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Abstract

Costa’s dirty paper coding (DPC) offers a good framework for precoding for transmission over additive Gaussian channels
with additive states non-causally known at the transmitter but not at the receiver. In this paper, rate calculation, error prob-
ability analysis and code design for DPC are investigated from a practical point-of-view. Based on Monte-Carlo numerical
integration and simulations, we first show that the gap to the full AWGN capacity can be partially bridged using some
finite-dimensional lattices with good packing and quantizing properties. Then the difficult problem of codebook selection is
addressed through some illustrative examples. Analysis sheds light on the dual roles of “packing” and “shaping” as well as
on their inter-connection at finite-dimensional coding, by opposition to the asymptotic case (i.e., infinite dimension) where
the two coding components are decoupled.
� 2009 Elsevier GmbH. All rights reserved.
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1. Introduction

Costa’s dirty paper coding (DPC) [1] offers a good frame-
work for the design of precoding techniques for transmis-
sion over additive Gaussian channels with additive Gaussian
channel state information (CSI) available non-causally at
the transmitter but not at the receiver. The CSI may model
an interference which is known (non-causally) to only the
transmitter. Precoding techniques have been initially con-
ceived for inter-symbol interference (ISI) cancelation in the
framework of the well-known Tomlinson–Harashima pre-
coding [2,3]. After that, there has been an extensive interest
in the use of DPC techniques for interference cancelation in
a variety of other applications. Examples of such applica-
tions include information embedding (IE) and watermarking
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[4–8,41–43] where the signal to be marked acts as interfer-
ence, transmission over digital subscriber lines [9] where
the crosstalk between different telephone lines handled to-
gether in their way to the central office acts as interference
and coding for Gaussian dispersive (ISI) channels [10]. An-
other promising application is that of coding for multiple-
input multiple-output (MIMO) broadcast channels (see e.g.,
[11–14] and references therein) where the signal sent to one
user acts as interference in the eyes of other users.

Capacity of DPC-based schemes has been widely studied
theoretically for various situations (e.g., see [11,15–19]).
For instance, it has been shown that these schemes are able
of attaining the full AWGN capacity and of completely nul-
lifying the effect of the interference, i.e., the CSI, as if this
interference were either zero or known also by the receiver.
The theoretical proof is based on a random binning argument
which dates back to Gel’fand and Pinsker’s “coding for chan-
nels with random parameters” [20] and which is unfeasible
in practice. Consequently, designing DPC-based schemes
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with manageable complexity has been a challenging prob-
lem over the last years. Existing feasible DPC schemes
previously reported in literature are very often based on
a modulo-reduction (i.e., quantization) operation. Quan-
tization for coding for DPC has been first suggested in
[2,21] and then carried further in [22]. For instance, it
has been shown in [22] that lattice quantization [23] is
capable of canceling the effect of the interference, thus
achieving the full AWGN capacity. However, this is pos-
sible only asymptotically, i.e., when the dimension of the
lattice used for quantization goes to infinity. In practice,
finite-dimensional lattice quantization does not achieve full
AWGN capacity, but it allows to partially bridge the gap to it
[24,25].

In this work, we rely heavily on recent results on modulo
channels [10,22] to assess the improvement brought by lat-
tice quantization (over scalar schemes) in finite-dimensional
lattice coding for DPC, mostly from a numerical point-
of-view. Analysis is based on both rate and bit error rate
(BER), obtained by Monte-Carlo integrations and simula-
tions, respectively. First, we use Monte-Carlo integration
techniques to numerically compute the rates allowed by the
use of some finite-dimensional lattices and investigate
the resulting improvement (over scalar schemes) in terms
of the associated shaping gains. Then, we turn to BER
computation and address the problem of optimal codebook
selection. By exploiting the appealing algebraic structure
of the lattice, different possible choices of lattice codes
are compared, thus raising the question of an unavoidable
trade-off between reliable transmission (low error rates) and
high transmission rates. This allows us to identify the dual
roles of coding and shaping in coding for DPC channels,
numerically. Also, we emphasize the interaction between
shaping and coding by presenting and discussing some low-
complexity finite-dimensional illustrative implementations.
We note that, though well expected, the curves presented
in this paper (especially, the BER curves) have the merit of
clearly showing how much (or little) one can expect from
lattice quantization for DPC in practice, as classically per-
formance are depicted for one- or two-dimensional schemes
only. Also, though assessed mostly from a numerical point-
of-view, many of the results, observations and discussions
in this paper are useful in the design of practical implemen-
tations and reflect how difficult (or easy) is system design
for DPC based on lattice coding.

The rest of this paper is organized as follows. Section 2
recalls some preliminary definitions and results from lattice
theory that we will use throughout the paper. Also, it pro-
vides a brief review of some applications of DPC. Sections 3
and 4 contain numerical computation of both rates and BERs
allowed by the use of some carefully tuned low-dimensional
lattice codes. For BER analysis, end-to-end system design
is proposed for various choices of lattice codes and the roles
of shaping and coding are discussed. In Section 5 we outline
the practical usefulness of the results presented in this paper
and illustrate the interaction between shaping and coding at

finite-dimensional lattice coding for DPC. Finally, we close
with a conclusion in Section 6.

1.1. Notation

Throughout this paper, boldface fonts denote vectors and
matrices. We use lowercase letters to denote vectors and
uppercase letters to denote matrices. For example, a vec-
tor x with n elements xi is denoted by x = (x1, x2, . . . , xn),
and a matrix H with n columns hi is denoted by H =
(h1, h2, . . . , hn). We use script fonts to denote sets, e.g., X.
Unless otherwise specified, vectors are assumed to be in the
n-dimensional Euclidean space (Rn, ‖·‖) where ‖·‖ denotes
the Euclidean norm of vectors. Notation x=(a p, bq , . . . , cr )
where p + q + · · · + r = n is used as shorthand for x =

(

p times︷ ︸︸ ︷
a, . . . , a,

q times︷ ︸︸ ︷
b, . . . , b, . . . ,

r times︷ ︸︸ ︷
c, . . . , c). For a random vector x, we

use Ex[·] to denote the expectation taken with respect to x
and fx(·) to denote its probability density function (PDF).
The Gaussian distribution with mean � and square deviation
�2 is denoted by N(�, �2).

2. Preliminaries on lattices and DPC

2.1. Lattices and lattice codebooks

Lattices are extensively studied in [23]. This section only
provides a brief review, for reasons of completeness. Alge-
braically, an n-dimensional real lattice � is a discrete addi-
tive subgroup of Rn defined as �={X(�)·u : u ∈ Zn}, where
X(�) is an n×n full-rank generator matrix. Geometrically, a
lattice � is an infinite regular array that covers n-space uni-
formly. For example (a) the simplest n-dimensional lattice
is the cubic lattice Zn which consists of all n-dimensional
vectors with integer coordinates, (b) the lattice family An ,
n ∈ N, is defined as An = {(x0, x1, . . . , xn) ∈ Zn+1 :
x0 + · · · + xn = 0} and (c) the lattice family Dn is defined
as Dn = {(x1, . . . , xn) ∈ Zn : x1 + · · · + xn = even}. The
fundamental Voronoi region V(�) of lattice � is the set of
points x ∈ Rn that are closer to 0 than to any other lattice
point k ∈ �, i.e.,

V(�)�{x : ‖x‖�‖x − k‖, ∀k ∈ �}.
For example, the Voronoi region of Zn consists of all n-
dimensional vectors that lie within a cubic region of unit
volume, centered at the origin. The fundamental volume of
� is the volume of its Voronoi region, i.e.,

V (�)�
∫
V(�)

dx =
√

det(XT (�)X(�)).

