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We consider a state-dependent three-terminal full-duplex relay channel with the channel states noncausally available at only
the source, that is, neither at the relay nor at the destination. This model has application to cooperation over certain wireless
channels with asymmetric cognition capabilities and cognitive interference relay channels. We establish lower bounds on the
channel capacity for both discrete memoryless (DM) and Gaussian cases. For the DM case, the coding scheme for the lower bound
uses techniques of rate-splitting at the source, decode-and-forward (DF) relaying, and a Gel’fand-Pinsker-like binning scheme.
In this coding scheme, the relay decodes only partially the information sent by the source. Due to the rate-splitting, this lower
bound is better than the one obtained by assuming that the relay decodes all the information from the source, that is, full-DF.
For the Gaussian case, we consider channel models in which each of the relay node and the destination node experiences on its
link an additive Gaussian outside interference. We first focus on the case in which the links to the relay and to the destination
are corrupted by the same interference; and then we focus on the case of independent interferences. We also discuss a model with
correlated interferences. For each of the first two models, we establish a lower bound on the channel capacity. The coding schemes
for the lower bounds use techniques of dirty paper coding or carbon copying onto dirty paper, interference reduction at the source
and decode-and-forward relaying. The results reveal that, by opposition to carbon copying onto dirty paper and its root Costa’s
initial dirty paper coding (DPC), it may be beneficial in our setup that the informed source uses a part of its power to partially
cancel the effect of the interference so that the uninformed relay benefits from this cancellation, and so the source benefits in turn.

Copyright © 2009 A. Zaidi and L. Vandendorpe. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. Introduction

In this work, we consider a state-dependent three-terminal
full-duplex relay channel (RC) in which the outputs Y2 at the
relay and Y3 at the destination are controlled by the channel
inputs X1 from the source and X2 from the relay, along
with a random parameter S that represents the channel state,
through a given conditional probability WY2,Y3|X1,X2,S. The
channel state S is generated according to a given memoryless
probability law QS, and is known, in a noncausal manner, to
only the source—for instance, the relay and the destination
do not know the channel states. The considered channel
model is shown in Figure 1. In this model, the source wishes
to transmit a messageW to the destination through the state-
dependent RC in n channel uses, with the help of the relay.
The destination estimates the message sent by the source
from the received channel output. In this work, we study

the capacity of this communication model. We refer to this
model as RC with informed source.

1.1. Background and Related Work. Channels whose proba-
bilistic input-output relation depends on random parame-
ters, or channel states, have spurred much interest and can
model a large variety of problems, each related to some
physical situation of interest. The random states sequence
may be known in a causal or noncausal manner. For single
user models, the concept of channel states available at only
the transmitter dates back to Shannon [1] for the causal
channel state case, and to Gel’fand and Pinsker [2] for
the noncausal channel state case. In [3], Heegard and El
Gamal study a model in which the state sequence is known
noncausally to only the encoder or to only the decoder. They
also derive achievable rates for the case in which partial
channel state information (CSI) is given at varying rates
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Figure 1: Relay channel with state information Sn available noncausally at only the source.

to both the encoder and the decoder. In [4], Costa studies
an additive Gaussian channel with additive Gaussian state
known at only the encoder, and shows that Gel’fand-Pinsker
coding with a specific auxiliary random variable, widely
known as dirty paper coding (DPC), achieves the channel
capacity. Interestingly, in this case, the DPC removes the
effect of the additive channel state on the capacity as if there
were no channel state present in the model or the channel
state were known to the decoder as well. For a comprehensive
review of state-dependent channels and related work, the
reader may refer to [5].

For multiuser channels, different state-dependent chan-
nel models under different setups are investigated in the
literature. One key element in the study of state-dependent
multiuser channels is whether the parameters controlling the
channel are known to all or only some of the users in the
communication model. For example, the broadcast channel
(BC) with states available at the transmitter is studied in
[6, 7], and the multiaccess channel (MAC) with partial state
information at all encoders and full state information at the
decoder is studied in [8].

In the Gaussian setup, the result on the property that a
known additive state does not affect capacity as long as a full
knowledge of this state is available at the transmitter, which
was originally shown by Costa for a single-user channel,
is shown to continue to hold for a number of multiuser
channels, including the Gaussian BC [6], the Gaussian MAC
[6], the physically degraded relay channel (RC) [9] and
the physically degraded relay broadcast channel (RBC) [10].
For these channels, the key feature in enabling complete
mitigation of the interference is the symmetric availability
of the state at all the encoders. If the state is available at
only some encoders (i.e., in the asymmetric case), complete
mitigation of the interference is difficult to hope for and, in
general, one has to expect some rate penalty due to the lack
of knowledge of the state at the noninformed encoders. For
example, the state-dependent multiaccess channel (MAC)
with only one informed encoder is considered in [11–
17] and the state-dependent relay channel (RC) with only
informed relay is considered in [18, 19]. For all these
models, in the Gaussian case, the informed encoder applies
a slightly generalized DPC (GDPC) [11, 13] in which the
channel input random variable and the channel state random
variable are negatively correlated. Also, in these models, the
uninformed encoders benefit from the GDPC applied by the
informed encoders because the negative correlation between
the codewords at the informed encoders and the channel
state can be interpreted as partial state cancellation. For the
state-dependent MAC with one informed encoder and one

noninformed encoder, and with the former sending both
a common message and a private message and the latter
sending only the common message, the capacity region for
the Gaussian case is obtained by deriving a nontrivial outer
bound that permits to characterize the rate loss due to not
knowing the state at the noninformed encoder [15, 16]. Two
upper bounds that use similar bounding techniques, but
with different proofs, are derived in [17] for another case
of degraded message sets for the state-dependent MAC with
one informed encoder which is obtained by swapping the
roles of the encoders in [15, 16], and in [18, 19] for the
case of state-dependent RC with informed relay. The state-
dependent MAC studied in [17] has some connection with
the model for the RC with informed relay studied in [18, 19],
when considering transmission from the source and the relay
to the destination, that is, the multiaccess part of the relay
channel.

1.2. Motivation. The model shown in Figure 1 may find
application in cooperative information embedding and data
hiding [20–24], fading in time-varying cooperative wireless
channels and interfering signals in interference environ-
ments. The channel state may also model the information
gained by some specific terminals by means of cognition in
certain cognitive systems [25–27]. In this application, one
common assumption, made for example, in [25, 26], is that
some transmitters can know the signals that are sent by some
other transmitters noncausally; and, so, they can then use
that knowledge to increase the system spectral efficiency. The
problem of collaborative signal transmission in presence of
interference and with some cognitive terminals is studied, for
example, in [28] for an interference channel with a cognitive
transmitter or degraded message sets, and in [29] for a state-
dependent cognitive interference channel. Interference relay
channels and relay strategies for relaying in presence of an
outside interference are also studied, for example, in [30–
32]. In the model we study, the source may model a cognitive
radio that cooperates with the relay, as shown in Figure 2.

1.3. Main Contributions. For the discrete-memoryless (DM)
case, we derive a lower bound on the capacity of the general
state-dependent RC with informed source. This lower bound
is obtained by a coding scheme that uses techniques of
rate-splitting at the source, regular encoding sliding-window
decoding [33] for decode-and-forward (DF) relaying [34,
Theorem 4] and a Gel’fand-Pinsker like binning scheme.
In this coding scheme, the relay decodes only partially the
information sent by the source, that is, Partial-DF [35]. By
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Figure 2: Example relay channel with asymmetric cognition
capabilities. Only the source T1 knows the interference from the
competing source T0. The source helps the relay T2 to cancel the
effect of the interference.

specializing this achievability result to the case in which the
relay decodes all the information sent by the source, we
readily obtain a lower bound for the case in which the relay
operates in Full-DF [34].

Furthermore, we also consider memoryless Gaussian
models in which each of the relay node and the destination
node experiences on its link an additive Gaussian outside
interference in addition to additive Gaussian noise. The
interferences are known noncausally to only the source, and
play the role of additive channel states. We first focus on the
model in which the links to the relay and to the destination
are corrupted by the same interference. For this model we
derive a lower bound on the channel capacity, based on a
coding scheme that combines techniques of generalized DPC
[11, 13] and partial decode-and-forward relaying. Then, we
focus on the case of independent interferences. For this case,
we obtain a lower bound on the channel capacity by using
a coding scheme that combines carefully the techniques of
carbon copying onto dirty paper (CC) [36], interference
reduction at the source, and decode-and-forward relaying.
We also discuss a case of correlated interferences.

For the Gaussian model with independent interferences
studied in this paper, we mention that a major difference
from the Gaussian multicast problem studied in [36] is that,
here, one of the two receivers (the relay) also helps the
other receiver (the destination) by relaying the information
intended to it from the source. Also, the carbon copying onto
dirty paper technique that we employ as part of our coding
scheme differs from the CC in [36] in that (i) the codeword
sent by the informed transmitter is (negatively) correlated
with the channel state, and (ii) the noise terms at the two
receivers have different variances. We refer to the employed
CC with negative correlation between the codewords at the
source and the channel state as a generalized carbon copying
onto dirty paper (GCC). We show that our lower bound is
larger than the one that is obtained by a similar combination
of regular CC and decode-and-forward relaying. The allowed
improvement is due to that the proposed GCC improves
upon regular CC through the allowed negative correlation,
just in the same way GDPC improves upon regular DPC.

Finally, we mention that in this work the established
lower bounds are compared to the well-known max-flow
min-cut bound or cut-set bound. In Section 3.2, we will
comment onto why deriving nontrivial upper bounds on the
channel capacity for the present scenario is a challenging
task, and is more involved than for the seemingly similar

informed relay scenario [18, 19] or the related MAC with
asymmetric CSI and degraded message sets [12, 16, 17].

1.4. Outline and Notation. An outline of the remainder of
this paper is as follows. Section 2 describes the commu-
nication model that we consider in this work. Section 3
provides lower bounds on the capacity of the general DM
RC with informed source. Section 4 provides lower bounds
on the capacity of the Gaussian RC with informed source.
This section also contains some discussions as well as some
numerical results for illustration purposes. Finally, Section 5
concludes the paper.

We use the following notations throughout the paper.
Upper case letters, for example, X , are used to denote
random variables; lower case letters, that is, x, are used to
denote realizations of random variables; and calligraphic
letters, that is, X, designate alphabet sets. The probability
distribution of a random variable X is denoted by PX(x).
Sometimes, for convenience, we write it as PX . The short-
hand notation X

j
i indicates a sequence of random variables

(Xi,Xi+1, . . . ,Xj) and x
j
i denotes a particular realization of

a random sequence X
j
i . For convenience the n-vector xn

will occasionally be denoted by the boldface notation x as
well. We use the notation EX[·] to denote the expectation
of random variable X . The set of probability distributions
defined on an alphabet X is denoted by P (X). A probability
distribution of a random variable Y given X is denoted by
PY |X . The Gaussian distribution with mean μ and variance
σ2 is denoted by N (μ, σ2). Finally, throughout the paper, the
logarithm function is to base 2, and the complement to unity
of a scalar u ∈ [0, 1] is denoted by u, that is, u = 1− u.

2. System Model and Definitions

In this section, we formally present our communication
model and the definitions related to it. As shown in Figure 1,
we consider a state-dependent relay channel denoted by
WY2,Y3|X1,X2,S whose outputs Y2 ∈ Y2 and Y3 ∈ Y3 for the
relay and the destination, respectively, are controlled by the
channel inputs X1 ∈ X1 from the source and X2 ∈ X2

from the relay, along with a random state parameter S ∈ S.
It is assumed that the channel state Si at time instant i is
independently drawn from a given distribution QS and the
channel states Sn are noncausally known at the source.

The source wants to transmit a message W to the
destination with the help of the relay, in n channel uses. The
message W is assumed to be uniformly distributed over the
set W = {1, . . . ,M}. The information rate R is defined as
logM/n bits per transmission.

An (M,n) code for the state-dependent relay channel
with informed source consists of an encoding function at the
source

φn1 : {1, . . . ,M} × Sn −→Xn
1 , (1)

a sequence of encoding functions at the relay

φ2,i : Yi−1
2,1 −→X2, (2)
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for i = 1, 2, . . . ,n, and a decoding function at the destination

ψn : Yn
3 −→ {1, . . . ,M}. (3)

Let an (M,n) code be given. The sequences Xn
1 and Xn

2

from the source and the relay, respectively, are transmitted
across a state-dependent relay channel modeled as a memo-
ryless and time invariant channel in the sense that

p
(
y2,i, y3,i | xi1, xi2, sn, yi−1

2 , yi−1
3

)
=WY2,Y3|X1,X2,S

(
y2,i, y3,i | x1,i, x2,i, si

) (4)

for all i = 1, . . . ,n.
The destination estimates the message sent by the source

from the channel output Yn
3 . The average probability of error

is defined as Pne = Pr[ψn(Yn
3 ) /=W].

