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Abstract—In this work, coding for the relay channel and each other communicate. This may occur in a variety of
the cooperative relay broadcast channel controlled by randm  applications such as a multihop wireless network and a senso
parameters are studied. In the first channel, the relay chanal network. In a multi-hop wireless network, each mobile node
(RC), information is transferred from the transmitter to th e ’ .
receiver through a multiplicity of nodes which all "simply” act loperates. not only as a h(_)St but alsp amuater, forwarding
as relays. In the second channel, the cooperative relay brdaast information for other mobile nodes in the network that may
channel (RBC), each intermediate node also acts as a receiviee., not be within direct wireless transmission range. In a senso
it decodes a "private message”. For each of these two chaniselve  network, due to limited power, nodes with sufficient avaiab
consider the situation where side information (SI) on the rmdom power assist other nodes transfer information. The SI may
parameters is non-causally provided to the transmitter andall b inf fi bout the ch D that the t itt
the intermediate nodes but not the final receiver, and derivean € any In Qrma on _(a ou e channel) tha g ransm! er
achievable rate region based on the re|ays using the decode_and a.” the |ntermed|ate nOdeS knOW but not the f|na| receiver
and-forward scheme. In the special case where the channelsea For instance, this may model any (measured/genie-proyided
degraded Gaussian and the side information (SI) is additive.i.d.  jnformation about channel coefficients in fading transiniss.
Gaussian, we show that 1) the rate regions are tight and prode  Angther example is the case where the transmitter and the

the corresponding capacity regions and 2) the stat&™ does not . . . . . .
affect these capacity regions, even though the final receivéas intermediate nodes know some interfering signal that the fin

no knowledge of the state. For the degraded Gaussian RC, the receiver (located far away from this interfering sourcehaes
results in this paper can be seen as an extension of those byrki aware about.
et al. to the case of more than one relay. For theT-node RC with SI non-causally available at the
transmitter and the relays but not the destination, we first
derive an achievable rate region based on a combination of
Channels that depend on random parameters received agliting-window decoding [4]-[6] and Gelfand and Pinsker’s
siderable attention over the last years, due to a wide rahgebining [7]. Then, we specialize this result to the case wher
possible applications. Two examples of such channels @re the channel is degraded Gaussian and the state is additive i.
broadcast channel (BC) with random parameters [1], [2] a®hussiar. In this case, we show that the presence of the state
the multiple access channel (MAC) with random parametegiges not affect the channel capacity. This result may beadew
[3]. Two key points in the study of such channels are: Bs an extension of previous work by Kiet. al.[8, Theorem
whether the parameters controlling the channel (also dallg] to the case of more than one relay.
state or side-information (SI)) are known causally or non- For the T-node cooperative RBC with SI non-causally
causally and 2) whether they are known to all, only some, ggailable at the transmitter and all the intermediate vecsi
none of the nodes (including the transmitter and the receivepyt not the final receiver, we first consider the case where
As pointed out in [2], problems with SI known either athe receivers partially cooperate and derive an achievaine
the receiver or at the transmitter and the receiver can F@gion based on a combination of window-sliding [4], [5],
handled using (variants of) standard state-independefitgo superposition-coding [9] and Gelfand and Pinsker’s bignin
techniques. [7]. In the Gaussian case, capacity region is provided for
In this paper, we consider two other channels: 1) Thie degraded-AWGN Cooperative RBC with additive i.i.d.
T-node relay channel (RC) with state information (SI) noGaussian state, in both situations of partially coopegasind
causally known to the transmitter and the relays but not fglly cooperating receivers. Again, we show that the statesd
the destination and, 2) tHE-node cooperative relay broadcasot affect the capacity region, meaning that the channel has
channel (RBC) with SI known to the transmitter and allhe same capacity region as if the state were zero or were
the intermediate receivers (which also act as relays) but no

_to the f'_nal receiver. Relaying and cooperative relaying ofian aqditive state may model any additive interference whigmon-
information model problems where one or more relays hetpusally known to the transmitter and the relays but not #stiition.