The second moment of V(�), or simply of �, is defined as

�2(�)�
1

nV (�)

∫
V(�)

‖x‖2 dx
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rcov (A2)

Fig. 1. Hexagonal lattice A2 in the plane; its elements are the cen-
ters of the circles of radius �(A2). It has six deep holes, located at
distance rcov(A2) from it and indicated with filled (small) squares
and circles in the vertices of V(A2).

and its normalized second moment is the dimensionless
quantity G(�)�V (�)−2/n�2(�) which measures the cover-
ing efficiency of �. The shaping gain provided by lattice �
is �s(�) = 1/(12G(�)). For example, the cubic lattice Zn

has the largest normalized second moment, G(Zn)= 1
12 , and

the smallest shaping gain, �s(Zn) = 0 dB. The covering ra-
dius rcov(�) is the radius of the smallest n-dimensional ball
centered at the origin and containing V(�). The packing
radius �(�) is the radius of the biggest n-dimensional ball
centered at the origin and contained in V(�). The points of
Rn located at the vertices of V(�) are called “lattice deep
holes”. As one example, the hexagonal lattice A2 generated
with X(A2) = (−1, 1, 0; 0, −1, 1) [23] is shown in Fig. 1.
The figure also shows the Voronoi region V(A2) and the
deep holes of this lattice.

Let � be an n-dimensional lattice. Also, let a ∈ Rn be
a given vector. The translated �c = a + � is also an n-
dimensional lattice, and is called a coset of lattice �. The
vector a is the coset leader of lattice �c. A lattice codebook
C(�,R) is a finite subset of lattice �, and may be specified as
the intersection of this lattice with an n-dimensional support
region R that has non-zero volume,

C(�,R) = � ∩ R.

That is, the lattice codebook C(�,R) consists of the set of
points of lattice � that lie in R.

|C(�c,R)|�V (R)/V (�c),

and the associated coding rate R is well approximated by

R�
1

n
log2[V (R)/V (�c)] bits per dimension.

2.2. Review of some applications

2.2.1. Information embedding as dirty paper coding
Fig. 2 depicts a block diagram of the problem of DPC. A

message m, taken from some set M={0, 1, . . . , M −1} is to
be transmitted through an Gaussian channel. In addition to

the noise v, the transmission is corrupted by an interference
s which is assumed to be known non-causally to only the
transmitter, not to the receiver. In this setup, it is assumed
that the interference s and the noise v are both i.i.d. Gaussian,
with variances Q and N , respectively, i.e., si ∼ N(0, Q)
and vi ∼ N(0, N ). Moreover, transmission is subject to
some power constraint P , i.e., the channel input x is such
that E[x2]�n P .

It is now well known that Costa’s DPC offers a good
framework for the study of the problem of information em-
bedding [6,26]. In this model, the CSI or interference s rep-
resents the host signal, and the message m represents the
information to be hidden in it. Earlier DPC-based imple-
mentations for IE set signal x, the embedded or transmitted
signal, to be an appropriate scaled version (with some scale
parameter �) of the scalar-quantization error of cover signal
s. The most prominent two schemes are the now well-known
scalar Costa scheme (SCS) [5] and quantization index mod-
ulation (QIM) [4].

2.2.2. Gaussian broadcast channel
Consider the single-input vector Gaussian broadcast chan-

nel described by the model

yi = hi x + zi , i = 1, 2, . . . , M , (1)

where M designates for the number of users. The input sig-
nal x is assumed to be power constrained, xi and yi stand
for the i.i.d. Gaussian noise (with variance Ni ) and the re-
ceived signal for the i-th user, i = 1, 2, . . . , M . The (M × 1)
column vector H = (h1, h2, . . . , hM )T designates the vector
characterizing the channel coefficients and is assumed to be
known at the transmitter. We also make the assumption that
the entries of the vector H are ordered according to

|h1|2/N1 � |h2|2/N2 � · · · � |hM |2/NM . (2)

In this case, the broadcast channel is degraded and coding
for user i , i = 1, 2, . . . , M , can be accomplished by simply
applying a DPC using si = ∑M

j=i+1 hi x j as Gaussian CSI

non-causally known at the transmitter and hi
∑i−1

j=1 x j + zi

as unknown Gaussian noise (further details can be found,
e.g., in [10]).

2.3. Lattice coding for Costa’s DPC

The performance of the aforementioned sample-by-
sample transmission schemes QIM and SCS can be im-
proved upon using structured low-complexity lattice-based
codebooks [24]. More specifically, consider the transmis-
sion scheme depicted in Fig. 3 where � is an n-dimensional
lattice. Assume that the encoder and the decoder share
some common randomness (e.g., in the form of a key k
which is known to both the transmitter and the receiver).
Through this paper, we assume that the key k is uniformly
distributed over V(�).
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Channel
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Fig. 2. Block diagram of the problem of DPC.
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Fig. 3. Encoding/decoding for DPC based on lattice modulo-reduction.

Also, let �(·) be an indexing function which one-to-one
associates each element from the set M={0, 1, . . . , M − 1}
with a vector cm which is taken from some set of vectors
C = {cm : m ∈ M} that will be specified in the sequel. We
assume that the vectors {cm} lie in the fundamental region
V(�) of lattice �. For each m ∈ M, the vector �(m) = cm

is the coset leader of the coset �m = cm + � of the lattice
�. The intersection of the lattice formed by the union of the
cosets with V(�) gives C, i.e.,(⋃

m

�m

)
∩ V(�) = C. (3)

Thus, taking V(�) as a support region, C may be viewed
as a lattice codebook in the sense given in Section 2.1. This
codebook is assumed to be known by both the encoder and
the decoder. The key k may be used for security issues and
also for the purpose of rate maximization [22].

In the following, we consider input signal vectors (frames)
of length equal to the dimension n of lattice �. Also, we
use the modulo-reduction operation mod� with respect to
the fundamental Voronoi region V of the lattice �, defined
as t mod��t − Q�(t) ∈ V(�). The n-dimensional quan-
tization operator Q�(·) is such that quantization of t ∈ Rn

results in the closest lattice point k ∈ � to t. The received
signal is given by the sum of the input signal x, the known
interference s and the unknown noise v, i.e.,

y = x + s + v. (4)

Encoding and decoding are performed according to

x(s; m, �) = (cm + k − �s)mod�, (5a)

m̂ = argmin
m∈M

min
k∈�m

‖�y − k − k‖, (5b)

where the scale (also called inflation) parameter � can be
optimized according to different criteria and input is subject
to power constraint E[x2]�n P . We note that the choice
� = 1 corresponds to no scaling and is often referred to as

zero-forcing DPC (ZF-DPC). Other optimization criteria for
parameter � can be minimum mean-squared error (MMSE-
DPC) and minimum error entropy (MEE-DPC) [24]. Also,
the sample-by-sample schemes SCS and QIM mentioned
previously correspond to lattice � being cubic, i.e., �= Zn .

