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Abstract

We consider a three-terminal state-dependent relay channel with the channel state available

noncausally at only the source. Such a model may be of interest for node cooperation in the

framework of cognition, i.e., collaborative signal transmission involving cognitive and non-

cognitive radios. We study the capacity of this communication model. One principal problem

is caused by the relay’s not knowing the channel state. For the discrete memoryless (DM) model,

we establish two lower bounds and an upper bound on channel capacity. The first lower bound

is obtained by a coding scheme in which the source describes the state of the channel to the

relay and destination, which then exploit the gained description for a better communication of

the source’s information message. The coding scheme for the second lower bound remedies the

relay’s not knowing the states of the channel by first computing, at the source, the appropriate

input that the relay would send had the relay known the states of the channel, and then

transmitting this appropriate input to the relay. The relay simply guesses the sent input and
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sends it in the next block. The upper bound accounts for not knowing the state at the relay and

destination. For the general Gaussian model, we derive lower bounds on the channel capacity

by exploiting ideas in the spirit of those we use for the DM model; and we show that these

bounds are optimal for small and large noise at the relay irrespective to the strength of the

interference. Furthermore, we also consider a relay model with orthogonal channels from the

the source to the relay and from the source and relay to the destination in which the source

input component that is heard by the relay does not depend on the channel states. We establish

a better upper bound for both DM and Gaussian cases and we also characterize the capacity

in a number of special cases.

Index Terms

User cooperation, relay channel, cognitive radio, channel state information, dirty paper

coding.

I. Introduction

We consider a three-terminal state-dependent relay channel (RC) in which, as shown in Figure 1, the source

wants to communicate a message W to the destination through the state-dependent RC in n uses of the channel,

with the help of the relay. The channel outputs Yn
2 and Yn

3 for the relay and the destination, respectively, are

controlled by the channel input Xn
1 from the source, the relay input Xn

2 and the channel state Sn, through a given

memoryless probability law WY2 ,Y3 |X1 ,X2 ,S. The channel state Sn is generated according to the n-product of a given

memoryless probability law QS. It is assumed that the channel state is known, noncausally, to only the source. The

destination estimates the message sent by the source from the received channel output. In this paper we study the

capacity of this communication system. We will refer to the model in Figure 1 as general state-dependent RC with

informed source.

SOURCE DESTINATION

RELAY

Xn
1

Y n
2 Xn

2

Y n
3 Ŵ ∈ WW ∈ W

Sn

WY2,Y3|X1,X2,S

Fig. 1. General state-dependent relay channel with state information Sn available noncausally at only the source.

We shall also study an important class of state-dependent relay channels with orthogonal channels from the

source to the relay and from the source and relay to the destination, shown in Figure 2. In this model, the source
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alphabet X1 = X1R × X1D, Xn
1 = (Xn

1R,X
n
1D) and only the component Xn

1D knows the states Sn. Furthermore, the

memoryless conditional law WY2 ,Y3 |X1R ,X1D ,X2 ,S factorizes as

WY2 ,Y3 |X1R ,X1D ,X2 ,S = WY2 |X1R ,SWY3 |X1D ,X2 ,S. (1)

Note that this definition differs from the original definition of relay channels with orthogonal components in the

classic setup of channels without states by El Gamal and Zahedi [1] through the presence of the state parameter

and the fact that X2 ↔ (X1R,S) ↔ Y2 forms a Markov chain. Perhaps somehow misleadingly, throughout this

paper we will continue to refer to this class of state-dependent relay channels as state-dependent RC with orthogonal

components, omitting explicitly mentioning the aforementioned Markov chain restriction and the fact that only one

component of the source encoder components knows the channel states.

DESTINATION

RELAY

Y n
3 Ŵ ∈ W

Xn
1D

Xn
2

WY3|X1D,X2,S

Y n
2

WY2|X1R,S

Xn
1R

SnW ∈ W

Fig. 2. State-dependent relay channel with the source input Xn
1 = (Xn

1R,X
n
1D), and only the component Xn

1D knowing

the states of the channel noncausally.

One can think of the two source encoder components in Figure 2 as being two non-colocated base stations

transmitting a common message to some destination with the help of a relay – the common message may be

obtained by means of message cognition at the encoder whose input is heard at the relay.

A. Background and Related Work

Channels whose probabilistic input-output relation depends on random parameters, or channel states, have

spurred much interest and can model a large variety of problems, each related to some physical situation of

interest. Examples of applications include information embedding [2], interference imposed by adjacent users,

certain storage applications such as computer memories [3], coding for certain broadcast channels [4]–[6], dispersive

(ISI) channels [7], block fading in wireless environments [8], cooperation in the realm of cognition [9] and others.

The random state sequence may be known in a causal or noncausal manner. For single user models, the concept of

channel state available at only the transmitter dates back to Shannon [10] for the causal channel state case, and

to Gel’fand and Pinsker [11] for the noncausal channel state case. In [12], Heegard and El Gamal study a model

in which the state sequence is known noncausally to only the encoder or to only the decoder. They also derive

achievable rates for the case in which partial channel state information (CSI) is given at varying rates to both the

encoder and the decoder. In [13], Costa studies an additive Gaussian channel with additive Gaussian state known

at only the encoder, and shows that Gel’fand-Pinsker coding with a specific auxiliary random variable, known as

dirty paper coding (DPC), achieves the channel capacity. Interestingly, in this case, the DPC removes the effect of the
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additive channel state on the capacity as if there were no channel state present in the model or the channel state

were known to the decoder as well. For a comprehensive review of state-dependent channels and related work,

the reader may refer to [14].

A growing body of work studies multi-user state-dependent models. Recent advances in this regard can be

found in [14]–[37], and many other works. Key to the investigation of a state-dependent model is whether the

parameters controlling the channel are known to all or only some of the users in the communication model. If the

parameters of the channel are known to only some of the users, the problem exhibits some asymmetry which makes

its investigation more difficult in general. Also, in this case one has to expect some rate penalty due to the lack of

knowledge of the state at the uninformed encoders, relative to the case in which all encoders would be informed.

The state-dependent multiaccess channel (MAC) with only one informed encoder and degraded message sets

is considered in [15], [16], [38]–[41]; and the state-dependent relay channel (RC) with only informed relay is

considered in [20], [21]. For all these models, the authors develop non-trivial outer or upper bounds that permit to

characterize the rate loss due to not knowing the state at the uninformed encoders. Key feature to the development

of these outer or upper bounding techniques is that, in all these models, the uninformed encoder not only does not

know the channel state but can learn no information about it.

The model for the RC with informed source that we study in this paper seemingly exhibits some similarities

with the RC with informed relay considered in [20], [21], and it also connects with the MAC with asymmetric

channel state and degraded message sets considered in [15]–[17]. However, establishing a non-trivial upper bound

for the present model is more involved, comparatively. Partly, this is because, here, one uninformed encoder (the

relay) is also a receiver; and, so, it can potentially get some information about the channel states from directly

observing the past received sequence from the source. That is, at time i, the input X2,i of the relay can potentially

depend on the channel states through its past output Yi−1
2 = (Y2,1, . . . ,Y2,i−1). For the general model in Figure 1,

the relay can even know the states noncausally, potentially. This is because Yi−1
2 may depend on future values of

the state through past source inputs X1, j(W,Sn), j = 1, . . . , i − 1. For the model of Figure 2, the relay can know the

states only strictly-causally, but upper bounding the capacity seems still not easy. In our recent work [42]–[44], we

have shown that, in a multiaccess channel, strictly causal knowledge of the state at one encoder can be beneficial

in general for the other encoder even if the latter is informed noncausally. In [43], [44] we characterize the capacity

region fully. Studying networks in which a subset of the nodes know the states noncausally and another subset

know these states only strictly causally, i.e., networks with mixed – noncausal and strictly causal, states appears

to be more challenging in general, and is likely to capture additional interest, especially after recent results on the

utility of strictly causally known states in multiaccess channels [26], [27].

B. Main Contributions

For the general state-dependent RC with informed source shown in Figure 1, we derive two lower bounds and

an upper bound on the channel capacity. In the discrete memoryless (DM) case, the first lower bound is obtained

by a block Markov coding scheme in which the source describes the channel state to the relay and destination ahead

of time. The source sends a two-layer description of the state consisting of two (possibly correlated) individual
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descriptions intended to be recovered at the relay and destination respectively. The relay recovers the individual

description intended to it and then utilizes the estimated state as noncausal state information at the transmitter to

implement collaborative source-relay binning in subsequent blocks, through a combined decode-and-forward [45,

Theorem 5] and Gel’fand-Pinsker binning [11]. The destination guesses the source’s message sent cooperatively

by the source and relay and the individual description which is intended to it from its output and the previously

recovered state. The rationale for the coding scheme which we use for the first lower bound is that, had the relay

known the state with negligible distortion, then efficient cooperative source-relay binning in the spirit of [46] can

be realized (recall that the model in [46] assumes availability of the state at both source and relay).

We obtain the second lower bound by a block Markov coding scheme in which, rather than the channel state

itself, the source describes to the relay the appropriate input that the relay would send had the relay known the

channel states, assuming a decode-and-forward relaying strategy. The source sends this description to the relay

ahead of time. The relay recovers the sent input and retransmits it in the appropriate subsequent block. The

rationale for the coding scheme which we use for the second lower bound is that, if the input is produced at the

source using binning against the known state and if the relay recovers it with negligible error, then all would

appear as if the relay were informed of the channel state. This is because, from an operational point-of-view, the

relay actually need not know the channel state, but, rather, the appropriate input that it would send had it known

this state.

For the state-dependent general model, we also establish an upper bound on the capacity. This upper bound

accounts for not knowing the state at the relay and the destination. Then, considering the relay model of Figure 2,

we derive a better upper bound that accounts also for the loss incurred by not knowing the state at one of the source

encoder components. We show that this upper bound is strictly tighter than the max-flow min cut or cut-set upper

bound obtained by assuming that the state is available at all nodes. We note that upper-bounding techniques for

related models with asymmetric channel states, i.e., models with states known only at some of the encoders have

been developed recently in our previous work [21] for a relay channel with states known only at the relay, and in

[15]–[17] for a MAC with degraded message sets and states known only at one encoder. However, as we mentioned

previously, the model that we study in this paper is more involved comparatively, essentially because, as a receiver

the relay can get information about the unknown state. From this angle, our upper bounding techniques here are

more linked to our recent works [42]–[44].

Next, we also consider a memoryless Gaussian model in which the noise and the state are additive and Gaussian.

The state represents an external interference and is known noncausally to only the source. We derive lower bounds

on the capacity of the general Gaussian RC with informed source by applying the concepts that we develop for

the DM case. Similar to the discrete case, one lower bound is based on the idea of describing the state to the relay

beforehand; the relay recovers it and then utilizes it for collaborative binning in subsequent blocks. The other lower

bound consists in transmitting to the relay a quantized version of the appropriate input that the relay would send

had the relay known the channel state. We show that these lower bounds perform well in general and are optimal

for large and small noise at the relay, respectively, irrespective of the strength of the interference.

Furthermore, considering a Gaussian version of the model shown in Figure 2, we also develop an upper bound
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on the capacity that is strictly better than the max-flow min cut or cut-set upper bound. We point out the rate loss in

the upper bound incurred by the availability of the channel state at only the one source encoder component. Using

this upper bound, we characterize the channel capacity in a number of cases, including when the interference

corrupts transmission to the destination but not to the relay.

C. Outline and Notation

An outline of the remainder of this paper is as follows. Section II describes in more detail the communication

models that we consider in this work. Sections III and IV are devoted to studying the discrete memoryless models,

providing lower and upper bounds on channel capacity for the state-dependent General RC in Section III and for

the state-dependent RC with orthogonal components in Section IV. Sections V and VI contain the corresponding

Gaussian models, providing lower and upper bound on the capacity; and characterizing the channel capacity in

some cases. Section VII contains some numerical results and discussions. Finally, Section VIII concludes the paper.

We use the following notations throughout the paper. Upper case letters are used to denote random variables,

e.g., X; lower case letters are used to denote realizations of random variables, e.g., x; and calligraphic letters

designate alphabets, i.e., X. The probability distribution of a random variable X is denoted by PX(x). Sometimes,

for convenience, we write it as PX. We use the notation EX[·] to denote the expectation of random variable X. A

probability distribution of a random variable Y given X is denoted by PY|X. The set of probability distributions

defined on an alphabet X is denoted by P(X). The cardinality of a set X is denoted by |X|. For convenience, the

length n vector xn will occasionally be denoted in boldface notation x. The Gaussian distribution with mean µ

and variance σ2 is denoted by N(µ, σ2). Finally, throughout the paper, logarithms are taken to base 2, and the

complement to unity of a scalar u ∈ [0, 1] is denoted by ū, i.e., ū = 1 − u.

II. SystemModel and Definitions

In this section, we formally present our communication model and the related definitions. As shown in Figure

1, we consider a state-dependent relay channel denoted by WY2 ,Y3 |X1 ,X2 ,S whose outputs Yn
2 ∈ Yn

2 and Yn
3 ∈ Yn

3 for

the relay and the destination, respectively, are controlled by the channel inputs Xn
1 ∈ Xn

1 from the source and

Xn
2 ∈ X

n
2 from the relay, along with random states Sn

∈ Sn. It is assumed that the channel state Si at time instant i is

independently drawn from a given distribution QS and the channel states Sn are noncausally known only at the

source.

The source wants to transmit a message W to the destination with the help of the relay, in n channel uses. The

message W is assumed to be uniformly distributed over the set W = {1, . . . ,M}. The information rate R is defined

as n−1 log M bits per transmission.

An (M,n) code for the state-dependent relay channel with informed source consists of an encoding function at the

source

φn
1 : {1, . . . ,M} × Sn

→ Xn
1 , (2)

a sequence of encoding functions at the relay

φ2,i : Yi−1
2,1 → X2,i, (3)
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for i = 1, 2, . . . ,n, and a decoding function at the destination

ψn : Yn
3 → {1, . . . ,M}. (4)

Let a (M,n) code be given. The sequences Xn
1 and Xn

2 from the source and the relay, respectively, are transmitted

across a state-dependent relay channel modeled as a memoryless conditional probability distribution WY2 ,Y3 |X1 ,X2 ,S.

The joint probability mass function on W×Sn
×Xn

1×X
n
2×Y

n
2×Y

n
3 is given by

P(w, sn, xn
1 , x

n
2 , y

n
2 , y

n
3) = P(w)

n∏
i=1

QS(si)P(x1,i|w, sn)P(x2,i|yi−1
2 )

·WY2 ,Y3 |X1 ,X2 ,S(y2,i, y3,i|x1,i, x2,i, si). (5)

The destination estimates the message sent by the source from the channel output Yn
3 . The average probability

of error is defined as Pn
e = ES

[
Pr

(
ψn(Yn

3 ) ,W|Sn = sn
)]
.

An (ε,n,R) code for the state-dependent RC with informed source is an (2nR,n)−code (φn
1 , φ

n
2 , ψ

n) having average

probability of error Pn
e not exceeding ε.

A rate R is said to be achievable if there exists a sequence of (εn,n,R)−codes with limn→∞ εn = 0. The capacity C

of the state-dependent RC with informed source is defined as the supremum of the set of achievable rates.

We shall also study the relay model shown in Figure 2, in which the source alphabet X1 = X1R×X1D, Xn
1 =

(Xn
1R,X

n
1D) with the input component Xn

1R function of only the message W and the input component Xn
1D function

of (W,Sn), i.e., Xn
1R = φn

1R(W) and Xn
1D = φn

1D(W,Sn) — φn
1R and φn

1D are the source encoding functions, and the

conditional distribution WY2 ,Y3 |X1R ,X1D ,X2 ,S factorizing as (1). The encoding at the relay and the decoding at the

destination remain as in the model of Figure 1, i.e., given by (3) and (4), respectively.

III. The DiscreteMemoryless RC with Informed Source

In this section, we consider the general state-dependent RC model of Figure 1. We assume that the alphabets S,

X1, X2, Y2 and Y3 in the model are all discrete and finite.

A. Lower Bounds on Channel Capacity: State Description

The following theorem provides a lower bound on the capacity of the state-dependent general discrete memo-

ryless RC with informed source.

Theorem 1: The capacity of the state-dependent discrete memoryless relay channel with informed source is

lower bounded by

Rlo = max min {I(U; Y2|V, ŜR) − I(U; S, ŜD|V, ŜR),

I(U,V; Y3|ŜD) − I(U,V; S, ŜR|ŜD)} (6)
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subject to the constraints

I(S; ŜR) ≤ I(UR; Y2, ŜR|U,V) − I(UR; S, ŜR, ŜD|U,V) (7a)

I(S; ŜD) ≤ I(UD; Y3, ŜD|U,V) − I(UD; S, ŜR, ŜD|U,V) + [I(U; Y3, ŜD|V) − I(U; S, ŜR, ŜD|V)]− (7b)

I(S; ŜR, ŜD) + I(ŜR; ŜD) ≤ I(UR; Y2, ŜR|U,V) − I(UR; S, ŜR, ŜD|U,V)

+ I(UD; Y3, ŜD|U,V) − I(UD; S, ŜR, ŜD|U,V) + [I(U; Y3, ŜD|V) − I(U; S, ŜR, ŜD|V)]−

− I(UR; UD|U,V,S, ŜR, ŜD) (7c)

where [x]− , min(x, 0), and the maximization is over all joint measures on S×ŜR×ŜD×UR×UD×U×V×X1×X2×Y2×Y3

of the form

PS,ŜR ,ŜD ,UR ,UD ,U,V,X1 ,X2 ,Y2 ,Y3

= QSPŜR ,ŜD |SPV|ŜR
PU|V,S,ŜR ,ŜD

PUR ,UD |V,U,S,ŜR ,ŜD
PX1 |UR ,UD ,U,V,S,ŜR ,ŜD

PX2 |V,ŜR
WY2 ,Y3 |X1 ,X2 ,S. (8)

and satisfying

I(V; Y3, ŜD) − I(V; ŜR) > 0. (9)

Proof: An outline of the proof of Theorem 1 will follow, and complete error analysis appears in Appendix A.

In Theorem 1, the random variables ŜR and ŜD represent two descriptions ŜR and ŜD of the state S that are

sent by the source ahead of time and meant to be recovered at the relay and destination, respectively. The random

variables UR and UD are associated with the codewords UR and UD that are used by the source to carry these

state descriptions to the relay and destination, respectively. The random variables U and V represent respectively

the Gel’fand-Pinsker auxiliary vector U used to precode the information message at the source against the known

state (S, ŜR, ŜD) and the Gel’fand-Pinsker auxiliary vector V used to precode the information message at the relay

against the state ŜR. The allowed measure (8) implies the following Markov chains

V ↔ ŜR ↔ (S, ŜD), (U,V,UR,UD)↔ (X1,X2,S)↔ (Y2,Y3). (10)

The first Markov chain reflects the fact that the input at the relay depends on the state only through the description

that is recovered at the relay. The second Markov chain reflects the memoryless nature of the channel, and the fact

the outputs at the relay and destination depend on all other codewords only through the inputs of the source and

relay and the channel state.

The following remarks are useful for a better understanding of the coding scheme which we use to achieve the

lower bound in Theorem 1.

Remark 1: The intuition for the coding scheme which we use to establish the lower bound in Theorem 1 is as

follows. Had the relay known the state, the source and the relay could implement collaborative binning against

that state for transmission to the destination [46]. Since the source knows the state of the channel noncausally, it

can transmit a description of it to the relay ahead of time. The relay recovers the state (with a certain distortion),

and then utilizes it in the relevant subsequent block through a collaborative binning scheme. The hope is that the
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benefit that the source can get from being assisted by a more capable relay will compensate the loss caused by the

source’s spending some of its resources to make the relay learn the state.

In general, it may also turn out to be useful to send a dedicated description of the state to the destination. The

destination utilizes the recovered state as side information at the receiver. In the coding scheme that we employ to

establish the lower bound in Theorem 1, in addition to its message, the source also sends a two-layer description

of the state to the relay and destination; one layer description dedicated for each. The two layers are possibly

correlated. The relay guesses the source’s message and the individual state description which is dedicated to

it from the source transmission and the previously recovered state description. It then utilizes the new state

estimate as noncausal state at the encoder for collaborative source-relay binning over the next block, through a

combined decode-and-forward and Gel’fand-Pinsker binning. The destination guesses the source’s message sent

cooperatively by the source and relay and the individual state description which is dedicated to it from its output

and the previously recovered state description.

Remark 2: As it can be seen from the proof in Appendix A, the source sends the descriptions intended to the

relay and destination two blocks ahead of time. That is, at the beginning of block i the source describes the state

vector s[i + 2] to the relay and destination. While one block delay is sufficient to describe the state to the relay, a

minimum of two blocks is necessary for the state reconstruction at the destination because of the used window

decoding technique.

Outline of Proof of Theorem 1:

A formal proof of Theorem 1 with complete error analysis is given in Appendix A. We now give a description

of a random coding scheme which we use to obtain the lower bound given in Theorem 1. This scheme is based on

an appropriate combination of block Markov encoding [45], Gel’fand-Pinsker binning [11], multiple descriptions

[47] and Marton’s coding for general broadcast channels [48]–[50]. Next, we outline the encoding and decoding

procedures.

