Proposition 6, and therefore the

Gaussian approximation is not valid as expected. The plain curve representing the Gaussian approximation

for ρ = 1/200 is plotted for the purpose of comparison : it represents the BER that one would have

obtained for the same MUI variance if this MUI was Gaussian. The BER loss due to the non Gaussian

character of the MUI is illustrated by the dashed curve obtained for Ns = 1 and Nh = 200. Figure 1

shows also that when Ns = 8 and Nh = 25, a situation modeled in Equation (20) by ρ = 8/25, then the

asymptotic regime of Proposition 7 is practically attained. The behavior described by Propositions 6 and

7 is also illustrated on Fig. 2 where empirical histograms of the random variable x
(K)
MUI are shown. The

centered Gaussian densities with variances E
[

x2
MUI

]

are also shown on this figure. From the top to the

bottom of this figure, K and N increase in such a way that the load K/N is fixed to 1/2. In the left
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column, Ns is fixed to 1. Here, as predicted by Proposition 6, the MUI distribution does not approach the

Gaussian distribution as Nh grows. Alternatively, when Ns grows in parallel with Nh (right column), the

MUI distribution approaches the Gaussian distribution. Under the same experimental conditions, Figure

(3) shows the quantile-quantile plot between the empirical MUI distribution and the Gaussian distribution

for different values of N . The couple (Ns, Nh) is chosen equal to (2, 6), (4, 12), and (8, 25) resulting

in a ratio Ns/Nh close to 8/25. The convergence toward the Gaussian distribution with respect to N is

clearly seen on this figure.

Simulations were also conducted in more realistic situations where the channels are multi-path channels

and the received powers are different. The channel model is the modified Saleh-Valenzuela model

described in [13] and [14]. Channels with a RMS delay spread of 5ns are considered. The chosen

channel belongs to the set of channels proposed in [13], namely we considered the model characterized

by the parameters Λ = 1/22, λ = 1/0.94, Γ = 7.6, γ = 0.94, and σ = 4.8 in this reference. The different

transmitters are assumed to be uniformly distributed within the ring between the circles with radii 1m

and 10m centered on the receiver. The path gains decrease in R−2 where R is the distance to the receiver

[19]. The power of user 1 is taken equal to the mean power. A processing gain N = 600 has been

chosen. Because Tc = 2ns, the data rate per user is then 833 kbit/s. The system load is α = 1/2. Figure

4 which concerns TH-PAM transmissions shows that when Nh = 600 and Ns = 1, then the Gaussian

approximation is not valid. However, when Ns = 6 and Nh = 100, then the receiver performance can be

predicted reliably by the result of Proposition 7. Like for single path channels, the histograms of x
(K)
MUI

are also shown (Figure 5). The quantile-quantile plot is also shown on Figure 6 for different values of N ,

the ratio Ns/Nh being set to 3/50. The convergence to the Gaussian distribution predicted by Proposition

7 can be clearly seen on these figures.

The same results are shown in Figure 7 for the TH-PPM case. In this figure, a curve with Ns = 3 and

Nh = 200 has been added to underline the effect of reducing Ns while keeping N constant.

In Figure 8, we get back to the environment of Figure 4, we fix Nh to 100 and we test the pertinence

of the Gaussian asymptotic regime when modifying N or the power distribution. If the users powers are

equal, then this regime is attained for N = 300. Alternatively, when the powers are unequal as in Figure

4, then at N = 300 the Gaussian asymptotic approximation is less accurate. At N = 600, we are closer

to the Gaussian asymptotic regime. With unequal powers, this asymptotic regime is reached for higher

values of N .

In summary, assume that N and K are fixed to large enough values. A too small value of Ns, even

though it will provide a small MUI variance, will result in a non-Gaussian MUI distribution which is in
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general harmful in the sense that the Gaussian approximation predicts a much better BER. The variance

reduction does not compensate for the BER degradation. Recall that Proposition 6, that asserts that the

Gaussian approximation is not valid in this case, is in agreement with this observation.

We may also notice that to reach the domain of validity of the asymptotic regime, we have to use a large

processing gain and a large number of users. We must however note that a complete specification of the

domain of validity of this regime is out of the scope of this paper. This study should certainly take into

account the statistical model for the channels. In particular, if the Saleh-Valenzuela model is considered,

the root mean square of the channels delay spread will play an important role. Other parameters that

have an important impact on the convergence are the power distribution and the system load K/N .

It is clear that at a fixed chip rate, a high processing gain leads to a reduced bit rate per user. Therefore,

the asymptotic analysis of the Gaussian approximation is valid in the context of networks with relatively

low rates per user rather than in the context of high speed WPAN. Impulse Radio UWB is a serious

candidate for applications such as sensor networks that use a large number of sensors. In these contexts,

the asymptotic analysis can be used.