3. Analysis of the transmission rate

Theoretical performance analysis of lattice-based codes
for DPC has been provided in [10,22,27,28]. In this section,
we investigate the transmission rate allowed by some finite-
dimensional lattices, mostly from a numerical point-of-view,
based on Monte-Carlo integration. The aim is to show how
much (or little) lattice coding can improve transmission rate
(w.r.t. scalar-quantization-based schemes QIM and SCS).

Consider the channel depicted in Fig. 3 and concentrate
first on the case when �= 1 (ZF-approach). In this case, the
decoder computes (y−k−cm)mod� for each m ∈ M, with

(y − k − cm)mod�

= ((cm + k − s)mod� + s + v − k − cm)mod�

= v mod�. (6)

Thus, the modulo decoder sees the signal y − k = Q�(y −
cm −k)+cm + ṽ, with the effective noise ṽ=v mod� being
the quantization error of the initial AWGN v with respect to
lattice �. Since Q�(y − cm − k) ∈ �, the input–output re-
lation for the considered channel is that of a modulo lattice
additive noise (MLAN) channel with input cm and channel
noise v. The MLAN channel has been first considered in
[29] and then in [22]. It has been shown that, in the case of
infinite alphabet size and if the channel noise v is indepen-
dent of input cm , the transmission rate is maximized if cm is
uniformly distributed over V(�). In this case, the channel
capacity (in bits per dimension) is given by

R(�) = 1

n
(log2(V (�)) − H (ṽ))�

1

2
log2

(
1 + P

N

)
, (7)
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Table 1. Some lattices (as defined in Section 2.1) with their important parameters.

Lattice Name n Normalized second
moment G(�)

Shaping gain
�s (�) (dB)

�s (�) (in bit
per dim.)

Z Integer 1 1
12 0.00 0.000

A2 Hexagonal 2 5
36

√
3

0.17 0.028

D4 Checkerboard 4 0.0766 0.37 0.061
E7 E7 7 0.0732 0.56 0.093
E8 Gosset 8 0.0717 0.65 0.108

where H (·) denotes differential entropy. The right-hand side
(RHS) of (7) is the capacity of an additive white Gaussian
noise (AWGN) channel with SNR =10 log10(P/N )dB. The
effective noise ṽ has probability density function given by
a modularized or aliased Gaussian PDF over V(�). This
modularized PDF can be approximated by the restriction of
a Gaussian PDF over V(�),

fṽ(ṽ) ≈
⎧⎨
⎩

1

(2	N )n/2

∑
k∈�

exp

(
−‖ṽ−k‖2

2N

)
if ṽ ∈ V(�),

0 if ṽ /∈V(�).
(8)

In general, no closed form expression for (7) can be derived
and numerical integration is needed in order to evaluate the
differential entropy H (ṽ).

When � � 1, the receiver computes

y′ = (�y − k)mod�

= (cm + �v − (1 − �)x)mod�, (9)

where the �-aliased noise ṽ = (�v − (1 − �)x)mod� gener-
alizes that corresponding to the ZF-approach and is statis-
tically independent of the input cm (see the Inflated Lattice
Lemma reported in [22]). Note that this independence is sat-
isfied even if the high resolution quantization assumption
Q?P is violated, since the key k is uniformly distributed
over V(�) and, so, dithering by means of the key k makes
x uniform over V(�) independently on the power of CSI
s. Hence, transmission over the channel in Fig. 3 is equiva-
lent to that over an MLAN channel (modulo �) with input
cm and effective noise ṽ. However, due to the inflation pa-
rameter �, the noise ṽ is no longer a modularized Gaussian
noise over V(�), but the result of the convolution of a uni-
form self noise (1 − �)x and the ambient Gaussian noise
�v. Consequently, (7) is slightly modified and the maximum
transmission rate is given by the supremum of (7) over all
values of parameter � ∈ (0, 1]. This maximized rate is at-
tained with a uniform input and is given by (in bits per
dimension)

R(�) = max
�

1

n
(log2(V (�)) − H (ṽ)). (10)

Again, there is no closed form expression for (10) and, for
finite dimension n, both computation of the differential en-
tropy H (ṽ) and maximization over parameter � have to be

done numerically. An approximation can be obtained by re-
placing the effective noise ṽ by the restriction to V(�) of a
Gaussian noise with same first and second moments. More
specifically, let v̄ be the restriction to V(�) of the noise
distributed as1 N(0, �2), where �2 = �2 N + (1 − �)2 P
and P = G(�)V (�)2/n . The �-aliased Gaussian noise v̄
has density given by (8) where the variance N is replaced
by �2. In this case, maximization in (10) (where ṽ is re-
placed by v̄) reduces to minimization of the entropyH (v̄)
of the �-aliased noise v̄. We note that computation of the
entropy H (v̄) is not straightforward since it requires com-
putation of the contribution of all points of the Gaussian
distribution that are inside V(�) to H (v̄). From a numer-
ical point-of-view, one difficulty here is that of generating
a sufficiently long random sequence (in the n-dimensional
space) which is uniformly distributed over V(�). We nu-
merically compute R(�) for the finite-dimensional lattices
summarized below in Table 1. For each of these lattices,
we proceed as follows for the generation of uniformly dis-
tributed (over V(�)) random sequences, for the calculation
of H (v̄).

(1) First, we generate n random variables uniformly dis-
tributed over [0, 1). We use independent realizations of
these random variables to generate random vectors, as
follows. Each realization of the n random variables gives
an n-dimensional vector, say ui . For each vector ui , we
use a generator matrix X(�) of lattice � to generate the
random vector ũi =X(�) · ui .

(2) Second, we use a lattice quantizer Q(�) (see the standard
VQ algorithms provided in [23, Chapter 20.2]) to find
the nearest lattice point to each generated vector ũi . The
quantization error of ũi is in the Voronoi region V(�)
and is uniformly distributed over it.