I. INTRODUCTION



non-zero but known also to the final receiver. region is contained in the one recently proposed in [8, Lemma
The remaining of this paper is organized as follows. I8] for general RC (see Rematlbelow), and is equally optimal

section I, we derive an achievable rate region for ffie for the special case of degraded Gaussian RC (see Remark

node RC with non-causal Sl available at the transmitter aRdbelow). Results are extended to the case of multiple relay

the relays, but not the destination. Section IIl specializeodes in Section II-B.

to the T-node degraded Gaussian RC with non-causal i.i.d.

additive Gaussian Sl. In section IV, we derive an achievabfe One relay

rate region for the partially cooperative RBC with non-aus Assume the one-step problem in which there is only one

Sl available at the transmitter and all but the final receivaelay node, i.e.] = 3. We have the following result:

Section V specializes the results of Section IV to the degglad

AWGN partially/fully cooperative7-node RBC with non-  Theorem 2.1:(Inner bound on the capacity of one-node RC

causal additive i.i.d. Gaussian Sl. Final concluding rdmarwith state) For a discrete memoryless one-node relay channe

are stated in section VI. p(y2,y|z1, T2, s) With state informatiors™ non-causally avail-

able at the transmitter and the relay but not the destination

Il. ACHIEVABLE RATE REGION FOR THEZ'-NODE RELAY the following rate is achievable:

CHANNEL WITH NON-CAUSAL STATE

Consider the network model depicted in Fig.1. The R = max min {I(UI;Y2|SU2)aI(U1U2§Y)
node relay network has a source terminal (nddle7 — 2 plu,uz,m,22]2)
relays denoted sequentially &3,---,7 — 1 in arbitrary —I(Ule;S)}, (2
order and a destination terminal (no@§ Assume each node ) ) N )
i€ {1,2,---,T — 1) sendsX;(t) at timet, and each node where thg maximum is over all auxiliary rar_ldlom yar!atﬂ_es
ke {2,3,--- T} receivest(t) at timet, where the finite sets andU, with finite cardinality bounds and all joint distributions

2; and%, are the corresponding output and input alphabe®é the formp(s)p(us, ua, x1, 22]s)p(y2l1, v, $)p(yly2, 2)-

for the corresponding nodes, respectively. The destinatio ) )
terminal has inpu” 2 Y;. The stateS is assumed to be Proof: The proof is based on a random code construction

random, taking values in a finite se¥ and non-causally which combines sliding-window decoding [4], [5] and Gelfian

known to all nodes but the destination. The source outp#fd Pinskers binning [7]. Similar proofs based (only) on
X1(t), t < n, is function of the messagd” € # and the sI_|d|r_19—vy|ndow have aIr_eady appeared in [6], [10]. Here,
state sequenc§” € .7, and theX;(t), i # 1, are functions binning is added to take into account thg state. For brenmy,_

of node’s past inputsY!~' 2 Y;(1),Y;(2),-- ,Yi(t — 1) only outhng the random c_ode construction and the enc_od_lng.
and the state sequens& < .. The channel is supposed tol he decodlng and analysis of probability of error are simila
be memoryless and is described by the following condition® [6], [10]. Fix v > 0. Let

probability mass function: Ji 2 exp(nI(Uy; S|Us) + ny)
p(y25y37"' ayT717y|I17x27"' 3IT*155) (1) J2 £ exp(nI(Ug,S)—l—n’y)
for all s € ", all My £ exp(nl(Uy;Y2|SUs) — 2n)
Ve T x - x B My £ exp(nl(UUs;Y) — nl(UyUs; S) — 2n7)
(a1, y TT—1 1 T-1 M & min (M, Ms). ©))
and all

We consider transmission oves blocks each with length
(y2,  yyr—1,y) € % X - X WUp_1 x ¥ n. At each of the firstB — 1 blocks, a messagéVl; is
sent, wherei denotes the index of the block. We gener-
ate two statistically independent codebooks (codebobks
5" 5" and 2) to be used for blocks with odd and even indices,
¥, Nniez X v Nmf” Xro respectively, in similar way to [6], [10]. Then, we gen-
erate an auxiliary collectiora of i.i.d. uj-vectorsa =
i P T P T {ud (o, w’), 2 €{1,2,---, o}, w' €{1,2,---, M}}. For
wew a O . }_Yr.ﬁ,w eachu} £ u}(j»,w'), we generate a collection af}-vectors
b(uy = {u?jl,w(ug)vjl € {17 T ’Jl}’w € {1’ 2, ’M}}
Fig. 1. Relay network with SI non-causally known at the seurerminal With appropriate distribution. At the beginning of bloekif
and all the intermediate terminals (relays) but not theinaton. w; is to be transmitted and;_; is the message being sent
in previous blocki — 1, we selectuy andw} such that both
In the following section, we investigate the impact of théuj (j2, w;—1),s") and (uy; . (u3),u3,s™) are typical (see
SI S™ on the reliability and the throughputs of the wirelesgl1] for definition). Then, the relay send$§ = x4 (s™, w;—1)
network. We provide an achievable rate region for ffie such that the tuplgx?,ul,s™) is jointly typical and the
node RC with non-causal Sl. For the single-node RC, this rateurce sends:} = z7(s",w;_1,w;) such that the tuple