APPENDIX

A. Proof of Proposition 1

For a given ε > 0, we have

P [|xu − Ea0rgg(0)| > ε] ≤ E
ε
E [|zg|]

by Markov’s inequality. We shall prove that E [|zg|] → 0 when Nh → ∞. The expectation E [|zg|] writes

E [|zg|] ≤ 1

Ns

Ns−1
∑

r1,r2=0

r1 6=r2

1

N2
h

Nh−1
∑

i1,i2=0

|rgg ((r2 − r1)NhTc + (i2 − i1)Tc)|

=
1

Ns





1

N2
h





NsNh−1
∑

i1,i2=0

|rgg ((i1 − i2)Tc)|



− Ns

N2
h





Nh−1
∑

i1,i2=0

|rgg ((i1 − i2)Tc)|









=
1

Ns

1

N2
h

((

L−1
∑

l=−L+1

(NsNh − |l|)|rgg(lTc)|
)

− Ns

(

L−1
∑

l=−L+1

(Nh − |l|)|rgg(lTc)|
))

=
Ns − 1

Ns

1

N2
h

L−1
∑

l=−L+1

|l rgg(lTc)| , (23)

hence the result.
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B. Proof of Proposition 3

Let us denote by F (x) the distribution function (d.f.) of the standard Gaussian law. Conditionally to

c, the d.f. of xAWGN is F (x/σc) where σc > 0 and

σ2
c

=
N0E
2Ns

Ns−1
∑

r,r′=0

rgg

(

(r′ − r)NhTc + (cr′ − cr)Tc

)

= σ2
AWGN + σ2Ezg (24)

where zg is defined in (13). The d.f. of xAWGN is then E[F (x/σc)] where the expectation is taken with

respect to c. To prove our proposition, we shall prove that χ(x) = E [F (x/σc)] − F (x/σAWGN) =

E [F (x/σc) − F (x/σAWGN)] converges to zero as Nh → ∞. For a given ε > 0, we have |χ(x)| ≤
χ1(x, ε) + χ2(x, ε) where χ1(x, ε) = E

[

|F (x/σc) − F (x/σAWGN)|1|σ2
c
−σ2

AWGN|≤ε

]

and χ2(x, ε) =

E
[

|F (x/σc) − F (x/σAWGN)| 1|σ2
c
−σ2

AWGN|>ε

]

.

The function F (x/σ) is continuous in the variable σ over the set of the strictly positive real numbers.

Therefore, F (x/σc)−F (x/σAWGN) → 0 as σc → σAWGN. As |F (x/σc) − F (x/σAWGN)| 1|σ2
c
−σ2

AWGN|≤ε ≤
2, by the dominated convergence theorem, χ1(x, ε) → 0 when ε → 0.

Considering χ2(x, ε), we have

χ2(x, ε) ≤ 2E
[

1|σ2
c
−σ2

AWGN|>ε

]

= 2P
[

|σ2
c
− σ2

AWGN| > ε
]

≤ 2

ε
E
[

|σ2
c
− σ2

AWGN|
]

where the last inequality is Markov’s inequality. From (24) and (23) we have

E
[

|σ2
c
− σ2

AWGN|
]

≤ N0

2
ENs − 1

Ns

1

N2
h

L−1
∑

l=−L+1

l|rgg(lTc)|

which converges to zero as Nh → ∞. Therefore, χ2(x, ε) converges to 0 for every ε, thus χ(x) → 0 as

Nh → ∞.
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C. Proof of Equation (14).

In appendix D, it is shown that the variance of the interference term x
(K)
k writes

E

[

x
(K)
k

2
]

=
EE (K)

k

N3
s NhTc

( 1

N4
h

NsNh−1
∑

i1,i2,i3,i4=0

Rwg ((i1 − i2 + i3 − i4) Tc)

− 2
Ns

N4
h

NsNh−1
∑

i1,i2=0

Nh−1
∑

j1,j2=0

Rwg ((i1 − i2 + j1 − j2)Tc)

+
N2

s

N4
h

Nh−1
∑

j1,j2,j3,j4=0

Rwg ((j1 − j2 + j3 − j4)Tc)

+ 2
Ns

N2
h

NsNh−1
∑

i1,i2=0

Rwg ((i1 − i2)Tc)

− 2
N2

s

N2
h

Nh−1
∑

j1,j2=0

Rwg ((j1 − j2)Tc)

+ N2
sRwg(0)

)

. (25)

This expression can be simplified when N → ∞. The simplification can be done by using the following

lemma that will let us enumerate the summands in the right hand side member of (25):

Lemma 1: Let M,Q be two elements of N and I an element of Z. Then if |I| ≤ Q,

Q−1
∑

i1,i2,i3,i4=0

δ(i1 − i2 + i3 − i4 − I) =
1

6

(

−3|I| + 3|I|3 + 2Q − 6I2Q + 4Q3
)

. (26)

If M + |I| ≤ Q, then

Q−1
∑

i1,i2=0

M−1
∑

j1,j2=0

δ(i1 − i2 + j1 − j2 − I) =
1

3

(

−|I| + |I|3 + M − 3I2M − M3 + 3M2Q
)

. (27)

A proof for this lemma is given in appendix E.

Let us study with the help of this lemma the behavior as N → ∞ of the first term in the right hand side

member of (25)

χ =
EE (K)

k

N3
s N5

hTc

NsNh−1
∑

i1,i2,i3,i4=0

Rwg ((i1 − i2 + i3 − i4)Tc) .
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Noticing that Rwg(t) is equal to zero if |t| ≥ (L + 1)Tc, we have

χ =
EE (K)

k

N3
s N5

hTc

NsNh−1
∑

i1,i2,i3,i4=0

L
∑

l=−L

Rwg(lTc)δ(i1 − i2 + i3 − i4 − l)

=
1

6

EE (K)
k

N3
s N5

hTc

L
∑

l=−L

Rwg(lTc)
(

−3|l| + 3|l|3 + 2NsNh − 6l2NsNh + 4N3
s N3

h

)

=
2

3

EE (K)
k

N2
hTc

(

L
∑

l=−L

Rwg(lTc)

)

+ f(Ns, Nh)

where identity (26) of lemma 1 is used and where

f(Ns, Nh) =
1

6

EE (K)
k

N3
s N5

hTc

L
∑

l=−L

Rwg(lTc)
(

−3|l| + 3|l|3 + 2NsNh − 6l2NsNh

)

.