The resulting rate curves (in bits per dimension) are plot-
ted in Fig. 4. We defer analysis of these results until we
discuss the accuracy of the above approximation (i.e., the
rate-loss incurred by replacing the �-aliased noise ṽ by the
�-aliased Gaussian noise v̄). The non-Gaussiannity of ṽ can

1 Note that, here, for the �-aliased noise v̄, we neglected the effect
of the modulo loss (due to the modulo front end at the receiver) only in
the calculation of its variance �2, not in the computation of its PDF.
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Fig. 4. Achievable rates allowed by MMSE-DPC and ZF-DPC,
for various lattices over SNR = 10 log10(P/N ). Bottom to top: Z,
A2, D4 and E8 lattices. Solid: rates obtained with MMSE-DPC.
Dashed-dotted: rates obtained with ZF-DPC. Dashed: AWGN ca-
pacity.

be measured as follows. Let mmse(ṽ|√�ṽ + nG) denote the
minimum mean-square error in estimating ṽ when observed
through an i.i.d. Gaussian channel with unit-variance noise,
nG,i ∼ N(0, 1), and signal-to-noise ratio ��2. Also, let

̃ = √

�ṽ + nG and 
̄ = √
�v̄ + nG . The differential entropy

of ṽ can be expressed as [30]

H (ṽ) = H (v̄) − 1

2

∫ +∞

0
mmse(v̄|
̄) − mmse(ṽ|
̃)d�. (11)

When the per-dimension SNR = 10 log10(P/N ) is suffi-
ciently large, the variance �2 becomes small and the effect
of the modulo front end on the �-aliased Gaussian noise v̄
becomes negligible, since the points of the distribution fv̄(v̄)
that significantly contribute to H (v̄) are then all contained
in V(�). Hence, (11) gives

H (ṽ) = H (v̄) − 1

2

∫ +∞

0

�2

1 + ��2 − mmse(ṽ|
̃)d� (12a)

= H (v̄) −
∫ +∞

0

d

d�
D(
̃‖
̄)d� (12b)

= H (v̄) − lim
�→+∞ D(
̃‖
̄) (12c)

= H (v̄) − D(ṽ‖v̄), (12d)

where (12a) follows since mmse(v̄|
̄) = �2/(1 + ��2),
(12b) follows since [31] mmse(v̄|
̄) − mmse(ṽ|
̃) =
2(d/d�)D(
̃‖
̄), where D(
̃‖
̄) is the divergence of the
density f
̃(
̃) with respect to the Gaussian density f
̄(
̄)
with identical first and second moments, and (12d) fol-
lows since D(
̃‖
̄)|�=0 = 0 and lim�→+∞ D(
̃‖
̄) = D(ṽ‖v̄)

[30, Lemma 7]. So, the transmission rate (10) can be re-
written as

R(�) = max
�

1

n
(log(V (�)) − H (v̄) + D(ṽ‖v̄)) (13a)

� max
�

1

n
(log(V (�)) − H (v̄)). (13b)

From (13a), we see that rate expression includes two terms:
the first term – the lower bound in (13b), is the transmis-
sion rate if the �-aliased noise ṽ were Gaussian, and the
other one – the term D(ṽ‖v̄)/n, which measures how much
additional rate (per dimension) is made possible by having
ṽ actually being non-Gaussian. We note that the divergence
D(ṽ‖v̄) depends on lattice � (through the modulo output
x and, thereby, the effective noise ṽ) and its computation
may be not straightforward since it requires the computation
of the restriction to V(�) of the convolution of the den-
sities f�v(·) and f(1−�)x(·). Also, we mention that at large
SNR = 10 log10(G(�)V (�)2/n/N ), the value of � that max-
imizes (10) is approximately equal to unity and, thus, the
noise ṽ is approximately equal to v̄. That is, the divergence
D(ṽ‖v̄)vanishes at large SNR.

3.1. Simulations and discussion

The results shown in Fig. 4 are obtained by maximizing
numerically the RHS of (13b) over �, for each per-dimension
SNR value, for some of the lattices in Table 1. It should be
noted that the numerical computation of the differential en-
tropy term H (v̄) is not straightforward. Here, we use Monte-
Carlo integration. The details of the computation are omitted
for brevity.

From the curves in Fig. 4, we observe that:

(1) The integer lattice Z provides the lowest rate. The gap
to AWGN capacity is particularly large at low SNR.
At low rates (below 0.1bit/dim (bit/dimension)), a gap
of about 4 dB is observed. At high SNR, this gap is
already partially bridged up using lattices A2, D4 and
E8. The improvement brought by each of these lattices
is due to the increase in the associated shaping gain
�s(�)=1/12G(�) (w.r.t. �s(Z)=0 dB). For a given fixed
rate R, such increase in �s(�) translates to a reduction in
the (per-dimension) average power P = G(�)V (�)2/n

needed to transmit the set of indexes m ∈ M (i.e.,
to an SNR gain) by a factor �s(�) (dB). Equivalently,
for a given SNR, the rate R is increased by a factor
1
2 log2(�s(�)).

(2) The improvement due to shaping is particularly visible
at high rates where the shaping gain �s(�) becomes sig-
nificant (this is consistent with the approximation �s ≈
(	e/6)(1 − 2−2R) in [32]). At low rates, however, the
shaping gain is very small and the increase in rate is
marginal. Note that this same behavior was also ob-
served in [24].
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4. Code design and probability of error

We now turn to evaluate the effect of lattice coding for
DPC on the (per-dimension) bit error rate from a practical
point-of-view. The improvement in BER due to lattice cod-
ing for DPC has been analyzed from a theoretical point-of-
view in the case when the dimension of the used lattices
is sufficiently high, most notably by Merhav [33] and Liu
et al. [34]. In this section, probability of error obtained with
lattice coding for DPC is investigated numerically, through
Monte-Carlo simulations, for some finite-dimensional low-
complexity lattices. Such analysis shows how much (or lit-
tle) lattice codes are able of lowering BER when used for
DPC in practice. Also, though carried out mostly through
examples, analysis of BER in this section sheds light on the
roles of shaping and coding and illustrates many practical
considerations which are useful in the design of DPC-based
systems.

4.1. Codebook selection

The design of an efficient lattice codeC(�) for the channel
shown in Fig. 3 depends on the target application, through
the target transmission or embedding rate and the target re-
liability. Hence, conceiving a (good) lattice code for general
DPC may be difficult in a general setting. Instead, we con-
centrate in this section on the design of efficient lattice codes
Cm(�) for two different situations: (1) reliable transmission
of only little information (e.g., for watermarking and infor-
mation embedding type of applications where usually only
few bits of information are needed) and (2) transmission of
as much information as possible, for a given tolerated error.
For the first situation, one is primarily concerned with reduc-
ing the probability of error; rate does not much matter. For
the second situation, one is primarily concerned with rate as
long as the probability of error is kept below a prescribed
(relatively low) value.

For M different cosets {�i } of lattice �, one impor-
tant parameter that highly influences BER is the minimum
Euclidean distance between these cosets, i.e., the inter-cosets
minimum-distance dmin given by

dmin� min
0� i, j � M−1:i � j

‖�i − � j‖
= min

(i, j):i � j
min

(ki,kj)∈�i ×� j

‖ki − kj‖. (14)

It is precisely the choice of codebook C(�) that fixes both
the values of dmin and the allowed (per-dimension) rate R =
(1/n)log2 M . In the following, we give different examples of
codebook selection (i.e., different choices for coset leaders
{cm}) based on the geometrical structure of lattice �.