S S
(zf, uf(uh), s™) is jointly typical. Decoding uses the same

techniques as in [6], [10] and it can be shown that all the l [(U\Us; Y| SUSs)
_— .. S Y Xo i CH

error events have small probabilities for sufficiently krg '

I(Ul:,Y%\SUQL‘B)

I(DWoUsY) — I(ULUUs; S)

|
Remark 1: In [8, Lemma 3], Kimet. al provided an_
achievable rate region for the case of just one relay. "Thi
rate region useg(U;;Y2|SX>) instead ofI(Uy;Y3|SUs) In
(2) and is hence generally larger (than (2)). To see thal > The information transfer for two relays, using regwincoding/sliding
I(U1;Y2|SX2) > I(Us; Y2|SU>), observe that window decoding combined with binning.
I({U1U28X2;Y2) = I(X2S;Y2) + I(U1; Y2|SX2) + I(U2; Y2|SX2U1)
=I(U2S;Y2) + I(U1;Y2|SU2) 4+ I(X2;Y2|SU1U2).

— X" (W, 5%

Y —wWwew

_ between the source terminal and the- 2 relays transforms
Then, note thaf (Xy; Y2[SU,Uz) = 0 (sincepx,ju,s = 0,1)  the originalT-node relay channel into a fictitious channel with
and I(Uz; Y2|SXoU1) = 0 (since (U1, Uz) © (X1, X2,5) © S| non-causally known to the fictitious transmitter—the- 1

(Y5,Y) forms a Markov chain under the specified distribuguxiliary inputsty, - - - , Ur_1, but not to the receivey’.
tion in (2.1)). Finally, usel(Uz2S;Y2) > I(X2S5;Y2) to get  Example 1: For a four-node RC with SI non-causally known
I(Uy1; Y2|SU2) < I(Uy; Y2|SX2). everywhere, but not to the destination, Theorem 2.2 shoats th

Remark 2: In the Gaussian cask; is a linear combi- the rate
nation of U; and S (see [12]) and hencd,(U;;Y5|SX2) =
(Uy1;Y5|SUs). So, for the special case of one-node Gaussian I = maxmin {I(Ul;Y2|5U2U3),I(U1U2;Y3|SU3)
RC, the rate region (2) is equal to the one in [8, Lemma 3].
[(UWU2UsY) = 102U 8) - (6)

B. Multiple relays ] ) . . . .
We now consider the problem of multiple-relay channé? aphlevable. A d"?‘gram. of information transfer is defucte
with SI non-causally available at the transmitter and ad tH" Fig.2 where the incoming edges are labeled by the mutual

relays but not the destination. The result in Theorem Z[r_JLformanon expressions in (6).
straightforvyardly extends to the case®fnodes. Letr(-) be lIl. CAPACITY REGION OF DEGRADEDGAUSSIAN
a permutation on., 2, ---, T with 7(1) = 1 and«(T) = T, T—NODE RELAY CHANNEL WITH ADDITIVE STATE
and |et7T(Z]):{7T(Z),7T(Z+1), 77T(j)} . . .. .