An (ε,n,R) code for the state-dependent RC with
informed source is an (2nR,n)—code (φn1 ,φn2 ,ψn) having
average probability of error Pne not exceeding ε.

A rate R is said to be achievable if there exists a sequence
of (εn,n,R)—codes with limn→∞εn = 0. The capacity C of
the state-dependent RC with informed source is defined as
the supremum of the set of achievable rates.

The channel is said to be physically degraded if the
conditional distribution WY2,Y3|X1,X2,S factorizes as

WY2,Y3|X1,X2,S =WY2|X1,X2,SWY3|Y2,X2,S. (5)

3. The Discrete Memoryless RC with
Informed Source

In this section, we assume that the alphabets S, X1, X2, Y2,
Y3 in the model are all discrete and finite.

3.1. Lower Bound on Channel Capacity

Definition 1. For given distributions QS and WY2,Y3|X1,X2,S, let
P be the set of joint distributions PS,U ,U1,X1,X2,Y2,Y3 of the form

PS,U ,U1,X1,X2,Y2,Y3 = QSPX2PU|S,X2PU1,X1|U ,S,X2WY2,Y3|X1,X2,S (6)

that satisfy

0 ≤ I(U ;Y2 | X2)− I(U ; S | X2), (7a)

0 ≤ I(U1;Y3 | U ,X2)− I(U1; S | U ,X2), (7b)

0 ≤ I(U ,U1;Y3 | X2)− I(U ,U1; S | X2), (7c)

where U ∈ U and U1 ∈ U1 are auxiliary random variables
with

|U| ≤ |S||X1||X2| + 2, (8a)

|U1| ≤ (|S||X1||X2| + 2)|S||X1||X2| + 1, (8b)

respectively.

The following theorem provides a lower bound on the
capacity of the state-dependent DM RC with informed
source.

Theorem 1. The capacity of the state-dependent DM RC with
informed source is lower-bounded by

R = max min{I(U ;Y2 | X2) + I(U1;Y3 | U ,X2)

− I(U ,U1; S | X2),

I(U ;Y2 | X2)− I(U ; S | X2)

+ I(U ,U1;Y3 | X2)− I(U ,U1; S | X2),

I(U ,U1,X2;Y3)−I(U ,U1; S | X2)},

(9)

where the maximization is over all probability distributions
PS,U ,U1,X1,X2,Y2,Y3 ∈ P .

Proof of Theorem 1. A formal proof of Theorem 1 with com-
plete error analysis is given in Appendix A. We now give a
description of a random coding scheme which we use to
obtain the lower bound given in Theorem 1. This coding
scheme is based on a combination of the techniques of rate-
splitting [37], regular-encoding sliding-window decoding for
DF [33], and a variation of Gel’fand-Pinsker binning.

We split the message W to be transmitted into two
independent parts,W = (Wr ,Wd), whereWr is sent through
the relay at rate Rr and Wd is sent directly to the destination
at rate Rd. The total rate is then R = Rr + Rd. Transmission
is performed over B + 1 blocks, each of length n. During
each of the first B blocks, the source encodes a message
wi = (wr,i,wd,i) and sends it over the channel, where wr,i ∈
[1, 2nRr ],wd,i ∈ [1, 2nRd ] and i = 1, . . . ,B denotes the index of
the block. During the last block, the source sends wr,B+1 = 1
and some wd,B+1 ∈ [1, 2nRd ]. For fixed n, the average rate
Rd + Rr(B/(B + 1)) over B + 1 blocks approaches R as B →
+∞.

3.1.1. Codebook Generation. Fix a measure PS,U ,U1,X1,X2,Y2,Y3

satisfying (6). Fix ε > 0 and let

J = 2n[I(U ;S|X2)+2ε] J1 = 2n[I(U1;S|U ,X2)+2ε]

M = 2n[Rr−4ε] M1 = 2n[Rd−6ε].
(10)

We generate two statistically independent codebooks
(codebooks 1 and 2) by following the steps outlined below
twice. We will use these codebooks for blocks with odd and
even indices, respectively.

(1) At the relay, we generate M independent and
identically distributed (i.i.d.) codewords {x2(w′r)} indexed by
w′r = 1, . . . ,M, each with i.i.d. components drawn according
to PX2 .

(2) For each x2(w′r), we generate a collection of JM i.i.d.
auxiliary codewords {u(w′r ,wr , j)} at the source, indexed by
wr = 1, . . . ,M, j = 1, . . . , J . Each codeword u(w′r ,wr , j)
is with i.i.d. components given x2(w′r) drawn according to
PU|X2 . For notational convenience, we sometimes denote
u(w′r ,wr , j) as uw′r ,wr , j . For the collection {uw′r ,wr , j} of aux-
iliary codewords for given x2(w′r), wr indexes bins and j
indexes sequences within a particular bin.
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Table 1: Regular encoding for the state-dependent RC with informed source with rate-splitting. At the beginning of block i, the
relay sends x2(wr,i−1) and the source sends a vector x1(wr,i−1, wr,i, wd,i) with i.i.d. components given x2(wr,i−1), u(wr,i−1, wr,i, j�[i]),
u1wd,i ,j

�
1 [i](u(wr,i−1, wr,i, j�[i])) and s[i], drawn according to the marginal PX1|X2,U,U1,S.

Block 1 Block 2 Block 3 Block 4

Relay codewords x2(1) x2(wr,1) x2(wr,2) x2(wr,3)

Source codewords

u(1,wr,1, j�[1]) u(wr,1,wr,2, j�[2]) u(wr,2,wr,3, j�[3]) u(wr,3, 1, j�[4])

u1wd,1 , j�1 [1](u(1,wr,1, j�[1])) u1wd,2 , j�1 [2](u(wr,1,wr,2, j�[2])) u1wd,3 , j�1 [3](u(wr,2,wr,3, j�[3])) u1wd,4 , j�1 [4](u(wr,3, 1, j�[4]))

x1(1,wr,1,wd,1) x1(wr,1,wr,2,wd,2) x1(wr,2,wr,3,wd,3) x1(wr,3, 1,wd,4)

(3) For each x2(w′r), for each uw′r ,wr , j , we generate
a collection of J1M1 i.i.d. codewords {u1wd , j1 (uw′r ,wr , j)} at
the source, indexed by wd = 1, . . . ,M1, j1 = 1, . . . , J1.
Each codeword u1wd , j1 (uw′r ,wr , j) is with i.i.d. components
given (x2(w′r), uw′r ,wr , j) drawn according to PU1|U ,X2 . For the
collection of auxiliary codewords {u1wd , j1 (uw′r ,wr , j)} for given
uw′r ,wr , j , wd indexes bins and j1 indexes sequences within a
particular bin.

3.1.2. Encoding. The encoders at the source and the relay
encode messages using codebook 1 for blocks with odd
indices, and codebook 2 for blocks with even indices. This
is done because some of the decoding steps are performed
jointly over two adjacent blocks, and so having independent
codebooks makes the error events corresponding to these
blocks independent and their probabilities easier to evaluate.

We denote by (wr,k,wd,k) the message pair to be sent from
the source node at the beginning of block k = 1, . . . ,B +
1. We pick up the story in block i − 1, i ∈ {0, . . . ,B}.
First, let us assume that the relay has decoded correctly
message wr,i−1 and the destination has decoded correctly
both messages wr,i−2 and wd,i−2, at the end of block i − 1.
We will show that our code construction allows the relay to
decode correctly message wr,i and the destination to decode
correctly both messages wr,i−1 and wd,i−1 at the end of block i
(with a probability of error ≤ ε). Thus, the information state
(wr,i−1,wd,i−1) propagates forward and a recursive calculation
of the probability of error can be made, yielding a probability
of error ≤ (B + 1)ε.

Continuing with the strategy, let s[i] and (wr,i,wd,i) be
the state sequence in block i and the new message pair to be
sent at the beginning block i, respectively. At the beginning
of block i the relay knows wr,i−1 and sends x2(wr,i−1). The
source looks in the bin indexed by wr,i for the smallest j ∈
{1, . . . , J} such that uwr,i−1,wr,i , j and s[i] are jointly typical given
x2(wr,i−1). Denote this j by j�[i] = j(s[i],wr,i−1,wr,i). If such
j does not exist, or if the observed state is not typical, an error
is declared and j�[i] is set to J . Next, the source looks for
the smallest j1 ∈ {1, . . . , J1} such that u1wd,i, j1 (uwr,i−1,wr,i , j�[i])
and s[i] are jointly typical given x2(wr,i−1) and uwr,i−1,wr,i , j�[i].
Denote this j1 by j�1 [i] = j1(s[i],wr,i−1,wr,i,wd,i). If such
j1 does not exist, an error is declared and j�1 [i] is set
to J1. The source then sends a vector x1(wr,i−1,wr,i,wd,i)
which has i.i.d. components conditionally given x2(wr,i−1),
uwr,i−1,wr,i , j�[i], u1wd,i, j�1 [i](uwr,i−1,wr,i, j�[i]), s[i], drawn according
to the marginal PX1|X2,U ,U1,S induced by the distribution (6).

For convenience we list the codewords at the source and
the relay that are used for transmission in the first four blocks
in Table 1 .

3.1.3. Decoding. Decoding is based on a combination of joint
typicality and sliding-window. The decoding procedures at
the end of block i are as follows.

(1) The relay knows wr,i−1 and declares that ŵr,i is sent
if there is a unique ŵr,i ∈ {1, . . . ,M} such that uwr,i−1,ŵr,i , j

is jointly typical with y2[i] given x2(wr,i−1) for some j ∈
{1, . . . , J}, where y2[i] denotes the output sequence at the
relay in block i. One can show that the decoding error in this
step is small for sufficiently large n if

Rr ≤ I(U ;Y2 | X2)− I(U ; S | X2). (11)

(2) The destination knows wr,i−2 and decodes wr,i−1 and
wd,i−1 based on the information received in block i − 1 and
block i. It declares that the pair (ŵr,i−1, ŵd,i−1) is sent if
there is a unique triple (ŵr,i−1, ĵ, ŵd,i−1) such that x2(wr,i−2),
uwr,i−2,ŵr,i−1, ĵ , u1ŵd,i−1, j1 (uwr,i−2,ŵr,i−1, ĵ), y3[i−1] are jointly typical
and x2(ŵr,i−1) is jointly typical with y3[i]. One can show that
the decoding error in this step is small for sufficiently large n
if

Rd ≤ I(U1;Y3 | U ,X2)− I(U1; S | U ,X2),

Rd ≤ I(U ,U1;Y3 | X2)− I(U ,U1; S | X2),

Rr + Rd ≤ I(U ,U1,X2;Y3)− I(U ,U1; S | X2).

(12)

The analysis of the probability of error of this scheme,
the details about how (9) is obtained from (11) and (12) as
well as the proof that the rate (9) is not altered if the sizes of
the alphabets of the auxiliary random variables U and U1 are
restricted as in (8a), and ,(8b), are given in Appendix A.

The rate in Theorem 1 requires the relay to decode
only one part of the message sent by the source. It readily
specializes to the case in which the relay decodes the message
sent by the source fully, that is, full-DF. This can be obtained
by sending only the message Wr in the above coding scheme,
that is, Rd = 0. The result is stated in the following corollary.

Corollary 2. The capacity of the state-dependent DM RC with
informed source is lower-bounded by

R = max min{I(U ;Y2 | X2)− I(U ; S | X2),

I(U ,X2;Y3)−I(U ; S | X2)},
(13)
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where the maximization is over all probability distributions of
the form

PS,U ,X1,X2,Y2,Y3 = QSPX2PU ,X1|S,X2WY2,Y3|X1,X2,S, (14)

and U ∈U is an auxiliary random variable with

|U| ≤ |S||X1||X2| + 1. (15)

The formal proof of Corollary 2 is similar to that of
Theorem 1 and, hence, it is omitted for brevity.

We close this section by noting that, here, we focused on
the case in which the relay decodes and forwards (either fully
or partially) the source message. The relay can employ other
relaying schemes to assist the source, such as estimate-and-
forward [34], amplify-and-forward [38–40] or combinations
of these schemes. However, in general, none of these schemes
truly extracts the potential benefits of cooperation even in
the standard case in which the channel is state-independent,
as no one of these schemes outperforms all the others (in
terms of achievable rate) for all possible choices of channel
parameters. The analysis of these alternative schemes in the
context of the considered RC with informed source is beyond
the scope of this work.