We transmit in B + 1 blocks, each of length n. Let s[i] denote the state sequence controlling the channel in block i,

with i = 1, . . . ,B + 1. During each of the first B blocks, the source encodes a message wi ∈ [1, 2nR] and sends it over

the channel. In addition, during each of the first B − 1 blocks, the source also sends two individual descriptions of

s[i + 2] intended to be recovered at the relay and destination, respectively. We denote by ŝR[ιRi], ιRi ∈ [1, 2nR̂R ], the

description of s[i + 2] intended to be recovered at the relay in block i, at rate R̂R, and by ŝD[ιDi], ιDi ∈ [1, 2nR̂D ], the

description of s[i + 2] intended to be recovered at the destination in block i, at rate R̂D. For the last two blocks, for

convenience, we set wB+1 = 1, (ιRB, ιDB) = (1, 1) and (ιRB+1, ιDB+1) = (1, 1). For fixed n, the average (channel coding)

rate R(B/(B + 1)) of the information message over B + 1 blocks approaches R as B −→ +∞, and the average (source

coding) rates R̂R((B − 1)/(B + 1)) and R̂D((B − 1)/(B + 1)) approach R̂R and R̂D, respectively, as B −→ +∞.

Codebook generation: Fix a measure PS,ŜR ,ŜD ,UR ,UD ,U,V,X1 ,X2 ,Y2 ,Y3
of the form (8). Calculate the marginals PŜR

and

PŜD
induced by this measure. Fix ε > 0, and let M = 2n[R−ε],

JV = 2n[I(V;ŜR)+ε] MR = 2n[RR−5ε] JR = 2n[I(UR ;S,ŜR ,ŜD |U,V)+ε]

JU = 2n[I(U;S,ŜR ,ŜD |V)+ε] MD = 2n[RD−5ε] JD = 2n[I(UD ;S,ŜR ,ŜD |U,V)+ε] (11)
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with

RR = I(UR; Y2, ŜR|U,V) − I(UR; S, ŜR, ŜD|U,V) − ε

RD = I(UD; Y3, ŜD|U,V) − I(UD; S, ŜR, ŜD|U,V) + [I(U; Y3, ŜD|V) − I(U; S, ŜR, ŜD|V)]− − ε (12)

where [x]− denotes min(x, 0).

We may assume that first term in (6) is non-negative, i.e., I(U; Y2, ŜR|V) − I(U; S, ŜR, ŜD|V) ≥ 0.

We generate two statistically independent codebooks (codebooks 1 and 2) by following the steps outlined below

twice. We shall use these codebooks for blocks with odd and even indices, respectively.

1) Generate 2nR̂R n-vectors ŝR[1], . . . , ŝR[2nR̂R ] independently according to a uniform distribution over the set

Tn
ε (PŜR

) of ε−typical ŜR n− vectors.

2) Generate 2nR̂D n-vectors ŝD[1], . . . , ŝD[2nR̂D ] independently according to a uniform distribution over the set

Tn
ε (PŜD

) of ε−typical ŜD n− vectors.

3) Generate JVM independent and identically distributed (i.i.d.) codewords {v(w′, jV)} indexed by w′ = 1, . . . ,M,

jV = 1, . . . , JV . Each codeword v(w′, jV) is with i.i.d. components drawn according to PV .

4) For each codeword v(w′, jV), generate a collection of JUM codewords {u(w′, jV ,w, jU)} indexed by w = 1, . . . ,M,

jU = 1, . . . , JU. Each codeword u(w′, jV ,w, jU) is with i.i.d. components drawn according to PU|V .

5) For each codeword v(w′, jV), for each codeword u(w′, jV ,w, jU), generate a collection of JRMR codewords

{uR(w′, jV ,w, jU, k, jR)} indexed by k = 1, . . . ,MR, jR = 1, . . . , JR. Each codeword uR(w′, jV ,w, jU, k, jR) is with

i.i.d. components drawn according to PUR |V,U.

6) For each codeword v(w′, jV), for each codeword u(w′, jV ,w, jU), generate a collection of JDMD codewords

{uD(w′, jV ,w, jU, l, jD)} indexed by l = 1, . . . ,MD, jD = 1, . . . , JD. Each codeword uD(w′, jV ,w, jU, l, jD) is with

i.i.d. components drawn according to PUD |V,U.

7) (Binning à-la Marton [48], [49]): For ιR ∈ [1, 2nR̂R ], define the cells

BιR = [(ιR − 1)2n[RR−R̂R−ε] + 1, ιR2n[RR−R̂R−ε]].

Similarly, for ιD ∈ [1, 2nR̂D ], define the cells

CιD = [(ιD − 1)2n[RD−R̂D−ε] + 1, ιD2n[RD−R̂D−ε]],

where without loss of generality 2n[RR−R̂R−ε] and 2n[RD−R̂D−ε] are considered to be integer valued.

Encoding: The encoders at the source and the relay encode messages using codebook 1 for blocks with odd

indices, and codebook 2 for blocks with even indices. This is done because some of the decoding steps are performed

jointly over two adjacent blocks, and so having independent codebooks makes the error events corresponding to

these blocks independent and their probabilities easier to evaluate.

We pick up the story in block i. Let wi be the new message to be sent from the source node at the beginning of

block i, and wi−1 the message sent in the previous block i− 1. The encoding at the beginning of block i is as follows.

The source finds, if possible, a pair (ιRi, ιDi) ∈ [1, 2nR̂R ]×[1, 2nR̂D ] such that (s[i + 2], ŝR[ιRi], ŝD[ιDi]) are jointly typical.

If such (ιRi, ιDi) does not exist, simply set (ιRi, ιDi) = (1, 1). We shall show that a successful encoding of s[i + 2] at the
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source is accomplished with high probability provided that n is sufficiently large and

R̂R > I(S; ŜR)

R̂D > I(S; ŜD)

R̂R + R̂D > I(S; ŜR, ŜD) + I(ŜR; ŜD). (13)

The source will send the quadruple (wi−1,wi, ιRi, ιDi) over the channel. First, let us assume that the relay has decoded

correctly message wi−1 and the indices (ιRi−2, ιRi−1), and the destination has decoded correctly message wi−2 and the

index ιDi−2. We shall show that our code construction allows the relay to decode correctly message wi and the index

ιRi and the destination to decode correctly message wi−1 and the index ιDi−1 at the end of block i (with a probability

of error ≤ ε). Thus, the information state (wi−2,wi−1, ιRi−1, ιDi−2) propagates forward and a recursive calculation of

the probability of error can be made, yielding a probability of error ≤ (B + 1)ε.

We continue with the strategy at the beginning of block i.

1) The relay knows wi−1 and ιRi−2 and finds an index jV ∈ JV such that v(wi−1, jV) is jointly typical with ŝR[ιRi−2].

If there is more than one such index, it chooses the smallest. If there is no such index, it chooses an arbitrary

index from [1, JV]. Denote the chosen jV by j?Vi = jV(ŝR[ιRi−2],wi−1). (Note that since V ↔ ŜR ↔ (S, ŜD) forms

a Markov chain and ŝR[ιRi−2] is jointly typical with (s[i], ŝD[ιDi−2]), chosen as such, v(wi−1, j?Vi) is jointly typical

with (s[i], ŝR[ιRi−2], ŝD[ιDi−2]), by the Markov Lemma [51, Lemma 12.1]). Then the relay sends a vector x2[i]

with i.i.d. components given v(wi−1, j?Vi) and ŝR[ιRi−2], drawn1 according to the marginal PX2 |V,ŜR
induced by

the distribution (8). (For i = 1, 2, the relay does not know an estimate of the channel state and so it sends some

default codeword).

2) The source first finds an index jU ∈ JU such that u(wi−1, j?Vi,wi, jU) is jointly typical with the vector s[i], ŝR[ιRi−2], ŝD[ιDi−2])

given v(wi−1, j?Vi). If there is more than one such index, it chooses one of them at random. If there is no such in-

dex, it chooses an arbitrary index from [1, JU]. Denote the chosen jU by j?Ui = jU(s[i], ŝR[ιRi−2], ŝD[ιDi−2],wi−1,wi).

3) Next, the source searches for one pair(
uR(wi−1, j?Vi,wi, j?Ui, ki, jRi),uD(wi−1, j?Vi,wi, j?Ui, li, jDi)

)
∈ DιRiιDi ,

where

DιRiιDi =
{(

uR(wi−1, j?Vi,wi, j?Ui,ki, jRi),uD(wi−1, j?Vi,wi, j?Ui, li, jDi)
)

s.t. :

ki ∈ BιRi , li ∈ CιDi , jRi ∈ JR, jDi ∈ JD(
uR(wi−1, j?Vi,wi, j?Ui, ki, jRi), s[i], ŝR[ιRi−2], ŝD[ιDi−2]

)
∈ Tn

ε (PURSŜRŜD |UV)(
uD(wi−1, j?Vi,wi, j?Ui, li, jDi), s[i], ŝR[ιRi−2], ŝD[ιDi−2]

)
∈ Tn

ε (PUDSŜRŜD |UV)(
uR(wi−1, j?Vi,wi, j?Ui, ki, jRi),uD(wi−1, j?Vi,wi, j?Ui, li, jDi)

)
∈ Tn

ε (PUR ,UD |UVSŜRŜD
)
}
. (14)

1Note that, strictly speaking, the encoder is not allowed to randomize at this stage. A more rigorous analysis

consists in generating the desired input distribution at the codebook generation stage.
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We shall show that, with high probability, the source will find one such pair provided that n is sufficiently

large and

R̂R + R̂D < RR + RD − I(UR; UD|U,V,S, ŜR, ŜD). (15)

Denote the found pair as
(
uR(wi−1, j?Vi,wi, j?Ui, ki, j?Ri),uD(wi−1, j?Vi,wi, j?Ui, li, j?Di)

)
.

4) The source then sends a vector x1[i] with i.i.d. components given the vectors v(wi−1, j?Vi), u(wi−1, j?Vi,wi, j?Ui),

uR(wi−1, j?Vi,wi, j?Ui, ki, j?Ri), uD(wi−1, j?Vi,wi, j?Ui, li, j?Di) and (s[i], ŝR[ιRi−2], ŝD[ιDi−2]), drawn according to the marginal

PX1 |V,U,UR ,UD ,S,ŜR ,ŜD
induced by the distribution (8).

Decoding: Decoding and state reconstruction at the relay are based on classical joint typicality. Decoding and

state reconstruction at the destination are based on joint typicality and window-decoding. The decoding and

reconstruction procedures at the end of block i are as follows.

1) The relay knows wi−1 and ιRi−2 (in fact, the relay knows also ιRi−1 but does not use it for decoding in this step).

It declares that (ŵi, ι̂Ri) are sent if there exists a unique triple (ŵi, ĵUi, k̂i), ŵi ∈ [1,M], ĵUi ∈ JU, k̂i ∈ [1,MR], such

that u(wi−1, j?Vi, ŵi, ĵUi), uR(wi−1, j?Vi, ŵi, ĵUi, k̂i, jRi) are jointly typical with (y2[i], ŝR[ιRi−2]) given v(wi−1, j?Vi), for

some jRi ∈ JR, where j?Vi = jV(ŝR[ιRi−2],wi−1). One can show that, with the choice (12), the decoding error in

this step is small for sufficiently large n if

R < I(U; Y2, ŜR|V) − I(U; S, ŜR, ŜD|V). (16)

If (16) is satisfied, the estimate ι̂Ri of ιRi at the relay is the index of the Bι̂Ri containing the found k̂i, i.e., k̂i ∈ Bι̂Ri .

2) The destination knows the pair (wi−2, li−2) and the index j?Vi−1 = jV(ŝR[ιRi−3],wi−2) and decodes the pair

(wi−1, li−1) based on the information received in block i − 1 and block i. It declares that (ŵi−1, l̂i−1) is sent if

there is a unique triple (ŵi−1, ĵUi−1, l̂i−1), ŵi−1 ∈ [1,M], ĵUi−1 ∈ JU, l̂i−1 ∈ [1,MD], and a unique ĵVi ∈ JV , such that

u(wi−2, j?Vi−1, ŵi−1, ĵUi−1), uD(wi−2, j?Vi−1, ŵi−1, ĵUi−1, l̂i−1, jDi−1) are jointly typical with (y3[i − 1], ŝD[ιDi−3]) given

v(wi−2, j?Vi−1) and v(ŵi−1, ĵVi) is jointly typical with (y3[i], ŝD[ιDi−2]). One can show that, with the choice (12), the

decoding error in this step is small for sufficiently large n if

R < I(V,U; Y3, ŜD) − I(V,U; S, ŜR, ŜD)

0 < I(V; Y3, ŜD) − I(V; ŜR). (17)

If (17) is satisfied, the estimate ι̂Di−1 of ιDi−1 at the destination is the index of the Cι̂Di−1 containing the found

l̂i−1, i.e., l̂i−1 ∈ Cι̂Di−1 . Also, the destination obtains the correct index j?Vi = jV(ŝR[ιRi−2],wi−1).

�

The achievable rate in Theorem 1 requires the relay to decode the message sent by the source fully, and this can

be rather a severe constraint. We can generalize Theorem 1 by allowing the relay to decode the message sent by the

source only partially [52]. This can be done by splitting the information sent by the source into two independent

parts, one part is sent through the relay and the other part is sent directly to the destination. In the following

theorem, the random variables V, U, UR and UD play the same roles as in Theorem 1 and U1 is a new random

variable that represents the information sent directly to the destination.
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Theorem 2: The capacity of the state-dependent discrete memoryless relay channel with informed source is

lower bounded by

Rlo = max min {I(U; Y2|V, ŜR) − I(U; S, ŜD|V, ŜR),

I(U,V; Y3|ŜD) − I(U,V; S, ŜR|ŜD)} + I(U1; Y3|U,V, ŜD) − I(U1; S, ŜR|U,V, ŜD) (18)

subject to the constraints

I(S; ŜR) ≤ I(UR; Y2, ŜR|U,V) − I(UR; S, ŜR, ŜD|U,V) (19a)

I(S; ŜD) ≤ I(UD; Y3, ŜD|U1,U,V) − I(UD; S, ŜR, ŜD|U1,U,V) + [I(U1,U; Y3, ŜD|V) − I(U1,U; S, ŜR, ŜD|V)]−

(19b)

I(S; ŜR, ŜD) + I(ŜR; ŜD) ≤ I(UR; Y2, ŜR|U,V) − I(UR; S, ŜR, ŜD|U,V)

+ I(UD; Y3, ŜD|U1,U,V) − I(UD; S, ŜR, ŜD|U1,U,V) + [I(U1,U; Y3, ŜD|V) − I(U1,U; S, ŜR, ŜD|V)]−

− I(UR; UD|U1,U,V,S, ŜR, ŜD) (19c)

where [x]− , min(x, 0), and the maximization is over all joint measures on S × ŜR × ŜD × UR × UD × U1 × U × V ×

X1 × X2 × Y2 × Y3 of the form

PS,ŜR ,ŜD ,UR ,UD ,U,V,X1 ,X2 ,Y2 ,Y3

= QSPŜR ,ŜD |SPV|ŜR
PU|V,S,ŜR ,ŜD

PU1 |V,U,S,ŜR ,ŜD
PUR ,UD |V,U,U1 ,S,ŜR ,ŜD

PX1 |UR ,UD ,U,V,S,ŜR ,ŜD
PX2 |V,ŜR

WY2 ,Y3 |X1 ,X2 ,S (20)

and satisfying U1 ↔ (V,U,S, ŜR, ŜD)↔ UR is a Markov chain and

0 < I(V; Y3, ŜD) − I(V; ŜR)

0 ≤ I(U; Y2|V, ŜR) − I(U; S, ŜD|V, ŜR)

0 ≤ I(U1; Y3|U,V, ŜD) − I(U1; S, ŜR|U,V, ŜD). (21)

The proof of Theorem 2 follows by a fair extension of that of Theorem 1, and so we omit it here for brevity.

Remark 3: In the coding scheme of Theorem 2, if the source sends no descriptions of the state to the relay and

destination, i.e., ŜR = ŜD = Ø, the coding scheme reduces to a generalized Gel’fand-Pinsker binning scheme at the

source that is combined with partial DF. In this case, the relay sends codewords that carry part of the information

message and are independent of the channel states. The following achievable rate2 is obtained from Theorem 2 by

setting ŜR = ŜD = Ø, UR = UD = Ø and V = X2 independent of S, as

R = max min
{

I(U; Y2|X2) + I(U1; Y3|U,X2) − I(U,U1; S|X2), I(U,U1,X2; Y3) − I(U,U1; S|X2)
}

(22)

2We note that the achievable rate (22) subsumes that of [23, Theorem 1] which contains one more term in the

minimization.
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with the maximization over joint measures of the form

PS,U,U1 ,X1 ,X2 ,Y2 ,Y3 = QSPX2 PU|S,X2 PU1 ,X1 |U,S,X2 WY2 ,Y3 |X1 ,X2 ,S (23)

and satisfying

0 ≤ I(U; Y2|X2) − I(U; S|X2)

0 ≤ I(U1; Y3|U,X2) − I(U1; S|U,X2)

0 ≤ I(U,U1; Y3|X2) − I(U,U1; S|X2). (24)

B. Lower Bound on Channel Capacity: Analog Input Description

The following theorem provides a lower bound on the capacity of the state-dependent general discrete memo-

ryless RC with informed source.

Theorem 3: The capacity of the state-dependent discrete memoryless relay channel with informed source is

lower bounded by

Rlo = max I(U; Y3) − I(U; S) (25)

subject to the constraint

I(X; X̂) < I(UR; Y2) − I(UR; S) − I(UR; U|S) (26)

where maximization is over all joint measures on S × U × UR × X1 × X2 × X × X̂ × Y2 × Y3 of the form

PS,U,UR ,X1 ,X2 ,X,X̂,Y2 ,Y3

= QSPU,UR |SPX1 |U,UR ,SPX|U,SPX̂|X1X2=X̂WY2 ,Y3 |X1 ,X2 ,S. (27)

Proof: The proof of Theorem 3 appears in Appendix B.

In Theorem 3, the random variable X represents an auxiliary vector X that is obtained by binning the information

message at the source against the state S. The random variable X̂ represents a description X̂ of X that is sent by the

source ahead of time and meant to be recovered only at the relay. The random variable UR represents the information

that carries the description X̂ of X to the relay, on top of the information message. The codeword UR is binned

against (U,S). The allowed measure (27) implies the following Markov chains

(X1,UR)↔ (U,S)↔ X, (U,UR,X, X̂)↔ (X1,X2,S)↔ (Y2,Y3). (28)

Remark 4: The rationale for the coding scheme which we use to obtain the lower bound in Theorem 3 is as

follows. Had the relay known the message to be sent in each block and the state that corrupts the transmission in

that block, then the relay generates its input using a collaborative Gel’fand-Pinsker scheme as in [46].

For our model, the source knows the message that the relay should optimally send in each block (if the relay gets

the message correctly). It also knows the state sequence that corrupts the transmission in that block. It can then

generate the appropriate relay input vector that the relay would send had the relay known the message and the
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state. The source can send this vector to the relay ahead of time, and if the relay can estimate it to high accuracy,

then collaborative source-relay binning in the sense of [46] is readily realized for transmission from the source and

relay to the destination.

More precisely, a block Markov encoding is used to establish Theorem 3. Let us consider transmission in two

adjacent blocks i and i + 1. In the beginning of block i, the source sends the information wi of the current block, and,

in addition, describes to the relay the input x[i + 1] that the relay should send in the next block i + 1 had the relay

known the message wi+1 and the state s[i + 1]. Let x̂[mi] be a description of x[i + 1]. The message wi and the index

mi which the source sends in block i are precoded using binning against the state that controls transmission in the

current block i. The vector x[i + 1], however, is the input that the relay would send in the next block i + 1 had the

relay known the state s[i + 1], and so is generated at the source using binning against the state s[i + 1]. The vector

x[i + 1], and its description which is sent to the relay during block i, are intended to combine coherently with the

source transmission in block i + 1.

Remark 5: In the scheme we described briefly in Remark 4, the relay needs only estimate the code vector x[i + 1]

sent by the source in block i, and transmit the obtained estimate in the next block i + 1. For instance, the relay

does not need to know the information message wi+1 that the estimated vector actually carries, let alone the state

sequence s[i + 1] that controls the channel in block i + 1. Thus, from a practical viewpoint, this may be particularly

convenient for communication with an oblivious relay. Transmission from the source terminal to the relay terminal

can be regarded as that of an analog source which, in block i, produces a sequence x[i + 1]. This source has to be

transmitted by the source terminal over a state-dependent channel and reconstructed at the relay terminal. The

reconstruction error at the relay terminal influences the rate at which information can be decoded reliably at the

destination by acting as an additional noise term.

C. Upper Bound on Channel Capacity

As we mentioned in Section I, the relay does not know the states of the channel directly in our model, but it

can potentially get some information about Sn from the past received sequence from the informed source. More

precisely, the input of the relay X2,i at time i depends on the channel states through Yi−1
2 = (Y2,1, . . . ,Y2,i−1) which

in turn depends on these states through Si−1 and the past source inputs X1, j(W,Sn), j = 1, . . . , i− 1. Further, because

the source knows the states noncausally this dependence may even be noncausal. This aspect makes establishing

non-trivial upper bounds on the capacity, i.e., bounds that are strictly better than the cut-set upper bound

Rup
triv = max

p(x1 ,x2 |s)
min

{
I(X1; Y2,Y3|S,X2), I(X1,X2; Y3|S)

}
(29)

not easy.