Theorem 2.2:(Inner bound on the capacity of te-node N this section, we prove explicitly the capacity of the
RC with state) For a discrete memorylegsnode relay multiple relay degraded Gauss,la_n channel W|th_ addltlve. Sl
channeb(yo.r—1, y|z1:7—1, s) With state informatior™ non- non-causally known to the transmitter and all the interratdi

causally available at the transmitter, all tifle— 2 relays but €lays. but not the destination. It turns out that the acibey
not the destination, the following rate is achievable: rate (5) is the capacity of the degraded multi-relay channel
with non-causal state, which is attained with an approgriat

R = max max <rriin {I(U,,(M);Yﬁ(t+1)|SUﬁ(t+1:T,1)), choice of the input distribution. In Section III-B, we use an
() p(l) 1stsT-2 inductive argument to determine the capacity region. This
I(Ura:r-1):Y) = I(Ur1:m—1); S)} (5) result can be viewed as an extension of the work [8] to the

Lo = case of more than one relay.
where the second maximization is over all auxiliary random

variablesUy, - - - , Ur_1 with finite cardinality bounds and all A. Channel model

joint distributions satisfying (yx (1) |2 (1:7-1), Un(2:4-1), 8) = Consider the channel depicted in Fig.1. We now assume

p(yﬁ(t)|xﬁ(t,1),:E,,(t),yﬁ(t,l); s)fort =2 T—1and y.the signal received at node 2 < k < T, is corrupted
Pyl Er(1r-1)s Yr21-1),8) = PYYm(r 1), Tr(r-1))- by an i.i.d. Gaussian noisg, ~ N(0, Ny), resulting from

Proof | | ati imize the rat fthe accumulation of the noise at the different beforehand
_ ~fool- in general, permutations maximize the rate, (_)§tages. We also assume that the channel is physically d=tyrad
this can be viewed as a tacit search for the correct codi

der. For fixed ; h f d Hﬁaaning that there exist independently generated Gaussian
order. For fixed permutation(-), the proof corresponds to arandom variable<Z], ~ A'(0, N/) such that

straightforward generalization of that in Section II-A toet
case ofT — 2 relays. [ | Yki = Yk—14+ Thi+ 25 3<k<T

Rgmark 3: Theorem 2.2 has an intuitive interpretation as for Yo = 1+ 8i + 2o, @)
the impact of the stat&” on the different throughputs: From
the point of view of communicating to relagsthroughT —1, wherez;(t) = z,—1(t) + 2, (¢). Let the transmitter has power
the additive stat&™ (e.g., an interfering source) has no effectyy P, and relayk, k = 2,--- ,T— 1, has powerP,. We make
since this state is known to the transmitter and all the selathe additional assumption that the stateis additive Gaussian
(thus, conditioning orfS in the first term in the RHS of (5)). and is independent afZs, - - - , Zr). The goal is to evaluate
Now, from the point of view of communicating to the finalthe capacity of this channel for any given setfgf - - - |, Pp_4
destination which does not know the sta§€, cooperation and No,--- , Np.



B. Multiple relays new receiver (nodé&" + 1) which does not know the statg¢”,
For a specified choice of; ; with 1 < i < j < T — 1 after this relay. We shall show that there exists a good ehoic

satisfying of a codebooks (T + 1) such that the theorem also holds for
T—1 the newly formed"+1-node GRC with state. For instance, we
Z Bij =1, V1<i<T-1, (8) will provide expressions for the optimal outpit- of nodeT
j=i and the corresponding optimal auxiliary random varidije
and fork € {1,.--,T — 1}, define We considerB blocks, each of: symbols. A sequence of
_ ) B—T+1 messages; € {1,---,2"} i=1,-.. B-T+1,
Z?:l (Z?:l \/m) will be sent over the channel inB transmissions. Similarly
Ri(B) = C< ~ ), (9) to the approach in [14] and [13], we assume that at tirpe
k1 the beginning of transmission bloc¢krelay k has successfully
where we uses as a shorthand fofs; ;}1<i<j<r—1 and decoded messages ,ws,- - ,w;—x4+1 (in particular, at time
C(z) 2 0,510g(f+ x). t;, all relays up to and including relay have successfully
When there is no additive state, the physically degrafied decoded message —71). This assumption should be thought
node RC has capacity given by [13] of as part of the induction hypothesis. Following the applhoa

. in [14], each nodé, k € {1,---,T — 1}, allocates a part
Cr = max min {Rl(ﬁ)v"' 7RT71(§)}- (10)  Bi.r P of its power to assist nod@ transmit, by sending
v ) ~refinement informatioron top of the information that node
When the staté™ is available everywhere—at the transmitter would have transmitted if there were no added relay. Let

the relays2 through7" — 1 and the receiver, these nodes cary,, ~ N(0, Br.rPr) be a random codebook to be used to
simply subtractS™ to reduce the channel to the case withoWssist nodd” transmit. At timet; , nodek sends

additive state and attain the same region as in (10).