Using assumption (5), the inequality |Rwg(lTc)| ≤ Rwg(0), and the fact that the absolute value of a sum

is less than or equal to the sum of absolute values, we get

|f(Ns, Nh)| <
1

6

E2
sup

N3
s N5

hTc
(2L + 1)Rwg(0)

(

3L + 3L3 + 2NsNh + 6L2NsNh

)

≤ 1

2

E2
sup

N3
s N5

hTc
Rwg(0)L

(

3L3NsNh + 3L3NsNh + 2L3NsNh + 6L3NsNh

)

=
C

N2
s N4

h

where C = 7E2
supRwg(0)L

4/Tc.

By performing the same kind of asymptotic derivations on the other terms of the right hand member of

(25) (note that for the second term, identity (27) of lemma 1 is required instead of (26) ), we obtain

Equation (14).

D. Proof of Equation (25).

For clarity, we shall denote by Eh[.], E∆[.] and Ec[.] the expectations with respect to the distribution

of the channel hk, the distribution of the delay ∆
(K)
k , and the distribution of the codes (c

(K)
1,l , c

(K)
k,l )

respectively.

Using Equation (11) and the fact that the information symbols a
(K)
k,m are independent and have their values

in {−1, 1}, we have

E

[

x
(K)
k

2
]

=
EE (K)

k

N2
s

Eh

[

E∆

[

Ec

[

∑

m

Ns−1
∑

r1,r2=0

l1,l2=0

rg
(K)

k g

(

(r1 − r2)NhTc + (cr1
− c

(K)
k,mNs+r2

)Tc − mNsNhTc − ∆
(K)
k

)

rg(K)
k g

(

(l1 − l2)NhTc + (cl1 − c
(K)
k,mNs+l2

)Tc − mNsNhTc − ∆
(K)
k

)]]]

.(28)
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We begin by deriving the expectation with respect to the codes. Using the independence of the random

variables {c(K)
k,l } k=1,...,K

l∈Z

and the fact that they are equally distributed over the set {0, . . . , Nh − 1}, we

obtain

E

[

x
(K)
k

2
]

=
EE (K)

k

N2
s

Eh

[

E∆

[

1

N4
h

Ns−1
∑

r1,l1=0

r1 6=l1

Ns−1
∑

r2,l2=0

r2 6=l2

Nh−1
∑

i1,i2,j1,j2=0

∑

m

rg(K)
k g

(

(r1 − r2)NhTc + (i1 − i2)Tc − mNsNhTc − ∆
(K)
k

)

rg(K)
k g

(

(l1 − l2)NhTc + (j1 − j2)Tc − mNsNhTc − ∆
(K)
k

)

+
1

N3
h

Ns−1
∑

r1,l1=0

r1 6=l1

Ns−1
∑

r2=0

Nh−1
∑

i1,i2,j1=0

∑

m

rg(K)
k g

(

(r1 − r2)NhTc + (i1 − i2)Tc − mNsNhTc − ∆
(K)
k

)

rg(K)

k g

(

(l1 − r2)NhTc + (j1 − i2)Tc − mNsNhTc − ∆
(K)
k

)

+
1

N3
h

Ns−1
∑

r1=0

Ns−1
∑

r2,l2=0

r2 6=l2

Nh−1
∑

i1,i2,j2=0

∑

m

rg(K)

k g

(

(r1 − r2)NhTc + (i1 − i2)Tc − mNsNhTc − ∆
(K)
k

)

r
g
(K)

k g

(

(r1 − l2)NhTc + (i1 − j2)Tc − mNsNhTc − ∆
(K)
k

)

+
1

N2
h

Ns−1
∑

r1,r2=0

Nh−1
∑

i1,i2=0

∑

m

(

rg
(K)

k g

(

(r1 − r2)NhTc + (i1 − i2)Tc − mNsNhTc − ∆
(K)
k

))2]

(29)

This expression can be simplified by developing the expectation Eh[E∆[.]]. Indeed, let us prove that for

any couple of integers (n1, n2), we have

Eh

[

E∆

[

∑

m

rg(K)
k g

(

n1Tc − mNsNhTc − ∆
(K)
k

)

rg(K)
k g

(

n2Tc − mNsNhTc − ∆
(K)
k

)]]

=

1

NsNhTc
Rwg ((n2 − n1)Tc) . (30)

Because ∆k is uniformly distributed over the interval [0, NsNhTc), the left hand side member of (30),

call it χ, can be written

χ =
1

NsNhTc
Eh

[
∫

rg
(K)

k g (n1Tc − u) rg
(K)

k g (n2Tc − u) du

]

=
1

NsNhTc
Eh

[
∫

gk(u2)g(u2 − n1Tc + u1)gk(u3)g(u3 − n2Tc + u1)du1du2du3

]
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where the integrals are taken over the whole real line. Let us now replace the function gk by its expression