The following theorem provides an upper bound on the capacity of the state-dependent general discrete

memoryless RC with informed source.

Theorem 4: The capacity of the state-dependent discrete memoryless relay channel with informed source is

upper-bounded by

Rup = max min {I(V; Y2,Y3|U,X2) − I(V; S|U,X2), I(V; Y3) − I(V; S)} (30)
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where the maximization is over measures of the form

PS,U,V,X1 ,X2 ,Y2 ,Y3 = QSPU|SPX2 |U,SPV,X1 |U,SWY2 ,Y3 |X1 ,X2 ,S. (31)

and U ∈ U, V ∈ V are auxiliary random variables with

|U| ≤ |S||X1||X2| (32a)

|V| ≤
(
|S||X1||X2|

)2
, (32b)

respectively.

Proof: The proof of Theorem 4 appears in Appendix C.

Note that the relay input X2 depends on the state S in the measure (31), and this reflects our discussion above.

Remark 6: In the case in which Y2 = S, the relay in the model of Figure 1 has no message of its own to transmit

and only acts as a helper who knows the state strictly causally. The capacity of this model can be obtained as a

special case of that of the multiaccess model solved in [44]. In particular, in [44], it is shown that even though it

only knows the states strictly causally, the relay can still be of some utility for the source, which knows the states

fully. This special case model also has connections with the model studied in [53].

IV. The DM Model with Orthogonal Components

In this section, we consider the state-dependent RC with orthogonal components of Figure 2. This model has

the source encoder component Xn
1R, which is the only encoder component heard by the relay, restricted to be

independent of the channel states. For this reason, the coding schemes of Section III do not apply directly. Also,

since in this model the relay input can depend on the states only strictly-causally, a better upper bound can be

established.

A. Bounds on Channel Capacity

The following proposition provides a lower bound on the capacity of the state-dependent discrete memoryless

RC with orthogonal components of Figure 2.

Proposition 1: The capacity of the state-dependent discrete memoryless relay channel with orthogonal compo-

nents of Figure 2 is lower bounded by

Rlo
orth = max min

{
I(X1R; Y2|X2), I(X1R,X2; Y3)

}
+ [I(U1; Y3|X1R,X2) − I(U1; S|X1R,X2)]+ (33)

where [x]+ := max(x, 0) and the maximization is over all measures of the form

PS,U1 ,X1R ,X1D ,X2 ,Y2 ,Y3 = QSPX2 PX1R |X2 PU1 ,X1D |S,X2 WY2 |S,X1R WY3 |X1D ,X2 ,S. (34)

The proof of Proposition 1 follows by an easy extension of the generalized block-Markov scheme of [1] by

allowing the source encoder component that is sent directly to the destination to be generated through a generalized

Gel’fand-Pinsker binning scheme. For this reason, we only outline its proof.
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In the rate (33), the variable U1 represents the Gel’fand-Pinsker auxiliary random variable associated with the

information sent directly to the destination. More specifically, the message W from the source is split into two

independent parts, one of which is transmitted through the relay at rate Rr and the other is transmitted directly to

the destination without the help of the relay at rate Rd. The total rate is R = Rr + Rd. The message that is transmitted

through the relay can be decoded correctly if the rate Rr satisfies [45, Theorem 1]

Rr < min
{
I(X1R,Y2|X2), I(X1,X2; Y3)

}
. (35)

The additional information which is transmitted through binning, on top of the information transmitted through

the relay, can be decoded correctly at the destination if rate Rd satisfies

Rd < I(U1; Y3|X1R,X2) − I(U1; S|X1R,X2). (36)

This shows that message W can be sent reliably at the rate (33).

We now turn to establish an upper bound on the capacity of the model of Figure 2. We note although the output

Yi−1
2 at the relay at time i can convey information only about the strictly causal part Si−1 of the state, upper bounding

the channel capacity is non trivial even in this case. By better exploiting the fact that the input component Xn
1R that

is heard at the relay does not know the state Sn at all in this model, we derive an upper bound which does not

depend on auxiliary random variables. The result is stated in the following theorem.

Theorem 5: The capacity of the state-dependent discrete memoryless relay channel with orthogonal components

of Figure 2 is upper-bounded by

Rup
orth = max min

{
I(X1R; Y2|X2,S), I(X2; Y3)

}
+ I(X1D; Y3|X2,S) (37)

where the maximization is over all joint measures of the form

PS,X1R ,X1D ,X2 ,Y2 ,Y3 = QSPX2 PX1R |X2 PX1D |X2 ,SWY2 |X1R ,SWY3 |X1D ,X2 ,S (38)

Proof: The proof of Theorem 5 appears in Appendix D.

Observe that the second term of the minimization in (37) upper-bounds the information that the source and the

relay can send to the destination by

I(X2; Y3) + I(X1D; Y3|X2,S) = I(X1D,X2; Y3|S) − I(X2; S|Y3), (39)

which is strictly better than the corresponding term in the cut-set upper bound (29).

B. Comments and Digression

There is a connection between the state-dependent relay model of Figure 2 and a state-dependent two-user

multiaccess model with degraded message sets that we treated recently in [42]–[44]. In particular, setting In the

multiaccess model of [42]–[44], the channel states are known noncausally to one of the encoders and only strictly

causally to the other encoder. Also, both encoders transmit a common message and, in addition, the encoder that

knows the states noncausally transmits an individual message. In [42] we derive bounds on the capacity region;

and in [43], [44] we characterize the full capacity region of this multiaccess model. In [42]–[44], we show that the
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knowledge of the states only strictly causally at the encoder that sends only the common message can increase the

capacity region in general. We also observe that the capacity region is increased even in the extreme case in which

the encoder that knows the states only strictly causally has no message to transmit (i.e., common-message rate

equal to zero). This suggests that in the relay model of Figure 2, although it can only know the states strictly causally,

the relay can potentially help the source combat the effect of the state (in addition to its classic role of relaying the

information message). Although it is not clear yet how the relay could exploit optimally the information about

the strictly causal part of the state sequence that it can get by observing its output, the upper bound in Theorem 5

makes one step ahead towards this end; by bounding the information that the source and relay can transmit

cooperatively; and so, in a sense, the capacity increase that the source can get through the relay’s help.

V. TheMemoryless Gaussian RC with Informed Source

A. System Model

In this section, we consider a full-duplex state-dependent RC informed source in which the channel state and

the noise are additive and Gaussian. In this model, the channel state can model an additive Gaussian interference

which is assumed to be known (noncausally) to only the source. The channel outputs Y2,i and Y3,i at time instant

i for the relay and the destination, respectively, are related to the channel input X1,i from the source and X2,i from

the relay, and the channel state Si, by

Y2,i = X1,i + Si + Z2,i (40a)

Y3,i = X1,i + X2,i + Si + Z3,i. (40b)

The channel state Si is zero mean Gaussian random variable with variance Q; and only the source knows the state

sequence Sn (noncausally). The noises Z2,i and Z3,i are zero mean Gaussian random variables with variances N2

and N3, respectively; and are mutually independent and independent from the state sequence Sn and the channel

inputs (Xn
1 ,X

n
2 ). Also, we consider the following individual power constraints on the average transmitted power

at the source and the relay,
n∑

i=1

X2
1,i ≤ nP1,

n∑
i=1

X2
2,i ≤ nP2. (41)

The definition of a code for this Gaussian model is the same as that given in the discrete case of Section III, with

the additional constraint that the channel inputs should satisfy the power constraint (41).

B. Bounds on Channel Capacity

The following theorem provides a lower bound on the capacity of the state-dependent general Gaussian RC

with informed source.

Theorem 6: The capacity of the state-dependent Gaussian RC with informed source is lower-bounded by

Rlo
G = max

1
2

log
(
1 +

(
√
γ̄P1 +

√
P2 −D)2

N3 + D + γP1

)
, (42)
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where

D := P2
N2

N2 + γP1
(43)

and the maximization is over γ ∈ [0, 1].

Remark 7: It is insightful to observe that the rate in Theorem 6 does not depend on the strength of the state

S. This makes the coding scheme appreciable, particularly for the case of arbitrary strong interference in which

classical coding schemes suffer greatly from the strong interference unknown at the relay.

Outline of Proof of Theorem 6: The result in Theorem 3 for the DM case can be extended to memoryless

channels with discrete time and continuous alphabets using standard techniques [54, Chapter 7]. The proof of

Theorem 6 follows through evaluation of the lower bound of Theorem 3 using the following jointly Gaussian

input distribution. For 0 ≤ γ ≤ 1, we let X ∼ N(0,P2) and X1R ∼ N(0, γP1), with X jointly Gaussian with S with

E[XS] = 0; and X1R jointly Gaussian with (S,X), with E[X1RS] = E[X1RX] = 0. Also, for 0 ≤ D ≤ P2 given, we

consider the test channel X̂ = aX + X̃, where a := 1 − D/P2 and X̃ is a Gaussian random variable with zero mean

and variance P̃2 = D(1 − D/P2), independent from X and S. Using this test channel, we calculate E[(X − X̂)2] = D

and E[X̂2] = P2 −D.

We use the following choices of the auxiliary random variables in Theorem 3,

U =
(√ γ̄P1

P2
+

√
P2 −D

P2

)
X + αS (44)

UR = X1R + αR

(
S +

√
γ̄P1√

γ̄P1 +
√

P2 −D
X
)
, (45)

where

α =
(
√
γ̄P1 +

√
P2 −D)2

(
√
γ̄P1 +

√
P2 −D)2 + (N3 + D + γP1)

and αR =
γP1

γP1 + N2
. (46)

Through straightforward algebra, which we omit here for brevity, it can be shown that the evaluation of the

lower bound of Theorem 3 using the above choice gives the lower bound in Theorem 6.

Alternative Proof of Theorem 6: The encoding and transmission scheme is as follows. For 0 ≤ γ ≤ 1, let

X ∼ N(0,P2) and X1R ∼ N(0, γP1), with X jointly Gaussian with S with E[XS] = 0; and X1R jointly Gaussian with

(S,X), with E[X1RS] = E[X1RX] = 0. Also, let 0 ≤ D ≤ P2 be given, and consider the test channel X̂ = aX + X̃, where

a := 1 − D/P2 and X̃ is a Gaussian random variable with zero mean and variance P̃2 = D(1 − D/P2), independent

from X and S. Using this test channel, we calculate E[(X − X̂)2] = D and E[X̂2] = P2 −D.

We use the two random variables U and UR given by (50) to generate the auxiliary codewords Ui and UR,i which

we will use in the sequel.

As in the discrete case, a block Markov encoding is used. For each block i, let x[i] be a Gaussian signal which carries

message wi ∈ [1, 2nR] and is obtained via a DPC considering s[i] as noncausal channel state information, as(√ γ̄P1

P2
+

√
P2 −D

P2

)
x[i] = u[i] − αs[i], (47)
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where the components of u[i] are generated i.i.d. using the auxiliary random variable U.

For every block i, the source quantizes x[wi] into x̂[mi], where mi ∈ [1, 2nR̂]. Using the above test channel, the

source can encode x[wi] successfully at the quantization rate

R̂ = I(X; X̂)

=
1
2

log(
P2

D
). (48)

Let mi be the index associated with x[wi+1]. In the beginning of block i, the source sends a superposition of two

Gaussian vectors,

x1[i] = x1R[mi] +

√
γ̄P1

P2
x[wi]. (49)

In equation (49), the signal x1R[mi] carries message mi and is obtained via a DPC considering (s[i], x[wi]) as noncausal

channel state information, as

x1R[mi] = uR[i] − αR

(
s[i] +

√
γ̄P1

P2
x[wi]

)
, (50)

where the components of uR[i] are generated i.i.d. using the auxiliary random variable UR.

In the beginning of block i, the relay has decoded message mi−1 correctly (this will be justified below) and sends

x2[i] =

√
P2

√
P2 −D

x̂[mi−1]. (51)

For the decoding arguments at the source and the relay, we give simple arguments based on intuition (the

rigorous decoding uses joint typicality). Also, since all the random variables are i.i.d., we sometimes omit the time

index. The relay decodes the index mi from the received y2[i] at the end of block i. Since signal x1R[mi] is precoded

at the source against the interference caused by the information message wi, decoding at the relay can be done

reliably as long as n is large and

R̂ ≤
1
2

log
(
1 +

γP1

N2

)
. (52)

The destination decodes message wi from the received y3[i] at the end of block i, considering signal x1R[mi] as

unknown noise, with

y3[i] = x1[i] + x2[i] + s[i] + z3[i]

=
(√ γ̄P1

P2
x[wi] +

√
P2

P2 −D
x̂[mi−1]

)
+ s[i] + (z3[i] + x1R[mi]). (53)

Let now x′[i] be the optimal linear estimator of
(√

γ̄P1

P2
x[wi] +

√
P2

P2−D x̂[mi−1]
)

given x[wi] under minimum mean

square error criterion, and ex[i] the resulting estimation error. The estimator ˆ̂x[i] and the estimation error ex[i] are

given by

x′[i] = E
[√ γ̄P1

P2
x[wi] +

√
P2

P2 −D
x̂[mi−1]|x[i]

]
=

(√ γ̄P1

P2
+

√
P2 −D

P2

)
x[wi] (54)

ex[i] =

√
P2

P2 −D
x̂[mi−1] −

√
P2 −D

P2
x[wi]. (55)
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We can alternatively write the output y3[i] in (53) as

y3[i] = ξx[wi] + s[i] +
(
z3[i] + ex[i] + x1R[mi]

)
, (56)

where

ξ :=

√
γ̄P1

P2
+

√
P2 −D

P2
(57)

and ex[i] is Gaussian with variance D and is independent of x[wi] and s[i].

Now, considering the equivalent form (56) of the output y3[i], it is easy to see that the destination can decode

message wi correctly at the end of block i as long as n is large and

R ≤ I(U; Y3) − I(U; S)

=
1
2

log
(
1 +

(
√
γ̄P1 +

√
P2 −D)2

N3 + D + γP1

)
. (58)

Furthermore, combining (48) and (52) we get

D ≥ P2
N2

N2 + γP1
. (59)

Finally, observing that the RHS of (58) decreases with D, we obtain (42) by taking the equality in (59) and maximizing

the RHS of (58) over γ ∈ [0, 1]. This completes the proof.

�

We now turn to establish a lower bound on the capacity of the state-dependent Gaussian RC using the idea of

state transmission. In this section, the source describes the channel state to only the relay. The relay guesses the

information message and the transmitted state description and then transmits the message cooperatively with the

source using binning against the state estimate, in a manner similar to that we described for the coding scheme for

Theorem 1.

For convenience we define the following quantities Q̃S(·) and R(·) which we will use throughout the remaining

sections.

Definition 1: Let

Q̃S(t,Q,D) := (1 − t)2Q − t(t − 2)D

R(α,P,Q,N) :=
1
2

log
( P(P + Q + N)

PQ(1 − α)2 + N(P + α2Q)

)
for non-negative t,D,P,Q,N, and α ∈ R.

The following theorem provides a lower bound on the capacity of the state-dependent general Gaussian RC

with informed source.

Theorem 7: The capacity of the state-dependent Gaussian RC with informed source is lower-bounded by

Rlo
G = max min

{
R
(
α, (1 − ρ2

12 − ρ
2
1s)θ̄P1r, ξ

2Q̃,N2 + θP1r + P1d

)
,

R
(
α, (1 − ρ2

12 − ρ
2
1s)θ̄P1r, ξ

2Q̃,N3 + θP1r + P1d

)
+

1
2

log
(
1 +

(ρ12

√
θ̄P1r +

√
P2)2

N3 + ξ2D + θP1r + (1 − ρ2
12 − ρ

2
1s)θ̄P1r + P1d

)}
+

1
2

log
(
1 +

P1d

N3 + θP1r

)
(60)
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where

D = Q
N2 + P1d

N2 + θP1r + P1d
(61)

Q̃ = Q̃S(α2,Q,D), ξ = 1 + ρ1s

√
θ̄P1r

Q
(62)

α2 =
(ρ12

√
θ̄P1r +

√
P2)2

(ρ12

√
θ̄P1r +

√
P2)2 + (1 − ρ2

12 − ρ
2
1s)θ̄P1r + (N3 + ξ2D + θP1r + P1d)

(63)

and the maximization is over P1r ≥ 0, P1d ≥ 0 such that 0 ≤ P1r + P1d ≤ P1, θ ∈ [0, 1], ρ12 ∈ [0, 1] and ρ1s ∈

[−1, 0] such that 0 ≤ ρ2
12 + ρ2

1s ≤ 1 and α ∈ R such that R((1 − ρ2
12 − ρ

2
1s)θ̄P1r, ξ2Q̃,N2 + θP1r + P1d) ≥ 0 and

R((1 − ρ2
12 − ρ

2
1s)θ̄P1r, ξ2Q̃,N3 + θP1r + P1d) + 1/2 log(1 + P1d/(N3 + θP1r)) ≥ 0.

Proof: A formal proof of Theorem 7 appears in Appendix E.

An outline of proof of Theorem 7 is as follows. The result in Theorem 1 for the DM case can be extended to

memoryless channels with discrete time and continuous alphabets using standard techniques [54, Chapter 7].

For the state-dependent Gaussian relay channel (40), we evaluate the rate (6) with the following choice of input

distribution. We choose ŜD = Ø, UD = Ø. Furthermore, we consider the test channel ŜR = aS+S̃R, where a := 1−D/Q

and S̃R is a Gaussian random variable with zero mean and variance σ2
S̃R

= D(1 − D/Q), independent from S. The

random variable X2 is Gaussian with zero mean and variance P2, independent of S and of ŜR. The random variable

X1 is composed of three parts, X1 = XSR + XWR + XWD, where XSR is Gaussian with zero mean and variance θP1r,

for some θ ∈ [0, 1], is independent of S, ŜR, X2; and XWR = ρ1s
√
θ̄P1r/QS + ρ12

√
θ̄P1r/P2X2 + X′WR, where X′WR is

Gaussian with zero mean and variance (1 − ρ2
12)θ̄P1r, for some ρ12 ∈ [0, 1] and ρ1s ∈ [−1, 0] and is independent of

XSR, X2 and (S, ŜR); and XWD is a Gaussian with zero mean and variance P1d, chosen independently from all the

other variables. The auxiliary random variables are chosen as

V =
(
ρ12

√
θ̄P1r

P2
+ 1

)
X2 + α2

(
ρ1s

√
θ̄P1r

Q
+ 1

)
ŜR (64a)

U = X′WR + αξ(S − α2ŜR) (64b)

U1 = XWD +
P1d

P1d + N3 + θP1r
ξ(1 − α)(S − α2ŜR) (64c)

UR = XSR +
θP1r

θP1r + N2 + P1d
(1 − α)S (64d)

with

α2 =
(ρ12

√
θ̄P1r +

√
P2)2

(ρ12

√
θ̄P1r +

√
P2)2 + (1 − ρ2

12 − ρ
2
1s)θ̄P1r + (N3 + ξ2D + θP1r + P1d)

(65a)

D := Q
N2 + P1d

N2 + θP1r + P1d
and ξ = 1 + ρ1s

√
θ̄P1r

Q
. (65b)

Through straightforward algebra which is omitted for brevity, it can be shown that the evaluation of (6) with the

aforementioned input distribution gives (60).
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Remark 8: The parameter α in Theorem 7 stands for DPC’s scale factor in precoding the information message

against the interference on its way to the relay and to the destination. Because the model (40) has the links to the

relay and to the destination corrupted by noise terms with distinct variances, one cannot remove the effect of the

interference on the two links simultaneously via one single DPC as in [18]. This explains why the parameter α is left

to be optimized over in (60). However, in the spirit of [18], one can improve the rate of Theorem 7 by time sharing

coding schemes that are similar to the one we employed for Theorem 7 but with different inflation parameters

tailored respectively for the link to the relay and the link to the destination, as in [23].

Similar to the general DM model of Section III, in the general Gaussian model (40) the relay does not know

the states of the channel directly but can potentially get information about Sn from the observed output sequence

Yi−1
2 . Also, Yi−1

2 may even contain information about future values of the state, and this makes establishing upper

bounds on the capacity that are strictly better than the cut-set upper bound

Rup
G = max

p(x1 ,x2 |s)
min

{
I(X1; Y2,Y3|S,X2), I(X1,X2; Y3|S)

}
(66)

more difficult. Note that the cut-set upper bound is in general non-tight essentially because both X1 and X2 know

the state S in (66).

C. Analysis of Some Extreme Cases

We now summarize the behavior of some of the developed lower and upper bounds in some extreme cases.

1) If N2 −→ 0, e.g, the relay is located spatially very close to the source, the lower bound of Theorem 6 and the

cut-set upper bound (66) tend asymptotically to the same value

CG =
1
2

log
(
1 +

(
√

P1 +
√

P2)2

N3

)
− o(1) (67)

where o(1) −→ 0 as N2 −→ 0.

