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ABSTRACT

This paper investigates the sensitivity of the achievabdg¢ss for
the full-duplex relay channel to small additive disturbesmion chan-
nel links. The focus is on two relaying strategies—-the diecand-
forward (DF) mode and the compress-and-forward (CF) mode.
use Fisher Information and De-Bruijn’s identity to assdss de-
crease in the corresponding rates due to small additivexoanat-
ing noise. Analysis sheds light on the respective sentitievels
of these schemes and hence, provides insights onto theechbic
appropriate relaying strategies in the situations whereestrade-
off between transmission rate and sensitivity is neededxt, Nee
show that these results can be used to emphasize the effgthof
nel estimation error on relaying transmissions. An impar{aome-
how intuitive) observation at this stage is that transmisshrough
the direct link (i.e., relay is off) may improve upon both dde-
and-forward and compress-and-forward schemes, when #reeh

is "bad enough”. Finally, a lower bound on the capacity of a re

lay channel under channel estimation error is obtained lybto-
ing well known relaying strategies, each over the approgr&\NR
range. Analysis is supported by some examples.

Index Terms— Relay channel, cooperative systems, channela

sensitivity, capacity bounds.

1. INTRODUCTION

Relaying transmissions model problems where one or moagsel
help one or more pair of terminals communicate. The simftest
of such transmissions is the one with one transmitter-vecggair,
commonly known as the relay channel (RC) [1]. Though intamdl
since relatively long, the capacity region of the general iR Gtill
unknown and, in fact, the most thorough analysis to date was p
vided in 1979 by Cover and El Gamal [2]. In [2], the authors\dst
the capacity region under certain restrictive conditiarstiie relay
channel (being physically degraded). They also develowectbd-
ing strategies for general RC. The first strategy achievesdte in
[2, Theorem 4] and is now commonly knownaecode-and-forward
(DF) [3]. The second strategy achieves the rate in [2, Theore
6] and is now often calledompress-and-forwardCF) (or, equiv-
alently, estimate-and-forwarer quantize-and-forward4]). There
have been then the now populamplify-and-forward(AF) [5, 6]
and its variationscale-and-forward SF) [4]. These coding strate-
gies gained considerable interest in the last few years,taldke
potential use of cooperative coding in a variety of appiarat such
as as a multihop wireless network and a sensor network.

Much of the earlier research on relaying strategies conatet

on the comparison of these schemes in terms of achievalde rat

(e.g., see [4]). They all came with the conclusion that nditbese
schemes truly extract the potential benefits of cooperatoups and
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that, in many cases, efficient coding should rely on mixedtstr
gies. This paper focuses on relaying strategies from ansthed-
point: sensitivity to small additive disturbances (or peoations).
The aim is to determine which of these schemes is less/mogé-se
tive and whether the most efficient scheme (in terms of aabiev

Wrate) has the smallest/biggest sensitivity. The questfosensitiv-

ity to small additive disturbance (or, roughly speakingntise) has
at least two motivations. First, from a practical pointvidw, it is
clear that as transmission over wireless channels oftdarsifom
random fluctuations in signal level known as fading and fram
channel interference, one should consider not only thengiatty
achievable transmission rate but also robustness to noibénter-
ference in the design of relay communication systems. Skdmm
an information-theoretical point-of-view, the study ofstivity to
noise is important since it permits to predict how transioissate
decreases in presence of small perturbations. In additi@frame-
work readily applies to relaying with channel estimatioroer

The remaining of this paper is organized as follows. In secti
2, we use Fisher Information and De-Bruijn’s identity toesssthe
decrease of the rates achievable by both DF and CF, for therglen
relay channel (not necessarily Gaussian). We model thee rasis
each link as the sum of a dominant (possibly non Gaussiasenoi
nd a relatively-weak Gaussian contaminating noise. @eé&tispe-
cializes the results of Section 2 to the Gaussian case. liosek we
emphasize the impact of channel estimation error on theceabie
rates for the full-duplex Gaussian RC, in the case wherehharel
coefficients are known only partially. An achievable ratgioe is
derived based on a combination of DF, CF and transmissiauigjfir
the direct link (DL). Section 5 concludes the paper.