3.2. Comments on Upper Bounding Techniques. As we indi-
cated in the introduction section, the model for the RC
with informed source that we study in this paper seemingly
exhibits some similarities with the RC with informed relay
considered in [18, 19], and it also connects with the MAC
with asymmetric CSI and degraded message sets [12, 16, 17].
In [18, 19], the authors derive a nontrivial upper bound on
the capacity of the RC with informed relay, that is, one which
is strictly tighter than the cut-set bound. A similar upper
bounding technique is developed for multiaccess channels
with asymmetric CSI and degraded message sets in [15–17].

However, establishing a nontrivial upper bound for the
present scenario is more involved, comparatively. Partly,
this is due to the following reason. In the two models
mentioned above, the uninformed encoder transmits a
codeword which is function of only the message to transmit.
For the present scenario however, it is potentially possible for
the uninformed encoder (the relay) to get some information
about the channel states from the past received sequence
from the informed encoder (the source). That is, at time
i, the input of the relay X2,i can potentially depend on the
channel states through Yi−1

2 = (Y2,1, . . . ,Y2,i−1). Further,

since, for j = 1, . . . , i − 1, Y
j

2 depends on the channel
states in a noncausal manner (through the source codeword
X1, j(W , Sn)), and not only through the current state Si, so
does the input of the relay, potentially.

A trivial upper bound on the capacity of the general
DM RC with informed source is obtained by assuming that
the channel states are also available at the source and the
destination, that is, the max-flow min-cut bound or cut-set
bound,

R
up
triv = max min{I(X1;Y2,Y3 | S,X2), I(X1,X2;Y3 | S)},

(16)

where the maximization is over all distributions of the form

PS,X1,X2,Y2,Y3 = QSPX1,X2|SWY2,Y3|X1,X2,S. (17)

4. The Gaussian RC with Informed Source

In this section, we consider a state-dependent three-terminal
full-duplex RC in which the channel states and the noise are
additive and Gaussian. Furthermore, we extend the discrete
memoryless model considered in Section 3 to accommodate
two state sequences; one state sequence affects the trans-
mission to the relay and the other state sequence affects
the transmission to the destination. In this model, the
channel states model additive Gaussian interferences which
are assumed to be known (noncausally) to only the source.
We first consider a scenario in which transmission to the relay
and to the destination are corrupted by the same interference.
We derive a lower bound on the channel capacity for this
scenario in Section 4.2. Then, we consider the case of two
independent interferences in Section 4.3. In Section 4.4 we
discuss a case of correlated interferences.

4.1. Channel Model. For the state-dependent Gaussian RC,
the channel outputs Y2,i and Y3,i at time instant i for the relay
and the destination, respectively, are related to the channel
input X1,i from the source and X2,i from the relay, and the
channel states S2,i and S3,i by

Y2,i = X1,i + S2,i + Z2,i,

Y3,i = X1,i + X2,i + S3,i + Z3,i,
(18)

where S2,i models the interference on the link to the relay and
S3,i models the interference on the link to the destination.
The channel states S2,i and S3,i are zero mean Gaussian
random variables with variance Q, and only the source
knows the states sequences Sn2 and Sn3 (noncausally). The
noises Z2,i and Z3,i are zero mean Gaussian random variables
with variances N2 and N3, respectively, and are mutually
independent and independent from the states sequences
(Sn2, Sn3) and the channel inputs (Xn

1 ,Xn
2 ).

We consider the following individual power constraints
on the average transmitted power at the source and the relay

n∑
i=1

X2
1,i ≤ nP1,

n∑
i=1

X2
2,i ≤ nP2. (19)

The definition of a code for this channel is the same as that
given in Section 2, with the additional constraint that the
channel inputs should satisfy the power constraints (19).

For convenience we define the following functions R1(·),
R2(·) and σ(·) which we will use throughout the remaining
sections.
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Definition 2. Let

R1

(
P1,Q,N2, ζ , ρ,α

)

= 1
2

log

⎛⎜⎜⎝ P1ζ
[
P1ζ +

(
ρ
√
P1 +

√
Q
)2

+N2

]
P1Qζ(1− α)2 +N2

[
P1ζ +

(
ρ
√
P1 + α

√
Q
)2
]
⎞⎟⎟⎠,

R2

(
P1,P2,Q,N3, ζ , ρ,α

)

= 1
2

log

⎛⎜⎜⎝ P1ζ
[
P1ζ + Pc +

(
ρ
√
P1 +

√
Q
)2

+N3

]
P1Qζ(1− α)2 +N3

[
P1ζ +

(
ρ
√
P1 + α

√
Q
)2
]
⎞⎟⎟⎠,

σ
(
P1,Q, ζ , ρ,α

)

=
[

(1− α)2 + 1
]
P1ζ +

(
ρ
√
P1 + α

√
Q
)2

P1ζ +
(

ρ
√
P1 + α

√
Q
)2 ,

(20)

where Pc := (
√

1− ζ − ρ2
√
P1 +

√
P2)

2
, for nonnegative P1,

P2,Q,N2,N3, ζ ∈ [0, 1], ρ ∈ [−1, 0] and α ∈ A(ζ , ρ) = {x ∈
R : R1(P1,Q,N2, ζ , ρ, x) ≥ 0, R2(P1,P2,Q,N3, ζ , ρ, x) ≥ 0}.

4.2. Case of One Interference. In this section, we let S2,i =
S3,i = Si in (18), that is, we consider the case in which
the relay and the destination are corrupted by the same
interference:

Y2,i = X1,i + Si + Z2,i,

Y3,i = X1,i + X2,i + Si + Z3,i.
(21)

The results obtained in Section 4 for the DM case can
be applied to memoryless channels with discrete time and
continuous alphabets using standard techniques [41]. We
use the lower bound established in Theorem 1 to compute a
lower bound on the channel capacity of the Gaussian model
(21).

The following theorem provides a lower bound on the
channel capacity of the model (21).

Theorem 3. The capacity of the state-dependent Gaussian RC
with informed source is lower-bounded by

RG = max min
{
R1
(
P1r ,Q,N2 + P1d, ξ, ρ,α

)
,

R2
(
P1r ,P2,Q,N3 + P1d, ξ, ρ,α

)}
+

1
2

log
(

1 +
P1d

N3

)
,

(22)

where the functions R1(·) and R2(·) are defined as in
Definition 2, and the maximization is over nonnegative P1r and

P1d such that P1r+P1d ≤ P1, ξ ∈ [0, 1], ρ ∈ [−
√

1− ξ, 0], and,
for fixed (P1r ,P1d, ξ, ρ), α ∈ B1(P1r ,P1d, ξ, ρ) := {x ∈ R :
R1(P1r ,Q,N2 +P1d, ξ, ρ, x) ≥ 0, R1(P1r ,Q,N3 +P1d, ξ, ρ, x) ≥
0}.

Proof. A formal proof of Theorem 3 is given in Appendix B.

An informal proof is as follows. As we outlined after
Theorem 1, we decompose the message W to be sent from
the source into two parts Wr and Wd. The input Xn

1 from
the source is divided accordingly into two independent parts,
that is, Xn

1 = Xn
1r + Xn

1d, where Xn
1r carries message Wr and

has power constraint nP1r and Xn
1d carries message Wd and

has power constraint nP1d, with P1 = P1r + P1d. The message
Wr is sent through the relay at rate Rr and the message Wd

is sent directly to the destination at rate Rd. The total rate
is RG = Rr + Rd. Since message Wd is to be decoded by
only the destination, it is precoded against the interference
on the link to the destination, using a standard DPC. The
message Wr , however, experiences the same interference Sn

but different noise terms on its way to the relay and to the
destination, and it is precoded against the interference Sn

through a GDPC. The GDPC can be interpreted as a partial
cancellation of the interference, by the source for the relay,
combined with standard DPC [11, 13]. The relay benefits
from this cancellation and can then transmit more reliably
to the destination, and so the source benefits in turn.

More formally, we decompose the source input random
variable X1 as

X1 = X1r + X1d, (23)

where X1r is zero mean Gaussian with variance P1r , is
independent from X1d and is correlated with both the relay
input X2 and the state S, with E[X1rX2] = ρ12

√
P1rP2 and

E[X1rS] = ρ1s
√
P1rQ, for some ρ12 ∈ [−1, 1], ρ1s ∈ [−1, 1];

and X1d is zero mean Gaussian with variance P1d, and is
independent from both the relay input X2 and the state S.
(Note that X1d,i also can be chosen to be negatively correlated
with the state Si. The rate achievable in this case can be
obtained in a straightforward manner from the analysis in
Section 4.2.) For the GDPC, we choose the random variable
U as

U = X1r + αS, (24)

for some α ∈ R. For the standard DPC, we choose the
random variable U1 as

U1 = X1d +
P1d

P1d +N3
(1− α)S. (25)

Let ξ := 1 − ρ2
12 − ρ2

1s and ρ := ρ1s. As it will become
clear from the proof in Appendix B, allowable values of the
correlation coefficients ρ12 and ρ1s are such that the vector
(S,X1r ,X1d,X2,Z2,Z3) has a nonnegative discriminant, that
is, for nonzero P1r ,P1d,Q,

ξ = 1− ρ2
12 − ρ2

1s ≥ 0, (26)

and all values of α such that R1(P1r ,Q,N2 + P1d, ξ, ρ,α) and
R1(P1r ,Q,N3 + P1d, ξ, ρ,α) are nonnegative real.

The result in Theorem 3 readily specializes to the case of
full DF at the relay.
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Corollary 4. The capacity of the model (21) for the state-
dependent Gaussian RC with informed source is lower-bounded
by

RG−DF = max min
{
R1
(
P1,Q,N2, ξ, ρ,α

)
,

R2
(
P1,P2,Q,N3, ξ, ρ,α

)}
,

(27)

where the functions R1(·) and R2(·) are defined as in
Definition 2 and the maximization is over parameters ξ ∈
[0, 1], ρ ∈ [−

√
1− ξ, 0], and α ∈ B2(ξ, ρ) = {x ∈ R :

R1(P1,Q,N2, ξ, ρ, x) ≥ 0 and R2(P1,P2,Q,N3, ξ, ρ, x) ≥ 0}.

4.3. Case of Two Independent Interferences. In this section
we consider a model in which the links source-to-relay
and source-to-destination are corrupted by independent
interferences, that is, the model (18) of Section 4.1,

Y2,i = X1,i + S2,i + Z2,i,

Y3,i = X1,i + X2,i + S3,i + Z3,i,
(28)

with S2,i and S3,i being mutually independent zero mean
Gaussian random variables with variance Q.

It is interesting to observe that if the relay operates
in a decode-and-forward scheme the channel model (28)
has a (high-level) connection with the Gaussian multicast
model studied in [36], in that the signal sent by the
informed transmitter (i.e., the source) experiences different
interferences on its way to the two receivers. However, a
major difference from [36] is that, here, one receiver (the
relay) also helps the transmitter by relaying the information
to the other receiver, that is, a relay setup. Also, unlike the
model in [36], the noise terms at the receivers have different
variances.

The following theorem provides a lower bound on the
channel capacity of the model (28). The coding scheme that
we use to establish this theorem builds upon the scheme of
[36] (named carbon copying onto dirty paper (CC) therein),
and it also generalizes it as will become clear from the proof.

Theorem 5. The capacity of the channel model (28) is lower-
bounded by

Rind
G = maxT1 + T2 (29)

with

T1

= ν min
{
R1

(
P1a,

Q

2
, Ñ2, ξ, ρ,αa

)
,

R2

(
P1a,P2a,

Q

2
, Ñ3 + P2d, ξ, ρ,αa

)}

+ν min
{

1
2

log
(

1+
P1d

N2

)
,

1
2

log

(
1+

P2d

N3 +P1d +(Q/2)σ
(
P1a,Q/2, ξ, ρ,αa

))},

T2 =ν min
{
R1

(
P1a,

Q

2
, Ñ2, ξ, ρ,αa

)
,

R2

(
P1a,P2,

Q

2
, Ñ3, ξ, ρ,αa

)}
+

ν

2
log

(
1 +

P1d

N3

)
,

(30)

where Ñ2 = N2 + P1d + Q/2, Ñ3 = N3 + P1d + Q/2
and the maximization is over parameters: ν ∈ [0, 1];
nonnegative P1a, P1d, P2a, P2d such that P1a + P1d ≤ P1

and P2a + P2d ≤ P2; ξ ∈ [0, 1], ρ ∈ [−
√

1− ξ, 0]; and,
for fixed P1a, P1d, P2a, P2d, αa ∈ B3(ξ, ρ) := {x ∈
R : R1(P1a,Q/2, Ñ2, ξ, ρ, x) > 0, R1(P1a,Q/2, Ñ3, ξ, ρ, x) >
0, R1(P1a,Q/2, Ñ3 + P2d, ξ, ρ, x) > 0}.