Equation (67) reflects the rationale for our coding scheme for the lower bound in Theorem 6 which is tailored

to be asymptotically optimal whenever the relay can learn with negligible distortion the input that it should

send. In this case, the rate (67) can be interpreted as the information between two transmit antennas which

both know the channel state and one receive antenna. (For comparison, note that the coding scheme of

Theorem 7 achieves rate smaller than that of Theorem 6 if N2 −→ 0, because even though with the coding

scheme of Theorem 7 as well the relay obtains the state estimate at almost no expense if N2 is arbitrarily small,

it also needs to know the information message to perform binning, however).

2) Arbitrarily strong channel state: In the asymptotic case Q→∞, the lower bound of Theorem 7 tends to

Rlo
G =

1
2

log
(
1 +

P1

max(N2,N3)

)
. (68)

The lower bound of Theorem 6 does not depend on the strength of the channel state, as we indicated

previously.

3) If N2 −→ ∞, i.e., the link to the relay is broken or too noisy, the cut-set upper bound (66) and the lower of

Theorem 7 agree and give the channel capacity

CG =
1
2

log(1 +
P1

N3
). (69)
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Note that, for the Gaussian model (40), the lower of Theorem 6 is suboptimal if N2 −→ ∞, and tends to

Rlo
G =

1
2

log(1 +
P1

N3 + P2
) (70)

This is because the distortion in Theorem 6 is equal to its maximum value P2 in this case. Equation (70)

reflects a limitation of our coding scheme for the lower bound in Theorem 6 if the relay fails to reconstruct the

input described by the source. In this case, the input from the relay acts as additional noise at the destination,

thus causing the cooperative transmission to perform worse than simple direct transmission. The achievable

rate (70) is, however, still better than had the state been merely treated as unknown noise if P2 ≤ Q. (For

comparison, note that the lower bound of Theorem 7 vanishes if N2 −→ ∞).

VI. TheMemoryless GaussianModel with Orthogonal Components

In this section we study an important class of state-dependent Gaussian relay channels with orthogonal

components. In this model, the source input X1,i = (X1R,i,X1D,i) with X1R,i independent of the channel state Sn,

and the channel outputs Y2,i and Y3,i at time instant i for the relay and the destination, respectively, are related to

the channel inputs from the source and relay and the channel state Si by

Y2,i = X1R,i + Si + Z2,i (71a)

Y3,i = X1D,i + X2,i + Si + Z3,i. (71b)

We consider separate power constraints on the average transmitted power at the encoder components,
n∑

i=1

X2
1R,i ≤ nP1R,

n∑
i=1

X2
1D,i ≤ nP1D,

n∑
i=1

X2
2,i ≤ nP2. (72)

The definition of a code for this Gaussian model follows that for the discrete case of Section IV, with the

additional constraint that the channel inputs should satisfy the power constraint (72).

A. Bounds on Channel Capacity

The following proposition provides a lower bound on the capacity of the state-dependent Gaussian relay

model (71).

Proposition 2: The capacity of the state-dependent Gaussian relay model (71) is lower-bounded by

Rlo
G-orth = max min

{
1
2

log
(
1 +

P1R

N2 + Q

)
+

1
2

log
(
1 +

P1D(1 − ρ2
12 − ρ

2
1s)

N3

)
,

1
2

log
(
1 +

(
√

P2 + ρ12
√

P1D)2

P1D(1 − ρ2
12 − ρ

2
1s) + (

√
Q + ρ1s

√
P1D)2 + N3

)
+

1
2

log
(
1 +

P1D(1 − ρ2
12 − ρ

2
1s)

N3

)}
, (73)

where the maximization is over parameters ρ12 ∈ [0, 1] and ρ1s ∈ [−1, 0] such that

ρ2
12 + ρ2

1s ≤ 1. (74)

Proof: The proof of Proposition 2 appears in Appendix F.
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We now turn to establish an upper bound on the capacity of the Gaussian model (71). It is easy to show that the

cut-set-upper bound (66) can be written as

Rup
G-orth = max

p(x2 ,s)p(x1R |s,x2)p(x1D |s,x2)
min

{
I(X1R; Y2|S,X2) + I(X1D; Y3|S,X2), I(X1D,X2; Y3|S)

}
(75)

in this case. In what follows we establish an upper bound that is strictly better than (75) by accounting for that the

source input component X1R,i at time i does not know the state Sn at all and that the relay output Yi−1
2 is function

of only the strictly causal part of the state in this case. The following theorem states the corresponding result.

Theorem 8: The capacity of the state-dependent Gaussian relay model (71) is upper-bounded by

Rup
G-orth = max min

{
1
2

log
(
1 +

P1R

N2

)
+

1
2

log
(
1 +

P1D(1 − ρ2
12 − ρ

2
1s)

N3

)
,

1
2

log
(
1 +

(
√

P2 + ρ12
√

P1D)2

P1D(1 − ρ2
12 − ρ

2
1s) + (

√
Q + ρ1s

√
P1D)2 + N3

)
+

1
2

log
(
1 +

P1D(1 − ρ2
12 − ρ

2
1s)

N3

)}
, (76)

where the maximization is over parameters ρ12 ∈ [0, 1], ρ1s ∈ [−1, 0] such that

ρ2
12 + ρ2

1s ≤ 1. (77)

Proof: The proof of Theorem 8 appears in Appendix G.

Remark 9: Similar to the DM case, the upper bound in Theorem 8 improves upon the cut-set upper bound

through the second term of the minimization. The second term of the minimization is strictly tighter than that of

the cut-set upper bound because it accounts for the rate loss incurred by not knowing the state Sn at all at the

source encoder component X1R,i that is heard at the relay and that the relay output Yi−1
2 can depend on the state

only strictly-causally in this case. Further, investigating closely the proof in Appendix G, it can be seen that, by

opposition to the corresponding DM case, the relay ignores completely any information about the state in the

multiaccess part of (76).

B. Capacity for Some Special Cases

In this section, we characterize the capacity for some special Gaussian models.

The achievable rate of Proposition 2 differs from the upper bound of Theorem 8 only through the first logarithm

term in (73) in which the state is taken as unknown noise in the lower bound. Substitutingρ := ρ1s and ζ := 1−ρ2
12−ρ

2
1s

in (76) and (73), it is easy to see that if P1R, P1D, P2, Q, N2 and N3 satisfy

N2 ≤ max
ζ∈[0,1], ρ∈[−1,0]

P1R[P1Dζ + (
√

Q + ρ
√

P1D)2 + N3]

(
√

P2 +
√

1 − ζ − ρ2
√

P1D)2
−Q (78)

then the two bounds meet; and, so give the channel capacity

CG-orth = max
ζ∈[0,1], ρ∈[−1,0]

1
2

log
(
1 +

(
√

P2 +
√

1 − ζ − ρ2
√

P1D)2

P1Dζ + (
√

Q + ρ
√

P1D)2 + N3

)
+

1
2

log
(
1 +

P1Dζ
N3

)
. (79)
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Let us now consider an important special case of (71) in which the interference affects only the channel to the

destination, i.e.,

Y2,i = X1R,i + Z2,i (80a)

Y3,i = X1D,i + X2,i + Si + Z3,i. (80b)

In this case, the upper bound in Theorem 8 is tight. The following theorem characterizes the channel capacity in

this case.

Theorem 9: The capacity of the state-dependent Gaussian relay model (80) is given by

CG-orth = max min
{

1
2

log
(
1 +

P1R

N2

)
+

1
2

log
(
1 +

P1D(1 − ρ2
12 − ρ

2
1s)

N3

)
,

1
2

log
(
1 +

(
√

P2 + ρ12
√

P1D)2

P1D(1 − ρ2
12 − ρ

2
1s) + (

√
Q + ρ1s

√
P1D)2 + N3

)
+

1
2

log
(
1 +

P1D(1 − ρ2
12 − ρ

2
1s)

N3

)}
, (81)

where the maximization is over parameters ρ12 ∈ [0, 1] and ρ1s ∈ [−1, 0] such that

ρ2
12 + ρ2

1s ≤ 1. (82)

Proof: The proof of Theorem 9 appears in Appendix H.

Another important special case of the state-dependent Gaussian relay model of Figure 2 is one such that

Y3 = (Y(1)
3 ,Y

(2)
3 ) and the conditional distribution WY3 |X1D ,S,X2 factorizes as WY(1)

3 |X2
WY(2)

3 |X1D ,S
,

Y2,i = X1R,i + Si + Z2,i (83a)

Y(1)
3,i = X1D,i + Si + Z(1)

3,i (83b)

Y(2)
3,i = X2,i + Z(2)

3,i , (83c)

where the noises Z(1)
3,i and Z(2)

3,i are zero mean Gaussian random variables with variances N3, and are mutually

independent and independent from the state sequence Sn, the source input Xn
1 = (Xn

1R,X
n
1D) and the relay input

Xn
2 . Considering average power constraint

∑n
i=1 X2

1,i ≤ nP1 on Xn
1 and

∑n
i=1 X2

2,i ≤ nP2 on Xn
2 , the following corollary

states the capacity of this model.

Corollary 1: The capacity of the state-dependent Gaussian relay model (83) is given by

CG-orth = max min
{1
2

log
(
1 +

γP1

N2

)
,

1
2

log(1 +
P2

N3
)
}

+
1
2

log
(
1 +

(1 − γ)P1

N3

)
, (84)

where the maximization is over γ ∈ [0, 1].

The proof of Corollary 1 follows by specializing the cut-set upper bound to the model (83) and then observing

that this upper bound can actually be attained using a combination of binning and generalized block Markov

scheme where we let X1R and X1D to be zero-mean Gaussian with variances γP1 and (1 − γ)P1, respectively, for

some 0 ≤ γ ≤ 1, independent of S and X2; X2 is zero-mean Gaussian with variance P2 independent of S; and X1R

and X1D obtained with standard DPCs for the links to the relay and to the receiver component Y(3)
2 , respectively.

The source sends information to the receiver via the relay through the dirty paper coded X1R, and independent

information via the direct link through the dirty paper coded X1D.

August 21, 2012 DRAFT



27

Extreme cases:

1) Arbitrarily strong channel state: In the asymptotic case Q→∞, the capacity of the model (71) is given by

CG-orth =
1
2

log
(
1 +

P1D

N3

)
. (85)

This can be easily seen since both the upper bound of Theorem 9 and the lower bound (73) tend to the RHS

of (85) in this case. The RHS of (85) is also clearly achievable by turning the relay off and applying standard

DPC at the source.

2) If N2 −→ ∞, i.e., the link to the relay is broken or too noisy, the lower and upper bounds on the capacity of

the model (71) agree and give the channel capacity as the RHS of (85).

VII. Numerical Examples and Discussion

In this section we discuss some numerical examples, for the general Gaussian RC with informed source (40),

the model (71) and the special case (80). We illustrate the results of Theorems 5, 6, 7 and 8 and, for the model (40),

we also include comparisons with previously known achievable rates for this model such as that obtained using

compress-and-forward (CF) and binning in [32, Theorem 4] and that with partial decode-and-forward and binning

in [23, Theorem 3].
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Lower bound (Theorem 6)

Lower bound (Theorem 7)

Lower bound (60) with θ=0

Cut−set upper bound

Trivial lower bound

Lower Bound [31, Theorem 4]

Fig. 3. Illustration of the lower bound of Theorem 6 and lower bound of Theorem 7 for the state-dependent

General Gaussian RC with informed source (40) versus the SNR in the link source-to-relay. Numerical values are:

P1 = P2 = N3 = 10 dB and Q = 15 dB.

Figure 3 illustrates the lower bound of Theorem 6 and the lower bound of Theorem 7 for the model (40), as

functions of the signal-to-noise-ratio (SNR) at the relay, i.e., SNR = P1/N2 (in decibels). Also shown for comparison
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are the lower bound obtained using CF and binning in [32, Theorem 4], the cut-set upper bound had the state been

known also at the relay and the destination, i.e., (66), and the trivial lower bound obtained by considering the

channel state as unknown noise and implementing full-DF at the relay. In order to show the effect of describing

the state to the relay, the figure also shows a special case of the lower bound of Theorem 7 obtained by setting

θ = 0 in (60), i.e., a Gaussian version of the achievable rate (22) that we mentioned in Remark 3, and is a (slightly)

improved version of [23, Theorem3].

The figure shows that the lower bound of Theorem 6 is asymptotically optimal at large SNR, and the lower bound

of Theorem 7 is asymptotically optimal at small SNR. This shows the relevance of transmitting to the relay only a

description of the appropriate input that it should send upon sending to it a description of the state itself at large

SNR. At moderate SNR, however, sending a description of the state to the relay may improve upon sending to it

a description of the appropriate Gel’fand-Pinsker binned codeword that it should send — (How the two bounds

compare depends essentially on the strength of the state. For example, at large SNR, the stronger the state the larger

the advantage of the lower bound of Theorem 6 upon that of Theorem 7). Furthermore, the figure also shows that

the lower bound of Theorem 7 is better than that of [23, Theorem3], thereby reflecting the utility of describing the

state to the relay (recall that the coding scheme that we employed for the lower bound of Theorem 7 involves also

a partial cancellation of the state by the source to the relay, so that the relay benefits from it and the source benefits

in turn). Figure 4 shows similar bounds computed for an example degraded Gaussian RC.
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Lower bound (Theorem 6)

Lower bound (Theorem 7)

Lower bound (60) with θ=0

Cut−set upper bound

Trivial lower bound

Lower Bound [31, Theorem 4]

Fig. 4. Illustration of the lower bound of Theorem 6 and lower bound of Theorem 7 for an example state-dependent

degraded Gaussian RC with informed source of (40), versus the SNR in the link source-to-relay. Numerical values

are: P1 = 10 dB, P2 = 20 dB, Q = 15 dB, N3 = 10 dB.

Remark 10: The lower bound of Theorem 6 is asymptotically close to optimal in SNR as we mentioned in the

”Extremes Cases Analysis” section and is visible from Figure 3. This is because the appropriate relay input, which
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is precoded at the source against the state and is encoded in a manner that it should combine coherently with the

source transmission in next block, can be sent by the source to the relay at almost no expense in power and can

be learned by the relay with negligible distortion in this case. One can be tempted to expect a similar behavior

for the lower bound of Theorem 7 since, for the latter as well, the relay can learn a ”good” estimate of the state at

almost no expense in source’s power and with negligible distortion. This should not be, however, since our coding

scheme for Theorem 7 requires the relay to also decode the source’s information message. Related to this aspect,

the effect of the limitation which we mentioned in Remark 8 is visible at large SNR for this lower bound. �

Figure 5 illustrates the upper bound (76) of Theorem 8 and the lower bound (73) for the model (71). For

comparison, the figure shows also the cut-set upper bound had the state been known also at the relay and the

destination, i.e., (75), and the trivial lower bound obtained by considering the channel state as unknown noise and

using a generalized block Markov coding scheme as in [1]. The curves are plotted against the signal-to-noise-ratio

(SNR) at the relay, i.e., SNR = P1R/N2 (in decibels). Observe that the upper bound (76) is strictly better than the

cut-set upper bound. The improvement is due to that the upper bound (76) accounts for some inevitable rate loss

which is caused by not knowing the state at the relay, as we mentioned previously. Also, the improvement is visible

mainly at small to relatively large values of SNR.

Figure 6 illustrates the capacity result of (80) as given by Theorem 9, as function the SNR in the link source-to-

relay of P1R/N2 (in decibels). Also shown for comparison are the cut-set upper bound and the trivial lower bound

obtained by considering the channel state as unknown noise and using a generalized block Markov coding scheme

as in [1].

VIII. Conclusions and Discussion

In this paper, we consider a state-dependent relay channel with the channel states available noncausally at only

the source, i.e., neither at the relay nor at the destination. We refer to this communication model as state-dependent

RC with informed source. This setup may model some scenarios of node cooperation over wireless networks with

some of the terminals equipped with cognition capabilities that enable estimating to high accuracy the states of

the channel.

We investigate this problem in the discrete memoryless (DM) case and in the Gaussian case. For both cases, we

derive lower and upper bounds on the channel capacity. A key feature of the model we study is that, assuming

decode-and-forward relaying, the input of the relay should be generated using binning against the state that

controls the channel in order to combat its effect and, at the same time, combine coherently with the source

transmission. We develop two lower bounds on the capacity by using coding schemes which achieve this goal

differently. In the first coding scheme, the source describes the channel state to the relay and to the destination,

through a combined coding for multiple descriptions, binning and decode-and-forward scheme. The relay guesses

an estimate of the transmitted information message and of the channel state and then utilizes the state estimate

to perform cooperative binning with the source for sending the information message. The destination utilizes

its output and the already recovered state to guess an estimate of the currently transmitted message and state

description. In the second coding scheme, the source describes to the relay the appropriate input that the relay

would send had the relay known the channel state. The relay then simply guesses this input and sends it in the
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Fig. 5. Lower and upper bounds on the capacity of the state-dependent Gaussian RC with informed source (71). (a)

bounds versus the SNR P1R/N2 in the link source-to-relay, for numerical values P1R = P1D = P2 = N3 = 10 dB, Q = 5

and (b) bounds versus the SNR P1D/N3 in the link source-to-destination P1R = P1D = P2 = N2 = 10 dB, Q = 20 dB.
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Fig. 6. Capacity of the state-dependent Gaussian RC model (80), versus the SNR in the link source-to-relay. Numerical

values are: P1R = 10 dB, P1D = P2 = 20 dB, Q = 10 dB, N3 = 10 dB.

appropriate subsequent block. The lower bound obtained with this scheme achieves close to optimal for some

special cases.

Furthermore, the upper bounds that we establish in the discrete memoryless and the memoryless Gaussian

cases account for not knowing the state at the relay and destination. Also, considering a class of relay channels

with orthogonal channels from the source to the relay and from the source and relay to the destination in which the

source input that is heard by the relay is independent of the channel state, we show that our upper bound is strictly

tighter than that obtained by assuming that the channel state is also available at the relay and the destination,

i.e., the max-flow min-cut or cut-set upper bound, and it helps characterizing the rate loss due to the asymmetry

caused by having the channel state available at only one source encoder component. Also, we characterize the

channel capacity fully in some cases, including when the state does not affect the channel to the relay.

We close this paper with a discussion on related aspects. Our coding scheme of Theorem 1 is, in essence, of

decode-and-forward relaying type (though the relay also sends a compression version of the state on top of the

decoded information message). Our coding scheme of Theorem 3 can be seen as being more of a non-standard

compress-and-forward relaying type, since the relay sends a compressed version of the input produced at the

source. Although not optimal in general, these schemes are tailored specifically to deal (at least partially) with

the presence of the channel state in our model. The relay can of course employ other relaying schemes to assist

the source, such as estimate-and-forward, amplify-and-forward or combinations of theses. However, while these

schemes may outperform the schemes that we described in this paper for certain channel parameters, in general
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they do not really offer inherently better mechanisms of dealing with the presence of the channel state and

exploiting its full knowledge at the source. In the case of states known causally or only strictly causally, the new

noisy networking coding scheme by Lim et al. [55], which implements standard compression without Wyner-Ziv

binning, has been proved to in general offer better rates for certain related relay [30] and multiaccess [30], [42]–[44]

models. For the model at hand, however, like for the standard state-independent three-terminal relay channel,

noisy-network coding offers exactly the same rate as classic compress-and-forward at the relay, but no better, as

observed recently in [56].
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Appendix

Throughout this section we denote the set of strongly jointly ε-typical sequences [57, Chapter 14.2] with respect

to the distribution PX,Y as Tn
ε (PX,Y). Sometimes, when the considered probability distribution is clear from the

context, we shall denote this simply as Tn
ε .

A. Proof of Theorem 1

Consider the random coding scheme that we outlined in Section III. We now analyse the average probability of

error.

Analysis of Probability of Error: The average probability of error is given by

Pr(Error) =
∑
s∈Sn

Pr(s)Pr(error|s)

≤

∑
s<Tn

ε (QS)

Pr(s) +
∑

s∈Tn
ε (QS)

Pr(s)Pr(error|s). (A-1)

The first term, Pr(s < Tn
ε (QS)), on the RHS of (A-1) goes to zero as n→ +∞, by the strong asymptotic equipartition

property (AEP) [57, p. 384]. Thus, it is sufficient to upper bound the second term on the RHS of (A-1).

We now examine the probabilities of the error events associated with the encoding and decoding procedures.

The error event is contained in the union of the following error events; where the events E1i and E2i correspond to

encoding errors at block i; the events Eki, k = 3, . . . , 6, correspond to decoding errors at the relay at block i; and the

events Eki, k = 7, . . . , 13, correspond to decoding errors at the destination at block i.

We note that the indices j?Vi and j?Ui are random. The decoding procedure at the relay involves computing the

index j?Vi and decoding explicitly the index j?Ui; and the decoding procedure at the destination involves decoding

explicitly both indices. The analysis of error events that involve explicit decoding of random binning indices in

the context of state-dependent channels needs some care. This is addressed explicitly in [58, pp. 854-855] for an

example network. The approach of [58] relies essentially on the two lemmas, Lemma 1 and Lemma 2, therein as

well as their proofs. A particular key element in the proof of [58, Lemma 1] is an upper bound on the probability

that the random index (which is a message in [58]) takes a specific value given a specific state vector and a specific
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choice of the codebook C̄. In what follows, the analysis of the error events Eki, k = 5, 9, 10, 11, follows in a way that is

essentially similar to the analysis of the event E3 in [58, pp. 854-855], with minor modifications, as well as standard

arguments on jointly typical sequences. For the sake of brevity, in the analysis of each of the error events that will

follow, we will only outline the steps that differ from [58] and refer to [58] each time the analysis is analogous. For

convenience, let us denote, with a slight abuse of notation,
−→
S [i] := (S[i], ŜR[ιRi−2], ŜD[ιDi−2]).