2. SENSITIVITY OF ACHIEVABLE RATES

Consider the general relay channel (RC) depicted in Fig.Hera
the source terminal sends mess&ge(from set?”/, i.e.,, W € %)
to the destination through a relay terminal. So, the relagives
no specific information and only assists the destinatiomdecenes-
sageW. Throughout this paper, we use S, R and D to refer to
the source, relay and destination terminals, respectivélie as-
sume that time is discrete and at timeS and R sendX:(t) and
X2(t), respectively and R and D recei&(t) andY = Ys(¢),
respectively. The source signal; (¢) is function of the message
W € and the relay signaK (t) is function of past relay’s inputs
Y7t 2 Yy(1), Ya(2),-- -, Ya(t — 1). We also suppose that the
three links S— R, S— D and R— D are characterized by channel
coefficientshis, h1s andhas, respectively. Channel coefficients are
assumed to be nonrandom at this level.

Next, we assume that channel noise on each link is the sum of
a dominant, possibly non-Gaussian, noise (denoted-bfpr R and
by Z5 for D) and a relatively weak Gaussian contaminating noise



hio Ras Using the multivariate version of (5) and some algebra tduae
. the entropy of random vectorsX;, Xo,Y2) = (X1, Xa,Ya) +
Wer— Xi his Y&Ys=WeV (0,0,92)‘/2, (XQ,?Q) = (X27Y2) + (0,02)‘/2, (X1,X2,)7) =
(X1, X2,Y) + (0,0,05)Vs andY = Y + 65V5 in (4), we end up
with the following expressions (kind of Taylor expansionéinfor
the DF rate loss:

Fig. 1. The general Relay Channel (RC)

(denoted by, V> for R and by#s V3 for D). The two noise compo- a 1622 )
nents may model ambient noise and small channel variatioasyo ~ Zor () = T{Tr(J(XleYz)) = Tr(J(X2Y2))} + o(|62]7),
additive weak interference, respectively. With these tiana, the (6a)
received signals are given by 1052

- (2) _ 3 _ 12

Ya(t) = h1a X1 (t) + Za(t) 4+ 02Va(t) = Ya(t) + 62Va(t), IpF (0) = 2 {Tr(J(X1X2Y)) = Tr(J(Y))} + o(|05]7), (6b)

Y (t) = h1s X1 (t) + hasXa(t) + Zs(t) + 0sVa(t) = Y(t) + 0sVa(t), where T¥-) and Va(-) denote the trace operator and the variance,

, . spectively.
whereZ, and Z5 are assumed to be independent of each other an rom (6) we see that DF can be characterized by a qr —

also independent df; andVs. We suppose without loss of gener- )" * ) o - ]

ality thatE[Va] = E[V5] = 0 andE[Vi] = E[VZ] = 1. Also, let (7o > 7o ) Of sensitivity coefficients where we define

0 = (02,03)". The relay is allowed to operate in either DF or CF (1) @)

modes. The aim is to emphasize the sensitivity of (the ratéeeac A0 2 i Lor (9 fng~@ 2 gy Zor(0) @
able by) these schemes to the weak perturbatiais and 65 V5. OF T jeli—o |62 OF  el—o |65

These two coefficients measure system sensitivity in thestnis-

2.1. Decode-and-Forward (DF) sion of fresh information (to R, by S) and refinement inforima{to
. . . 1

Assume the relay operates in DF. In the classical case wherist D, by both S and R), respectively. In particular, comparisbngy

no perturbation (i.ef = 0), DF achieves any rate up to [2, Theorem andwéi) allows to determine to the quality of which link DF is most

4] sensitive. This is clearly useful in resource managemétimktof
) rate/power allocation) and also in system design.

Ror(0) = (Dax min {I(Xle; Y), I(Xq; Y2|X2)}7 (2 Remark 1: Eq. (7) means that for small valuestfwe have
where maximization is over all joint distributiongz1, z2). Now,  Rpe(6) = max min {I(X1; Y2|X2) — 75 [62]% + o(|62]%),
whend # 0, the perturbations result in rate loss with respect to p(@1.e2)
the nominal rateRpr(0). This loss can be measured by the rate I(X1X2;Y) — Wéi)|93|2 +0(|65*)}, (8)
difference Rpor(0) — Ror(6), i.e., by the tow mutual information
differences where~Sy and~{?, as defined by (7), are given by