Proof. A formal proof of Theorem 5 is given in Appendix C.
In the proof, we develop a coding scheme that uses decode-
and-forward relaying and a carbon copying like scheme.
As it can be seen from the proof, the applied CC scheme
has two differences from [36]. First, the signal sent by the
informed transmitter is correlated with the channel state.
Second, the noise terms at the two receivers are with different
variances. One direct consequence of the latter dissimilarity
is that, in our case, for the transmission of the message
that is sent to the two receivers at the same time, one
cannot derive an optimal choice for Costa’s parameter (i.e.,
one that permits to remove the effect of the interference
simultaneously for the two links via one single DPC as in
[36]). (This explains why Costa’s parameter αa is left to be
optimized over in the encoding step (C.1) in Appendix C, as
opposed to in [36] where the choice of Costa’s parameter is
optimal for both receivers.) We outline the coding scheme in
the following.

4.3.1. Outline of the Coding Scheme. Let Sna := (Sn2 +
Sn3)/2 and Snd := (Sn2 − Sn3)/2. The states Sna and Snd are
mutually independent and they can be used to represent the
interferences on the link to the relay and the link to the
destination, as

Sn2 = Sna + Snd,

Sn3 = Sna − Snd.
(31)

We denote by T the total transmission time. We divide this
time into two transmission periods of duration νT and νT ,
respectively, with 0 ≤ ν ≤ 1. Also, we decompose the
massage W to be transmitted from the source into two
submessages Wa and Wd. At time i, the input X1,i from the
source is divided accordingly into two independent parts,
that is, X1,i = X1a,i + X1d,i, where X1a,i carries message Wa

and has power constraint P1a and X1d,i carries message Wd

and has power constraint P1d, with P1 = P1a + P1d. The
message Wa will be sent to both the relay and the destination
at the same time, during the two periods νT and νT ; and it
is precoded against the interference Sa,i. The precoding for
message Wa is performed through a GDPC which is similar
to that in Section 4.2. The messageWd will be sent to only the
relay during the period νT and to only the destination during



EURASIP Journal on Wireless Communications and Networking 9

the period νT . Hence, it is precoded against the interference
on the link to the relay during the period νT and against the
interference on the link to the destination during the period
νT . The precoding for message Wd is performed through
standard DPC. The relay decodes-and-forwards the message
Wa during both transmission periods and also decodes-and-
forwards message Wd during the period νT .

During the period νT , the relay sends a superposition of
two independent Gaussian codewords, X2,i = X2a,i + X2d,i,
where codeword X2a,i enhances the transmission of message
Wa by the source to the destination and codeword X2d,i

carries message Wd to the destination. (Note that during this
period the destination decodes message Wd from only the
transmission by the relay. For instance, the decoder at the
destination treats the codeword X1d,i from the source as part
of the noise, as it can be seen from the decoding procedure
in Appendix C.) Thus, the relay shares power between X2a,i

and X2d,i, that is, X2a,i is sent with power constraint P2a and
X2d,i is sent with power constraint P2d, with P2a + P2d ≤
P2. During the period νT , the relay sends only X2a,i, with
power constraint P2. In this case, the destination obtains
message Wd from the direct transmission from the source.
A block diagram of the communication protocol is shown in
Figure 3.

Remark 1. The rate of Theorem 5 includes the rates of the
following schemes.

(i) full-DF with precoding against the interference Sna
using a GDPC; This is obtained by putting ν = 0,
P1d = 0 in (29).

(ii) partial-DF with precoding for the message sent
through the relay against the interference Sna using
a GDPC, and precoding for the additional message
to be decoded only by the destination against the
interference on the link to the destination using a
standard DPC; This is obtained by putting ν = 0 in
(29).

(iii) time-sharing DPC between the relay and the destina-
tion; This is obtained by setting P1a = P2a = 0 during
both transmission periods.

Remark 2. So far, we have assumed that the parameters

P1a,P1d and (ρ12 =
√

1− ξ − ρ2, ρ1s = ρ,αa) are identical for
the two periods νT and νT . One can obtain larger achievable
rates if one allows the source to send with different powers
and use different parameters (ρ12, ρ1s,αa) for the two periods.
However, the numerical computation of the obtained rates
becomes tedious in this case.

4.3.2. Extreme Cases. We now focus on the behavior of the
above bounds in some trivial extreme cases.

(1) In the limit of strong interference (i.e., Q → ∞), the
lower bound (29) reduces to

RG = 1
2

log
(

1 +
P1

N3

)
, (32)

which can also be achieved using a standard DPC at the
source and keeping the relay off.

Period νT :

S

R

D

(a)

Period (1− ν)T :

S

R

D

(b)

Figure 3: Block diagram for the communication protocol for
the RC with independent interferences. Solid lines correspond
to transmission of message Wa and dashed lines correspond to
transmission of message Wd . Message Wa is precoded against the
interference Sa,i using a GDPC, during both periods. Message Wd is
precoded using standard DPC, against the interference (1−αa)Sa,i +
Sd,i during the period νT and against the interference (1− αa)Sa,i −
Sd,i during the period (1− ν)T .

(2) For Q = 0, the lower bound (29) reduces to the one
achievable with partial DF in the standard interference-free
Gaussian RC. Also, in this case, putting P1d = 0 in (29) we get
that the resulting lower bound meets with the cut-set bound
for the degraded Gaussian case, and yields

CDG = max
0≤β≤1

min

{
1
2

log

(
1 +

P1
(
1− β2

)
N2

)
,

1
2

log

(
1 +

P1 + P2 + 2β
√
P1P2

N3

)}
,

(33)

which is the capacity of the standard degraded Gaussian RC
[34, Theorem 5].

(3) If P2 = 0, the capacity of the model (28) is given by

CG = 1
2

log
(

1 +
P1

N3

)
. (34)

In this case, the effect of the interference on the link to the
destination is removed by a regular DPC at the source.

4.4. Discussion: A Case of Correlated Interferences. Consider a
variation of the model (18) in Section 4.1 with S2,i = h2Si and
S3,i = h3Si, where the CSI Si is a zero-mean Gaussian random
variable with variance Q, and the sequence Sn is known
noncausally to only the source. For purposes of exposition
we assume that the coefficients h2 and h3 are real-valued and
nonnegative, and are fixed and known to all the terminals,
with h2 /=h3. This model can be seen as an extension of the
model (21) to the case in which the interference corrupting
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the transmission is scaled differently on the links to the relay
and to the destination, as

Y2,i = X1,i + h2Si + Z2,i,

Y3,i = X1,i + X2,i + h3Si + Z3,i,
(35)

where h2 and h3 may model known channel coefficients in
fading environments. Proceeding similarly to the model (28)

in Section 4.3, let S(k)
a = haS(k) and S(k)

d = hdS(k), with ha =
(h2 + h3)/2, hd = (h2 − h3)/2 and k = 1, 2.

It is interesting to note that the coding scheme that we
used to establish Theorem 5 does not apply directly to the
model (35) because the noise will be correlated with both the
channel input and the CSI in the steps in which S(k)

d , k = 1, 2,

is treated as part of the noise and (S(k)
a )n as CSI at the encoder.

For example, observe that, for the model (35), treating S(1)
d as

part of the noise as we did in (C.7), (C.8) during the period

νT , the resulting noise term (X (1)
1d +S(1)

d +Z2) will be correlated

with both the input X (1)
1a and the CSI S(1)

a , with E[(X (1)
1d +S(1)

d +

Z2)X (1)
1a ] = ρ1shd

√
P1aQ and E[(X (1)

1d +S(1)
d +Z2)S(1)

a ] = hahdQ.

The same applies for treating S(1)
d as part of the noise as in

(C.12), (C.13) during the period νT , and for treating S(2)
d as

part of the noise as in (C.21), (C.22) during the period (1 −
ν)T .

In [36] the authors develop a coding scheme for a
Gaussian multicast problem with independent interferences
known noncausally to the transmitter; they also mention
that with some modifications (especially, the common
randomness that is mentioned below) their coding scheme
also applies for a model in which the interferences are scaled
differently on the links to the two receivers (one which is
similar to (35), but for the multicast problem). In [36] the
direct application of the coding scheme developed for the
independent interferences case to the model with scaled
interferences incurs (only) a correlation between the noise
and the CSI, and the authors mention that such a correlation
does not reduce the rates relative to the case in which they
are independent if the encoder and the decoders have access
to a source of common randomness. The underlying code
construction is based on the lattice strategies of [42], and for
instance the Inflated Lattice Lemma [42, Lemma 6]. In fact
the code construction for the Gaussian multicast problem
with independent interferences in [36] can be seen as being
basically a careful superimposition of two DPCs and, thus, an
appropriate superimposition of two lattice codes with good
quantization properties, each designed as in [42], clearly
achieves the same rates asymptotically with the dimension
of the employed lattices.

In our case, however, as we already mentioned, there is
also the correlation between the noise and the channel input.
This correlation is due to that the source input is chosen to be
(negatively) correlated with the CSI, for the sake of reducing
its effect on the link relay-to-destination. While it is possible
to get rid of this correlation by transforming the channel
into an equivalent channel in which the (equivalent) channel
input is independent from the (equivalent) CSI, it is still to

be proved that the rate bounds on the rates R(k)
a and R(k)

d ,
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Figure 4: Illustration of the lower bounds in Theorem 3 and
Corollary 4. The bounds are plotted versus the SNR in the link
source-to-relay. Numerical values are: P1 = 10 dB, P2 = 20 dB,
Q = 10 dB, N3 = 10 dB.

k = 1, 2, in the proof of Theorem 5 which are established
using random binning arguments can be achieved using a
proper choice of linear lattice strategies at the source and
codes at the relay. (This can be obtained by dividing the
source input into two independent parts: one part which is

proportional to the known CSI S(k)
a , k = 1, 2, and thus is

considered as part of the equivalent CSI, and another part
which is independent from it and is considered as channel
input for the equivalent channel.)

4.5. Numerical Examples and Discussion. In this section we
discuss some numerical examples for the general Gaussian
case.

4.5.1. Generalized DPC versus Standard DPC. First, we
illustrate the rates given in Theorem 3 and Corollary 4, and
the efficiency of the coding ideas used therein, through
an numerical example. Figure 4 depicts the evolution of
the lower bound (22) for a numerical example for the
Gaussian RC model (21), as function of the signal-to-noise-
ratio (SNR) at the relay, SNR = P1/N2 (in decibels). Also
shown for comparison are: the rate of Corollary 4, the cut-set
bound (16) computed here for the Gaussian channel model
(21) and the trivial lower bound obtained by treating the
interference at the relay and the destination as unknown
noises. Investigating the two curves depicting the rates of
Theorem 3 and Corollary 4, shows that, as expected, splitting
the message to be transmitted into two parts, and so having
the relay decode only one part of it, is beneficial at small
SNR. However, this improvement vanishes at large SNR, as
the relay can decode all the information transmitted by the
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Figure 5: Illustration of the lower bound in Theorem 5 and some special cases of it. The bounds are plotted versus the SNR in the link
source-to-relay. Numerical values are: (a) P1 = 10 dB, P2 = 20 dB, Q = 10 dB, N3 = 10 dB and (b) P1 = 5 dB, P2 = 20 dB, Q = 5 dB,
N3 = 10 dB.

source, and therefore there is no benefit from splitting the
message at such a range of SNR.

Furthermore, Figure 4 also shows the rate obtained with
rate-splitting and standard DPC at the source, that is, the
special case of (22) obtained by setting ρ := ρ1s = 0.
Comparing this rate to the one of Theorem 3 (which is
based on a coding scheme that employs GDPC or, equiv-
alently, partial cancellation of the interference combined
with standard DPC) it can be seen that, GDPC always
improves upon standard DPC. This means that, even if only
the source knows the interference, both the source and the
relay benefit from this knowledge. This is made possible by
having the source partially cancel the interference for the
relay. For instance, the relay benefits since its transmit signal
faces less interference on its way to the destination, and the
source benefits in turn since the advantage taken from being
assisted by a relay which is actually more efficient favourably
counterbalances the loss incurred by spending some power
in partially cleaning the channel for the relay.