• Let E1i = E(1)
1i ∪ E(2)

1i ∪ E(3)
1i , with

E(1)
1i =

{
(s[i + 2], ŝR[ιRi]) < Tn

ε (PS,ŜR
), for all ιRi ∈ [1, 2nR̂R ]

}
E(2)

1i =
{
(s[i + 2], ŝD[ιDi]) < Tn

ε (PS,ŜD
), for all ιDi ∈ [1, 2nR̂D ]

}
E(3)

1i =
{
(s[i + 2], ŝR[ιRi], ŝD[ιDi]) < Tn

ε (PS,ŜR ,ŜD
), for all (ιRi, ιDi) ∈ [1, 2nR̂R ] × [1, 2nR̂D ]

}
. (A-2)

From known results in rate distortion theory [57, p. 336], it follows that P(E(1)
1i ) −→ 0 exponentially with n if

R̂R > I(S; ŜR). Similarly, P(E(2)
1i ) −→ 0 exponentially with n if R̂D > I(S; ŜD). It remains to show that P(E(3)

1i ) −→ 0

exponentially with n if R̂R +R̂D > I(S; ŜR, ŜD)+I(ŜR; ŜD), and this can be proved by following straightforwardly

the arguments and algebra in [47].

• Let E2i be the event that there is no pair
(
uR(wi−1, j?Vi,wi, j?Ui, ki, jRi),uD(wi−1, j?Vi,wi, j?Ui, li, jDi)

)
satisfying (14),

i.e., the set DιRiιDi is empty.

Using Chebychev’s inequality, it is easy to see that

P
(
‖DιRiιDi‖ = 0

)
≤ P

(
|‖DιRiιDi‖ − E[DιRiιDi ]| > εE[DιRiιDi ]

)
≤

var(‖DιRiιDi‖)
ε2(E[DιRiιDi ])2 . (A-3)

We obtain bounds onE[DιRiιDi ] and var(‖DιRiιDi‖) by proceeding in a way similar to [49]. We define the indicator

functions,

1
((

uR(wi−1, j?Vi,wi, j?Ui, ki, jRi),uD(wi−1, j?Vi,wi, j?Ui, li, jDi)
)
∈ DιRiιDi

)
= 1, if

(
uR(wi−1, j?Vi,wi, j?Ui, ki, jRi),uD(wi−1, j?Vi,wi, j?Ui, li, jDi)

)
∈ DιRiιDi

0, otherwise.
(A-4)

The cardinality of the set DιRiιDi is given by

‖DιRiιDi‖ =
∑

ki∈BιRi ,li∈CιDi

∑
jRi∈JR , jDi∈JD

1
((

uR(wi−1, j?Vi,wi, j?Ui, ki, jRi),uD(wi−1, j?Vi,wi, j?Ui, li, jDi)
)
∈ DιRiιDi

)
. (A-5)

Thus,

E[DιRiιDi ] =
∑

ki∈BιRi ,li∈CιDi

∑
jRi∈JR , jDi∈JD

E1
((

uR(wi−1, j?Vi,wi, j?Ui, ki, jRi),uD(wi−1, j?Vi,wi, j?Ui, li, jDi)
)
∈ DιRiιDi

)
≥ ‖BιRi‖‖CιDi‖JR JD2−n[I(UR ;S,ŜR ,ŜD |U,V)+I(UD ;S,ŜR ,ŜD |U,V)−I(UR ;UD |U,VS,ŜR ,ŜD)+o(1)]

= 2n[RR+RD−R̂R−R̂D−I(UR ;UD |U,V,S,ŜR ,ŜD)−o(1)] (A-6)

where o(1) −→ 0 as n −→ ∞.
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Evaluating the variance, it can be shown (see Lemma 1 below) that

var(‖DιRiιDi‖) ≤ 2n[RR+RD−R̂R−R̂D−I(UR ;UD |U,V,S,ŜR ,ŜD)+o(1)]. (A-7)

Therefore, for sufficiently large n

P
(
‖DιRiιDi‖ = 0

)
≤ ε (A-8)

provided that (15) is true.

Lemma 1:

var(‖DιRiιDi‖) ≤ 2n[RR+RD−R̂R−R̂D−I(UR ;UD |U,V,S,ŜR ,ŜD)+o(1)]. (A-9)

Proof: For notational convenience, let us use temporarily in the proof of this lemma the shorthand notation

uR(ki, jRi) := uR(wi−1, j?Vi,wi, j?Ui, ki, jRi) and uD(li, jDi) := uD(wi−1, j?Vi,wi, j?Ui, li, jDi). Then, we have

‖DιRiιDi‖
2

=

( ∑
ki∈BιRi ,li∈CιDi

∑
jRi∈JR , jDi∈JD

1
((

uR(ki, jRi),uD(li, jDi)
)
∈ DιRiιDi

))2

=
∑

(ki , jRi)=(k′i , j
′

Ri)

∑
(li , jDi)=(l′i , j

′

Di)

1

((
uR(ki, jRi),uD(li, jDi)

)
∈ DιRiιDi

)

+
∑

(ki , jRi)=(k′i , j
′

Ri)

∑
(li , jDi),(l′i , j

′

Di)

1

((
uR(ki, jRi),uD(li, jDi)

)
∈ DιRiιDi ,

(
uR(ki, jRi),uD(l′i , j′Di)

)
∈ DιRiιDi

)

+
∑

(ki , jRi),(k′i , j
′

Ri)

∑
(li , jDi)=(l′i , j

′

Di)

1

((
uR(ki, jRi),uD(li, jDi)

)
∈ DιRiιDi ,

(
uR(k′i , j′Ri),uD(li, jDi)

)
∈ DιRiιDi

)

+
∑

(ki , jRi),(k′i , j
′

Ri)

∑
(li , jDi),(l′i , j

′

Di)

1

((
uR(ki, jRi),uD(li, jDi)

)
∈ DιRiιDi ,

(
uR(k′i , j′Ri),uD(l′i , j′Di)

)
∈ DιRiιDi

)
. (A-10)

Taking the expectation and dividing by ‖BιRi × CιDi × JR × JD‖ in both sides of (A-10), we get

E[‖DιRiιDi‖
2]

‖BιRi‖‖CιDi‖JR JD
= Pr

{(
uR(ki, jRi),uD(li, jDi)

)
∈ DιRiιDi

}
+ (JD‖CιDi‖ − 1)Pr

{(
uR(ki, jRi),uD(li, jDi)

)
∈ DιRiιDi ,

(
uR(ki, jRi),uD(l′i , j′Di)

)
∈ DιRiιDi

}
+ (JR‖BιRi‖ − 1)Pr

{(
uR(ki, jRi),uD(li, jDi)

)
∈ DιRiιDi ,

(
uR(k′i , j′Ri),uD(li, jDi)

)
∈ DιRiιDi

}
+ (JR‖BιRi‖ − 1)(JD‖CιDi‖ − 1)Pr

{(
uR(ki, jRi),uD(li, jDi)

)
∈ DιRiιDi ,

(
uR(k′i , j′Ri),uD(l′i , j′Di)

)
∈ DιRiιDi

}
.

(A-11)

Let ∆ := I(UR; S, ŜR, ŜD|U,V) + I(UD; S, ŜR, ŜD|U,V) − I(UR; UD|U,VS, ŜR, ŜD). It can be shown easily that

i) For (ki, jRi) = (k′i , j′Ri) and (li, jDi) = (l′i , j′Di),

Pr
{(

uR(ki, jRi),uD(li, jDi)
)
∈ DιRiιDi

}
≤ 2−n(∆−δ(ε)). (A-12)

ii) For (ki, jRi) = (k′i , j′Ri) and (li, jDi) , (l′i , j′Di),

Pr
{(

uR(ki, jRi),uD(li, jDi)
)
∈ DιRiιDi ,

(
uR(ki, jRi),uD(l′i , j′Di)

)
∈ DιRiιDi

}
≤ 2−2n(∆−δ(ε)). (A-13)
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iii) For (ki, jRi) , (k′i , j′Ri) and (li, jDi) = (l′i , j′Di),

Pr
{(

uR(ki, jRi),uD(li, jDi)
)
∈ DιRiιDi ,

(
uR(k′i , j′Ri),uD(li, jDi)

)
∈ DιRiιDi

}
≤ 2−2n(∆−δ(ε)). (A-14)

iv) For (ki, jRi) , (k′i , j′Ri) and (li, jDi) , (l′i , j′Di),

Pr
{(

uR(ki, jRi),uD(li, jDi)
)
∈ DιRiιDi ,

(
uR(k′i , j′Ri),uD(l′i , j′Di)

)
∈ DιRiιDi

}
≤ 2−2n(∆−δ(ε)). (A-15)

Finally, substituting i-iv in the RHS of (A-11) and using (A-6), we obtain

var(‖DιRiιDi‖) = E[‖DιRiιDi‖
2] − E2[‖DιRiιDi‖]

≤ ‖BιRi‖‖CιDi‖JR JD2−n(∆−o(1))

= 2n[RR+RD−R̂R−R̂D−I(UR ;UD |U,V,S,ŜR ,ŜD)+o(1)] (A-16)

This completes the proof of Lemma 1.

• Let E3i be the event that u(wi−1, j?Vi,wi, j?Ui), uR(wi−1, j?Vi,wi, j?Ui, ki, j?Ri) are not jointly typical with (y2[i], ŝR[ιRi−2])

given v(wi−1, j?Vi). That is

E3i =
{(

v(wi−1, j?Vi),u(wi−1, j?Vi,wi, j?Ui),uR(wi−1, j?Vi,wi, j?Ui, ki, j?Ri),y2[i], ŝR[ιRi−2]
)
< Tn

ε (PV,U,UR ,Y2 ,ŜR
)
}
. (A-17)

For v(wi−1, j?Vi), u(wi−1, j?Vi,wi, j?Ui), uR(wi−1, j?Vi,wi, j?Ui, ki, j?Ri), uD(wi−1, j?Vi,wi, j?Ui, li, j?Di) jointly typical with s[i],

ŝR[ιRi−2], ŝD[ιDi−2] and with the source input x1[i] and the relay input x2[i], we have Pr(E3i|Ec
1i,E

c
2i) −→ 0 as

n −→ ∞ by the Markov Lemma [57, p. 436].

• Let E4i be the event that u(wi−1, j?Vi,w
′

i , jUi), uR(wi−1, j?Vi,w
′

i , jUi, ki, jRi) are jointly typical with (y2[i], ŝR[ιRi−2])

given v(wi−1, j?Vi), for some w′i ∈ [1,M], jUi ∈ JU, ki ∈ [1,MR] and jRi ∈ JR, with w′i , wi. That is,

E4i =
{
∃ w′i ∈ [1,M], jUi ∈ JU, ki ∈ [1,MR], jRi ∈ JR s.t.: w′i , wi,(
v(wi−1, j?Vi),u(wi−1, j?Vi,w

′

i , jUi),uR(wi−1, j?Vi,w
′

i , jUi, ki, jRi),y2[i], ŝR[ιRi−2]
)
∈ Tn

ε (PV,U,UR ,Y2 ,ŜR
)
}
. (A-18)

Conditioned on Ec
1i, Ec

2i, Ec
3i, the probability of the event E4i can be bounded as

Pr(E4i|Ec
1i,E

c
2i,E

c
3i) ≤MJUMR JR2−n[I(U,UR ;Y2 ,ŜR |V)−ε]

= 2−n[I(U;Y2 |V,ŜR)−I(U;S,ŜD |V,ŜR)−R+4ε]. (A-19)

Thus, Pr(E4i|Ec
1i,E

c
2i,E

c
3i) −→ 0 as n −→ ∞ if R < I(U; Y2|V, ŜR) − I(U; S, ŜD|V, ŜR).

• Let E5i be the event that u(wi−1, j?Vi,wi, j′Ui), uR(wi−1, j?Vi,wi, j′Ui, ki, jRi) are jointly typical with (y2[i], ŝR[ιRi−2])

given v(wi−1, j?Vi), for some j′Ui ∈ JU, ki ∈ [1,MR], jRi ∈ JR with j′Ui , j?Ui. That is,

E5i =
{
∃ j′Ui ∈ JU, ki ∈ [1,MR], jRi ∈ JR s.t. j′Ui , j?Ui,(
v(wi−1, j?Vi),u(wi−1, j?Vi,wi, j′Ui),uR(wi−1, j?Vi,wi, j′Ui, ki, jRi),y2[i], ŝR[ιRi−2]

)
∈ Tn

ε (PV,U,UR ,Y2 ,ŜR
)
}
. (A-20)

Conditioned on the events Ec
1i, Ec

2i, Ec
3i, Ec

4i, the probability of the event E5i can be bounded as

Pr(E5i|Ec
1i,E

c
2i,E

c
3i,E

c
4i) ≤ JUMR JR2−n[I(U,UR ;Y2 ,ŜR |V)− 2

n−ε]

= 2−n[I(U;Y2 |V,ŜR)−I(U;S,ŜD |V,ŜR)− 2
n +3ε]. (A-21)
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(Note the multiplicative term 4 = 2−n(− 2
n ) in the RHS of (A-21)). The proof of (A-21) follows by proceeding in

a way that is essentially similar to the analysis of the event E3 in [58, pp. 854-855], with minor modifications.

More specifically, let, for given j?Vi, C̄( j?Vi) = {U(wi−1, j?Vi,wi, jUi) : jUi , 1}. First, following the lines of [58, Eq.

(5), p. 855] one can easily show that

P{J?Ui = 1|
−→
S [i] = −→s [i], C̄( j?Vi) = c̄,V(wi−1, j?Vi) = v} ≤

1
2
. (A-22)

Then using (A-22) and the approach in [58], it can be shown easily that

P{U(wi−1, j?Vi,wi, 1) = u,UR(wi−1, j?Vi,wi, 1, 1, 1) = uR|J?Ui , 1, J?Vi = j?Vi,
−→
S [i] = −→s [i], C̄( j?Vi) = c̄,V(wi−1, j?Vi) = v}

(a)
= P{U(wi−1, j?Vi,wi, 1) = u,UR(wi−1, j?Vi,wi, 1, 1, 1) = uR|J?Ui , 1,

−→
S [i] = −→s [i], C̄( j?Vi) = c̄,V(wi−1, j?Vi) = v}

(b)
≤ 2P{U(wi−1, j?Vi,wi, 1) = u,UR(wi−1, j?Vi,wi, 1, 1, 1) = uR|V(wi−1, j?Vi) = v}, (A-23)

where (a) follows since for given j?Vi the event {U(wi−1, j?Vi,wi, 1) = u,UR(wi−1, j?Vi,wi, 1, 1, 1) = uR} is indepen-

dent of {J?Vi = j?Vi} conditionally given {V(wi−1, j?Vi) = v, J?Ui , 1, C̄( j?Vi) = c̄,
−→
S [i] = −→s [i]}; and (b) follows using

(A-22) and an approach similar to [58, Lemma 1].

Similarly,

P{Y2[i] = y2, ŜR[ιRi−2] = ŝR|J?Ui , 1, J?Vi = j?Vi,V(wi−1, j?Vi) = v,
−→
S [i] = −→s [i]}

(c)
= P{Y2[i] = y2, ŜR[ιRi−2] = ŝR|J?Ui , 1,V(wi−1, j?Vi) = v,

−→
S [i] = −→s [i]}

(d)
≤ 2P{Y2[i] = y2, ŜR[ιRi−2] = ŝR|

−→
S [i] = −→s [i],V(wi−1, j?Vi) = v}. (A-24)

where (c) follows since for given j?Vi the event {Y2[i] = y2, ŜR[ιRi−2] = ŝR} is independent of {J?Vi = j?Vi}

conditionally given {V(wi−1, j?Vi) = v, J?Ui , 1,
−→
S [i] = −→s [i]}; and (d) follows using (A-22) and an approach

similar to [58, Lemma 2].

Finally, using (A-23) and (A-24), and following straightforwardly the approach in [58, pp. 854-855], we obtain

(A-21). Thus, summarizing, Pr(E5i|Ec
1i,E

c
2i,E

c
3i,E

c
4i) −→ 0 as n −→ ∞.

• Let E6i be the event that uR(wi−1, j?Vi,wi, j?Ui, k
′

i , jRi) is jointly typical with (y2[i], ŝR[ιRi−2]) given v(wi−1, j?Vi),

u(wi−1, j?Vi,wi, j?Ui), for some k′i ∈ [1,MR], jRi ∈ JR with k′i , ki. That is,

E6i =
{
∃ k′i ∈ [1,MR], jRi ∈ JR s.t. k′i , ki,(
v(wi−1, j?Vi),u(wi−1, j?Vi,wi, j?Ui),uR(wi−1, j?Vi,wi, j?Ui, k

′

i , jRi),y2[i], ŝR[ιRi−2]
)
∈ Tn

ε (PV,U,UR ,Y2 ,ŜR
)
}
. (A-25)

Proceeding in a way similar to the event E4i, it can be shown easily that, conditioned on the events Ec
1i, Ec

2i,

Ec
3i, Ec

4i, Ec
5i, the probability of the event E6i can be bounded as

Pr(E6i|Ec
1i,E

c
2i,E

c
3i,E

c
4i,E

c
5i) ≤MR JR2−n[I(UR ;Y2 ,ŜR |U,V)−ε]

= 2−n(4ε). (A-26)

Thus, Pr(E6i|Ec
1i,E

c
2i,E

c
3i,E

c
4i,E

c
5i) −→ 0 as n −→ ∞.
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• For decoding the triple (ŵi−1, ĵUi−1, l̂i−1) and the index ĵVi at the destination, let E7i be the union of the following

two events

E(1)
7i =

{(
v(wi−2, j?Vi−1),u(wi−2, j?Vi−1,wi−1, j?Ui−1),

uD(wi−2, j?Vi−1,wi−1, j?Ui−1, li−1, j?Di−1),y3[i − 1], ŝD[ιDi−3]
)
< Tn

ε (PV,U,UD ,Y3 ,ŜD
)
}

E(2)
7i =

{(
v(wi−1, j?Vi),y3[i], ŝD[ιDi−2]

)
< Tn

ε (PV,Y3 ,ŜD
)
}
.

For v(wi−2, j?Vi−1), u(wi−2, j?Vi−1,wi−1, j?Ui−1), uR(wi−2, j?Vi−1,wi−1, j?Ui−1, ki−1, j?Ri−1), uD(wi−2, j?Vi−1,wi−1, j?Ui−1, li−1, j?Di−1)

jointly typical with s[i − 1], ŝR[ιRi−3], ŝD[ιDi−3] and with the source input x1[i − 1] and the relay input x2[i − 1],

we have Pr(E(1)
7i | ∩

6
k=1 Ec

ki) −→ 0 as n −→ ∞ by the Markov Lemma. Similarly, Pr(E(2)
7i | ∩

6
k=1 Ec

ki) −→ 0 as n −→ ∞.

Thus, Pr(E7i| ∩
6
k=1 Ec

ki) −→ 0 as n −→ ∞.

• For decoding the triple (ŵi−1, ĵUi−1, l̂i−1) and the index ĵVi at the destination, let E8i be the event

E8i =
{
∃ w′i−1 ∈ [1,M], jUi−1 ∈ JU, li−1 ∈ [1,MD], jDi−1 ∈ JD, jVi ∈ JV s.t.: w′i−1 , wi−1,(
v(wi−2, j?Vi−1),u(wi−2, j?Vi−1,w

′

i−1, jUi−1),uD(wi−2, j?Vi−1,w
′

i−1, jUi−1, li−1, jDi−1),y3[i − 1], ŝD[ιDi−3]
)
∈ Tn

ε (PV,U,UD ,Y3 ,ŜD
),(

v(w′i−1, jVi),y3[i], ŝD[ιDi−2]
)
∈ Tn

ε (PV,Y3 ,ŜD
)
}
.

Proceeding in a way similar to for the events E4i and E5i, and noticing that, for given w′i−1 ∈ [1,M], the two

sub-events in E8i are independent because the codebooks used for blocks i − 1 and i are different, it can be

shown easily that, conditioned on ∩7
k=1Ec

ki, the probability of the event E8i can be bounded as

Pr(E8i| ∩
7
k=1 Ec

ki) ≤MJUMD JD JV2−n[I(U,UD ;Y3 ,ŜD |V)−ε]2−n[I(V;Y3 ,ŜD)−ε]

= 2−n[I(V,U;Y3 |ŜD)−I(V,U;S,ŜR |ŜD)−R−[I(U;Y3 ,ŜD |V)−I(U;S,ŜR ,ŜD |V)]−+2ε]. (A-27)

Thus, Pr(E8i| ∩
7
k=1 Ec

ki) −→ 0 as n −→ ∞ if R < I(U,V; Y3, ŜD) − I(U,V; S, ŜR, ŜD).