4.1.1. Lattice relevant deep holes
Lattice deep holes have been introduced in Section 2.1.

These are the points of Rn that are located furthest away from
�, i.e., at distance rcov from it (see Fig. 1). The inter-cosets

h2

h1 rcov

0

Fig. 5. Relevant deep holes of the lattice A2 generated with
X(A2) = (−1, 1, 0; 0, −1, 1). Among the holes shown in Fig. 1,
only two are relevant, h1 and h2. This gives the ternary constel-
lation {0, h1, h2}.

minimum distance dmin satisfies dmin �rcov as observed in
[35]. Thus, in order to maximize dmin, these deep holes can
be ideally used as coset leaders. However, as two or more of
these deep holes can generate the same coset, only a subset
of them can be used without causing a decoding ambiguity at
the receiver. More specifically, let H(�)={h1, . . . , hNh } be
the set of the deep holes of lattice �. To resolve any ties when
a coset of � has more than one minimum Euclidean norm el-
ement, we choose the smallest subsetH∗(�)={h1, . . . , hN∗

h
}

of H(�), with N∗
h � Nh , such that⋃

i∈H∗(�)

hi + � =
⋃

i∈H(�)

hi + �. (15)

In the following, the deep holes of lattice � which satisfy
(15) are called relevant deep holes of �. We see by inspection
of (15) that a deep hole hi , i ∈ {1, . . . , Nh}, is relevant if
and only if

(hi − h j ) /∈ � for all h j ∈ H∗(�), j � i , (16)

i.e., iff hi does not belong to any of the cosets h j +� where
h j ∈ H∗(�) and j � i . The set C={0, h1, . . . , hN∗

h
} formed

by the origin (the zero vector) and the relevant deep holes of
lattice � forms a shaped constellation. Though non-optimal
from a rate point-of-view (since it requires that M � N∗

h +1,
or equivalently that R � (1/n)log2(N∗

h + 1)), the use of this
constellation is, however, optimal from a probability of er-
ror point-of-view, since it allows the largest inter-cosets
Euclidean minimum distance (i.e., dmin =rcov). As a toy ex-
ample, applying (16) for the hexagonal lattice A2, we get
N∗

h = 2. A possible choice for the resulting ternary shaped
constellation C(A2) = {0} ∪ H∗(A2) is shown in Fig. 5.

4.1.2. Construction A
A low-complexity efficient method for increasing trans-

mission rate R with respect to the use of relevant lattice
deep holes is Construction A [23]. Construction A provides
means of constructing a lattice � = C(n, k) + 2Zn with
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minimum distance

dmin(�) = min(2,
√

d), (17)

from an appropriate linear channel code C(n, k) with mini-
mum Hamming distance d . As a toy example, note that us-
ing this technique, the lattices E7 and E8 – which are the
densest lattices in dimensions 7 and 8, respectively, can be
constructed as E7 = (7, 3, 4)+2Z7 and E8 = (8, 4, 4)+2Z8.
The binary linear code (7, 3, 4) is the dual of the Hamming
code (7, 4, 3) and (8, 4, 4) is the first order Reed–Muller
code of length 8. Construction A is primarily a means of
lattice construction and has already been used in [28].

(1) First, choose N∗
a binary vectors a1, . . . , aN∗

a
inside the

Hamming ball BH (0, d/2) centered at the origin 0 and
of radius d/2. These vectors must be as far apart as
possible and must satisfy

d H (ai , c)�d/2, ∀(i, c) ∈ {1, . . . , N∗
a } × C(n, k),

(18)

where d H denotes the Hamming distance.
(2) Second, one-to-one map these vectors to N∗

a ap-
propriately chosen minimum Euclidean norm points
c1, . . . , cN∗

a
located inside V(�) by ci =ai +2z, z ∈ Zn

and choose codebook C as C = {0, c1, . . . , cN∗
a
}.

The use of deep holes for code design is more appropriate
for low rate applications, since the allowed transmission rate
is constrained by (1/n)log2(N∗

h + 1) as already mentioned
previously. Construction A may allow transmission at larger
rates, but at the expense of lower reliability since inter-cosets
minimum distance dmin is upper bounded as in (17). It is
then more appropriate for applications where the target rate
is preferably as high as possible and some (small) decoding
error is tolerated at the receiver.

Discussion: Before we describe the end-to-end system de-
sign using the proposed lattice codebooks, we pause to dis-
cuss two important implications that follow from the specific
choice of the constellation as specified previously. We insist
on these implications as they reflect the specific structure
of the employed codes and, also, explain the careful (and
somewhat tedious) nature of the design that will follow in
Section 4.2.

Consequence 1: The shaped constellations described
so far are non-conventional in the sense that, spatially,
their elements are spread in a way that makes map-
ping (for inputs labeling) not straightforward. To see
that, observe, for example, that the ternary-constellation
C(A2) = {0, h1(A2), h2(A2)} shown in Fig. 5 and ob-
tained with the relevant holes h1(A2) = (− 2

3 , 1
3 , 1

3 ) and
h2(A2) = (− 1

3 , − 1
3 , 2

3 ) of hexagonal lattice A2 forms an
equilateral triangle, geometrically, since ‖h1(A2) − 0‖ =
‖h2(A2) − 0‖ = ‖h1(A2) − h2(A2)‖ = rcov(A2) =

√
2
3 . This

specific spatial localization of the elements of the constella-
tion preclude the use of standard input labeling techniques
such as Gray labeling [36].

Consequence 2: For the problem of codebook selection
addressed above, we shall see the ensemble of coset leaders
as the elements of a shaped constellation. When such a con-
stellation is uncoded, the allowed transmission rate is deter-
mined by its size, i.e., the number of its elements. Hence, one
important consequence is that the investigation (for compar-
ison reasons) of the effects of coding (brought by channel
coding, CC) and shaping (brought by source coding, SC)
allowed by the use of different constellations is not straight-
forward, since different constellations (with different sizes)
correspond to different rates and different rates correspond
to different importance for the SC and CC [28,37]. More
specifically, at a given SNR value, SC and CC unequally
contribute to the “total” gain (i.e., the observed BER reduc-
tion). Some illustrative examples are given in Section 4.2.
This means that when two schemes with different constella-
tions yield different error probabilities, it might not be clear
to interpret the improvement brought by one scheme over
the other as being due to source coding enhancement or, in-
stead, to channel coding enhancement. Hence, in order to
isolate (for comparison reasons) the individual effects of SC
and CC on the (per-dimension) BER achieved with differ-
ent schemes, one has to operate at the same bit rate (i.e., the
same spectral efficiency, when bandwidth is normalized to
1Hz).

In the following section, for the design of an end-to-end
DPC-based system that operates at a given target rate, we
rely on channel coding which introduces redundancy in the
binary stream before mapping. This allows us to compare
the shaping and coding capabilities of different systems that
use different constellations and discuss their efficiency. For
channel coding, i.e., rate matching, we use the standard par-
allel concatenated codes (PCCs [38]) listed in Table 3 and
also simple repetition coding.