It is worth mentioning that the improvement brought by
GDPC (over standard DPC) is mainly visible at large SNR.
This is because, as a prerequisite for the DF relaying strategy
(or its variants), the relay can assist the source efficiently only
if it decodes the source transmit symbol reliably (at least
partially); and so, if it does not so, that is, at low SNR, it is
not worth that the source spends power in facilitating relay
transmission by (partially) cleaning the channel for it, as this
would be accomplished at the cost of some power that could
be allocated to strengthen the source transmit signal so that
the relay can decode it more reliably, instead.

4.5.2. Generalized CC versus Standard CC. Figure 5 depicts
the evolution of the lower bound (29) for two numerical
examples for the Gaussian RC model (28), as function of
the signal-to-noise-ratio (SNR) at the relay, SNR = P1/N2

(in decibels). The figure also shows the cut-set bound
(16) computed here for the Gaussian channel model (28)
and the curves corresponding to some other achievable
rates obtained as special cases of the rate in Theorem 5
as we mentioned in Remark 1—all shown for comparison
purposes. Furthermore, in order to show the improvement
brought up by GCC over standard CC, Figure 5 also shows
the rate obtained by the latter scheme, that is, the special
case of (29) obtained by setting ρ = 0. We mention that the
latter scheme is the one that can be obtained by a natural, but
careful, extension of the initial CC [36], which was developed
for a multicast setup as we already mentioned, to the relay
setup.

It is interesting to observe that, just as the scheme that
uses GDPC improves upon the one that uses regular DPC
in Theorem 3 as we explained previously, here also the
coding scheme that employs GCC improves upon the one
that employs regular CC. Moreover, the range of SNR for
which the improvement is visible corresponds to when the
multiaccess part of the bound in (29) is operative, that is,
when the obtained rate is given by the information that the
source and the relay together can transfer to the destination.

The coding scheme that we developed for the case of one
interference (21) in Section 4.2 also applies for the model
(28); the allowed rate is obtained by setting ν = 0 in (29)
as we indicated in Remark 1. This rate is shown by the
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Figure 6: Lower bounds on the capacity of the state-dependent
general Gaussian RC with informed source (28), together with the

maximizing ρ12 =
√

1− ξ − ρ2 and ρ1s := ρ for the lower bound
(29). Numerical values are: P1 = 5 dB, P2 = 20 dB, Q = 10 dB,
N3 = 10 dB.

dash-dotted curve in Figure 5. Comparing this rate with
(29), it is insightful to observe that because the model (28)
comprises two interferences, time sharing the superimposed
GDPC and regular DPC that are applied during the period
νT with those that are applied during the period νT (i.e.,
varying ν ∈ [0, 1]) is advantageous. While the achieved
improvement is well expected since optimizing over ν as
in Theorem 5 can only increase the rate (relative to the
one obtained by fixing ν = 0 in (29), that is, by applying
the coding scheme of Theorem 3 to the model (28)), it is
insightful to comment on this improvement. Investigating
the effect of fixing ν = 0, it can be seen that this
causes the information sent through the relay to suffer
from the interference Sd,i = (S2,i − S3,i)/2 during all the
transmission time (recall that this interference is considered
as an unknown noise with powerQ/2 at the decoder). In fact,
with the coding scheme used to establish Theorem 5 also, the
message Wa sent through the relay suffers from the same
interference during all the transmission time. However, in
this latter case, the relay also helps transmitting message Wd.
For small SNR, however, there is no benefit from relaying
message Wd as well; and this explains why the two schemes
give the same rate for such a range of SNR, that is, the optimal
choice of ν in Theorem 5 is zero for small SNR.

Another numerical example is shown in Figure 6. For this
numerical example, the figure also shows the variations of

the maximizing ρ1s := ρ and ρ12 =
√

1− ξ − ρ2 in (29), as
function of the SNR. This shows how the informed source

allocates its power among combating the interference for the
relay (related to the value of ρ1s), sending signals that are
coherent with the transmission from the relay (related to the
values of ρ12) and sending additional information (related to
the values of 1− ρ2

12 − ρ2
1s).

5. Conclusion

In this paper, we consider a state-dependent three-terminal
full-duplex relay channel (RC) with the states of the channel
known noncausally at only the source, that is, neither at the
relay nor at the destination. We refer to this communication
model as state-dependent RC with informed source. This setup
may model the basic scenario of cooperation over a wireless
network in which only the sources are cognitive of the
states of the channel. We study this problem in the discrete
memoryless (DM) setup and in the Gaussian setup. For the
Gaussian setup, the channel states model additive Gaussian
outside interferences.

For the DM case, we establish a lower bound on the
channel capacity. This lower bound is obtained by a coding
scheme that uses techniques of rate-splitting at the source,
regular encoding sliding-window decoding [33] for decode-
and-forward (DF) relaying [34, Theorem 4] and a Gel’fand-
Pinsker like binning scheme. Due to the rate-splitting at the
source, this lower bound is better than the one obtained
by assuming that the he relay decodes the source message
fully, that is, full-DF combined with a Gel’fand-Pinsker like
binning scheme.

For the Gaussian setup, we consider channel models
in which each of the relay node and the destination
node experiences on its link an additive Gaussian outside
interference in addition to additive Gaussian noise. The
interferences are known noncausally to only the source,
and play the role of additive channel states. We focus on
the case of one interference corrupting both transmissions
to the relay and to the destination, and also the case of
two independent interferences each corrupting one link. We
establish lower bounds on channel capacity for each of
these two models. Furthermore, we also discuss a case of
correlated interferences. For the case of one interference,
the applied coding scheme combines techniques of rate-
splitting and generalized dirty paper coding [11, 13] at the
source, and decode-and-forward relaying. For the case of two
independent interferences, as part of our coding scheme we
employ a carbon copying onto dirty paper (CC) that builds
carefully upon the initial CC [36] that was initially developed
for a multicast setup; it also generalizes it by allowing
negative correlation between the codewords at the source at
the known channel states. For both studied Gaussian models,
the uniformed relay benefits from the allowed negative
correlation and, so, the source benefits in turn.

Appendices

Throughout this section we denote the set of strongly jointly
ε-typical sequences [43, Chapter 14.2] with respect to the
distribution PX ,Y as Tn

ε (PX ,Y ).
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A. Proof of Theorem 1

Consider the random coding scheme that we described in
Section 3.1. We first show that the average probability of
error goes to zero as n → ∞.

A.1. Analysis of Probability of Error. Fix a probability distri-
bution PS,U ,U1,X1,X2,Y2,Y3 satisfying (6). Let (wr,i−1,wd,i−1) and
(wr,i,wd,i) be the message pair sent in block i − 1 and the
message pair sent in block i, respectively. Let s[i] denote any
random state sequence observed in block i. As we already
outlined after Theorem 1, at the beginning of block i the relay
has decoded wr,i−1 and transmits x2(wr,i−1), and the source
transmits a vector x1(wr,i−1,wr,i,wd,i) with i.i.d. compo-
nents conditionally given s[i], x2(wr,i−1), u(wr,i−1,wr,i, j�[i])
and u1wd,i , j�1 [i](u(wr,i−1,wr,i, j�[i])) drawn according to the
marginal PX1|X2,U ,U1,S, with j�[i] = j(s[i],wr,i−1,wr,i) and
j�1 [i] = j1(s[i],wr,i−1,wr,i,wd,i).

The average probability of error is given by

Pr(Error) =
∑

s∈Sn

Pr(s)Pr(error | s)

≤
∑

s /∈Tnε (QS)

Pr(s) +
∑

s∈Tnε (QS)

Pr(s)Pr(error | s).

(A.1)

The first term, Pr(s /∈Tn
ε (QS)), on the RHS of (A.1) goes

to zero as n → ∞, by the strong asymptotic equipartition
property (AEP) [43]. Thus, it is sufficient to upper bound
the second term on the RHS of (A.1).

We now examine the probabilities of the error events
associated with the encoding and decoding procedures. The
error event is contained in the union of the following error
events; where the events E1i and E2i correspond to encoding
errors at block i; the events E3i and E4i correspond to
decoding errors at the relay at block i; and the events E5i, E6i,
E7i, and E8i correspond to decoding errors at the destination
at block i.

Let E1i be the event that there is no sequence
u(wr,i−1,wr,i, j) jointly typical with s[i] given x2(wr,i−1), that
is,

E1i =
{
� j ∈ {1, . . . , J}
s.t.

(
x2
(
wr,i−1

)
, u
(
wr,i−1,wr,i, j

)
, s[i]

) ∈ Tn
ε
(
PX2,U ,S

)}
.

(A.2)

To bound the probability of the event E1i, we use a standard
argument [2]. More specifically, for u(wr,i−1,wr,i, j) and
s[i] generated independently given x2(wr,i−1) with i.i.d.
components drawn according to PU|X2 and QS, respectively,
the probability that u(wr,i−1,wr,i, j) is jointly typical with
s[i] given x2(wr,i−1) is greater than (1 − ε)2−n(I(U ;S|X2)+ε) for
sufficiently large n. There is a total of J such u’s in each bin.
The probability of the event E1i, the probability that there is
no such u, is therefore bounded as

Pr(E1i) ≤
[

1− (1− ε)2−n(I(U ;S|X2)+ε)
]J
. (A.3)

Taking the logarithm on both sides of (A.3) and substituting
J using (10) we obtain that ln(Pr(E1i)) ≤ −(1− ε)2nε. Thus,
Pr(E1i) → 0 as n → ∞.

Let E2i be the event that there is no sequence
u1wd,i, j1 (u(wr,i−1,wr,i, j�)) jointly typical with s[i] given
x2(wr,i−1) and u(wr,i−1,wr,i, j�), that is,

E2i =
{
� j1 ∈ {1, . . . , J1}
s.t.

(
x2
(
wr,i−1

)
, u
(
wr,i−1,wr,i, j�[i]

)
,

u1wd,i , j1

(
u
(
wr,i−1,wr,i, j�[i]

))
, s[i]

)
∈ Tn

ε
(
PX2,U ,U1,S

)}
.

(A.4)

Proceeding similarly to for the event E1i above, it can be
shown that, conditioned on Ec1i, the complement event of E1i,
we have Pr(E2i | Ec1i) → 0 as n → ∞.

Let E3i be the event that u(wr,i−1,wr,i, j�[i]) and y2[i] are
not jointly typical given x2(wr,i−1), that is,

E3i=
{(

x2
(
wr,i−1

)
, u
(
wr,i−1,wr,i, j�[i]

)
, y2[i]

)
/∈Tn

ε
(
PX2,U ,Y2

)}
.

(A.5)

Conditioned on Ec1i, E
c
2i, we have that u(wr,i−1,wr,i, j�[i]) and

u1wd,i, j�1 [i](u(wr,i−1,wr,i, j�[i])) are jointly typical with (s[i],
x2(wr,i−1)), and with the source input x1(wr,i−1,wr,i,wd,i).
Thus, Pr(E3i| Ec1i,Ec2i) → 0 as n → ∞, by the Markov Lemma
[43].

Let E4i be the event that u(wr,i−1,w′r,i, j) and y2[i] are
jointly typical given x2(wr,i−1) for some w′r,i ∈ {1, . . . ,M},
j ∈ {1, . . . , J} with w′r,i /=wr,i, that is,

E4i =
{
∃ w′r,i ∈ {1, . . . ,M}, j ∈ {1, . . . , J} s.t. w′r,i /=wr,i,(
x2
(
wr,i−1

)
,u
(
wr,i−1,w′r,i, j

)
,y2[i]

)
∈Tn

ε
(
PX2,U ,Y2

)}
.

(A.6)

Using the union bound and standard arguments on jointly
typical sequences, the probability of the event E4i condi-
tioned on Ec1i, E

c
2i, E

c
3i can be easily bounded as

Pr
(
E4i | Ec1i,Ec2i,Ec3i

) ≤MJ2−n(I(U ;Y2|X2)−ε)

= 2−n(I(U ;Y2|X2)−I(U ;S|X2)−Rr+ε).
(A.7)

Thus, Pr(E4i | Ec1i,Ec2i,Ec3i) → 0 as n → ∞ if Rr ≤ I(U ;Y2 |
X2)− I(U ; S | X2).

For decoding the triple (wr,i−1, j�[i − 1],wd,i−1) at the
destination, let E5i be the union of the following two events,

E(1)
5i =

{(
x2
(
wr,i−2

)
, u
(
wr,i−2,wr,i−1, j�[i− 1]

)
,

u1wd,i−1, j�1 [i−1]
(

u
(
wr,i−2,wr,i−1, j�[i− 1]

))
,

y3[i− 1]
)
/∈Tn

ε
(
PX2,U ,U1,Y3

)}
E(2)

5i =
{(

x2
(
wr,i−1

)
, y3[i]

)
/∈Tn

ε
(
PX2,Y3

)}
.