. = P
Now, we turn to the case where only the receiver does not X =+1-BerXp+ ﬁk’TPk Xr. (12)
know the stateS™. Here is the main result of this section. Br.rPr

nrhus, from the point of view of communicating to the newly
RC with non-causal state) The capacity of tHenode added relayl’, the ensemble formed by the transmitter and

degraded Gaussian relay channel (7) with state informatih nedesk, k = 2,---,T _nl' can be viewed as a single
non-causally available at the transmitter and the relays lfl?gtl?us |’1_0Td_elwh|9f}_klnow§ and which , at time;, sends
not the destination is given by the standard capacity (10). X = X1~ +X; ', where

Theorem 3.1:(Capacity of theT'-node degraded Gaussia

relay networks, an additive Gaussian interference nosalbu (123)

known to all nodes but the destination has no impact on the 1 ¥

capacity of this network. Thus, it suffices for the network to vT—1 _ - T

know the interference at the transmitter and the relays (but X2 7= (1; BrrBr) /BroPr (12b)

not the destination) to cancel its effect. In this case, ciypa

(10) is attained with an appropriate choice of auxiliarydam Now, in theT-node channel formed by all nodes but the final

variablesUy, Uz, - - - , Ur—1 in the achievable rate (5) (see theeceiver, the relay& through7 can successfully remove the

proof). contribution from X, to the received signal (since they are
Proof: (Proof of Theorem 3.1) Proceeding similarly tog)l assumed to have successfully decoded message.

Costa’s approach [12], we need only prove the achievabiligf time t;). Thus, the rateCr(3) as defined by (10) is

of the region. We prove this achievability by induction. Wechievable. Then, since reldy also knowsw; 71 at time

use [8, Theorem 3] as the initial step in the induction. FQr, the channel to the final receiver can be viewed as a

the induction step, assume that the theorem holds f@F- a fictitious two-user multiple access channel (MAC) with two

node degraded GRC with state (i.€.,— 2 relays). Fix some independent inputs — the informatioX] ~* with power
appropriate choice ofg; ; }. Let Cr () be the rate achievable

ST-1 T-1(—i )\ o
in this channel and with this choice gf; ;’s and assume A= Z_:Fl ( i=1 ﬁi’jpi) _and theTcooperatlve -
that the rate is achievable using a codebook chaigg”) formationX; " + Xz with power P} = (3, \/Bir P)*,
such that the output of transmittéris given by a random !-€-,
variable X, ~ N(0, P;) and that the appropriate choice of - -
the auxiliary random variable i}, (U in Theorem 2). Y =Yrg =X{ P+ (X3 4 Xp) 4+ S+ Zry. (13)

Now consider adding another relay (nafle- 1) at the end

of the last stage. One way to do this is to turn the final receiv€he SI.S™ is non-causally known to the two users, but not the
(nodeT) into a relay, provide it with the staté” and add a receiver. Using [8, Theorem 2], optimal inputs for this chah

. . T—1
Note that Theorem 3.1 means that in degraded Gaussian o =~
g X[t = E V1= BerXk,
k=1



can be generated as We use the following definitions (introduced for the first ém
o1 T—1e BT—1 CT1 Tl 71 in [10]): The channel ipartially cooperative if every nodg

v ~ N TS T, Xp T =U —o 5 assists only those nodes that are "further away” decode thei

(14a) Mmessages. The channefidly cooperative if, in addition, node

k assists nodg, wherej =2,--- Jk— 1.
Ur ~N(arS, P)), Xr= ﬁT,T%(UT —arS), : -
: (14b) ¥, R;"ay,xz v | RO | x,
Rx 2 Rx T1
SR B o
Pl 4+ P+ Npyy Pt 4 P+ Npyy ™ m P e R Y TR S

(14C) Wy —|

This allows to attain the MAC sum rate Fig. 3. Generall'-node Cooperative RB network with SI non-causally known
at the source terminal, all the intermediate receivers buthre final receiver.

am — o)
TNT“ _ ) A. One-node Partially Cooperative RBC
J

_ C(ijl ( i=1 vﬁivjpi) ) Assume the one-step problem in which there is only one
Npiq relay node, i.e.T" = 3. Here, we have a common message