• For decoding the triple (ŵi−1, ĵUi−1, l̂i−1) and the index ĵVi at the destination, let E9i be the event

E9i =
{
∃ jVi ∈ JV s.t.: jVi , j?Vi,(
v(wi−2, j?Vi−1),u(wi−2, j?Vi−1,wi−1, j?Ui−1),uD(wi−2, j?Vi−1,wi−1, j?Ui−1, li−1, jDi−1),y3[i − 1], ŝD[ιDi−3]

)
∈ Tn

ε (PV,U,UD ,Y3 ,ŜD
),(

v(wi−1, jVi),y3[i], ŝD[ιDi−2]
)
∈ Tn

ε (PV,Y3 ,ŜD
)
}
.

It is clear that

Pr(E9i) ≤ Pr
{
(v(wi−1, jVi),y3[i], ŝD[ιDi−2]) ∈ Tn

ε (PV,Y3 ,ŜD
) for some jVi , j?Vi

}
(A-28)

Now, proceeding in a way similar to [58, pp. 854-855], with the rather minor modifications outlined below,

we can analyse the error event in the RHS of (A-28), and get the following bound on the probability of the

error event E9i conditioned on ∩8
k=1Ec

ki,

Pr(E9i| ∩
8
k=1 Ec

ki) ≤ JV2−n[I(V;Y3 ,ŜD)− 2
n−ε]

= 2−n[I(V;Y3 ,ŜD)−I(V;S,ŜR ,ŜD)− 2
n−2ε]. (A-29)
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An outline of the proof of (A-29) is as follows. Let C̄ = {V(wi−1, jVi : jVi , 1)}. First, we show that, for n

sufficiently large,

P{J?Vi = 1|ŜR[ιRi−2] = ŝR[ιRi−2], C̄ = c̄} ≤
1
2
. (A-30)

Let ξ := |{v(wi−1, jVi) ∈ C̄ : (v(wi−1, jVi), ŝR[ιRi−2]) ∈ Tn
ε }|. Then, if ξ ≥ 1, for n sufficiently large,

P{J?Vi = 1|ŜR[ιRi−2] = ŝR[ιRi−2], C̄ = c̄}

≤ P
{
{(V(wi−1, 1), ŝR[ιRi−2]) ∈ Tn

ε },

{∃ ξ vectors V(wi−1, jVi) , V(wi−1, 1) s.t. (V(wi−1, jVi), ŝR[ιRi−2]) ∈ Tn
ε }

}
≤ P{(V(wi−1, 1), ŝR[ιRi−2]) ∈ Tn

ε }

= 2−n[I(V;ŜR)−δ(ε)]
≤

1
2
. (A-31)

If ξ = 0, for n sufficiently large,

P{J?Vi = 1|ŜR[ιRi−2] = ŝR[ιRi−2], C̄ = c̄}

≤ P
{
{(V(wi−1, 1), ŝR[ιRi−2]) ∈ Tn

ε }, {(V(wi−1, jVi), ŝR[ιRi−2]) < Tn
ε ∀ jVi , 1}

}
+ P{(V(wi−1, jVi), ŝR[ιRi−2]) < Tn

ε ∀ jVi ∈ JV , J?Vi = 1}

≤ P{(V(wi−1, 1), ŝR[ιRi−2]) ∈ Tn
ε } +

1
JV

P{(V(wi−1, 1), ŝR[ιRi−2]) < Tn
ε }

≤ 2−n[I(V;ŜR)−δ(ε)] +
1
JV
≤

1
2
, (A-32)

where the first inequality follows by the union of events bound.

Next, using (A-30) and following the approach in [58, Lemmas 1 and 2], it can be shown easily that, for

sufficiently large n,

P{V(wi−1, 1) = v|J?Vi , 1, ŜR[ιRi−2] = ŝR[ιRi−2]} ≤ 2P{V(wi−1, 1) = v}

P{Y3[i] = y3, ŜD[ιDi−2] = ŝD|J?Vi , 1, ŜR[ιRi−2] = ŝR[ιRi−2], C̄ = c̄} ≤ 2P(y3, ŝD|ŝR[ιRi−2]}. (A-33)

Finally, using (A-33) and following essentially straightforwardly the approach of [58, pp. 854-855], we obtain

(A-29). Thus, summarizing, Pr(E9i| ∩
8
k=1 Ec

ki) −→ 0 as n −→ ∞ if I(V; Y3, ŜD) − I(V; S, ŜR, ŜD) > 2ε.

• For decoding the triple (ŵi−1, ĵUi−1, l̂i−1) and the index ĵVi at the destination, let E10i be the event

E10i =
{
∃ j′Ui−1 ∈ JU, li−1 ∈ [1,MD], jDi−1 ∈ JD, jVi ∈ JV s.t.: j′Ui−1 , j?Ui−1, jVi , j?Vi(
v(wi−2, j?Vi−1),u(wi−2, j?Vi−1,wi−1, j′Ui−1),uD(wi−2, j?Vi−1,wi−1, j′Ui−1, li−1, jDi−1),y3[i − 1], ŝD[ιDi−3]

)
∈ Tn

ε (PV,U,UD ,Y3 ,ŜD
),(

v(wi−1, jVi),y3[i], ŝD[ιDi−2]
)
∈ Tn

ε (PV,Y3 ,ŜD
)
}
.

Note that the first event in E10i (i.e., the one relative to block i − 1) and the second event in E10i (i.e., the one

relative to block i) are independent since the codebooks used for successive blocks i − 1 and i are different.

Then, proceeding in a way similar to the event E5i to analyze the first event in E10i and in a way similar to the
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event E9i to analyze the second event in E10i, it can be shown easily that, conditioned on the events ∩9
k=1Ec

ki,

the probability of the event E10i can be bounded as

Pr(E10i| ∩
9
k=1 Ec

ki) ≤ JUMD JD JV2−n[I(U,UD ;Y3 ,ŜD |V)− 2
n−ε]2−n[I(V;Y3 ,ŜD)− 2

n−ε]

= 2−n[I(U,V;Y3 |ŜD)−I(U,V;S,ŜR |ŜD)−[I(U;Y3 ,ŜD |V)−I(U;S,ŜR ,ŜD |V)]−− 4
n +ε]. (A-34)

Thus, Pr(E10i| ∩
9
k=1 Ec

ki) −→ 0 as n −→ ∞.

• For decoding the triple (ŵi−1, ĵUi−1, l̂i−1) and the index ĵVi at the destination, let E11i be the event

E11i =
{
∃ j′Ui−1 ∈ JU, li−1 ∈ [1,MD], jDi−1 ∈ JD, jVi ∈ JV s.t.: j′Ui−1 , j?Ui−1,(
v(wi−2, j?Vi−1),u(wi−2, j?Vi−1,wi−1, j′Ui−1),uD(wi−2, j?Vi−1,wi−1, j′Ui−1, li−1, jDi−1),y3[i − 1], ŝD[ιDi−3]

)
∈ Tn

ε (PV,U,UD ,Y3 ,ŜD
),(

v(wi−1, j?Vi),y3[i], ŝD[ιDi−2]
)
∈ Tn

ε (PV,Y3 ,ŜD
)
}
.

Proceeding similarly to the event E5i, it can be shown easily that, conditioned on ∩10
k=1Ec

ki, the probability of

the event E11i can be bounded as

Pr(E11i| ∩
10
k=1 Ec

ki) ≤ JUMD JD2−n[I(U,UD ;Y3 ,ŜD |V)− 2
n ε]

= 2−n[I(U;Y3 |V,ŜD)−I(U;S,ŜR |V,ŜD)−[I(U;Y3 ,ŜD |V)−I(U;S,ŜR ,ŜD |V)]−− 2
n +3ε]. (A-35)

Thus, Pr(E11i| ∩
10
k=1 Ec

ki) −→ 0 as n −→ ∞.

• For decoding the triple (ŵi−1, ĵUi−1, l̂i−1) and the index ĵVi at the destination, let E12i be the event

E12i =
{
∃ l′i−1 ∈ [1,MD], jDi−1 ∈ JD, jVi ∈ JV s.t.: l′i−1 , li−1, jVi , j?Vi,(
v(wi−2, j?Vi−1),u(wi−2, j?Vi−1,wi−1, j?Ui−1),uD(wi−2, j?Vi−1,wi−1, j?Ui−1, l

′

i−1, jDi−1),y3[i − 1], ŝD[ιDi−3]
)
∈ Tn

ε (PV,U,UD ,Y3 ,ŜD
),(

v(wi−1, jVi),y3[i], ŝD[ιDi−2]
)
∈ Tn

ε (PV,Y3 ,ŜD
)
}
.

Proceeding similarly to the event E6i, it can be shown easily that, conditioned on ∩11
k=1Ec

ki, the probability of

the event E12i can be bounded as

Pr(E12i| ∩
11
k=1 Ec

ki) ≤MD JD JV2−n[I(UD ;Y3 ,ŜD |U,V)−ε]2−n[I(V;Y3 ,ŜD)−ε]

= 2−n[I(V;Y3 ,ŜD)−I(V;S,ŜR ,ŜD)−[I(U;Y3 ,ŜD |V)−I(U;S,ŜR ,ŜD |V)]−+2ε]. (A-36)

Thus, Pr(E12i| ∩
11
k=1 Ec

ki) −→ 0 as n −→ ∞.

• For decoding the triple (ŵi−1, ĵUi−1, l̂i−1) and the index ĵVi at the destination, let E13i be the event

E13i =
{
∃ l′i−1 ∈ [1,MD], jDi−1 ∈ JD, jVi ∈ JV s.t.: l′i−1 , li−1,(
v(wi−2, j?Vi−1),u(wi−2, j?Vi−1,wi−1, j?Ui−1),uD(wi−2, j?Vi−1,wi−1, j?Ui−1, l

′

i−1, jDi−1),y3[i − 1], ŝD[ιRi−3]
)
∈ Tn

ε (PV,U,UD ,Y3 ,ŜD
),(

v(wi−1, j?Vi),y3[i], ŝD[ιDi−2]
)
∈ Tn

ε (PV,Y3 ,ŜD
)
}
.

Proceeding similarly to the event E12i, it can be shown easily that, conditioned on ∩12
k=1Ec

ki, the probability of

the event E13i can be bounded as

Pr(E13i| ∩
12
k=1 Ec

ki) ≤MD JD2−n[I(UD ;Y3 ,ŜD |U,V)−ε]

= 2−n[−|I(U;Y3 ,ŜD |V)−I(U;S,ŜR ,ŜD |V)+4ε]. (A-37)
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Thus, Pr(E13i| ∩
12
k=1 Ec

ki) −→ 0 as n −→ ∞.

This concludes the proof of Theorem 1.

B. Proof of Theorem 3

First we generate a random codebook that we use to obtain the lower bound in Theorem 3. This scheme is based

on a combination of block Markov coding [45], Gel’fand-Pinsker binning [11], and classic rate distortion theory

[57, Chapter 13]. Next, we outline the encoding and decoding procedures.

We transmit in B blocks, each of length n. During each of the first B blocks, the source encodes a message

wi ∈ [1, 2nR] and sends it over the channel, where i = 1, . . . ,B denotes the index of the block. For convenience we

let wB+1 = 1. For fixed n, the average rate R B
B+1 over B + 1 blocks approaches R as B −→ +∞.

Codebook generation: Fix a measure PS,U,UR ,X1 ,X2 ,X,X̂,Y2 ,Y3
of the form (27). Calculate the marginal PX̂ induced by

this measure. Fix ε > 0 and let

J = 2n[I(U;S)+2ε] JR = 2n[I(UR ;U,S)+2ε] (B-1a)

M = 2n[R−4ε] MR = 2n[R̂−4ε]. (B-1b)

1) We generate JM independent and identically distributed (i.i.d.) codewords {u(w, j)} indexed by w = 1, . . . ,M,

j = 1, . . . , J, each with i.i.d. components drawn according to PU.

2) We generate JRMR i.i.d. codewords {uR(m, jR)} indexed by m = 1, . . . ,MR, jR = 1, . . . , JR, each with i.i.d.

components drawn according to PUR .

3) Independently, we randomly generate a rate distortion codebook consisting of MR sequences x̂ drawn i.i.d.

according to the n−product of the marginal PX̂. We index these sequences as x̂[m],m = 1, . . . ,MR.

Encoding: We pick up the story in block i. Let wi ∈ {1, . . . ,M} be the new message to be sent from the source

node at the beginning of block i, and wi+1 ∈ {1, . . . ,M} the message to be sent in the next block i + 1 (note that we

can assume that wi , wi+1, as the indices {wk} are assumed i.i.d. on {1, . . . , 2nR
}, and so Pr(wi = wi+1) = 2−2nR

→ 0 as

n→ +∞). The encoding at the beginning of block i is as follows.

i) The source searches for the smallest j ∈ {1, · · · , J} such that u(wi, j) is jointly typical with s[i]. (The properties

of strongly typical sequences guarantee that there exists one such j). Denote this j by j?i = j(s[i],wi).

ii) Similarly, the source finds j?i+1 = j(s[i + 1],wi+1) such that u(wi+1, j?i+1) is jointly typical with s[i + 1] and

then generates a vector x[wi+1] with i.i.d. components given u(wi+1, j?i+1) and s[i + 1], drawn according to the

marginal PX|U,S.

iii) Then, the source indices x[wi+1] by mi if there exists an mi ∈ {1, . . . ,MR} such that x[wi+1] and x̂[mi] are jointly

strongly typical. If there is more than one such mi, the source selects the first in lexicographic order. If there is

no such mi, let mi = 1. Shannon’s rate-distortion theory [57, Chapter 13] ensures that the encoding of x[wi+1]

is accomplished successfully with high probability provided that n is sufficiently large and

R̂ > I(X; X̂). (B-2)
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iv) Next, the source looks for the smallest jR ∈ {1, · · · , JR} such that uR(mi, jR) is jointly typical with (s[i],u(wi, j?i )).

(Again, the properties of strongly typical sequences guarantee that there exists one such jR). Denote this jR

by j?Ri = jR(s[i],u(wi, j?i )).

Continuing with the strategy. Let m0 = 1. The encoding at the beginning of block i is as follows.

1) The relay knows mi−1 (this will be justified below), and sends x2[i] = x̂[mi−1].

2) The source transmits the pair (wi,mi). It sends a vector x1[i] with i.i.d. components given the vectors u(wi, j?i ),

uR(mi, j?Ri) and s[i], drawn according to the marginal PX1 |U,UR ,S induced by the distribution (27).

Decoding: The reconstruction of the vector x[wi+1] at the relay and the decoding procedure at destination at

the end of block i, are as follows.

1) The relay knows mi−1 and estimates mi from the received y2[i]. It declares that m̂i is sent if there is a unique

m̂i ∈ {1, . . . ,MR} such that uR(m̂i, jRi) and y2[i] are jointly typical for some jRi ∈ {1, . . . , JR}. One can show that

the decoding error in this step is small for sufficiently large n if

R̂ < I(UR; Y2) − I(UR; U,S)

= I(UR; Y2) − I(UR; S) − I(UR; U|S). (B-3)

2) The destination estimates wi from the received y3[i]. It declares that ŵi is sent if there is a unique ŵi ∈ {1, . . . ,M}

such that u(ŵi, ji) and y3[i] are jointly typical for some ji ∈ {1, . . . , J}. One can show that the decoding error in

this step is small for sufficiently large n if

R < I(U; Y3) − I(U; S). (B-4)

Analysis of Probability of Error: Fix a probability distribution PS,U,UR ,X1 ,X2 ,X,X̂,Y2 ,Y3
satisfying (27). Let s[i] and

(wi,mi) be the state sequence in block i and the message pair sent from the source node in block i, respectively. As

we already mentioned above, at the beginning of block i the source transmits x1(wi,mi) and the relay transmits

x2[i] = x̂[mi−1].

The average probability of error is such that

Pr(Error) ≤
∑

s<Tn
ε (QS)

Pr(s) +
∑

s∈Tn
ε (QS)

Pr(s)Pr(error|s). (B-5)

The first term, Pr(s < Tn
ε (QS)), on the RHS of (B-5) goes to zero as n→∞, by the asymptotic equipartition property

(AEP) [57, p. 384 ]. Thus, it is sufficient to upper bound the second term on the RHS of (B-5).

We now examine the probabilities of the error events associated with the encoding and decoding procedures.

The error event is contained in the union of the following error events; where the events E1i, E2i and E3i correspond

to encoding errors at block i; the events E4i and E5i correspond to decoding errors at the relay at block i; and the

events E6i and E7i correspond to decoding errors at the destination at block i.

• Let E1i be the event that there is no sequence u(wi, j) jointly typical with s[i], i.e.,

E1i =
{
@ j ∈ {1, . . . , J} s.t.

(
u(wi, j), s[i]

)
∈ Tn

ε (PU,S)
}
.

To bound the probability of the event E1i, we use a standard argument [11]. More specifically, for u(wi, j)

and s[i] generated independently with i.i.d. components drawn according to PU and QS, respectively, the

August 21, 2012 DRAFT



42

probability that u(wi, j) is jointly typical with s[i] is greater than (1− ε)2−n(I(U;S)+ε) for sufficiently large n. There

is a total of J such u’s in each bin. The probability of the event E1i, the probability that there is no such u, is

therefore bounded as

Pr(E1i) ≤ [1 − (1 − ε)2−n(I(U;S)+ε)]J. (B-6)

Taking the logarithm on both sides of (B-6) and substituting J using (B-1) we obtain ln(Pr(E1i)) ≤ −(1 − ε)2nε.

Thus, Pr(E1i)→ 0 as n→∞.

• Let E2i be the event that there is no sequence u(wi+1, j) jointly typical with s[i + 1], and E3i the event that there

is no sequence uR(mi, jR) jointly typical with (s[i],u(wi, j?i )). Proceeding similarly to for the event E1i, it can be

easily shown that, conditioned on Ec
1i and Ec

1i∩Ec
2i, respectively, these tow events have vanishing probabilities

as n→ +∞.

• For the decoding at the relay, let E4i be the event that uR(mi, j?Ri) is not jointly typical with y2[i]. That is

E4i =
{(

uR(mi, j?Ri),y2[i]
)
< Tn

ε (PUR ,Y2 ,X̂)
}
. (B-7)

For u(wi, j?i ), uR(mi, j?Ri) jointly typical with s[i], and with the source input x1[i] and the relay input x2[i], we

have Pr(E4i|Ec
1i,E

c
2i,E

c
3i) −→ 0 as n −→ ∞ by the Markov Lemma [57, p. 436].

• For the decoding at the relay, let E5i be the event that uR(m′i , jRi) is jointly typical with y2[i] for some m′i ∈ [1,MR]

and jRi ∈ JR, with m′i , mi. That is,

E5i =
{
∃ m′i ∈ [1,MR], jRi ∈ JR s.t. m′i , mi,(
uR(m′i , jRi),y2[i]

)
∈ Tn

ε (PUR ,Y2 ,X̂)
}
. (B-8)

Conditioned on the events Ec
1i, Ec

2i, Ec
3i and Ec

4i, the probability of the event E5i can be bounded using the union

bound, as

Pr(E5i|Ec
1i,E

c
2i,E

c
3i,E

c
4i) ≤MR JR2−n[I(UR ;Y2)−ε]

= 2−n[I(UR ;Y2)−I(UR ;U,S)−R̂+ε]. (B-9)

Thus, Pr(E3i|Ec
1i,E

c
2i,E

c
3i,E

c
4i) −→ 0 as n −→ ∞ if R < I(UR; Y2) − I(UR; S) − I(UR; U|S).

• For the decoding at the destination, let E6i be the event that u(wi, j?i ) is not jointly typical with y3[i]. That is

E6i =
{(

u(wi, j?i ),y3[i]
)
< Tn

ε (PU,Y3 )
}
. (B-10)

For u(wi, j?i ), uR(mi, j?Ri) jointly typical with s[i], and with the source input x1[i] and the relay input x2[i], we

have Pr(E6i|Ec
1i,E

c
2i,E

c
3i,E

c
4i,E

c
5i) −→ 0 as n −→ ∞ by the Markov Lemma [57, p. 436].

• For the decoding at the destination, let E7i be the event that u(w′i , ji) is jointly typical with y3[i] for some

w′i ∈ [1,M] and ji ∈ J, with w′i , ki. That is,

E7i =
{
∃ w′i ∈ [1,M], ji ∈ J s.t. w′i , ki,(
u(w′i , ji),y3[i]

)
∈ Tn

ε (PU,Y3 )
}
. (B-11)
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Conditioned on the events Ec
1i, Ec

2i, Ec
3i, Ec

4i, Ec
5i and Ec

6i, the probability of the event E7i can be bounded using

the union bound, as

Pr(E7i|Ec
1i,E

c
2i,E

c
3i,E

c
4i,E

c
5i,E

c
6i) ≤MJ2−n[I(U;Y3)−ε]

= 2−n[I(U;Y3)−I(U;S)−R+ε] (B-12)

Thus, Pr(E7i|Ec
1i,E

c
2i,E

c
3i,E

c
4i,E

c
5i,E

c
6i) −→ 0 as n −→ +∞ if R < I(U; Y3) − I(U; S).

This concludes the proof of Theorem 3.

C. Proofs of Theorem 4

Let an (εn,n,R) code be given. By Fano’s inequality, we have

nR = H(W)

≤ I(W; Yn
3 ) + 1 + nRεn. (C-1)

Let us define Ūi = (Sn
i+1,Y

i−1
2 ,Yi−1

3 ) and V̄i = (W,Sn
i+1,Y

i−1
3 ), i = 1, . . . ,n.