(2) and compute the expectation. We obtain

χ =
1

NsNhTc

D
∑

l1,l2=1

∫

E
[

γ
(K)
k,l1

γ
(K)
k,l2

w
(

u2 − τ
(K)
k,l1

)

w
(

u3 − τ
(K)
k,l2

)]

g(u2 − n1Tc + u1)g(u3 − n2Tc + u1)du1du2du3

=
1

NsNhTc

D
∑

l=1

∫

E

[

γ
(K)
k,l

2
w
(

u2 − τ
(K)
k,l

)

w
(

u3 − τ
(K)
k,l

)

g(u2 − n1Tc + u1)g(u3 − n2Tc + u1)du1du2du3

]

where the second equality is due to assumption (3). By doing the change of variables v1 = u1 + τ
(K)
k,l ,

v2 = u2− τ
(K)
k,l and v3 = u3 − τ

(K)
k,l , we notice that the integral in the right hand member of this equality

does not depend on τ
(K)
k,l , therefore

χ =
1

NsNhTc

D
∑

l=1

E

[

γ
(K)
k,l

2
]
∫

w (v2)w (v3) g(v2 − n1Tc + v1)g(v3 − n2Tc + v1)dv1dv2dv3

=
1

NsNhTc

∫

w (v2) w (v3) g(v2 − n1Tc + v1)g(v3 − n2Tc + v1)dv1dv2dv3

by using the normalization (4). Since the integral in this last Equation is equal to Rwg ((n2 − n1)Tc),

Equation (30) is proved.

Let us get back to Equation (29). By plugging Equation (30) into (29), we obtain

E

[

x
(K)
k

2
]

=
EE (K)

k

N3
s NhTc

(

1

N4
h

Ns−1
∑

r1,l1=0

r1 6=l1

Ns−1
∑

r2,l2=0

r2 6=l2

Nh−1
∑

i1,i2,j1,j2=0

Rwg ((l1 − r1 − l2 + r2)NhTc + (j1 − i1 − j2 + i2)Tc)

+ 2
Ns

N2
h

Ns−1
∑

r1,l1=0

r1 6=l1

Nh−1
∑

i1,j1=0

Rwg ((l1 − r1)NhTc + (j1 − i1)Tc)

+ N2
s Rwg(0)

)

(31)

Let us develop the first of the three terms of the right hand member of this Equation. Calling φ this term,

and using the equality

Ns−1
∑

r1,l1=0

r1 6=l1

Ns−1
∑

r2,l2=0

r2 6=l2

=

Ns−1
∑

r1,r2,l1,l2=0

−
Ns−1
∑

r1,r2,l1,l2=0

r1=l1

−
Ns−1
∑

r1,r2,l1,l2=0

r2=l2

+

Ns−1
∑

r1,r2,l1,l2=0

r1=l1,r2=l2
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we have

φ =
EE (K)

k

N3
s N5

hTc

(

Ns−1
∑

r1,l1,r2,l2=0

Nh−1
∑

i1,i2,j1,j2=0

Rwg ((l1 − r1 − l2 + r2)NhTc + (j1 − i1 − j2 + i2)Tc)

− 2Ns

Ns−1
∑

r1,l1=0

Nh−1
∑

i1,i2,j1,j2=0

Rwg ((l1 − r1)NhTc + (j1 − i1 − j2 + i2)Tc)

+ N2
s

Nh−1
∑

i1,i2,j1,j2=0

Rwg ((j1 − i1 − j2 + i2)Tc)
)

=
EE (K)

k

N3
s N5

hTc

(

NsNh−1
∑

i1,i2,i3,i4=0

Rwg ((i1 − i2 + i3 − i4)Tc)

− 2Ns

NsNh−1
∑

i1,i2=0

Nh−1
∑

j1,j2=0

Rwg ((i1 − i2 + j1 − j2)Tc)

+ N2
s

Nh−1
∑

j1,j2,j3,j4=0

Rwg ((j1 − j2 + j3 − j4)Tc)
)

.

We thus obtain the first three terms of the right hand side member of (25). The following two terms in

this Equation are obtained by developing in a similar manner the second term in the right hand member

of (31).

E. Proof of lemma 1

We only sketch the proof of (27). The proof of (26) is similar. Assume I ≥ 0. Then, for any collection

of integers {i1, i2, j1, j2} such that {i1, i2} ⊂ {0, . . . , Q − 1} and and {j1, j2} ⊂ {0, . . . ,M − 1}, one

can write

δ(i1 − i2 + j1 − j2 − I) =

Q+M−2
∑

m=I

δ(i1 + j1 − m) δ(i2 + j2 + I − m) .

Similarly, if I < 0, then we have

δ(i1 − i2 + j1 − j2 − I) =

Q+M−2
∑

m=|I|
δ(i1 + j1 + |I| − m) δ(i2 + j2 − m) .

By consequence, the left hand member I =
∑Q−1

i1,i2=0

∑M−1
j1,j2=0 δ(i1 − i2 + j1 − j2 − I) of Equation (27)

can be written I =
∑Q+M−2

m=|I| I1(m)I2(m) where I1(m) =
∑Q−1

i=0

∑M−1
j=0 δ(i + j − m), and I2(m) =

∑Q−1
i=0

∑M−1
j=0 δ(i + j + |I| − m). We have

I1(m) =



















m + 1 if |I| ≤ m < M

M if M ≤ m < Q

Q + M − 1 − m if Q ≤ m < Q + M − 1
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and

I2(m) =



















m − |I| + 1 if |I| ≤ m < M + |I|
M if M + |I| ≤ m < Q + |I|
M − m + Q − 1 + |I| if Q + |I| ≤ m < Q + M − 1

.

By consequence, the sum I is given by

I =
M−1
∑

m=|I|
(m + 1)(m − |I| + 1) +

M+|I|−1
∑

m=M

M(m − |I| + 1) +

Q−1
∑

m=M+|I|
M2

+

Q+|I|−1
∑

m=Q

M(Q + M − 1 − m) +

Q+M−1
∑

m=Q+|I|
(Q + M − 1 − m)(M − m + Q − 1 + |I|) .