(A.8)

For s[i−1], x2(wr,i−2), u(wr,i−2,wr,i−1, j�[i−1]), u1wd,i−1, j�1 [i−1]

× (u(wr,i−2,wr,i−1, j�[i − 1])) and x1(wr,i−2,wr,i−1,wd,i−1)
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jointly typical, Pr(E(1)
5i | ∩4

k=1E
c
ki) → 0 as n → ∞ by the

Markov Lemma. Similarly, Pr(E(2)
5i | ∩4

k=1E
c
ki) → 0 as n →

∞. Thus, Pr(E5i | ∩4
k=1E

c
ki) → 0 as n → ∞.

For decoding the triple (wr,i−1, j�[i − 1],wd,i−1) at the
destination, let E6i be the event

E6i =
{
∃ w′r,i−1 ∈ {1, . . . ,M}, j ∈ {1, . . . , J},wd,i−1

∈ {1, . . . ,M}, j1 ∈ {1, . . . , J1} s.t. w′r,i−1 /=wr,i−1,{(
x2
(
wr,i−2

)
, u
(
wr,i−2,w′r,i−1, j

)
,

u1wd,i−1, j1

(
u
(
wr,i−2,w′r,i−1, j

))
,

y3[i− 1]
)∈ Tn

ε
(
PX2,U ,U1,Y3

)}
,{(

x2

(
w′r,i−1

)
, y3[i]

)
∈ Tn

ε
(
PX2,Y3

)}}
.

(A.9)

Conditioned on the events Ec1i, E
c
2i, E

c
3i, E

c
4i, E

c
5i, the probabil-

ity of the event E6i can be bounded using the union bound,
as

Pr
(
E6i |

⋂5

k=1
Ecki

)
≤MM1JJ12−n(I(U ,U1;Y3|X2)−ε)2−n(I(X2;Y3)−ε)

= 2−n(I(U ,U1,X2;Y3)−I(U1;S|X2)−(Rr+Rd)+4ε).
(A.10)

Thus, Pr(E6i | ∩5
k=1E

c
ki) → 0 as n → ∞ if Rr + Rd ≤

I(U ,U1,X2;Y3)− I(U ,U1; S | X2).
For decoding the triple (wr,i−1, j�[i − 1],wd,i−1) at the

destination, let E7i be the event

E7i =
{
∃ w′d,i−1 ∈ {1, . . . ,M1}, j1 ∈ {1, . . . , J1}

s.t. w′d,i−1 /=wd,i−1,{(
x2
(
wr,i−2

)
, u
(
wr,i−2,wr,i−1, j�[i− 1]

)
,

u1w′d,i−1, j1

(
u
(
wr,i−2,wr,i−1, j�[i− 1]

))
,

y3[i− 1]
)∈ Tn

ε
(
PX2,U ,U1,Y3

)}
,{(

x2
(
wr,i−1

)
, y3[i]

) ∈ Tn
ε
(
PX2,Y3

)}}
.

(A.11)

Conditioned on ∩6
k=1E

c
ki, the probability of the event E7i can

be bounded using the union bound, as

Pr
(
E7i |

⋂6

k=1
Ecki

)
≤M1J12−n(I(U1;Y3|U ,X2)−ε)

× Pr
{(

x2
(
wr,i−1

)
, y3[i]

) ∈ Tn
ε
(
PX2,Y3

)}
≤ 2−n(I(U1;Y3|U ,X2)−I(U1;S|U ,X2)−Rd+3ε).

(A.12)

Thus, Pr(E7i | ∩6
k=1E

c
ki) → 0 as n → ∞ if Rd ≤ I(U1;Y3 |

U ,X2)− I(U1; S | U ,X2).

For decoding the triple (wr,i−1, j�[i − 1],wd,i−1) at the
destination, let E8i be the event

E8i =
{
∃ w′d,i−1 ∈ {1, . . . ,M1}, j1 ∈ {1, . . . , J1},

j′ ∈ {1, . . . , J} s.t. w′d,i−1 /=wd,i−1, j′ /= j�[i− 1],{(
x2
(
wr,i−2

)
, u
(
wr,i−2,wr,i−1, j′

)
,

u1w′d,i−1, j1

(
u
(
wr,i−2,wr,i−1, j′

))
,

y3[i− 1]
)∈ Tn

ε
(
PX2,U ,U1,Y3

)}
,{(

x2
(
wr,i−1

)
, y3[i]

) ∈ Tn
ε
(
PX2,Y3

)}}
.

(A.13)

Conditioned on ∩7
k=1E

c
ki, the probability of the event E8i can

be bounded using the union bound, as

Pr
(
E8i |

⋂7

k=1
Ecki

)
≤M1J1J2−n(I(U ,U1;Y3|X2)−ε)

× Pr
{(

x2
(
wr,i−1

)
, y3[i]

) ∈ Tn
ε
(
PX2,Y3

)}
≤ 2−n(I(U ,U1;Y3|X2)−I(U ,U1;S|X2)−Rd+ε).

(A.14)

Thus, Pr(E8i | ∩7
k=1E

c
ki) → 0 as n → ∞ if Rd ≤ I(U ,U1;

Y3 | X2)− I(U ,U1; S | X2).
From the above, we have that the average probability of

error goes to zero for sufficiently large n if the rate R is chosen
to satisfy

R = Rr + Rd : Rr ≥ 0,Rd ≥ 0, (A.15a)

Rr ≤ I(U ;Y2 | X2)− I(U ; S | X2), (A.15b)

Rd ≤ I(U1;Y3 | U ,X2)− I(U1; S | U ,X2),
(A.15c)

Rd ≤ I(U ,U1;Y3 | X2)− I(U ,U1; S | X2),
(A.15d)

R ≤ I(U ,U1,X2;Y3)− I(U ,U1; S | X2).
(A.15e)

The set of rates defined by (A.15a), (A.15b), (A.15c), (A.15d),
(A.15e) does not change if one adds the two additional rate
bounds

R ≤ I(U ;Y2 | X2) + I(U1;Y3 | U ,X2)

−I(U ,U1; S | X2)
(A.16a)

R ≤ I(U ;Y2 | X2)− I(U ; S | X2)

+I(U ,U1;Y3 | X2)− I(U ,U1; S | X2),
(A.16b)

as (A.16a) can be obtained by adding (A.15b) and (A.15d);
and (A.16b) can be obtained by adding (A.15b) and (A.15e).
Then, we obtain the rate in Theorem 1 by applying Fourier-
Motzkin elimination (FME) (see, e.g., [44]) to eliminate
the variables Rr and Rd from the obtained system of rate
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inequalities. Note that eliminating the variable Rr by FME
algorithm adds the constraint (7a), and eliminating the
variable Rd adds the constraints (7b) and (7c).

This proves the achievability of the rate (9) in Theorem 1
for every measure PS,U ,U1,X1,X2,Y2,Y3 of the form (6) that
satisfies (7a), (7b), (7c), that is, PS,U ,U1,X1,X2,Y2,Y3 ∈ P .

It remains to show that the rate (9) is not altered if
one restricts the random variables U and U1 to have their
alphabet sizes limited as in (8a), (8b). This is done by
invoking the support lemma [45, page 310], as follows.

Fix a distribution μ ∈ P of (S,U ,U1,X1,X2,Y2,Y3) on
P (S ×U×U1 ×X1 ×X2 ×Y2 ×Y3). To prove the bound
(8a) on |U|, note that we have

Iμ(U ;Y2 | X2) + Iμ(U1;Y3 | U ,X2)− Iμ(U ,U1; S | X2)

= Iμ(U ;Y2,X2)− Iμ(U ; S,X2) + Iμ(U1;Y3,X2 | U)

− Iμ(U1; S,X2 | U)

= Hμ(X2,Y2)−Hμ(X2, S)

+Hμ(X2,Y3 | U)−Hμ(X2,Y2 | U)

+Hμ(U1, S,X2 | U)−Hμ(U1,X2,Y3 | U).
(A.17)

Similarly, we have

Iμ(U ;Y2 | X2)− Iμ(U ; S | X2) + Iμ(U ,U1;Y3 | X2)

− Iμ(U ,U1; S | X2)

= Iμ(U ;Y2 | X2) + Iμ(U1;Y3 | U ,X2)

− Iμ(U ,U1; S | X2) + Iμ(U ;Y3 | X2)− Iμ(U ; S | X2)

= Hμ(X2,Y2) +Hμ(X2,Y3)− 2Hμ(X2, S)

+Hμ(U1,X2,Y3 | U)−Hμ(X2,Y2 | U)

+Hμ(U1, S,X2 | U) +Hμ(S,X2 | U),
(A.18)

Iμ(U ,U1,X2;Y3)− Iμ(U ,U1; S | X2)

= Iμ(U ;Y3) + Iμ(U1,X2;Y3 | U) + Iμ(S;X2)− Iμ(S;U)

− Iμ(U1,X2; S | U)

= Hμ(Y3)−Hμ(S | X2) +Hμ(U1,X2, S | U)

−Hμ(U1,X2,Y3 | U).
(A.19)

Hence, it suffices to show that the following functionals
of μ(S,U1,X1,X2,Y2,Y3)

rs,x,x′
(
μ
) = μ(s, x, x′) ∀(s, x, x′) ∈ S ×X1 ×X2,

r1
(
μ
) = ∫

u
dμ(u)

[
Hμ(X2,Y3 | u)−Hμ(X2,Y2 | u)

+Hμ(U1, S,X2 | u)

− Hμ(U1,X2,Y3 | u)
]

,

r2
(
μ
) = ∫

u
dμ(u)

[
Hμ(U1,X2,Y3 | u)−Hμ(X2,Y2 | u)

+ Hμ(U1, S,X2 | u) +Hμ(S,X2 | u)
]

,

r3
(
μ
) = ∫

u
dμ(u)

[
Hμ(U1,X2, S | u)−Hμ(U1,X2,Y3 | u)

]
(A.20)

can be preserved with another measure μ′ ∈ P —for
given (s, x, x′) ∈ S × X1 × X2, rs,x,x′ is obtained by
marginalizing the measure μ. Observing that there is a total
of |S||X1||X2| + 2 functionals in (A.20), this is ensured by
a standard application of the support lemma; and this shows
that the cardinality of the alphabet of the auxiliary random
variableU can be limited as indicated in (8a) without altering
the rate (9).

Once the alphabet of U is fixed, we apply similar
arguments to bound the alphabet of U1, where this time
|S||X1||X2|(|S||X1||X2| + 2) − 1 functionals must be
satisfied in order to preserve the joint distribution of S, U ,
X1, X2, and two more functionals to preserve

Iμ(U ;Y2 | X2) + Iμ(U1;Y3 | U ,X2)− Iμ(U ,U1; S | X2)

= Iμ(U ;X2,Y2)− Iμ(U ;X2, S) + Iμ(U1;U ,X2,Y3)

− Iμ(U1;U ,X2, S)

= Hμ(X2,Y2) +Hμ(U ,X2,Y3)−Hμ(U ,X2,Y2)

−Hμ(S,X2)−Hμ(U ,X2,Y3U1) +Hμ(U ,X2, SU1),

Iμ(U ,U1,X2;Y3)− Iμ(U ,U1; S | X2)

= Hμ(Y3)−Hμ(S | X2) +Hμ(U ,X2, S | U1)

−Hμ(U ,X2,Y3U1),
(A.21)

yielding the bound on |U1| indicated in (8b).

B. Proof of Theorem 3

In this proof, we compute the lower bound in Theorem 1
using an appropriate jointly Gaussian distribution on S,
U , U1, X1, X2. We assume that X1 and X2 are zero-
mean Gaussian with variance P1 and P2, respectively. The
random variable X2 is independent from S as shown by
the distribution in Theorem 1. The random variable X1 is
decomposed as X1 = X1r + X1d, where: X1r is zero mean
Gaussian with variance P1r , is independent from X1d and
is jointly Gaussian with both S and X2 with E[X1rS] =
ρ1s

√
P1rQ and E[X1rX2] = ρ12

√
P1rP2, for some ρ1s ∈ [−1, 1],

ρ12 ∈ [−1, 1]; and X1d is zero mean Gaussian with variance
P1d = P1 − P1r , and is independent from both the relay
input X2 and the state S. In what follows we will also use the
covariances σ12 = E[X1X2] and σ1s = E[X1S], satisfying

ρ12 = σ12√
P1rP2

, ρ1s = σ1s√
P1rQ

. (B.1)
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As we outlined after Theorem 3, we consider

U = X1r + αS,

U1 = X1d +
P1d

P1d +N3
(1− α)S,

(B.2)

where α denotes a scale parameter the range of which will be
specified below.