We have

I(W; Yn
3 ) ≤ I(W; Yn

2 ,Y
n
3 )

(a)
= I(W; Yn

2 ,Y
n
3 ) − I(W; Sn) (C-2)

=

n∑
i=1

I(W; Y2,i,Y3,i|Yi−1
2 ,Yi−1

3 ) − I(W; Si|Sn
i+1)

=

n∑
i=1

I(W,Sn
i+1; Y2,i,Y3,i|Yi−1

2 ,Yi−1
3 ) − I(Sn

i+1; Y2,i,Y3,i|W,Yi−1
2 ,Yi−1

3 ) − I(W; Si|Sn
i+1)

(b)
=

n∑
i=1

I(W,Sn
i+1; Y2,i,Y3,i|Yi−1

2 ,Yi−1
3 ) − I(Si; Yi−1

2 ,Yi−1
3 |W,S

n
i+1) − I(W; Si|Sn

i+1)

=

n∑
i=1

I(W,Sn
i+1; Y2,i,Y3,i|Yi−1

2 ,Yi−1
3 ) − I(Si; W,Yi−1

2 ,Yi−1
3 |S

n
i+1)

=

n∑
i=1

I(W; Y2,i,Y3,i|Sn
i+1,Y

i−1
2 ,Yi−1

3 ) + I(Sn
i+1; Y2,i,Y3,i|Yi−1

2 ,Yi−1
3 ) − I(Si; Yi−1

2 ,Yi−1
3 |S

n
i+1) − I(Si; W|Sn

i+1,Y
i−1
2 ,Yi−1

3 )

(c)
=

n∑
i=1

I(W; Y2,i,Y3,i|Sn
i+1,Y

i−1
2 ,Yi−1

3 ) − I(Si; W|Sn
i+1,Y

i−1
2 ,Yi−1

3 )

(d)
=

n∑
i=1

I(W; Y2,i,Y3,i|Sn
i+1,Y

i−1
2 ,Yi−1

3 ,X2,i) − I(Si; W|Sn
i+1,Y

i−1
2 ,Yi−1

3 ,X2,i)

=

n∑
i=1

I(V̄i; Y2,i,Y3,i|Ūi,X2,i) − I(V̄i; Si|Ūi,X2,i) (C-3)

where: (a) follows since message W is independent of the state Sn; (b) follows from Csiszar and Korner’s “summation

by parts”-lemma [59]
n∑

i=1

I(Sn
i+1; Y2,i,Y3,i|W,Yi−1

2 ,Yi−1
3 ) =

n∑
i=1

I(Si; Yi−1
2 ,Yi−1

3 |W,S
n
i+1) (C-4)
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(c) follows similarly, from Csiszar and Korner’s “summation by parts”
n∑

i=1

I(Sn
i+1; Y2,i,Y3,i|Yi−1

2 ,Yi−1
3 ) =

n∑
i=1

I(Si; Yi−1
2 ,Yi−1

3 |S
n
i+1) (C-5)

(d) follows from the fact that X2i is a deterministic function of Yi−1
2 .

Similarly,

I(W; Yn
3 )

(e)
≤

n∑
i=1

I(W,Sn
i+1,Y

i−1
3 ; Y3,i) − I(W,Sn

i+1,Y
i−1
3 ; Si)

=

n∑
i=1

I(V̄i; Y3,i) − I(V̄i; Si) (C-6)

where (e) follows exactly as in the converse part of the proof of the capacity of Gel’fand-Pinsker channel [11] by

replacing Yn with Yn
3 .

From the above, we have

R ≤
1
n

n∑
i=1

I(V̄i; Y2,i,Y3,i|Ūi,X2,i) − I(V̄i; Si|Ūi,X2,i) + 1 + nRεn

R ≤
1
n

n∑
i=1

I(V̄i; Y3,i) − I(V̄i; Si) + 1 + nRεn (C-7)

We introduce a random variable T which is uniformly distributed over {1, · · · ,n}. Set S = ST, Ū = ŪT, V̄ = V̄T,

X1 = X1,T, X2 = X2,T, Y2 = Y2,T, and Y3 = Y3,T. We substitute T into the above bounds. Considering the first bound

in (C-7), we have

1
n

n∑
i=1

I(V̄i; Y2,i,Y3,i|Ūi,X2,i) − I(V̄i; Si|Ūi,X2,i)

= I(V̄; Y2,Y3|Ū,X2,T) − I(V̄; S|Ū,X2,T)

= I(T, V̄; Y2,Y3|Ū,X2) − I(T; Y2,Y3|Ū,X2) − I(T, V̄; S|Ū,X2) + I(T; S|Ū,X2)

≤ I(T, V̄; Y2,Y3|Ū,X2) − I(T, V̄; S|Ū,X2) + I(T; S|Ū,X2)

= I(T, V̄; Y2,Y3|Ū,X2) − I(T, V̄; S|Ū,X2) (C-8)

where in the last equality we used the fact that T is independent of all the other variables.

Similarly, considering the second bound in (C-7), we obtain

1
n

n∑
i=1

I(V̄i; Y3,i) − I(V̄i; Si)

= I(V̄; Y3|T) − I(V̄; S|T)

= I(T, V̄; Y3) − I(T; Y3) − I(T, V̄; S) + I(T; S)

≤ I(T, V̄; Y3) − I(T, V̄; S). (C-9)

Let us now define U = Ū and V = (T, V̄). Using (C-7), (C-8) and (C-9), we then get

R ≤ I(V; Y2,Y3|U,X2) − I(V; S|U,X2) + 1 + nRεn
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R ≤ I(V; Y3) − I(V; S) + 1 + nRεn. (C-10)

So far we have shown that, for a given sequence of (εn,n,R)−codes with εn going to zero as n goes to infinity,

there exists a probability distribution of the form (31) such that the rate R essentially satisfies (30). This completes

the proof of Theorem 4.

It remains to show that the rate (30) is not altered if one restricts the random variables U and U to have their

alphabet sizes limited as indicated in (32). This is done by invoking the support lemma [60, p. 310]. Fix a distribution

µ of (S,U,V,X1,X2,Y2,Y3) on P(S×U×V×X1×X2×Y2×Y3) that has the form (31).

To prove the bound (32a) on |U|, note that we have

Iµ(V; Y2,Y3|U,X2) − Iµ(V; S|U,X2)

= Iµ(V,X2; Y2,Y3|U) − Iµ(X2; Y2,Y3|U) − Iµ(V,X2; S|U) + Iµ(X2; S|U)

= Hµ(Y2,Y3|U) −Hµ(V,X2,Y2,Y3|U) + Hµ(V,X2,S|U) + Hµ(X2|U) −Hµ(X2,S|U). (C-11)

Hence, it suffices to show that the following functionals of µ(S,U,V,X1,X2,Y2,Y3)

rs,x,x′ (µ) = µ(s, x, x′) ∀ (s, x, x′) ∈ S×X1×X2 (C-12a)

r1(µ) =

∫
u

dµ(u)[Hµ(Y2,Y3|u) −Hµ(V,X2,Y2,Y3|u) + Hµ(V,X2,S|u) + Hµ(X2|u) −Hµ(X2,S|u)] (C-12b)

can be preserved with another measure µ′ that has the form (31). Observing that there is a total of |S||X1||X2|

functionals in (C-12), this is ensured by a standard application of the support lemma; and this shows that the

cardinality of the alphabet of the auxiliary random variable U1 can be limited as indicated in (32a) without altering

the rate (30).

Once the alphabet of U is fixed, we apply similar arguments to bound the alphabet of V, where this time

(|S||X1||X2|)2
− 1 functionals must be satisfied in order to preserve the joint distribution of (S,U,X1,X2), and one

more functional to preserve

Iµ(V; Y3) − Iµ(V; S) = Hµ(Y3) −Hµ(S) −Hµ(Y3|V) + Hµ(S|V), (C-13)

yielding the bound indicated in (32b). This completes the proof of Theorem 4.

D. Proof of Theorem 5

We prove that for any (ε,n,R) code consisting of a mapping φn
1 = (φn

1R, φ
n
1D) at the hyper source with φn

1R : W −→

Xn
1R and φn

1D : W×Sn
−→ Xn

1D , a sequence of mappings φ2,i : Yi−1
2 −→ X2, i = 1, . . . ,n, at the relay, and a mapping

ψn : Yn
−→W at the decoder with average error probability Pn

e → 0 as n→ 0, the rate R must satisfy (37).

By Fano’s inequality, we have

H(W|Yn
3 ) ≤ nRεn + 1 , nδn. (D-1)

Thus,

nR = H(W) ≤ I(W; Yn
3 ) + nδn
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(D-2)

We now upper bound I(W; Yn
3 ) as in the following lemma, the proof of which follows.

Lemma 2:

i) I(W; Yn
3 ) ≤

n∑
i=1

I(X1R,i; Y2,i|Si,X2,i) + I(X1D,i; Y3,i|Si,X2,i) (D-3a)

ii) I(W; Yn
3 ) ≤

n∑
i=1

I(X1D,i; Y3,i|Si,X2,i) + I(X2,i; Y3,i). (D-3b)

Proof: To simplify the notation, we use Si = (S1,S2, · · · ,Si), Yi
k = (Yk,1,Yk,2, · · · ,Yk,i), k = 2, 3, and Xi

j =

(X j,1,X j,2, · · · ,X j,i), j = 1R, 1D, 2.

1) The proof of the bound on I(W; Yn
3 ) given in i) follows straightforwardly by revealing the state to the destination

and using the channel structure (1).

I(W; Yn
3 )

(a)
≤

n∑
i=1

I(X1R,i,X1D,i; Y2,i,Y3,i|X2,i,Si) (D-4)

=

n∑
i=1

I(X1R,i,X1D,i; Y2,i|X2,i,Si) + I(X1R,i,X1D,i; Y3,i|X2,i,Si,Y2,i) (D-5)

=

n∑
i=1

I(X1R,i; Y2,i|X2,i,Si) + I(X1D,i; Y2,i|X1R,i,X2,i,Si)

+ I(X1R,i,X1D,i; Y3,i|X2,i,Si,Y2,i) (D-6)

(b)
=

n∑
i=1

I(X1R,i; Y2,i|X2,i,Si) + I(X1R,i,X1D,i; Y3,i|X2,i,Si,Y2,i) (D-7)

=

n∑
i=1

I(X1R,i; Y2,i|X2,i,Si) + H(Y3,i|X2,i,Si,Y2,i) −H(Y3,i|X1R,i,X1D,i,X2,i,Si,Y2,i) (D-8)

(c)
=

n∑
i=1

I(X1R,i; Y2,i|X2,i,Si) + H(Y3,i|X2,i,Si,Y2,i) −H(Y3,i|X1D,i,X2,i,Si) (D-9)

(d)
≤

n∑
i=1

I(X1R,i; Y2,i|X2,i,Si) + H(Y3,i|X2,i,Si) −H(Y3,i|X1D,i,X2,i,Si) (D-10)

=

n∑
i=1

I(X1R,i; Y2,i|X2,i,Si) + I(X1D,i; Y3,i|X2,i,Si) (D-11)

where:

(a) follows trivially by revealing the state to the destination; (b) follows since X1D,i ↔ (X1R,i,X2,i,Si) ↔ Y2,i; (c)

follows since (X1R,i,Y2,i)↔ (X1D,i,X2,i,Si)↔ Y3,i; and (d) follows since conditioning reduces entropy.

2) The proof of the bound on I(W; Yn
3 ) given in ii) follows as follows.

I(W; Yn
3 ) = I(W,Sn; Yn

3 ) − I(Sn; Yn
3 |W)
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=
( n∑

i=1

I(W,Sn; Y3,i|Yi−1
3 )

)
−H(Sn

|W) + H(Sn
|W,Yn

3 )

(e)
=

n∑
i=1

H(Y3,i|Yi−1
3 ) −H(Y3,i|W,Sn,Yi−1

3 ) −H(Si) + H(Si|W,Yn
3 ,S

i−1)

( f )
≤

n∑
i=1

H(Y3,i) −H(Y3,i|X1D,i,X2,i,Si) −H(Si) + H(Si|W,Yn
3 ,S

i−1)

(g)
=

n∑
i=1

H(Y3,i) −H(Y3,i|X1D,i,X2,i,Si) −H(Si) + H(Si|W,Yn
3 ,S

i−1,Yi−1
2 )

(h)
=

n∑
i=1

H(Y3,i) −H(Y3,i|X1D,i,X2,i,Si) −H(Si) + H(Si|W,Yn
3 ,S

i−1,Yi−1
2 ,X2,i)

(i)
≤

n∑
i=1

I(X1D,i,X2,i,Si; Y3,i) −H(Si) + H(Si|X2,i,Y3,i)

=

n∑
i=1

I(X1D,i,X2,i,Si; Y3,i) − I(Si; X2,i,Y3,i)

=

n∑
i=1

I(X1D,i; Y3,i|Si,X2,i) + I(X2,i; Y3,i) − I(X2,i; Si)

( j)
=

n∑
i=1

I(X1D,i; Y3,i|Si,X2,i) + I(X2,i; Y3,i), (D-12)

where: (e) follows from the fact that the state Sn is i.i.d. and is independent of the message W; ( f ) follows from

(W,Sn,Yi−1
3 ) ↔ (X1D,i,X2,i,Si) ↔ Y3,i is a Markov chain; (g) follows from Yi−1

2 ↔ (W,Si−1,Yn
3 ) ↔ Si is a Markov

chain; (h) follows from the fact that X2,i is a deterministic function of Yi−1
2 ; (i) follows from the fact that conditioning

reduces entropy; and ( j) holds since X2,i is independent of Si.

We introduce a random variable T which is uniformly distributed over {1, · · · ,n}. Set S = ST, X1R = X1R,T,

X1D = X1D,T, X2 = X2,T, Y2 = Y2,T, and Y3 = Y3,T. We substitute T into the above bounds. Considering the bound

(D-12), we obtain

1
n

n∑
i=1

I(X1D,i; Y3,i|Si,X2,i) + I(X2,i; Y3,i)

= I(X1D; Y3|S,X2,T) + I(X2; Y3|T)

= I(X1D,X2,S; Y3|T) − I(S; X2,Y3|T) (D-13)

and, similarly,

1
n

n∑
i=1

I(X1R,i; Y2,i|X2,i,Si) + I(X1D,i; Y3,i|X2,i,Si)

= I(X1R; Y2|S,X2,T) + I(X1D; Y3|S,X2,T) (D-14)

where the distribution on (T,S,X1R,X1D,X2,Y2,Y3) from a given code is of the form

PT,S,X1R ,X1D ,X2 ,Y2 ,Y3 = QSPTPX2 |TPX1R |X2 ,TPX1D |S,X2 ,T

×WY2 |S,X1R WY3 |S,X1D ,X2 . (D-15)
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We now eliminate the variable T from (D-13) and (D-14) as follows. The right-hand side of (D-13) can be bounded

as

I(X1D,X2,S; Y3|T) − I(S; X2,Y3|T)

(k)
≤ H(Y3) −H(Y3|X1D,X2,S) −H(S|T) + H(S|X2,Y3,T)

= I(X1D,X2,S; Y3) −H(S|T) + H(S|X2,Y3,T)

(l)
≤ I(X1D,X2,S; Y3) −H(S) + H(S|X2,Y3)

= I(X1D,X2,S; Y3) − I(S; X2,Y3)

= I(X1D; Y3|S,X2) + I(X2; Y3), (D-16)

where:

(k) holds since H(Y3|T) ≤ H(Y3) and H(Y3|X1D,X2,S,T) = H(Y3|X1D,X2,S) (by the Markovian relation T ↔

(X1D,X2,S)↔ Y3); and

(l) holds since S is independent of T and H(S|X1D,Y3,T) ≤ H(S|X1D,Y3).

Similarly, right-hand side of (D-13) can be bounded as

I(X1R; Y2|S,X2,T) + I(X1D; Y3|S,X2,T) ≤ I(X1R; Y2|S,X2) + I(X1D; Y3|S,X2). (D-17)

Finally, combining (D-2), (D-12), (D-16) at one hand, and (D-2), (D-11), (D-17) at the other hand, we get

R ≤ I(X1D; Y3|S,X2) + I(X2; Y3) (D-18a)

R ≤ I(X1R; Y2|S,X2) + I(X1D; Y3|S,X2), (D-18b)

where the distribution on (S,X1R,X1D,X2,Y2,Y3), obtained by marginalizing (D-15) over the variable T, has the

form given in (38).

We conclude that, for a given sequence of (εn,n,R)−codes with εn going to zero as n goes to infinity, there exists a

probability distribution of the form (38) such that the rate R satisfies (D-18). This completes the proof of Theorem 5.

E. Proof of Theorem 7

The encoding and transmission scheme is as follows. Let P1r ≥ 0, P1d ≥ 0 and D ≥ 0 be given such that

P1r + P1d ≤ P1 and 0 ≤ D ≤ Q. Also, consider the test channel ŜR = aS + S̃R, where a := 1−D/Q and S̃R is a Gaussian

random variable with zero mean and variance σ2
S̃R

= D(1 −D/Q), independent from S. Using this test channel, we

calculate E[(S − ŜR)2] = D and E[Ŝ2
R] = Q −D. Let X2 ∼ N(0,P2) be jointly Gaussian with ŜR with E[X2ŜR] = 0 and

independent from S, and XSR ∼ N(0, θP1r) jointly Gaussian with (S, ŜR) with E[XSRS] = 0 and E[XSRŜR] = 0, where

0 ≤ θ ≤ 1. Also, let XWR ∼ N(0, θ̄P1r) be jointly Gaussian with (X2,S) and independent of XSR, with E[XWRS] = σ1s

and E[XWRX2] = σ12; and XWD ∼ N(0,P1d) jointly Gaussian with and independent of (XWR,XSR,X2,S, ŜR). In what

follows, we use the random variables V, U, U1 and UR given by (64) to generate the auxiliary codewords Vi, Ui,

U1i and URi which we will use in the sequel. Also, recall the definition of Q̃, ξ and α2 in (62) and (63), respectively,

which we will use in the rest of this proof.
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We decompose the message W to be sent from the source into two parts Wr and Wd. The input Xn
1 from the

source is divided into three independent parts, i.e., Xn
1 = Xn

SR + Xn
wr + Xn

wd, where Xn
SR carries a description Ŝn

R of the

state Sn that is intended to be recovered only at the relay and has power constraint nθP1r, Xn
wr carries message Wr

and has power constraint nθ̄P1r and Xn
wd carries message Wd and has power constraint nP1d, with P1 = P1r + P1d.

The message Wr is sent through the relay at rate Rr and the message Wd is sent directly to the destination at rate

Rd. The total rate is R = Rr + Rd.

As in the discrete case, a block Markov encoding is used. Let wi = (wri,wdi) ∈ [1, 2nRr ]×[1, 2nRd ] denote the message

to be transmitted in block i and s[i] denote the state controlling the channel in block i. The source quantizes s[i]

into ŝR[ιRi−1], where ιRi−1 ∈ [1, 2nR̂R ]. Using the aforementioned test channel, the source can encode s[i] successfully

at the quantization rate

R̂R = I(S; ŜR)

=
1
2

log(
Q
D

). (E-1)

In the beginning of block i, the relay has decoded correctly message wri−1 and the index ιRi−1 of the description

ŝR[ιRi−1] sent by the source in the previous block i − 1 (this will be justified below) and sends a Gaussian signal

x2[wri−1] which carries message wri−1 and is obtained via a DPC considering ŝR[ιRi−1] as noncausal channel state

information at the transmitter, as

x2[wri−1] =

√
P2

ρ12

√
θ̄P1r +

√
P2

(
v[i] − α2ξŝR[ιRi−1]

)
, (E-2)

where the components of v[i] are generated i.i.d. using the auxiliary random variable V.

Let ιRi be the index associated with the state s[i + 1] of the next block i + 1. In the beginning of block i, the source

sends a superposition of three Gaussian vectors,

x1[i] = xSR[ιRi] + xwr[wri−1,wri] + xwd[wdi]

xwr[wri−1,wri] = ρ1s

√
θ̄P1r

Q
s[i] + ρ12

√
θ̄P1r

P2
x2[wri−1] + x′wr[wri]. (E-3)

In (E-3), the vectors xSR[ιRi] and xwd[wdi] are generated i.i.d. using the auxiliary random variables XSR and XWD,

respectively; and the vector x′wr[wri] has power n(1− ρ2
12 − ρ

2
1s)θ̄P1r and is independent of s[i], x2[wri−1], xSR[ιRi] and

xwd[wdi]. Furthermore, the vector xSR[ιRi] carries a description ŝR[ιRi] of the state s[i + 1] that affects transmission in

the next block i + 1, intended to be recovered only at the relay; the vector x2[wri−1] carries cooperative information

wri−1, and the vector x′wr[wri] carries new information wri. The vectors xSR[ιRi], xwd[wdi] and x′wr[wri] are obtained via

DPCs considering (s[i], ŝR[ιRi−1]) as noncausal channel state information at the transmitter, as

xSR[ιRi] = uR[i] −
θP1r

θP1r + N2 + P1d
(1 − α)s[i] (E-4a)

xwd[wdi] = u1[i] −
P1d

P1d + N3 + θP1r
ξ(1 − α)

(
s[i] − α2ŝR[ιRi−1]

)
(E-4b)

x′wr[wri] = u[i] − αξ
(
s[i] − α2ŝR[ιRi−1]

)
(E-4c)
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where the components of uR[i], u1[i] and u[i] are generated i.i.d. using the auxiliary random variables UR, U1 and

U respectively.