The result is obtained by developing this expression and by using the identities
∑n

k=1 k = n(n + 1)/2

and
∑n

k=1 k2 = n(n + 1)(2n + 1)/6.

F. Proof of Proposition 5.

We begin by deriving the expression of σ
(K)
k (c)2 = E

[

x
(K)
k

2
∣

∣

∣

∣

c

]

. After some derivations similar to

those of Appendix D, we have σ
(K)
k (c)2 =

EE(K)
k

Tc

1
N (φ1 − φ2 + φ3) where

φ1 =
1

N2
s N2

h

Ns−1
∑

j1,j2,j3,j4=0

Nh−1
∑

i1,i2=0

Rwg ((j1 − j2 + j3 − j4) NhTc + (cj1 − cj2 + i1 − i2)Tc)

φ2 =
1

NsN2
h

Ns−1
∑

j1,j2=0

Nh−1
∑

i1,i2=0

Rwg ((j1 − j2)NhTc + (cj1 − cj2 + i1 − i2) Tc)

φ3 =
1

Ns

Ns−1
∑

j1,j2=0

Rwg ((j1 − j2)NhTc + (cj1 − cj2) Tc) .

It results that σ(K)2 = EE(K)

Tc

K−1
N (φ1 − φ2 + φ3). We shall prove that φ1 − 2

3
Ns

Nh

∑L
l=−L Rwg(lTc) and

φ2 converge both to zero for every choice of c, and that φ3 −Rwg(0) converges to zero in probability.

Because σ(K)(c)2 = EE(K)

Tc

K−1
N (φ1 − φ2 + φ3), this will prove our proposition.

Due to the fact that Rwg(t) = 0 if |t| ≥ (L + 1)Tc, we have

φ1 −
2

3

Ns

Nh

L
∑

l=−L

Rwg(lTc) =
L
∑

l=−L

Rwg(lTc)









1

N2
s N2

h

Ns−1
∑

j1,j2,j3,j4=0

Nh−1
∑

i1,i2=0

δ ((j1 − j2 + j3 − j4)Nh + cj1 − cj2 + i1 − i2 − l)



− 2

3

Ns

Nh



 (32)
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We have

δ ((j1 − j2 + j3 − j4)Nh + cj1 − cj2 + i1 − i2 − l) =

2
∑

k=−2

δ (j1 − j2 + j3 − j4 + k) δ (cj1 − cj2 + i1 − i2 − l − kNh)

where all the values of the summand of the right hand member are zero for |k| > 2 because −2Nh −
L + 2 ≤ cj1 − cj2 + i1 − i2 − l ≤ 2Nh + L− 2, and L � Nh. The term χ between the inner parentheses

in Equation (32) now writes

χ =
1

N2
s N2

h

Ns−1
∑

j1,j2,j3,j4=0

2
∑

k=−2

δ (j1 − j2 + j3 − j4 + k)

Nh−1
∑

i1,i2=0

δ (cj1 − cj2 + i1 − i2 − l − kNh)

=
1

N2
s N2

h

Ns−1
∑

j1,j2,j3,j4=0

2
∑

k=−2

max (0, Nh − |cj1 − cj2 − l − kNh|) δ (j1 − j2 + j3 − j4 + k)

=
1

N2
s N2

h

Ns−1
∑

j1,j2,j3=0

2
∑

k=−2

Ns−1−k
∑

j4=−k

max (0, Nh − |cj1 − cj2 − l − kNh|) δ (j1 − j2 + j3 − j4)

≥ 1

N2
s N2

h

Ns−3
∑

j1,j2,j3,j4=2

δ (j1 − j2 + j3 − j4)
2
∑

k=−2

max (0, Nh − |cj1 − cj2 − l − kNh|)

For any values of cj1 and cj2 , we have
∑2

k=−2 max (0, Nh − |cj1 − cj2 − l − kNh|) = Nh. Therefore,

the last term is equal to
1

N2
s Nh

Ns−3
∑

j1,j2,j3,j4=2

δ (j1 − j2 + j3 − j4) .

Using Equation (26) of Lemma 1, we can show along the lines of Appendix C that

1

N2
s Nh

Ns−3
∑

j1,j2,j3,j4=2

δ (j1 − j2 + j3 − j4) −
2

3

Ns

Nh
→ 0

when Ns/Nh → ρ ≥ 0. Getting back to the expression of χ we also have

χ−2

3

Ns

Nh
≤ 1

N2
s N2

h

Ns−1
∑

j1,j2,j3=0

Ns+1
∑

j4=−2

δ (j1 − j2 + j3 − j4)

2
∑

k=−2

max (0, Nh − |cj1 − cj2 − l − kNh|)−
2

3

Ns

Nh
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By the same argument, the right hand member converges to zero. It results that φ1−2
3

Ns

Nh

∑L
l=−L Rwg(lTc) →

0 for every value of c. It can be shown in a similar manner that φ2 → 0. Now, we have

E [|φ3 −Rwg(0)|] =
1

Ns
E







∣

∣

∣

∣

∣

∣

∣

Ns−1
∑

j1,j2=0

j1 6=j2

Rwg ((j1 − j2)NhTc + (cj1 − cj2) Tc)

∣

∣

∣

∣

∣

∣

∣







≤ 1

Ns

Ns−1
∑

j1,j2=0

j1 6=j2

E [|Rwg ((j1 − j2) NhTc + (cj1 − cj2) Tc)|]

=
1

NsN2
h

Ns−1
∑

j1,j2=0

j1 6=j2

Nh−1
∑

i1,i2=0

|Rwg ((j1 − j2)NhTc + (i1 − i2) Tc)|

<
1

NsN2
h

NsNh−1
∑

i1,i2=0

|Rwg ((i1 − i2)Tc)| = O(1/Nh) .