I8P (0) = I(X1; Ya|X2) — I(X1; Ya| Xa), (3a)
o . 2 = Iy - STUGY), (@)
I (0) = I(X1Xo;Y) — [(X1X2;Y). (3b) 2 2
1 1
Aninterpretation of (3) in the light of the superpositiomtk Marko- e = ST (X2 XeY) = 5Tr(J (V). (9b)

vian encoding in [2] where the source terminal sefiésh informa- o o

tion on top ofrefinement informatianis that, hereZ{Y character- Hence, the sensitivity coefficientr does not depend on the strength
izes the rate loss in transmitting the fresh informatioor(frS to R)  ©f the perturbation (since defined as a derivativégfw.r.t. this per-
andZ{? characterizes the rate loss in transmitting the refinerment i turbation). Rather, it can be interpreted as a measure ofitfiesic

. . "robustness” of DF to small additive channel perturbations
formation (from S and R to D), due to the perturbation. $§2 P

basically depends on the quality of the-S R channel, an(f,g?

basically depends on those of the-RD and S— D channels.  Assume now the relay operates in CF9I{= 0, the CF strategy has
Using the "Information Chain Rule” and the "Entropy Chain g forwarding a quantized and compressed versipof its channel

Rule” [7], this "information loss” can be related to entropg output to D. The compression uses Wyner-Ziv coding [8], iite.

T (0) = (H(X: Xo V) — H(X: XoVo)) — (H(X-V5) — H(X.Y,)) EXploits the destination’s side informatidh This approach lets one
or (0) = (H(X1X:2Y2) (X1X2V2)) — (H(X2Y2) ((42)2))’achieveanyrateupto[2,Theorem6]

2.2. Compress-and-Forward (CF)

IH(0) = (H(X1X2Y) — H(X1 X2Y)) — (H(Y) - H(Y)) Ror(0) = max 1(Xy; Y V2| X2) (10)
(4b)

Now, recall De-Bruijn’s identity which relates entrop¥(-) to Fisher
informationJ(-).

subject to the constrairft(Xo; Y) > I(Yz; Y2|X2Y) where maxi-
mization is over all joint distributions of the forp(z1, z2, y, y2, §2) =
p(z1)p(x2)p(y, y2|x1, 2)p(G2|y2, 2). Now, if the perturbation is
Lemma 1 (De Bruijn’s Identity [7, Theorem 16.6.2]) non zero (i.e.f # 0), Wyner-Ziv coding sees a noisy side infor-
Let X be any random variable with finite variance and dengity). mation (since signal” at D is corrupted by perturbatiofy V) and
Let Z be an independent normally distributed random variabléawit also a noisy signal to be compressed (since sighaht R is cor-

zero mean and unit variance. Then rupted by perturbatiofi;V2). Let the quantized version of Signed
9 1 beY, = Y + e, wheree is a small error (with variance?) due to
—H(X tZ)=-J(X t7). 5 . L ©
ot (X +12) 2 (X +12) ©) noisy quantization. We proceed as above and measure thiwsate



due to the perturbation by the differerifig-(0) = Rcr(0) — Rcr(6).
We obtain

Rer(0) = Rer(0) — yer(|0s]” + 02) + o(|0s]* + 02),  (11a)
~er = %Tr(J(Xlxz?zY)) - %Tr(J(XQ?QY)). (11b)

Remark 2: At this stage, it is interesting to compare CF and DF
sensitivity coefficientsypr and~cr, for the same small additive dis-
turbance (i.e., giveld). For that, one has to compute Fisher infor-
mation in (9) and (11). This is not obvious in general (seetiSec
3 for comparison in the Gaussian case). However, viewingdfis
Information as a measure of the accuracy in estimating trehied
signals, we can see that CF is less sensitive than DF at ragk-tr
mission rate. The reason is thair in (11b) can be viewed as the
error in estimating the inpuX’; if one observe$Xs, 372, Y’), which
is of course smaller than the error obtained by estimatirty Ba
and X, from Y only, as in (9b). A similar argument shows that CF
is more sensitive than DF at low rate.