We now describe the decoding operations (we give simple arguments; the rigorous decoding uses joint typicality

testing). Consider first the decoding at the relay. In block i, the relay receives

y2[i] = xSR[ιRi] + ρ12

√
θ̄P1r

P2
x2[wri−1] + x′wr[wri] +

(
1 + ρ1s

√
θ̄P1r

Q

)
s[i] + (z2[i] + xwd[wdi]). (E-5)

The relay knows wri−1 and ιRi−1 and decodes the pair (wri, ιRi) from y2[i]. The relay decodes wri and ιRi successively,

starting by wri. To decode wri, the relay subtracts out the quantity
(
ρ12

√
θ̄P1r/P2x2[wri−1] + α2ξŝR[ιRi−1]

)
from y2[i]

to make the channel equivalent to

ỹ2[i] = x′wr[wri] + ξ
(
s[i] − α2ŝR[ιRi−1]

)
+ (z2[i] + xSR[ιRi] + xwd[wdi]). (E-6)

The relay decodes message wri from ỹ2[i] treating signals xSR[ιRi] and xwd[wdi] as unknown independent noises.

This can be done reliably as long as n is large and

Rr ≤ I(U; Ỹ2) − I(U; S − α2ŜR)

= R
(
α, (1 − ρ2

12 − ρ
2
1s)θ̄P1r, ξ

2Q̃,N2 + θP1r + P1d

)
(E-7)

where the equality follows through straightforward algebra which we omit here for brevity (note that the variance

of the additive state ξ(S − α2ŜR) in (E-6) is ξ2E[(S − α2ŜR)2] = ξ2[(1 − α2)2Q − α2(α2 − 2)D] := ξ2Q̃). Next, for

the decoding of ιRi, the relay subtracts out the quantity
(
u[i] − (1 − α)α2ξŝR[ιRi−1]

)
from ỹ2[i] to make the channel

equivalent to

y̆2[i] = xSR[ιRi] + (1 − α)s[i] + (z2[i] + xwd[wdi]). (E-8)

The relay decodes the index ιRi from y̆2[i] correctly as long as n is large and

R̂R ≤ I(UR; Y̆2) − I(UR; S)

=
1
2

log
(
1 +

θP1r

N2 + P1d

)
. (E-9)

We now turn to the decoding at the destination at the end of block i. In block i, the destination receives

y3[i] = x1[i] + x2[wri−1] + s[i] + z3[i]

=
(
ρ12

√
θ̄P1r

P2
+ 1

)
x2[wri−1] + x′wr[wri] + xwd[wdi] +

(
ρ1s

√
θ̄P1r

Q
+ 1

)
s[i] + (z3[i] + xSR[ιRi]). (E-10)

At the end of block i, the destination knows message wri−2 and decodes the pair (wri−1,wdi−1) successively, treating

the signal that carries the state description as unknown independent noise. It starts by decoding message wri−1,

using (y3[i − 1],y3[i]). Note that wri−1 is carried by both auxiliary vectors v[i] and u[i − 1]. If n is large, it can do so

reliably at rate

Rr ≤ I(V,U; Y3) − I(V,U; S, ŜR)

= [I(V; Y3) − I(V; ŜR)] + [I(U; Y3|V) − I(U; S, ŜR|V)] (E-11)
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where the equality follows since the choice of (V, ŜR) in (64) satisfies V ↔ ŜR ↔ S is a Markov chain.

We first compute the term [I(V; Y3)−I(V; ŜR)]. Let s̃[i] be the estimation error of ξs[i] given ŝR[ιRi−1] under minimum

mean square error criterion. Since s[i] and ŝR[ιRi−1] are jointly Gaussian, s̃[i] is i.i.d. Gaussian with variance

E[(ξS − ξŜR)2] = ξ2D per element and is independent from ŝR[ιRi−1]. Thus, we can alternatively write the output

y3[i] as

y3[i] =
(
ρ12

√
θ̄P1r

P2
+ 1

)
x2[wri−1] + x′wr[wri] + xwd[wdi] + ξŝR[ιRi−1] + (z3[i] + xSR[ιRi] + s̃[i]). (E-12)

With the choice of the auxiliary random variable V as in (64) and that of the associated Costa’s scale factor α2 set

to its optimal value as in (63), the destination decodes the vector v[i] correctly from y3[i] at rate

I(V; Y3) − I(V; ŜR) =
1
2

log
(
1 +

(ρ12

√
θ̄P1r +

√
P2)2

N3 + ξ2D + θP1r + (1 − ρ2
12 − ρ

2
1s)θ̄P1r + P1d

)
(E-13)

where the equality follows through straightforward algebra. Let us now compute the term [I(U; Y3|V)−I(U; S, ŜR|V)].

Observing that the destination can peel off v[i − 1] from y3[i − 1] to make the channel equivalent to

ỹ3[i − 1] = y3[i − 1] −
((
ρ12

√
θ̄P1r

P2
+ 1

)
x2[wri−2] + α2ξŝR[ιRi−2]

)
= x′wr[wri−1] + ξs[i − 1] − α2ξŝR[ιRi−2] + (z3[i − 1] + xSR[ιRi−1] + xwd[wdi−1]), (E-14)

it is easy to see that, if n is large and with the choice of the auxiliary random variable U as in (64), the destination

obtains the vector u[i − 1] correctly from y3[i − 1] at rate

I(U; Y3|V) − I(U; S, ŜR|V) = I(U; Ỹ3) − I(U; ξ(S − α2ŜR))

= R
(
α, (1 − ρ2

12 − ρ
2
1s)θ̄P1r, ξ

2Q̃,N3 + θP1r + P1d

)
(E-15)

where the last equality follows through straightforward algebra.

Finally, the destination can peel off u[i − 1] from ỹ3[i − 1] to make the channel equivalent to

y̆3[i − 1] = ỹ3[i − 1] −
(
x′wr[wri−1] + αξ(s[i − 1] − α2ŝR[ιRi−2])

)
= xwd[wdi−1] + ξ(1 − α)(s[i − 1] − α2ξŝR[ιRi−2]) + (z3[i − 1] + xSR[ιRi−1]). (E-16)

From (E-16), it is easy to see that if n is large, and with the choice of the auxiliary random variable U1 as in (64), the

destination obtains the vector u1[i − 1] (which carries message wdi−1) correctly at rate

Rd ≤ I(U1; Y̆3) − I(U1; ξ(1 − α)(S − α2ŜR))

=
1
2

log(1 +
P1d

N3 + θP1r
). (E-17)

Finally, for given D, adding (E-7) and (E-17), we obtain the first term of the minimization in (60); and adding

(E-13), (E-15) and (E-17), we obtain the second term of the minimization in (60). Also, similar to in the proof of

Theorem 6, observing that the rate terms in (60) decrease with D, we obtain the lower bound in Theorem 7 by taking

the equality in (E-9) and maximizing the minimization in (60) over P1r ≥ 0, P1d ≥ 0 such that 0 ≤ P1r + P1d ≤ P1,

θ ∈ [0, 1], ρ12 ∈ [0, 1] and ρ1s ∈ [−1, 0] such that 0 ≤ ρ2
12 +ρ2

1s ≤ 1 and α ∈ R such that the RHS of (E-7) is non-negative

and the sum of the RHS of (E-15) and the RHS of (E-17) is non-negative. This completes the proof.
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F. Proof of Proposition 2

In the proof we compute the rate (33) of Proposition 1 using an appropriate jointly Gaussian distribution on

(S,U1,X1R,X1D,X2). The algebra in this section is similar to that in the proof of [21, Theorem 3] and [15, Theorem

6].

We first compute the term [I(U1; Y3|X1R,X2) − I(U1; S|X1R,X2)] in the RHS of (33) because this gives insights about

the distribution that we should use to compute the lower bound. We assume that X1R, X1D and X2 are jointly

Gaussian random variables with zero-mean and variance P1R, P1D and P2, respectively. The random variables X1R

and X2 are independent and independent of the state S. The random variable X1D is independent of X1R and jointly

Gaussian with (S,X2), with E[X1DX2] = ρ12
√

P1DP2 and E[X1DS] = ρ1s
√

P1DQ, for some correlation coefficients

ρ12 ∈ [−1, 1] and ρ1s ∈ [−1, 1].

Let X̂1D = E[X1D|S,X1R,X2] be the optimal linear estimator of X1D given (S,X1R,X2) under minimum mean

square error criterion, and X′1D be the resulting estimation error (note that E[X1D|S,X1R,X2] = E[X1D|S,X2]). The

estimator X̂1D and the estimation error X′1D are given by

X̂1D = ρ12

√
P1D

P2
X2 + ρ1s

√
P1D

Q
S (F-1)

X′1D = X1D − X̂1D. (F-2)

We can then write Y3 in (80) alternatively as

Y3 = X′1D + (1 + ρ12

√
P1D

P2
)X2 + (1 + ρ1s

√
P1D

Q
)S + Z3. (F-3)

Let now

Y′3 := Y3 − E[Y3|X1R,X2] = X′1D + (1 + ρ1s

√
P1D

Q
)S + Z3. (F-4)

Noticing now that X′1D is independent of the state S in (F-4), it is clear that an optimal choice of the associated

auxiliary random variable U1 is

U1 = X′1D + α(1 + ρ1s

√
P1D

Q
)S, (F-5)

where α is Costa’s parameter given by

α =
E[X′21D]

E[X′21D] + E[Z2
3]

=
P1D(1 − ρ2

12 − ρ
2
1s)

P1D(1 − ρ2
12 − ρ

2
1s) + N3

. (F-6)

Then we can easily show that

I(U1; Y3|X1R,X2) − I(U1; S|X1R,X2) = I(U1; Y′3) − I(U1; S) (F-7)

By substituting X′1D in (F-5), we get

U1 = X1D − ρ12

√
P1D

P2
X2 + αoptS (F-8)

with

αopt = α(1 + ρ1s

√
P1D

Q
) − ρ1s

√
P1D

Q

August 21, 2012 DRAFT



53

=
[ P1D(1 − ρ2

12 − ρ
2
1s)

P1D(1 − ρ2
12 − ρ

2
1s) + N3

(
1 + ρ1s

√
P1D

Q

)
− ρ1s

√
P1D

Q

]
. (F-9)

Now, it is easy to see that, with the choice (F-8), we have

I(U1; Y3|X1R,X2) − I(U1; S|X1R,X2) = I(U1; Y′3) − I(U1; S)

=
1
2

log

1 +
E[X′21D]

N3


=

1
2

log

1 +
P1D(1 − ρ2

12 − ρ
2
1s)

N3

 . (F-10)

We now compute the terms I(X1R; Y2|X2) and I(X2; Y3). It is easy to see that, with the aforementioned jointly

Gaussian input distribution,

I(X1R; Y2|X2) = I(X1R; Y2)

=
1
2

log(1 +
P1R

N2 + Q
). (F-11)

Also, we have

I(X1R,X2; Y3)
(a)
= I(X2; Y3)

= h(Y3) − h(Y3|X2)

= h(Y3) − h(X′1D + E[X1D|X2] + E[X1D|S] + S + Z3|X2)

(b)
= h(Y3) − h(X′1D + E[X1D|S] + S + Z3)

(c)
=

1
2

log
( E[(X1D + X2 + S)2] + E[Z2

3]

E[X′21D] + E[(S + E[X1D|S])2] + E[Z2
3]

)
=

1
2

log
(
1 +

(
√

P2 + ρ12
√

P1D)2

P1D(1 − ρ2
12 − ρ

2
1s) + (

√
Q + ρ1s

√
P1D)2 + N3

)
. (F-12)

where: (a) holds since X1R is independent of (X2,Y3), (b) holds since X′1D and S are independent of X2, and (c)

follows through straightforward algebra.

Adding (F-10) and (F-11) we obtain the first term of the minimization in (81); and adding (F-10) and (F-12) we

obtain the second term of the minimization in (81).

Finally, we obtain the capacity in Theorem 9 by maximizing the RHS of (81) over all possible values ofρ12 ∈ [−1, 1]

and ρ1s ∈ [−1, 1]. Investigating the two terms of the minimization, we can easily see that it suffices to consider

ρ12 ∈ [0, 1] and ρ1s ∈ [−1, 0]. This concludes the proof of Theorem 9.

G. Proof of Theorem 8

In this section, we first use the upper bound for the DM case in Theorem 5 to obtain a new upper bound on

the capacity of the state-dependent additive Gaussian model (71). Then, we show that this new upper bound is

maximized by jointly Gaussian (S,X1R,X1D,X2,Z2,Z3).

From Theorem 5, we have that, given any (εn,n,R) sequence of codes with average error probability Pn
e −→ 0 as

n −→ +∞, the transmission rate R satisfies

R ≤ min
{
I(X1R; Y2|X2,S), I(X2; Y3)

}
+ I(X1D; Y3|X2,S) (G-1)
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for some joint measure of the form

PS,X1R ,X1D ,X2 ,Y2 ,Y3 = QSPX2 PX1R |X2 PX1D |X2 ,SWY2 |X1R ,SWY3 |X1D ,X2 ,S. (G-2)

Since the channel structure (71) satisfies WY2 |X1R ,X2 ,S = WY2 |X1R ,S, it follows that

I(X1R; Y2|S,X2) = H(Y2|S,X2) −H(Y2|S,X2,X1R)

= H(Y2|S,X2) −H(Y2|S,X1R)

≤ H(Y2|S) −H(Y2|S,X1R)

= I(X1R; Y2|S). (G-3)

An upper bound on the capacity of the channel (71) is then given by

R ≤ min
{
I(X1R; Y2|S), I(X2; Y3)

}
+ I(X1D; Y3|X2,S) (G-4)

for some joint measure of the form

PS,X1R ,X1D ,X2 ,Y2 ,Y3 = QSPX2 PX1R PX1D |X2 ,SWY2 |X1R ,SWY3 |X1D ,X2 ,S. (G-5)

(Note that, in contrast to in Theorem 5 and (G-2), the inputs X1R and X2 are independent in (G-5)).

Fix a joint distribution on (S,X1R,X1D,X2,Y2,Y3) of the form (G-5) satisfying

E[X2
1R] = P̃1R ≤ P1R, E[X2

1D] = P̃1D ≤ P1D, E[X2
2] = P̃2 ≤ P2,

E[X1DX2] = σ12, E[X1DS] = σ1s. (G-6)

We shall also use the correlation coefficients ρ12 ∈ [−1, 1], ρ1s ∈ [−1, 1] defined as

ρ12 =
σ12√
P̃1DP̃2

, ρ1s =
σ1s√
P̃1DQ

. (G-7)

We first compute the first term in the minimization on the RHS of (G-4). We have

R ≤ I(X1R; Y2|S) + I(X1D; Y3|X2,S) (G-8)

= h(X1R + Z2|S) − h(Z2) + h(X1D + Z3|X2,S) − h(Z3) (G-9)

(a)
≤ h(X1R + Z2) − h(Z2) + h(X1D + Z3|X2,S) − h(Z3) (G-10)

(b)
≤

1
2

log
(
1 +

P̃1R

N2

)
+

1
2

log
(
1 +

P̃1D(1 − ρ2
12 − ρ

2
1s)

N3

)
, (G-11)

where: (a) holds since conditioning reduces entropy; and (b) holds since the conditional differential entropy

h(X1R + Z2) is maximized if (X1R,Z2) are jointly Gaussian and, by the Maximum Conditional Differential Entropy

Lemma [51, Part I], the conditional differential entropy h(X1D + Z3|X2,S) is maximized if (S,X1D,X2,Z3) are jointly

Gaussian.

We now compute the term [I(X2; Y3) + I(X1D; Y3|X2,S)]. We have

I(X2; Y3) + I(X1D; Y3|X2,S)
(c)
= I(X1D; Y3|X2,S) + I(X2; Y3) − I(X2; S)
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= I(X1D; Y3|X2,S) + I(X2; Y3|S) − I(X2; S|Y3)

= h(Y3|S) − h(Y3|S,X1D,X2) − h(S|Y3) + h(S|X1,Y3)

= h(Y3) − h(S) + h(S|X2,Y3) − h(Z3) (G-12)

where: (c) follows since X2 and S are independent.

For fixed second moments (G-6), we have

h(Y3) ≤
1
2

log(2πe)(P̃1D + P̃2 + 2σ12 + 2σ1s + Q + N3), (G-13)

where equality is attained if Y3 is Gaussian. Similarly, the term h(S|X2,Y3) is maximized if (S,X2,Y3) are jointly

Gaussian. Let Ŝ(X2,Y3) = E[S|X2,Y3] be the MMSE estimator of S given (X2,Y3), i.e.,

Ŝ(X2,Y3) = E[S|X2,X1D + S + Z3]

= γ1X2 + γ2(X1D + S + Z3) (G-14)

with

γ1 = −
σ12(Q + σ1s)

P̃2(P̃1D + 2σ1s + Q + N3) − σ2
12

γ2 =
P̃2(Q + σ1s)

P̃2(P̃1D + 2σ1s + Q + N3) − σ2
12

. (G-15)

h(S|X2,Y3) = h(S − Ŝ(X2,Y3)|X2,Y3)

≤ h(S − γ1X2 − γ2(X1D + S + Z3))

=
1
2

log(2πe)E
[(

S − γ1X2 − γ2(X1D + S + Z3)
)2]

=
1
2

log
(
(2πe)

QP̃1DP̃2 + P̃2N3Q − σ2
1sP̃2 − σ2

12Q

P̃2(P̃1D + 2σ1s + Q + N3) − σ2
12

)
, (G-16)

where the inequality is attained with equality if S,X1D,X2,Y3 are jointly Gaussian. Then, from (G-12), (G-13) and

(G-16) and straightforward algebra, we obtain

I(X2; Y3) + I(X1D; Y3|S,X2) =
1
2

log
(
1 +

(
√

P̃2 + ρ12

√
P̃1D)2

P̃1D(1 − ρ2
12 − ρ

2
1s) + (

√
Q + ρ1s

√
P̃1D)2 + N3

)
+

1
2

log
(
1 +

P̃1D(1 − ρ2
12 − ρ

2
2s)

N3

)
. (G-17)

For convenience, let us now define the function Θ1(P̃1R, P̃1D, ρ12, ρ1s) as the RHS of (G-11) and the function

Θ2(P̃1D, P̃2, ρ12, ρ2s) as the RHS of (G-17). From the above analysis, the capacity of the channel is upper-bounded as

C ≤ max min{Θ1(P̃1R, P̃1D, ρ12, ρ1s),Θ2(P̃1D, P̃2, ρ12, ρ1s)} (G-18)

where the maximization is over all covariance matrices of (X1R,X1D,X2,S) of the form

ΛX1R ,X1D ,X2 ,S =



P̃1R 0 0 0

0 P̃1R ρ12

√
P̃1DP̃2 ρ1s

√
P̃1DQ

0 ρ12

√
P̃1DP̃2 P̃2 0

0 ρ1s

√
P̃1DQ 0 Q


, (G-19)
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that satisfy

P̃1R ≤ P1R, P̃1D ≤ P1D, P̃2 ≤ P2 (G-20)

and have non-negative discriminant,

QP̃1RP̃1DP̃2(1 − ρ2
12 − ρ

2
2s) ≥ 0, (G-21)

i.e., for Q > 0,

ρ2
12 + ρ2

2s ≤ 1. (G-22)

Investigating Θ1(P̃1R, P̃1D, ρ12, ρ1s) and Θ2(P̃1D, P̃2, ρ12, ρ1s), it can be seen that it suffices to consider ρ12 ∈ [0, 1]

and ρ1s ∈ [−1, 0] for the maximization in (G-18).

Also, it is easy to see that, for fixed P̃1D, the functions Θ1(P̃1R, P̃1D, ρ12, ρ1s) and Θ2(P̃1D, P̃2, ρ12, ρ1s) increase

monotonically with P̃1R and P̃2. So, for fixed P̃1D, they are maximized at P̃1R = P1R and P̃2 = P2. To complete the

proof, we should show that Θ1(P1R, P̃1D, ρ12, ρ1s) and Θ2(P̃1D,P2, ρ12, ρ1s) are also maximized at P̃1D = P1D.

It is clear that the function Θ1(P1R, P̃1D, ρ12, ρ1s) increases with P̃1D. The term Θ2(P̃1D,P2, ρ12, ρ1s) can be seen as

the sum rate of a two-user state-dependent MAC with state information Sn known to one encoder, both encoders

sending a common message and the informed encoder sending, in addition, an individual message [15]. As argued

in [15], this sum rate increases with the power of the informed encoder [15, Appendix E], i.e., P̃1D here. This

concludes the proof of Theorem 8.

H. Proof of Theorem 9

1) Converse Part: the proof of the converse part of Theorem 9 follows by noticing that the computation of the upper

bound (G-4) in the proof of Theorem 8 for the special case (80), and using the same jointly Gaussian distribution

as in Appendix G, gives the RHS of (81).

2) Achievability Part: the proof of the direct part of Theorem 9 follows by computing the rate (33) using an

appropriate jointly Gaussian distribution on (S,U1,X1R,X1D,X2). The algebra is similar to that in the proof of

Proposition 2 and is therefore omitted for brevity.
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