Therefore, φ3 −Rwg(0) → 0 in probability by Markov’s inequality as in Appendix A.

G. Proof of (18).

We have σ
(K)
k (c)2 =

EE(K)
k

Tc

1
N (φ1 − φ2 + φ3) where φ1, φ2 and φ3 are given in Appendix F and do

not depend on the user k. In that Appendix, it can be seen that φ1 is bounded and φ2 → 0. Moreover, it

is not difficult to prove that φ3 is bounded. Using the boundedness assumption (5) on E (K)
k , we obtain

the result.

H. Proof of Proposition 6.

It is shown here that Lindeberg’s condition (16) is not satisfied. For this purpose, we shall begin by

building a random variable x
(K)
k

′
such that

∣

∣

∣
x

(K)
k

′∣
∣

∣
≤
∣

∣

∣
x

(K)
k

∣

∣

∣
. Due to this inequality,

|x(K)
k

′
|1|x(K)

k

′|≥ε
≤ |x(K)

k |1|x(K)

k |≥ε

for every ε > 0, therefore, it will be enough to establish the non validity of Lindeberg’s condition over

x
(K)
k

′
to prove the proposition.

The random variables x
(K)
k

′
will be built in such a way that x

(K)
k

′
6= 0 on a certain subset of the probability

space where the pulse carried by c
(K)
k,−1 in the signal y

(K)
k (t) and the pulse carried by c0 in the matched

filter response
√

E/Ns
∑Ns−1

r=0 g(t− rNhTc − crTc) are the only pulses which overlap. Moreover, on this

October 14, 2005 DRAFT



SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING, FINAL VERSION 25

subset, x
(K)
k

′
= x

(K)
k . Specifically, let ζ

(K)
k be the random variable defined as

ζ
(K)
k = 1 if































∆
(K)
k ∈ [0, bNh/3cTc),

c
(K)
k,−1 ∈ {d2Nh/3e, . . . , Nh − 1} ,

c
(K)
k,r ∈ {dNh/3e, . . . , b2Nh/3c − L − 1} for r = 0, . . . , Ns − 1,

cr ∈ {0, . . . , bNh/3c − L − 1} for r = 0, . . . , Ns − 1

and ζ
(K)
k = 0 elsewhere on the probability space. The notations bxc (respectively dxe) stand for x rounded

down (respectively rounded up) to the nearest integer. We put x
(K)
k

′
= x

(K)
k ζ

(K)
k . It can then be checked

that

x
(K)
k

′
=

√

EE (K)
k

Ns
a

(K)
k,−1rg(K)

k g

(

NhTc + (c0 − c
(K)
k,−1)Tc − ∆

(K)
k

)

if c0, . . . , cNs−1, c
(K)
k,−1, . . . , c

(K)
k,Ns−1 and ∆

(K)
k satisfy the conditions above, otherwise x

(K)
k

′
= 0. We have

E

[

x
(K)
k

′2
1|x(K)

k

′|≥ε

]

≥ ε2E
[

1|x(K)

k

′|≥ε

]

= ε2 1

NsN
3
hTc

η1η2

bNh
3
c−L−1
∑

i1=0

Nh−1
∑

i2=d2Nh/3e

∫ bNh
3
cTc

0
P





√

EE (K)
k

Ns
|rg

(K)

k g((Nh + i1 − i2)Tc − t)| ≥ ε



 dt

=
ε2

NsN3
hTc

η1η2

bNh
3
c−L−1
∑

i1=0

Nh−1
∑

i2=d2Nh/3e

bNh
3
c−1

∑

i3=0

∫ Tc

0
P





√

EE (K)
k

Ns
|rg(K)

k g((Nh + i1 − i2 − i3)Tc − t)| ≥ ε



 dt

=
ε2

Tc
η1η2

L
∑

l=−L+1

p(l)

∫ Tc

0
P





√

EE (K)
k

Ns
|rg(K)

k g(lTc − t)| ≥ ε



 dt

where in these Equations, η1 =
(

(b2Nh/3c−L−dNh/3e)
Nh

)Ns

, η2 =
(

(bNh/3c−L)
Nh

)Ns−1
and

p(l) =
1

NsN3
h

bNh
3
c−L−1
∑

i1=0

Nh−1
∑

i2=d2Nh/3e

bNh
3
c−1

∑

i3=0

δ (Nh + i1 − i2 − i3 − l) .

Here, η1 is due to the expectation with respect to the random variables c
(K)
k,r , η2 is due to the expectation

on cr for r 6= 0, and the factor 1/(NsN
3
hTc) results from the expectation over ∆

(K)
k , c0 and c

(K)
k,−1. For

Nh large enough, as L is constant, we have η1 >
(

1
4

)

)Ns and η2 >
(

1
4

)Ns−1
. Furthermore, one can show

by a technique similar to that of the proof of lemma 1 that that p(l) ≥ C3/Nh where C3 does not depend
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on l nor on Nh. By consequence,

K
∑

k=2

E

[

x
(K)
k

′2
1|x(K)

k

′|≥ε

]

≥ C3ε
2

(

1

4

)2Ns−1 1

Nh

K
∑

k=2

L
∑

l=−L+1

∫ Tc

0
P





√

EE (K)
k

Ns
|rg(K)

k g(lTc − t)| ≥ ε



 dt

= C3ε
2

(

1

4

)2Ns−1 1

Nh

K
∑

k=2

∫

P





√

EE (K)
k

Ns
|rg(K)

k g(t)| ≥ ε



 dt

which does not converge to 0 at least for some ε > 0 because the integral in the right hand member is

of the order O(1) and because Ns is constant and K/Nh → α.Ns > 0.