3. SENSITIVITY OF ACHIEVABLE RATES FOR THE
GAUSSIAN RC

Consider again the channel shown in Fig. 1. Let the nalseand
Z3 be Gaussian with unit variance afidX?] = P;, i = 1,2. We
concentrate on the evaluation of DF and CF sensitivitiedi®qual-
ity of) the S— R channel (R— D and S— D are assumed to be
perturbation-free) and denote by SNR the correspondingakim-
noise ratio at the relay. We now assume that the channel isrkao
R within some mean-square error. More specifically, we break
into h12 andhia, whereE[hia] = his andE[h12] = 0. Intuitively,
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Fig. 2. Sensitivity of DF and CF to small perturbations on thesS
R channel, due to channel estimation erldr.= P, = 5 dB.

severe. Then, we build upon this observation to derive beondhe
capacity region of the GRC under channel estimation error.
4.1. Effect of estimation error on the Full-Duplex GRC
Consider the GRC considered in Section 3,

(12a)
(12b)

Yo = hiaz1 + hiazy + 22
Y= hasar + hass + hizzi + hoszs + 23,

wherefnz, has and hys stand for estimation errors and have vari-
ancesi?,, 625 anddzs, respectively. From an information theoretical
standpoint, the estimation error causes the GRC to deviate the

we view h1> as the measurement (or estimation) of the channel aglassical description for at least three reasons. Fiestfitig the er-
R andh;» as the zero-mean measurement (or estimation) error, agor termshi2x1, hozx2 andhizz: as noise is clearly suboptimal, as

sumed to be normally distributed, i.é,2 ~ N(0,61,).

these terms may potentially convey "information” aboutrutel in-

The framework of Section 2 may apply here, as perturbatiorPut, since they are statistically dependent on b¥thand X». Sec-

02V> may model the error in measuring channel coefficient(dis-
regarding for the moment the fact that this error noise ieptilly
non Gaussian; this problem is handled in Section 4).

Fig. 2 depicts the evolution of the coefficients: and~ce, cal-
culated assuming joint Gaussian distributions in (9) arid)1Note
that, in order to model the fact that R can accurately eséntia
channel at high SNR, we let the eri@f, vary inversely proportion-
ally to SNR. More specifically, botfhi2|* andd?, vary in Fig. 2: As
|h12|? increases from-10 dB to 10 dB, 61, varies from10™% |12
at large SNR tal0~'|h12|? at small SNR. We observe that: 1) DF
sensitivity firmly increases with the transmission rates(ethough
the estimation error then becomes smaller). However, Csitsdty
increases only slightly. This is due to the fact that, whespitrates
in CF, the relay needs only quantize sigb?al Thus, small estima-
tion error has only limited impact on CF, as small signal atioins
do not cause’; to fall outside the quantization cell (however, er-
ror noise may have a larger impact if channels-RD and S— D
are known only partially, since this may cause a mismatctvéen
Wyner-Ziv encoder (at R) and decoder (at D)). We also obstae

2) DF is more (resp. less) sensitive than CF at high (resp.) low

transmission rate, which conforms remark 2 in Section 2.

4. FULL-DUPLEX GAUSSIAN RC UNDER CHANNEL
ESTIMATION ERROR

In this section, we investigate the effect of channel edfonaerror
on the achievable rates for a Full-Duplex Gaussian RC. e sinat
the superiority of both DF and CF over simple transmissicer thre
direct link (DL) (i.e., relay off) may be questioned if theasinel is

ond, it is not clear whether one could find a combination (R)S,
that can exploits this dependence and hence, the capaditg 0é-
sulting channel (even when the original channel is degraidean-
known. Third, even if the estimation error is sub-optima#iegated
to noise, this noise remains non-conventional, in that assibly
non-Gaussian (for the rate-maximizing input distribujiand above
all dependent on botk; and X5.

4.2. Bounds on capacity
We obtain an upper bound by simply using the "max-flow-miti-cu

Theorem [7, Theorem 14.10.1] or [2, Theorem 4] and conditipn
onvectorh = (hiz, hos, h13)”. LetC(x) £ 0.5log, (1 + ).

Proposition 4.1 (Upper bound) The capacity of the Full-Duplex Gaus-
sian RC with estimation error (12) is upper bounded by

C™ = max min{I(X;Xs;Y|h), [(X1;YYs|X2h)}

p(z1,22)

= mgx min {C(|i113|2P1 + |i123|2P2 + 24/ B|i113|2|;7,23|2P1P2
+ 8% Py + 035 P2), C((1 = B) (1o + hasl + 6% + 675 1) }.