(i) Let us first compute the first term of the minimization
in (9). Consider the term [I(U ;Y2 | X2) − I(U ; S | X2)]. To
evaluate the conditional mutual information I(U ;Y2 | X2),
let us denote by E[Y2 | U ,X2] the optimal linear estimator
of Y2 given (U ,X2) under minimum mean square error
criterion. That is, E[Y2 | U ,X2] is given by

E[Y2 | U ,X2] = γ1U + γ2X2 (B.3)

with

γ1 = P1r −
(
σ2

12/P2
)

+ (α + 1)σ1s + αQ

P1r −
(
σ2

12/P2
)

+ 2ασ1s + α2Q
,

γ2 =
(
1− γ1

)σ12

P2
.

(B.4)

For convenience let us define Δ as the denominator of the
expression of γ1 (for notational convenience, we omit the
dependency of Δ on parameters α, ρ12 and ρ1s), that is,

Δ := P1r − σ2
12

P2
+ 2ασ1s + α2Q. (B.5)

Then, we have

I(U ;Y2 | X2)

= h(Y2 | X2)− h(Y2 | U ,X2)

(a)= 1
2

log
(
E
[
Y 2

2

]− E[Y2E[Y2 | X2]]
)

− 1
2

log
(
E
[
Y 2

2

]− E[Y2E[Y2 | U ,X2]]
)

(b)= 1
2

log

(
E
[
Y 2

2

]− (
σ2

12/P2
)

E
[
Y 2

2

]− (
σ2

12/P2
)− γ2

1Δ

)

(c)= 1
2

log

(
P1r −

(
σ2

12/P2
)

+ 2σ1s +Q +N2 + P1d

N2 + P1d + P1rQ
(
1− ρ2

12 − ρ2
1s

)
(1− α)2/Δ

)

= 1
2

log

( (
P1r −

(
σ2

12/P2
)

+ 2σ1s +Q +N2 + P1d
)
Δ

(N2 + P1d)Δ + P1rQ
(
1− ρ2

12 − ρ2
1s

)
(1− α)2

)
,

(B.6)

where (a) follows since the vector (U ,X2,Y2) is Gaussian; in
(b) we used the fact that E[Y2 | X2] = (σ12/P2 |)X2 and

E[Y2E[Y2 | U ,X2]]

= γ1(P1r + (α + 1)σ1s + αQ) +
(
1− γ1

)σ2
12

P2

= σ2
12

P2
+ γ2

1Δ,

(B.7)

and (b) follows by substituting γ1 using (B.4) and using
straightforward algebra to obtain

E
[
Y 2

2

]− σ2
12

P2
− γ2

1Δ

= N2 + P1d +
1
Δ

[(
P1r

(
1− ρ2

12

)
+ 2σ1s +Q

)
Δ

− (
P1r(1−ρ2

12)+(α+1)σ1s+αQ
)2
]

= N2 + P1d +
P1rQ

Δ

[(
1 + α2)(1− ρ2

12

)
+ 4αρ2

1s

− (1+α)2ρ2
1s−2α

(
1−ρ2

12

)]
= N2 + P1d +

P1rQ
(
1− ρ2

12 − ρ2
1s

)
(1− α)2

Δ
.

(B.8)

Similarly, to evaluate the conditional mutual information
I(U ; S | X2), let E[S | U ,X2] be the optimal linear estimator
of S given (U ,X2) under minimum mean square error
criterion, that is,

E[S | U ,X2] = λ1U + λ2X2 (B.9)

with

λ1 = σ1s + αQ

Δ
,

λ2 = −σ12

P2

σ1s + αQ

Δ
.

(B.10)

Then, we have

I(U ; S | X2)

= h(S | X2)− h(S | U ,X2)

= h(S)− h(S | U ,X2)

= 1
2

logE
[
S2]− 1

2
log

(
E
[
S2]− E[SE[S | U ,X2]]

)
= 1

2
logQ − 1

2
log(Q − λ1(σ1s + αQ))

= 1
2

logQ − 1
2

log

(
Q − (σ1s + αQ)2

Δ

)

= 1
2

log

(
Δ

P1r
(
1− ρ2

12 − ρ2
1s

)).
(B.11)

Subtracting (B.11) from (B.6) and substituting ξ := 1−ρ2
12−

ρ2
1s and ρ := ρ1s, we obtain
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I(U ;Y2 | X2)− I(U ; S | X2) = 1
2

log

⎛⎝ P1rξ
[
P1rξ +

(
ρ
√
P1r +

√
Q
)2

+N2 + P1d

]
P1rQξ(1− α)2 + (N2 + P1d)

[
P1rξ +

(
ρ
√
P1r + α

√
Q
)2
]
⎞⎠

:= R1
(
P1r ,Q,N2 + P1d, ξ, ρ,α

)
.

(B.12)

For the computation of the first term of the minimization
in (9), it remains to compute [I(U1;Y3 | U ,X2) − I(U1; S |
U ,X2)]. Noting that Y3 = X1d +U +X2 + (1−α)S+Z3, it can
be easily shown that

I(U1;Y3 | U ,X2)− I(U1; S | U ,X2) = 1
2

log
(

1 +
P1d

N3

)
.

(B.13)

(ii) Consider now the second term of the minimization
in (9). This term can be written as the sum of the first term
of the minimization in (9) plus [I(U ;Y3 | X2)−I(U ; S | X2)].
The term [I(U ;Y3 | X2) − I(U ; S | X2)] can be computed in
a very similar way to [I(U ;Y2 | X2)− I(U ; S | X2)] above, by
noting that

I(U ;Y3 | X2)−I(U ; S | X2)=I(U ;Y3−X2 | X2)−I(U ; S | X2)
(B.14)

and the two terms Y3 − X2 = X1 + S + Z2 and Y2 differ only
through the noise terms. That is,

I(U ;Y3 | X2)− I(U ; S | X2) = R1
(
P1r ,Q,N3 + P1d, ξ, ρ,α

)
,

(B.15)

which is readily obtained by substituting N2 with N3 on the
RHS of (B.12).

(iii) Finally, we compute the third term of the minimiza-
tion in (12). Using (B.13), we obtain

I(U ,U1,X2;Y3)− I(U ,U1; S | X2)

= I(U ,X2;Y3)− I(U ; S | X2) +
1
2

log
(

1 +
P1d

N3

)
.

(B.16)

The term I(U ,X2;Y3) − I(U ; S | X2) on the RHS of (B.16)
can be written as

I(U ,X2;Y3)− I(U ; S | X2)

= I(X2;Y3) + I(U ;Y3 | X2)− I(U ; S | X2)

(d)= I(X2;Y3) + R1
(
P1r ,Q,N3 + P1d, ξ, ρ,α

)
,

(B.17)

where (d) follows by using (B.15). The mutual information
I(X2;Y3) in (B.17) can be computed as

I(X2;Y3) = h(Y3)− h(Y3 | X2)

(e)= 1
2

logE
[
Y 2

3

]− 1
2

log
(
E
[
Y 2

3

]− E[Y3E[Y3 | X2]]
)

(f)= 1
2

logE
[
Y 2

3

]− 1
2

log

(
P1 + P2 + 2σ12 + 2σ1s +Q +N3 − (σ12 + P2)2

P2

)

= 1
2

log

⎛⎜⎝P1rξ+
(√

1− ξ − ρ2
√
P1r +

√
P2

)2
+
(
ρ
√
P1r+

√
Q
)2

+N3 +P1d

P1rξ +
(
ρ
√
P1r +

√
Q
)2

+N3 +P1d

⎞⎟⎠

= 1
2

log

⎛⎜⎝1 +

(√
1− ξ − ρ2

√
P1r +

√
P2

)2

P1rξ +
(
ρ
√
P1r +

√
Q
)2

+N3 + P1d

⎞⎟⎠,

(B.18)

and (e) follows since the vector (X2,Y3) is Gaussian, and in
( f ) we used the fact that E[Y3 | X2] = (1 + σ12/P2)X2.

Then, substituting I(X2;Y3) in (B.17) using (B.18), we
obtain
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I(U ,X2;Y3)− I(U ; S | X2) = 1
2

log

⎛⎜⎜⎝P1rξ
[
P1rξ +

(√
1− ξ − ρ2

√
P1r +

√
P2

)2
+
(
ρ
√
P1r +

√
Q
)2

+N3 + P1d

]
P1rQξ(1− α)2 + (N3 + P1d)

[
P1rξ +

(
ρ
√
P1r + α

√
Q
)2
]

⎞⎟⎟⎠
= R2

(
P1r ,P2,Q,N3 + P1d, ξ, ρ,α

)
.

(B.19)

Finally, we obtain the rate achievable with the considered
jointly Gaussian distribution on (S,U ,U1,X1,X2) by maxi-
mizing the minimum among two terms: (a) the sum of the
RHS of (B.12), the RHS of (B.13) and the minimum among
zero and the RHS of (B.15); and (b) the sum of the RHSs
of (B.13) and (B.19). For the choice of coding parameters
for which the RHS of (B.15) has nonnegative values, we
obtain the rate in (22). (Note that the minimization is in fact
among three terms, but two of which can be replaced by one
single term as in (a).) The maximization is over all values
of ρ12 ∈ [−1, 1] and ρ1s ∈ [−1, 1] such that the covariance
matrix ΛS,X1,X2,Z2,Z3 of (S,X1,X2,Z2,Z3) has a nonnegative
discriminant, that is, for Q > 0,

ξ = 1− ρ2
12 − ρ2

1s ≥ 0, (B.20)

and all values of α such that R1(P1r ,Q,N2 + P1d, ξ, ρ,α) and
R1(P1r ,Q,N3 + P1d, ξ, ρ,α) have nonnegative values. (Note
that if the RHS of (B.15) has nonnegative values, so does
the RHS of (B.19); this can be easily seen from (B.17).)
Furthermore, investigating R1(P1r ,Q,N2 + P1d, ξ, ρ,α) and
R2(P1r ,P2,Q,N3 + P1d, ξ, ρ,α) (with ξ = 1 − ρ2

12 − ρ2
1s), one

can easily see that it suffices to consider ρ12 ∈ [0, 1] and

ρ1s ∈ [−1, 0]. Thus, ξ ∈ [0, 1] and ρ ∈ [−
√

1− ξ, 0]. This
concludes the proof of Theorem 3.

C. Proof of Theorem 5

As we outlined after Theorem 5, we divide the total trans-
mission time into two periods of duration νT and νT ,
respectively. Also we decompose the message W to be
transmitted into two submessages Wa and Wd. During the
period νT , the source transmits message Wa to both the
relay and the destination and message Wd to only the relay.
The relay decodes-and forwards both messages during this
period. During the period νT , the source transmits message
Wa to both the relay and the destination and message Wd

to only the destination. The relay decodes-and forwards only
message Wa during this period. The relay operates in a full-
duplex mode during both transmission periods.

Fix nonnegative P1a,P1d,P2a,P2d such that P1a +P1d ≤ P1

and P2a+P2d ≤ P2; ρ12 ∈ [−1, 1], ρ1s ∈ [−1, 1] and ν ∈ [0, 1].

Let R(1)
a and R(2)

a denote the rates at which message Wa is
transmitted to the destination during the period νT and the

period νT , respectively. Similarly, let R(1)
d and R(2)

d denote the
rates at which message Wd is transmitted to the destination
during these periods. The total rate during the period νT is

T1 = R(1)
a + R(1)

d , and the total rate during the period νT is

T2 = R(2)
a + R(2)

d .

We assume that the channel states S(1)
2 and S(1)

3 during

the period νT , and the channel states S(2)
2 and S(2)

3 during the
period νT , are zero-mean Gaussian with varianceQ. Also, we

let S(k)
a = (S(k)

2 + S(k)
3 )/2 and S(k)

d = (S(k)
2 − S(k)

3 )/2, k = 1, 2.
The encoding and transmission scheme during the two

periods is as follows.
(1) Period νT . During this period the source sends a

superposition of two Gaussian signals, X (1)
1,i = X (1)

1a,i + X (1)
1d,i.