I. Proof of Proposition 7.

We begin with the following lemma :

Lemma 2: Let

S
(K)
k =

1

Ns

∑

m

Ns−1
∑

r1,r2=0

1[−LTc,LTc)

(

(r1 − r2)NhTc + (cr1
− c

(K)
k,mNs+r2

)Tc − mNsNhTc − ∆
(K)
k

)

.

(33)

Then in the asymptotic regime as Nh → ∞, Ns → ∞, and Ns/Nh → ρ > 0, we have E

[

S
(K)
k

2
]

≤ C4/N

and E

[

S
(K)
k

3
]

≤ C5/N
3/2 where C4 and C5 are independent of k and of K .

Proof: Let us write ∆
(K)
k = NhTcn

(K)
k + Tct

(K)
k + q

(K)
k where q

(K)
k has its range in the interval

[0, Tc) and t
(K)
k is discrete with 0 ≤ t

(K)
k < Nh. We can write S

(K)
k =

∑L−1
l=−L S

(K)
k,l where

S
(K)
k,l =

1

Ns

∑

m

Ns−1
∑

r1,r2=0

δ
(

(r1 − r2)Nh + (cr1
− c

(K)
k,mNs+r2

) − mNsNh − Nhn
(K)
k − t

(K)
k − l

)

. (34)

Thanks to Minkowski’s inequality [12, page 82] which writes here
(

E
[

S
(K)
k

p])1/p
≤∑L

l=−L

(

E
[

S
(K)
k,l

p])1/p

for every integer p > 0, it is enough to prove the results for the random variables {S (K)
k,l }l=−L,...,L−1.

For this, we shall prove that in the asymptotic regime,

E

[

S
(K)
k,l

2
| nk = n, tk = t

]

≤ C ′
4/N and E

[

S
(K)
k,l

3
| nk = n, tk = t

]

≤ C ′
5/N

3/2

where the constant C ′
4 and C ′

5 do not depend on n, t, k and K . The random variable S
(K)
k,l

′
obtained

after replacing t
(K)
k by t and n

(K)
k by n in (34) can be written after some simple manipulations

S
(K)
k,l

′
=

1

Ns

Ns−1
∑

r=0

∞
∑

i=−∞
δ
(

iNh + cr − c
(K)
k,r−i−n − (t + l)

)

=
1

Ns

Ns−1
∑

r=0

Z
(K)
k,l,r (35)
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where Z
(K)
k,l,r =

∑∞
i=−∞ δ

(

iNh + cr − c
(K)
k,r−i−n − (t + l)

)

. By assuming w.l.o.g. that t + l < Nh, and

by noting that the range of any of the random variables {c(K)
k,r } is {0, . . . , Nh − 1}, it can be seen that

Z
(K)
k,l,r writes as Z

(K)
k,l,r = δ

(

cr − c
(K)
k,r−n − (t + l)

)

+δ
(

Nh + cr − c
(K)
k,r−1−n − (t + l)

)

. This is a Bernoulli

random variable (having its values in {0, 1}) with E
[

Z
(K)
k,l,r

]

= 1/Nh. Further, it can be shown after some

computations that E
[

Z
(K)
k,l,r1

Z
(K)
k,l,r2

]

≤ 1/N2
h for r1 6= r2 and that E

[

Z
(K)
k,l,r1

Z
(K)
k,l,r2

Z
(K)
k,l,r3

]

≤ 1/N3
h for

r1 6= r2, r2 6= r3, and r1 6= r3. By (35) and these observations, it can be established that E

[

S
(K)
k,l

′2
]

<

1
N2

s

(

N2
s

N2
h

+ Ns

Nh

)

and E

[

S
(K)
k,l

′3
]

< 1
N3

s

(

N3
s

N3
h

+ 3N2
s

N2
h

+ Ns

Nh

)

, hence the results.

Proof of Proposition 7 :

We can now check the validity of the Lindeberg’s condition (16). Let R
(K)
k be the random variable

R
(K)
k = maxt

(

|rg(K)

k g(t)|
)

. We have

|x(K)
k | ≤ Esup

Ns

∑

m

Ns−1
∑

r1,r2=0

∣

∣

∣
r
g
(K)

k g

(

(r1 − r2)NhTc + (cr1
− c

(K)
k,mNs+r2

)Tc − mNsNhTc − ∆
(K)
k

)∣

∣

∣

≤ EsupR
(K)
k S

(K)
k

where S
(K)
k is defined in (33) and represents the number of summands in the sum. As a consequence,

1|x(K)

k |≥ε ≤ 1EsupR(K)

k S(K)

k ≥ε, and then

E

[

x
(K)
k

2
1|x(K)

k |≥ε

]

≤ E2
supE

[

R
(K)
k

2
S

(K)
k

2
1EsupR(K)

k S(K)

k ≥ε

]

= χ
(K,1)
k,A + χ

(K,2)
k,A

where

χ
(K,1)
k,A = E2

supE

[

R
(K)
k

2
S

(K)
k

2
1EsupR

(K)

k S
(K)

k ≥ε1R
(K)

k >A

]

,

χ
(2)
k,A = E2

supE

[

R
(K)
k

2
S

(K)
k

2
1EsupR

(K)

k S
(K)

k ≥ε1R
(K)

k ≤A

]

,

and A is a given constant.