4.2. Bit error rate analysis

In this section, we illustrate the use of some of the finite-
dimensional shaped constellations described in Section 4.1
by evaluating and comparing the resulting BERs against the
per-dimension per-bit SNR = 10 log10(G(�)V (�)2/n/RN ),
where R stands for the operating rate. We consider two rate
regimes: low rate transmission using relevant deep holes and
higher rate transmission using Construction A. Our aim is to
investigate the effect of shaping and coding on BER from a
practical point-of-view. Though non-general (since carried
out mostly through examples), analysis in this section shows
how much (or little) lattice-based constellations can improve
upon scalar schemes in terms of both shaping and coding, in
practice. However, for that, we need careful system design
(including design of appropriate mapper/de-mapper func-
tions, vector quantizer (VQ) and coding). Though somewhat
tedious, this careful design reflects the specific structure of
the employed codes for each of the considered constella-
tions.
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Table 2. Labeling for transmission using the constellations C′(A2) and C(D4).

Labeling for the constellation C′(A2) Labeling for the constellation C(D4)

(0, 0) 000 (h1(A2), h1(A2)) 110 0 00
(0, h1(A2)) 001 (h1(A2), h2(A2)) 111 h1(D4) 11
(0, h2(A2)) 101 (h2(A2), 0) 010 h2(D4) 01
(h1(A2), 0) 100 (h2(A2), h2(A2)) 011 h3(D4) 10

4.2.1. Design of mapper/de-mapper functions
Consider the constellation C(�) = {0} ∪ H∗(�) formed

by the origin and relevant deep holes of lattice �. We shall
use such constellation to design end-to-end DPC schemes
in Section 4.2.2. Let �(·) be a mapper function which one-
to-one associates each input binary sequence of n bits with
an element of this constellation; and �(·) the inverse de-
mapper function. Input labeling is not straightforward as we
mentioned previously. Two examples are discussed below
for some lattices taken from Table 1.

Hexagonal lattice A2: We consider the hexagonal lattice
A2 that we considered previously, in the example shown in
Fig. 1. It has dimension n = 2, normalized second moment
G(A2)=5/36

√
3 and volume V (A2)=√

3 [23]. The uncoded
but shaped constellation obtained with its relevant deep holes
C(A2)={0, h1(A2), h1(A2)} is shown in Fig. 5. For mapping,
we group the input binary flow into binary sequences of 3
bits each (and not 2 bits, see footnote 2 for explanation).
Then, to form the cosets, we map each 3-bit binary sequence
onto an appropriately chosen pair of symbols from C(A2).2

We denote by C′(A2) the “two symbols-by-two symbols” set

C′(A2) = {(0, 0), (0, h1(A2)), (0, h2(A2)), (h1(A2), 0),

(h1(A2), h1(A2)), (h1(A2), h2(A2)),

(h2(A2), 0), (h2(A2), h2(A2))} (19)

and loosely use the term “constellation” to refer to it (even
though it is just a way of grouping the elements of con-
stellation C(A2)). Then, mapping is performed by using the
bits-to-symbols assignment shown in Table 2.

Checkerboard lattice D4: The checkerboard lattice D4
considered here is generated by the generator matrix X(D4)
given by [23]

X(D4) =

⎛
⎜⎝

−1 −1 0 0
1 −1 0 0
0 1 −1 0
0 0 1 −1

⎞
⎟⎠ . (20)

2 Note that grouping the input bits by pairs and not by triplets (and
hence directly using C(A2) instead of C′(A2)) would cause mapping to
be drastically poor. To see this, observe that in this case, one would have
two different symbols (e.g., 01 and 11) constantly assigned to the same
point from the constellation, thus causing larger error rates. One way to
solve this problem is to group symbols by pairs as in (19). However, note
that as sending one symbol from C′(A2) amounts to send two symbols
from C(A2), rate is divided by 2 in the following.

It has dimension n = 4, second moment G(D4) =
( 1

12 + 1/(2n(n + 1)))/2(2/n) = 0.0766, volume V (D4) =√
det((D4)T (D4)) = 2, Nh = 16. Typical deep holes

are (± 1
2 , ± 1

2 , ± 1
2 , ± 1

2 ) and (0, 0, 0, ±1) [23]. By apply-
ing (16), we obtain |H∗(D4)| = 3. A possible choice for
the relevant deep holes of D4 is: h1(D4) = ( 1

2 , 1
2 , 1

2 , 1
2 ),

h2(D4) = ( 1
2 , 1

2 , 1
2 , − 1

2 ) and h3(D4) = (0, 0, 0, 1). Thus, we
get the quaternary uncoded shaped constellation

C(D4) = {0, h1(D4), h2(D4), h3(D4)}, (21)

which allows a transmission rate of log2(4)/4=0.5bit/ dim.
Mapping is obtained by using the bits-to-symbols assign-
ment shown in Table 2 for constellation C(D4).

4.2.2. End-to-end designed systems (based on lattices
A2 and D4)

We now describe two end-to-end designed systems based
on lattices A2 and D4 and compare their performance (in
terms of shaping and coding capabilities) relative to the
same baseline scalar scheme. We choose two values for
the target operating (per-dimension) transmission rate: R1 =
0.5bit/ dim and R2 = 0.25bit/ dim.

Hexagonal lattice A2: The uncoded constellation given
by (19) gives a rate of (log2(|C′(A2)|)/2)/2 = 0.75bit/ dim
(note that the additional normalization per 2 is here to obtain
the bit rate per channel use). For target rate R1=0.5bit/ dim,
we use a parallel concatenated code of rate Rch = 2

3 and
memory 2 before the shaping code (i.e., the two-dimensional
vector quantizer based on lattice A2). The constituent convo-
lutional codes are taken in their recursive systematic form.
Their generator polynomials, expressed in octal form, are
(g(1)

1 = 0078, g(2)
1 = 0018, g(3)

1 = 0048) and (g(1)
2 = 0028,

g(2)
2 = 0058, g(3)

2 = 0078). For target rate R2 = 0.25bit/ dim,

we use a rate- 1
3 , memory �=2 PCC, with generator polyno-

mials g(1) = 0058 and g(2) = g(3) = 0078. The interleaver is
generated pseudo-randomly and has size L =10 000. Coding
parameters of the used PCCs together with their important
parameters are summarized in Table 3 .

Next, we describe the end-to-end system design. The
turbo-encoded L bits are grouped into sequences of 3-bits
each, which are then mapped onto the corresponding (pairs
of) symbols from C′(A2) using the mapper shown in
Table 2. We denote by P the (per-dimension) output power
of the signal x to be transmitted in the channel. After adding
the scaled interference �s and a uniformly distributed dither
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Table 3. Coding parameters for coded constellations C(Z), C′(A2) and C(D4) for rates R1 = 0.5bit/ dim and R2 = 0.25 bit/ dim.

Rate R1 = 0.5bit/ dim Rate R2 = 0.25bit/ dim

Rch = 1/2, memory � = 2 Rch = 1/4, memory � = 2

Integer lattice Z PCC PCC g(1) = 0058, g(2) = 0078

g(1) = 0058, g(2) = 0058 g(3) = 0078, g(4) = 0078

Rch = 2/3, memory � = 2 Rch = 1/3, memory � = 2

Hexagonal lattice A2 PCC g(1)
1 = 0078, g(2)

1 = 0018, g(3)
1 = 0048 PCC g(1) = 0058

g(1)
2 = 0028, g(2)

2 = 0058, g(3)
2 = 0078 g(2) = g(3) = 0078

Checkerboard latticeD4 Uncoded PCC Rch = 1/2, memory � = 2

g(1) = 0058, g(2) = 0078

Rch = 1/2, memory � = 4

g(1) = 00238, g(2) = 00358

Rch = 1/2, memory � = 8

g(1) = 05618, g(2) = 07538

signal k, the two-dimensional modulo encoder (VQ) first
determines3 the nearest point of the scaled lattice �(A2)A2
to the vector (c + k − �s) (i.e., Q�(A2)A2 (c + k − �s))

where �(A2) =
√

P/G(A2)V (A2)2/n , and then outputs the
quantization error x = (c + k − �s)mod�(A2)A2 which is
transmitted over the channel.