The signal X (1)
1a,i carries message Wa and is obtained via a

GDPC considering (S(1)
a )n as noncausal CSI. For this GDPC,

we use the following auxiliary random variable to generate

the auxiliary codewords U (1)
1a,i,

U (1)
1a = X (1)

1a + αaS
(1)
a , (C.1)

where X (1)
1a ∼ N (0,P1a) is jointly Gaussian with S(1)

a , with

E[X (1)
1a S

(1)
a ] = (ρ1s/

√
2)
√
P1aQ, and is independent from S(1)

d ;
and αa is the GDPC scale parameter. Thus, using this GDPC,

X (1)
1a,i is obtained as

X (1)
1a,i = U (1)

1a,i − αaS(1)
a,i , (C.2)

where U (1)
1a,i is independently drawn with U (1)

1a .

The signal X (1)
1d,i carries message Wd and is obtained

via a standard DPC considering [(1 − αa)(S(1)
a )n + (S(1)

d )n]
as noncausal CSI. For this standard DPC, we use the
following auxiliary random variable to generate the auxiliary

codewords U (1)
1d,i,

U (1)
1d = X (1)

1d +
P1d

P1d +N2

[
(1− αa)S(1)

a + S(1)
d

]
, (C.3)

where X (1)
1d ∼ N (0,P1d) is independent from X (1)

1a , S(1)
a and

S(1)
d . Thus, using this DPC, X (1)

1d,i is obtained as

X (1)
1d,i = U (1)

1d,i −
P1d

P1d +N2

[
(1− αa)S(1)

a,i + S(1)
d,i

]
, (C.4)

where U (1)
1d,i is independently drawn with U (1)

1d .
Suppose that the relay decodes correctly messages Wa

and Wd (this will be justified below), then the relay sends

a superposition of two Gaussian signals, X (1)
2,i = X (1)

2a,i + X (1)
2d,i,

where X (1)
2a,i carries message Wa and is independently drawn

with X (1)
2a ∼ N (0,P2a), and X (1)

2d,i carries message Wd and

is independently drawn with X (1)
2d ∼ N (0,P2d). Here X (1)

2a

and X (1)
2d are mutually independent and are independent
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from both S(1)
a and S(1)

d . Furthermore, X (1)
2a is independent

from X (1)
1d and is correlated with X (1)

1a with E[X (1)
1a X

(1)
2a ] =

ρ12
√
P1aP2a; and X (1)

2d is independent from both X (1)
1a and X (1)

1d .
(2) Period νT . During this period, the source sends a

superposition of two Gaussian signals, X (2)
1,i = X (2)

1a,i + X (2)
1d,i,

where signals X (2)
1a,i and X (2)

1d,i are generated in a very similar
way to those during the period νT , except that now signal

X (2)
1d,i is obtained as

X (2)
1d,i = U (2)

1d,i −
P1d

P1d +N3

[
(1− αa)S(2)

a,i − S(2)
d,i

]
. (C.5)

The relay sends only a Gaussian signal X (2)
2a,i that carries

message Wa, where X (2)
2a,i is independently drawn with X (2)

2a ∼
N (0,P2).

Decoding. Decoding at the relay during the period νT
and decoding at the destination during both transmission
periods exploit successive cancellation. The details of the
computation of some of the mutual information terms in this
section are very similar to those in the proof of Theorem 3
in Appendix B, and hence we omit them for brevity. Also,
since all the random variables are i.i.d., we sometimes omit
the time index. Furthermore, we use the functions defined in
Definition 2 and the substitutions: ξ := 1−ρ2

12−ρ2
1s, ρ := ρ1s,

Ñ2 := N2 + P1d +Q/2 and Ñ3 := N3 + P1d +Q/2 .
(1) Period νT . The relay receives

Y (1)
2 = X (1)

1a + S(1)
a +

[
X (1)

1d + S(1)
d + Z2

]
. (C.6)

The relay first decodes the codeword U (1)
1a fully, that is, not

only the bin index but also the correct sequence in the bin. In

doing so, the decoder at the relay treats [X (1)
1d + S(1)

d ] as part

of the noise. Note that the noise [X (1)
1d + S(1)

d +Z2] is Gaussian

with variance Ñ2 and is independent from the inputs X (1)
1a ,

X (1)
2a and the CSI S(1)

a . The decoding in this step is reliable if

0 < I
(
U (1)

1a ;Y (1)
2 X (1)

2a

)
− I

(
U (1)

1a ; S(1)
a X (1)

2a

)
, (C.7)

R(1)
a ≤ ν

[
I
(
U (1)

1a ;Y (1)
2 | X (1)

2a

)
− I

(
U (1)

1a ; S(1)
a | X (1)

2a

)]
= νR1

(
P1a,Q/2, Ñ2, ξ, ρ,αa

)
.

(C.8)

The relay then subtracts out the decoded U (1)
1a from Y (1)

2 to
obtain

Ỹ (1)
2 = X (1)

1d +
(

(1− αa)S(1)
a + S(1)

d

)
+ Z2, (C.9)

from which it can also decode message Wd reliably as long as

R(1)
d ≤ ν

[
I
(
U (1)

1d ;Y (1)
2 | U (1)

1a ,X (1)
2a

)
− I

(
U (1)

1d ; S(1)
a , S(1)

d | U (1)
1a ,X (1)

2a

)]
= ν

2
log

(
1 +

P1d

N2

)
.

(C.10)

The destination first decodes the codeword U (1)
1a fully from

Y (1)
3 = X (1)

1a + X (1)
2a + S(1)

a +
[
X (1)

1d + X (1)
2d − S(1)

d + Z3

]
. (C.11)

In doing so, the decoder at the destination treats [X (1)
1d +

X (1)
2d − S(1)

d ] as part of the noise. Note that the noise [X (1)
1d +

X (1)
2d − S(1)

d + Z3] is Gaussian with variance Ñ3 + P2d, and is

independent from the inputs X (1)
1a , X (1)

2a and the CSI S(1)
a . The

decoding in this step is reliable if

R(1)
a ≤ ν

[
I
(
U (1)

1a ,X (1)
2a ;Y (1)

3

)
− I

(
U (1)

1a ; S(1)
a | X (1)

2a

)]
= νR2

(
P1a,P2a,

Q

2
, Ñ3 + P2d, ξ, ρ,αa

)
,

(C.12)

0 < I
(
U (1)

1a ;Y (1)
3 | X (1)

2a

)
− I

(
U (1)

1a ; S(1)
a | X (1)

2a

)
= R1

(
P1a,Q/2, Ñ3 + P2d, ξ, ρ,αa

)
.

(C.13)

The destination then subtracts out the decodedU (1)
1a as well as

X (1)
2a from Y (1)

3 , and it decodes message Wd from the residual

Ỹ (1)
3 = X (1)

2d +
[
X (1)

1d + (1− αa)S(1)
a − S(1)

d + Z3

]
. (C.14)

In doing so, the decoder at destination treats [X (1)
1d + (1 −

αa)S(1)
a − S(1)

d ] as part of the noise. The decoding in this step
is reliable if

R(1)
d ≤ νI

(
X (1)

2d ;Y (1)
3 | U (1)

1a ,X (1)
2a

)
. (C.15)

Through straightforward algebra, which is omitted here for
brevity, it can be shown that (C.23) gives

R(1)
d ≤ ν

2
log

(
1 +

P2d

N3 + P1d + (Q/2)σ
(
P1a,Q/2, ξ, ρ,αa

)),

(C.16)

where σ(·) is defined as in Definition 2.
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Summary 1. From the above we get that, under the con-
ditions (C.7), (C.13), the rate delivered to the destination
during this period is given by

T1 = R(1)
a + R(1)

d

≤ ν min
{
R1

(
P1a,

Q

2
, Ñ2, ξ, ρ,αa

)
,

R2

(
P1a,P2a,

Q

2
, Ñ3 + P2d, ξ, ρ,αa

)}

+ ν min
{

1
2

log
(

1 +
P1d

N2

)
,

1
2

log

(
1+

P2d

N3 +P1d+(Q/2)σ
(
P1a,Q/2, ξ, ρ,αa

))}.
(C.17)

(2) Period νT . During this period, the relay decodes only
message Wa from

Y (2)
2 = X (2)

1a + S(2)
a +

[
X (2)

1d + S(2)
d + Z2

]
. (C.18)

In doing so, the decoder at the relay treats [X (2)
1d +S(2)

d ] as part
of the noise. Again, this can be done reliably as long as

R(2)
a ≤ ν

[
I
(
U (2)

1a ;Y (2)
2 | X (2)

2a

)
− I

(
U (2)

1a ; S(2)
a | X (2)

2a

)]
= νR1

(
P1a,

Q

2
, Ñ2, ξ, ρ,αa

)
.

(C.19)

Decoding at the destination also is similar to that during the

period νT . The destination first decodes U (1)
1a fully from

Y (2)
3 = X (2)

1a + X (2)
2a + S(2)

a +
[
X (2)

1d − S(2)
d + Z3

]
. (C.20)

For the decoding of U (2)
1a , the decoder at the destination

decodes both the bin index and also the correct sequence in
the bin. In doing so, it observes a total noise of variance Ñ3.
The decoding in this step is reliable if

R(2)
a ≤ ν

[
I
(
U (2)

1a ,X (2)
2a ;Y (2)

3

)
− I

(
U (2)

1a ; S(2)
a | X (2)

2a

)]
= νR2

(
P1a,P2,

Q

2
, Ñ3, ξ, ρ,αa

)
0 < I

(
U (2)

1a ;Y (2)
3 | X (2)

2a

)
− I

(
U (2)

1a ; S(2)
a | X (2)

2a

)
= R1

(
P1a,

Q

2
, Ñ3, ξ, ρ,αa

)
.

(C.21)

The destination then subtracts out the decodedU (2)
1a and X (2)

2a

from Y (2)
3 and it decodes message Wd from the residual

Ỹ (2)
3 = X (2)

1d +
[

(1− αa)S(2)
a − S(2)

d

]
+ Z3. (C.22)

The decoding in this step is reliable if

R(2)
d ≤ ν

[
I
(
U (2)

1d ;Y (2)
3 | U (2)

1a ,X (2)
2a

)
− I

(
U (2)

1d ; S(2)
a , S(2)

d | U (2)
1a ,X (2)

2a

)]
= ν

2
log

(
1 +

P1d

N3

)
.

(C.23)

Summary 2. From the above we get that, under the condition
(C.22), the rate delivered to the destination during this
period is

T2 = R(2)
a + R(2)

d

≤ ν min
{
R1

(
P1a,

Q

2
, Ñ2, ξ, ρ,α

)
,

R2

(
P1a,P2,

Q

2
, Ñ3, ξ, ρ,αa

)}
+

ν

2
log

(
1 +

P1d

N3

)
.

(C.24)

Let us choose the GDPC scale parameter αa such that the
inequalities (C.7), (C.13) and (C.22) are satisfied, that is,
αa ∈ B3(ξ, ρ). Then, for fixed ν ∈ [0, 1], and fixed
(P1a,P1d,P2a,P2d) and (ξ, ρ,αa) chosen as specified above, we
obtain the rate delivered to the destination during the total
transmission time by adding the rates T1 and T2.

Finally, we obtain the rate on the RHS of (29) by
maximizing T1 + T2, over all values of ν ∈ [0, 1];
P1a,P1d,P2a,P2d such that P1a + P1d ≤ P1 and P2a + P2d ≤
P2; ρ12 ∈ [−1, 1], ρ1s ∈ [−1, 1], αa ∈ B3(ξ, ρ) such that

the covariance matrices of (S(1)
a , S(1)

d ,X (1)
1 ,X (1)

2 ,Z2,Z3) and

(S(2)
a , S(2)

d ,X (2)
1 ,X (2)

2 ,Z2,Z3) have nonnegative discriminants,
that is, for Q > 0, ξ = 1 − ρ2

12 − ρ2
1s ≥ 0. Furthermore,

investigating T1 and T2, one can easily see that it suffices to
consider ρ12 ∈ [0, 1] and ρ1s ∈ [−1, 0]. Thus, ξ ∈ [0, 1] and

ρ ∈ [−
√

1− ξ, 0]. This concludes the proof of Theorem 5.
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erative encoding with asymmetric state information at the
transmitters,” in Proceedings of the Allerton Conference on
Communications, Control and Computing, Monticello, Ill,
USA, September 2006.

[15] A. Somekh-Baruch, S. Shamai (Shitz), and S. Verdù, “Coop-
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[28] I. Marić, A. Goldsmith, G. Kramer, and S. Shamai (Shitz), “On
the capacity of interference channels with one cooperating
transmitter,” European Transactions on Telecommunications,
vol. 19, no. 4, pp. 405–420, 2008.

[29] A. Somekh-Baruch, S. Shamai (Shitz), and S. Verdù, “Cog-
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