Next, we obtain a lower bound by replacing the error noisel) (
by Gaussian noise with the same variance and combining the ra
regions achievable by DF, CF and DL (this will be justifieddve).

Proposition 4.2 (Achievable rate region) The capacity of the Full-
Duplex GRC with estimation error (12) is lower bounded by

C" = max {CV (), C¥, C5Y, 13)



where

CI'(B) = min {

cy =

con —

o |iL13|2P1 + |iL23|2P2 + 24/ ﬂ|ﬁ13|2|il23|2P1P2)

1 +(5f3P1 +5§3P2 ’

(1= B)|haa|* Py
CC e (4
|;l13|2P1 |i112|2P1
14b
C(1+553P1+(5§3P2 1+O’?U+(5%2P1)7 ( )
|i113|2p1
O (14c)

The rateqi{‘(ﬁ) is obtained by lower-bounding(X:; Y2| X) and

I(X1X2;Y) using techniques which are similar in nature to those

used in [9] to bound the capacity region of a multiple accéssnel
(MAC) (However, caution should be exercised here since,fpoe
sition to MAC inputs in [9], X1 andX> are correlated). The rate;’

is obtained by evaluating the achievable natex, 1(X1;Y Y| X5)
with the choice of input distribution s.B[ X X5] = p/P1 P> and

Y3 = Ya+ Zy, whereZ,, ~ N'(0,02) ando?, is the "compression

noise”

sponds to DL. Note that the additional compression noisealtiee
estimation error is? = o2 — (1+ (|h12|® + |h13]?) P1) /| has|? Po.

4.3. Discussion

satisfyingl (Xo; Y) = I(Ya; Y| X5Y). The rateC'¥ corre-

Rate

,0 6 8 10
h2, [dB]

Fig. 3. Lower boundC™, upper bound>°", and rates achievable
by DF, CF and DL for Full-Duplex GRC with (dashed) and without
(solid) channel estimation error, versus the SNR in the 8nk R.
The variance)?, of the estimation error varies inversely proportion-
ally to SNR as in Section 37, = P, = 5 dB.

schemes to small channel variations and provides insigftts the
choice of appropriate relaying strategies that meet aiograde-off
between transmission rate and sensitivity, in real sibmati Next,

we used these result to emphasize the impact of channelaggtim

error on a Full-Duplex Gaussian relay channel and derivetamd
upper bounds on its capacity.
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Fig. 3 plots the bound§™ andC°" and the rates achievable by DF
(CY"), CF(C3) and DL (C%'), versus the SNR in the link S> R.
We observe that:
1. when the channelis perfectly known (curves in solid ligH
relay off (i.e., operating in DL) inevitably results in rdtess.
However, in presence of estimation error (curves in dashed
line), this no longer holds since DL may improve upon CF
when the channel is "bad enough” (i.e., small valuel:9f ). [1]
2. the best rate achievable with a mixed strategy that uses DF
CF and DL (i.e., the one that achieves the lower boGtY 2]
consists in keeping the relay off at very small SNR, then have
the relay operate in CF for small-to-medium SNR and finally,
when the channel becomes "sufficiently good”, use DF. 3]
3. DF is more efficient (in terms of transmission rate) than CF

at high rate and (unfortunately) it is also more sensitiviee T
same remark is valid for CF at low rate. This is because, the
more one scheme benefits from channel knowledge (e.g., D
when R is close to S) the more it is vulnerable to small varia-
tions in this channel. A trade-off rate/sensitivity is neddor
non-demanding rate applications.

Remark 3: Note that the fact that, by opposition to the case (5]
when the channel is known, DL may potentially improve upothbo
DF and CF in presence of channel estimation error revealsobne [6]
main limitations of cooperative communication in real attans: er-
ror propagation from one node to another.

Inthis

(7]
5. CONCLUSION

paper, we investigated the sensitivity of two refeystrategies— (8]

the decode-and-forward (DF) scheme and the compresseawd+tl
(CF) scheme, to small additive disturbances. We used Fiafar

mation and De-Bruijn’s Identity to assess the decreaseditdire-
sponding rates. Analysis sheds light on the "robustnessiasfe two
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