In the channel, transmission is corrupted by both
zero-mean white Gaussian noise with double-sided noise
power spectral density N = N0/2 and interference s (with
per-dimension power Q). For the simulations, the in-
flation parameter � is set to � = P/(P + N ) [1] and
N0 is chosen such that N = P/(2Ri Eb/N0), where
i = 1, 2 and R1 = 1

2 (log2(|C′(A2)|)/2) 2
3 = 0.5bit/ dim and

R2 = 1
2 (log2(|C′(A2)|)/2) 1

3 = 0.25bit/ dim.
At the receiver, MMSE �-scaling is applied and the

dither k is removed; the two-dimensional modulo decoder
Q�(A2)A2 (·) is applied and the transmitted symbol sequence
is detected. Then, de-mapping is performed and the binary
output is passed into a BCJR a posteriori probability de-
coder [39]. The BCJR uses the APP values and successively
refines the estimates of the information bits (the curves in
Figs. 6–8 are obtained after five iterations).

Checkerboard lattice D4: The uncoded constellation
C(D4) given by (21) allows a rate of log2(4)/4=0.5bit/ dim.
Thus, for our target operating rate R1 = 0.5bit/ dim, no
additional CC of the information bits is required; we sim-
ply use the uncoded constellation C(D4) as is. We group
information bits by pairs and then map them to the cor-
responding cosets using the mapping in Table 2. For our
target operating rate R2 = 0.25bit/ dim, however, we in-
corporate a rate 1

2 memory-2 PCC with generator polyno-

3 We use the standard low-complexity VQ algorithms provided in [23,
Chapter 20.2].
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Fig. 6. BER vs. the per-bit SNR = 10 log10(Eb/N0). Operating
rate R1 = 0.5 bit/ dim.

mials g(1) = 0058 and g(2) = 0078 before the shaping code
(i.e., the four-dimensional VQ based on lattice D4). The
rest of the transmission scheme follows the same steps as
for lattice A2 (i.e., lattice scaling, interference and noise
addition, dither removal, modulo-reduction, de-mapping
and the BCJR module).

4.2.3. Simulation results and discussion
We consider the use of the constellation C(Z) for DPC

as a baseline relative to which the above two end-to-end
designed systems are compared. With the integer lattice Z,
the target operating rate R1 = 0.5bit/ dim is obtained using
PCC of rate Rch = 1

2 ; and the target operating rate R2 =
0.25bit/ dim is obtained using either PCC of rate Rch = 1

4
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Fig. 7. BER vs. the per-bit SNR = 10 log10(Eb/N0). Operating
rate R2 = 0.25 bit/ dim.
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or simple repetition coding with repetition factor 1/Rrep =4
(details of memory length and generator polynomials for
PCCs are given in Table 3). Results are shown in Figs. 6–8.
We observe that:

1. At small SNR, the use of the (here coded) shaped con-
stellation C′(A2) results in some BER reduction (w.r.t.
that of the binary constellation C(Z)). Further improve-
ment is obtained by use of the quaternary shaped constel-
lation C(D4) even when the latter is uncoded (see Fig. 6
for the target rate R1 = 0.5bit/ dim). For instance, that
uncoded constellation C(D4) improves upon coded con-
stellations illustrates the fact that coding has only negli-
gible effect on BER when the SNR is small. Moreover,

note that the used lattices have second moments such that
G(D4) = 13/120

√
2 < G(A2) = 5/36

√
3 < G(Zn) = 1

12 .
Improvement in BER due to lattice coding for DPC at
small SNR is mainly determined by how small is the sec-
ond moment of the used lattice – i.e., by how large is
its shaping capability; and reflects lattice efficiency as a
VQ (recall that �s(�) = 1/12G(�)). Furthermore, we see
from Fig. 7 that the latter observation is also valid for tar-
get rate R2 = 0.25bit/ dim, which illustrates that it is the
effect of shaping that most matters at low SNR indepen-
dently of the operating rate. This observation is consistent
with prior theoretical work in [10,37].

2. At high SNR, however, the improvement brought by
normalized second moment (i.e., the increase of (per-
dimension) shaping gain from 0.000 dB (for Z to 0.028
for A2, and to 0.061 for lattice D4) does not counterbal-
ance the loss in coding (incurred by using less powerful
error correction channel codes). This explains why the
BER curve corresponding to the integer lattice Z falls
below those corresponding to lattices A2 and D4 in
Fig. 6 for rate target R1 =0.5bit/ dim. Thus, in this SNR
range, it is the effect of coding that more influences BER
in lattice coding for DPC (in particular, observe that the
effect of memory for the rate- 1

2 PCC in Fig. 7 is observed
only above an SNR of about 8dB).

3. At medium SNR (typically, 2–8dB), the effect of shap-
ing is still visible but is very small. On the other hand,
simple repetition codes outperform powerful PCC (see
Fig. 7) in this SNR range. This is also visible from Fig. 8
where repetition coding is compared to turbo coding for
operating rate R3 = 0.125bit/ dim.

Remarks: We close this section by the following two re-
marks. Firstly, we note that the above observation as for the
effect of shaping on BER should not be considered as being
non-consistent with that in Section 4 relative to the increase
in the transmission rate due to lattice coding which was ob-
served especially at high SNR. Intuitively, this can be in-
terpreted as follows. For fixed per-dimension power P , the
effect of shaping can be viewed as an increase in lattice vol-
ume (in fact, in V (�)2/n). Then, for the same information to
be transmitted (i.e., at fixed rate), enlarging lattice Voronoi
cell is beneficial especially when channel noise is strong
(and hence can cause signal to fall outside the Voronoi cell if
this cell were small). Alternatively, when noise is weak (and
hence even a small Voronoi cell suffices to keep inside the
input signal which has power P per-dimension), enlarging
this cell may be better exploited by sending more signals,
each with per-dimension power P , and each occupying a
portion of this cell.

Secondly, we note that even though simulations and dis-
cussions above were carried out assuming the same bit rate
(per-dimension), this was adopted for reasons of compari-
son of the effects of shaping and coding only; and one can
definitely compare BERs provided by different schemes at
different rates – just as one can compare BERs provided by



Author's personal copy

A. Zaidi, P. Duhamel / Int. J. Electron. Commun. (AEÜ) 64 (2010) 450–464 461

different constellations with different sizes at given per-bit
SNR in classical communication (see for example compari-
son of M-ary constellations in terms of BER in [36, p. 311]).
Of course, it is not possible to discriminate the individual
effects of shaping and coding on BER in this latter case.
But, this may turn out to be useful in practice, as it will be
explained in Section 5.