We shall begin by showing that the term
∑K

k=2 χ
(K,1)
k,A can be made as small as possible by increasing

A. We have

χ
(K,1)
k,A ≤ E2

supE

[

R
(K)
k

2
S

(K)
k

2
1R(K)

k >A

]

= E2
supE

[

R
(K)
k

2
1R(K)

k >A

]

E

[

S
(K)
k

2
]

(36)

≤ E2
sup

C4

N
E

[

R
(K)
k

2
1R(K)

k >A

]

(37)

where the equality (36) is due to the obvious fact that R
(K)
k and S

(K)
k are independent, and inequality (37)

is deduced from lemma 2. Now, for every real number t, we have rg
(K)

k g(t) =
∑D

l=1 γ
(K)
k,l rwg(t−τ

(K)
k,l ). By
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Cauchy-Schwarz inequality, rg(K)
k g(t)

2 ≤ ‖γ(K)
k ‖2

∑D
l=1 rwg(t − τ

(K)
k,l )2. Let Mg =

∫

w(t)2dt
∫

g(t)2dt.

Also by Cauchy-Schwarz inequality, rwg(t)
2 ≤ Mg. Therefore, for every value of t, we have rg(K)

k g(t)
2 ≤

D‖γ(K)
k ‖2Mg. By consequence, the uniform integrability of R

(K)
k

2
, i.e.,

lim
A→∞

sup
K

max
k=1,...,K

E

[

R
(K)
k

2
1R(K)

k ≥A

]

= 0

results from the assumption (19). Therefore, if we fix ε′ > 0, there is a value A0 for which

K
∑

k=2

χ
(K,1)
k,A < ε′ (38)

for A > A0, which we assume in the sequel.

We turn now to the study of χ
(K,2)
k,A . From 1|EsupR(K)

k S(K)

k |≥ε1R(K)

k ≤A ≤ 1|S(K)

k |≥ ε

EsupA

1R(K)

k ≤A, we have

χ
(K,2)
k,A ≤ E2

supE

[

R
(K)
k

2
S

(K)
k

2
1|S(K)

k |≥ ε

EsupA

1R(K)

k ≤A

]

≤ E2
supE

[

R
(K)
k

2
]

E

[

S
(K)
k

2
1|S(K)

k |≥ ε

EsupA

]

.

From the inequality rg(K)
k g(t)

2 ≤ D‖γ(K)
k ‖2Mg proved above and (4), it results that E

[

R
(K)
k

2
]

≤

DMg. We therefore have to establish the fact that limK→∞
∑K

k=2 E

[

S
(K)
k

2
1|S(K)

k |≥ ε

EsupA

]

= 0, which is

Lindeberg’s condition on {S(K)
k }. For this, it will be enough to establish Lyapounov’s condition

lim
K→∞

K
∑

k=2

E
[

|S(K)
k |2+η

]

= 0 (39)

for some η > 0 ( [12, theorem 27.3]). Choosing η = 1, we have E

[

S
(K)
k

3
]

≤ C5/N
3/2 by lemma 2,

hence (39).

In short, for every ε′ > 0,
∑K

k=2 E

[

x
(K)
k

2
1|x(K)

k |≥ε

]

is bounded above by the sum of a term less than

ε′, see (38), and a term that converges to 0, therefore, it converges to zero. The variance of the Gaussian

limit distribution is the variance σ2
MUI given by Proposition 5.
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Fig. 1. BER for different values of Ns, Nh. TH-PAM, single path channels, α = 1/2.
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(a) Ns = 1, Nh = 12, K = 6 (b) Ns = 2, Nh = 6, K = 6

(c) Ns = 1, Nh = 48, K = 24 (d) Ns = 4, Nh = 12, K = 24

(e) Ns = 1, Nh = 200, K =

100

(f) Ns = 8, Nh = 25, K = 100

Fig. 2. Measured MUI histograms (bars) and reference Gaussian distributions with same variances (plain curves). Single path

channels.
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Fig. 3. Q-Q plot, empirical MUI distribution vs Gaussian. Single path channels. Ns/Nh = 1/3 or 8/25, α = 1/2.
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Fig. 4. BER for different values of Ns, Nh. TH-PAM, multi-path channels, α = 1/2.
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(a) Ns = 1, Nh = 600

(b) Ns = 6, Nh = 100

Fig. 5. Measured MUI histograms (bars) and reference Gaussian distributions with same variances (plain curves). Multi-path

channels.

October 14, 2005 DRAFT



SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING, FINAL VERSION 35

Fig. 6. Q-Q plot, empirical MUI distribution vs Gaussian. Multi-path channels. Ns/Nh = 3/50, α = 1/2.
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Fig. 7. BER for different values of Ns, Nh. TH-PPM, multi-path channels, α = 1/2.

October 14, 2005 DRAFT



SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING, FINAL VERSION 37

0 5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

2Eb/No in dB

B
E

R

Simu. Ns=6 Nh=100, Unequal Powers
Gauss. asymptotic, rho=6/100
Simu. Ns=3 Nh=100, Unequal Powers
Gauss. asymptotic, rho=3/100
Simu. Ns=3 Nh=100 and Equal Powers

Fig. 8. Asymptotic Approximation vs. Ns and the Power Distribution. TH-PAM, Nh = 100, α = 1/2.
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