5. Practical usefulness – interaction
shaping/coding

In this section, we briefly discuss the usefulness of the
approach and results presented so far in practice, for real im-
plementations of DPC, and, also, to illustrate the interaction
between shaping and coding at finite-dimensional lattice-
coding for DPC.

5.1. Practical usefulness

From an application-oriented point-of-view, the following
two questions are (among others) of special interest in the
design of real lattice-based DPC implementations.

(1) Given a minimum target per-dimension rate R and
a target operating per-dimension SNR (i.e., a power-
distortion couple (P, N )), select a lattice � of dimen-
sionality n and a lattice code C(�) such that error
probability is as small as possible.

(2) Given a target operating per-dimension SNR and a max-
imum tolerated probability of error at this SNR, select
a lattice � of dimensionality n and a lattice code C(�)
such that the allowed transmission rate is as large as
possible.

Insights to solve the first problem can be obtained through
comparison of the BER obtained by the use of different con-
stellations which all allow the same target per-dimension
rate (rate matching can be utilized to ensure the same op-
erating rate, as described in Section 4). For example, we
see from the numerical results in Section 4.2.3 that at small
SNR lattices with large shaping gain (i.e., high dimension)
are more appropriate (codebook may then be built using
relevant deep holes). At medium SNR, repetition coding is
efficient. At high SNR, appropriate solutions are generally
rate-dependent but, from the previous examples, it appears
that, more than the choice of the lattice itself, it is the ef-
ficiency of the channel code used for error correction that
most determines system performance (see Figs. 6–8).

Insights to solve the second problem can be obtained
through comparison of the BERs obtained by the use of
different constellations which, possibly, allow different
rates. To illustrate this approach, Fig. 9 displays BER
curves relative to different rates obtained with the use of
different constellations. The two solid curves correspond
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Fig. 9. BER against the per-dimension per-bit
SNR = 10 log10(Eb/N0) for uncoded-constellations for MMSE-
DPC. The curves correspond to lattices E7 (asterisk) and E8
(diamond). The codebook C is obtained using relevant lattice
deep holes (solid) and Construction A (dashed).

to rates 1
7 bit/ dim and 1

8 bit/ dim obtained with the use of
relevant deep holes-based uncoded constellations C(E7) =
{0, ( 1

4
6
, − 3
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2
)} and C(E8) = {0, (− 1

8 , 1
8

6
, 7

8 )}, respectively.
For the simplicity of the VQ process, the two lattices E7

and E8 are constructed as E7 = A7 ∪ ((− 1
2

4
, 1

2
4
) + A7).

The two dashed curves correspond to rates which are two
times larger, 2

7 bit/ dim and 1
4 bit/ dim, and correspond to

the use of Construction A to build lattices E7 and E8 as
in the example in Section 4.1.2. The displayed numerical
results suggest that Construction A may be a better choice
(w.r.t. deep holes) for code design for DPC when the target
rate is relatively important.

5.2. Interaction shaping–coding

First of all, we note that when used in conjunction with
good (standard) error correction codes, lattices may provide
efficient implementations for DPC, by putting together the
afforded shaping efficiency and the coding efficiency pro-
vided by the employed channel code. From a theoretical
point-of-view, it is even possible to take advantage from full
shaping gain at small SNR along with full coding gain at
high SNR (e.g., by means of nested codes as in [10]). From
a practical point-of-view, however, one major difficulty in
the design of such schemes is due to the interaction between
shaping and coding at finite-dimensional lattice coding, by
opposition to the infinite-dimensional case for which shap-
ing and coding are decoupled [10].

At finite-dimensional lattice coding, interaction between
shaping and coding can be illustrated as follows. Since the
shaping gain provided by a lattice � depends only on its nor-
malized second moment G(�), the improvement in the per-
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Fig. 10. Interaction shaping/coding. Scaling lattices so as to have
the same volume causes coding loss at high SNR (by diminishing
the inter-cosets minimum-distance dmin). Meanwhile, only negli-
gible improvement in shaping efficiency is observed at small SNR.

dimension per-bit SNR=10 log10G(�)V (�)2/n/RN ) due to
shaping can be brought out4 by simply scaling the lattices
so as to have the same volume (e.g., that, V (Z), of the cubic
lattice Zn). The solid curves shown in Fig. 10 are obtained
by having lattices Z (asterisk), A2 (circle) and D4 (diamond)
being scaled so as to have the same volume, V (Z)=1. BER
is measured for a target rate of R = 0.25bit/ dim. For com-
parison reasons, we also reproduced the curves (dashed) ob-
tained previously in Section 4 with the same lattices being
non-scaled, for the same target rate. We observe that scal-
ing in order to make the most of shaping at small SNR not
only provides only negligible improvement at small SNR
(cf. zoom in Fig. 10), but, in addition, causes coding effi-
ciency to diminish at high SNR. We note that, that the im-
provement due to shaping is negligible at small SNR is con-
sistent with the fact that the theoretical ultimate gain due to
shaping, which is obtained when the employed lattice has
an infinite dimension, is only 	e/6, i.e., 0.255bit/dim. How-
ever, that the BER is larger (w.r.t. no scaling) at high SNR
illustrates the interaction that does exist between shaping
and coding. For instance, at high SNR, the increase in the
shaping capability does not counterbalance the loss caused
by the decrease (due to scaling) in the inter-cosets mini-
mum distance dmin (which translates to a coding loss). More
specifically, scaling a lattice � with scale factor � in such a
way that V (��)2/n = V (Zn)2/n causes the inter-coset mini-
mum distance dmin todecrease to �dmin where

� = V (Z)

V (�)1/n . (22)

Informally speaking, this brings the different cosets closer
to each other and, hence, increases error probability. When

4 Note that a similar approach has been used in [40] in the context of
multidimensional constellations for channels with no CSI.

n −→ +∞, � tends to unity and the decrease in the min-
imum distance (and thereby in coding efficiency) goes to
zero. This is consistent with the fact that, asymptotically in
dimension n of the employed lattice, shaping and coding are
decoupled.

6. Conclusion

In this paper, we investigated how low-complexity finite-
dimensional lattices can be tuned in practice for the prob-
lem of dirty paper coding. We evaluated numerically the
performance allowed by some lattice-based carefully de-
signed end-to-end systems. Rate calculation and bit error rate
computation are carried out based on Monte-Carlo integra-
tion and simulation techniques. Though mostly qualitative,
analysis in this paper illustrates how much (or little) finite-
dimensional lattice coding can improve upon scalar schemes.
Meanwhile, the problem of codebook selection is investi-
gated through some illustrative examples using the appeal-
ing algebraic structure of the lattice. Numerical simulations
for end-to-end designed systems allowed us to investigate
the effects of shaping and coding (across the per-dimension
per-bit signal-to-noise ratio). Finally, we illustrated the in-
teraction between shaping and coding at finite-dimensional
lattice coding for DPC and discussed the usefulness of the
provided results from a practical point-of-view, in real DPC
implementations.
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