£ Ry (). (15) Wy a_t rateRO_which is decoded by the relay (nod and

) the final receiver (nods}), and private messagdd’, and

Finally, the rate W5 at ratesR, and R; that are decoded by nodé@sand 3,

min (Cr(8), Rr(8)) = min {Ry(3),--- , Rr(8)} 2 Cri(B) respectively. The following result holds:

is achievable, since we can communicate reliably at this rat Theorem 4.1:(Inner bound on the capacity of one-node
to all receivers. This completes the proof of achievabiltgr Partially Cooperative RBC with state) For a discrete memory
the converse, note that one can do no better since this is s one-node Partially Cooperative Relay Broadcast GHann
capacity of the degraded channel with no state at all. B p(y,, y|z1, 22, s) with state informatiors™ non-causally avail-

Remark 4: In the proof of Theorem 3.1, degradednessdble at the transmitter and the relay but not the destination
only needed for the converse. If the channel is Gaussian lgé following rate is achievable:
not degraded a lower bound on capacity can be obtained by
evaluating the region (5) with the choice@f's given by (14). Ry < I(X1;Y2|SULX,)

Remark 5: The question of the impact of the state oR, + R; < min {I(Ul;Yg|SU2),I(U1U2;Y) - I(UlUQ;S)},
the throughputs when the channel is only Gaussian (not (16)
necessarily degraded) is trickier to be dealt with. While th ) ] - ]
rate obtained with the Gaussian codebooks (14) (see Rem#4fiere the maximum is over all auxiliary random variabllgs
4) is independent of the state, this is only an achievablieneg andUs with finite cardinality bounds and all joint distributions
and one can not claim that the state has no effect (though &fdhe formp(s)p(u, uz, 1, wa[s)p(yalz1, x2, $)p(yly2, z2).
is tempted to), since capacity of the Gaussian RC with ne stat

is not known yet. Remark 6: The intuition behind (16) is as follows: The

source terminal employs superposition coding to transmit
IV. ACHIEVABLE RATE REGION FOR THEPARTIALLY messagél, intended to the relay on top of thai/s, intended
COOPERATIVERBC WITH NON-CAUSAL STATE to the destination. For the transmission 6f; through the

We now turn to the cooperative RBC. In the case when thei@ay. the situation is equivalent to that in Section Il aater
is no state, such channel has previously been consideredniy {I(U1;YQ|SU2)J(U1U2§Y) - I(Ule;S)} is achiev-
others, most notably by Liang and Veeravalli [10], but algo bable, as showed above. Then, how much informatigncan
Kramer et. al. [6] and Reznik et. al. [15]. The aim there wdse transferred to the relay? exactly as much as the infoomati
to show that the original capacity of the BC is enlarged dw®ntained inX; and which is not intended to carry message
to relaying and user cooperation. Here, we consider the safg, i.e.,I(X1; Y2|SU; X3). Conditioning onS and X5 is there
channel with, this time, SI non-causally known to all nodesecause the relay knows the state angd
but the final receiver. Fig.3 illustrates the setup fdf'anode Now, we turn to the proof of Theorem 4.1. Note that
cooperative RBC with nodesthroughT'—1 acting not only as it suffices to show the result for the case without common
relays but also as receivers (of private messages). We assumessagdV,. This is because, one can view part of the rate

that messagéV;, i = 0,2,--- ,7T is transmitted at rate?; Rz to be the common rat®, since the relay also decodes
(messagél, is common and messad®;, i # 0, is dedicated messagéVs (see proof below).
to receiveri). Each nodé: , k = 2,--- , T — 2, receivesYy(t) Proof: (Proof of Theorem 4.1) The proof is similar in

at timet and tries to decode the pdi,, Wy) € Wi x W, . nature to that in Section II-A and is omitted for brevity. We



only outline the main steps. Generate two random codebodke case where only the final receiver does not know the state
U, and U, to transmit messag®/; through the relay to the S™. Here is the main result of this section.
final receiver (in a similar way to that in II-A as this is
basically a relaying task, i.e., by a combination of sliding Theorem 5.1:(Capacity of single-node D-AWGN Partially
window and binning). Then for eaalt;, for eachu} (u%), use Cooperative RBC with State) The capacity region of the D-
superposition coding to generate®2 i.i.d. z7 and index them AWGN Partially Cooperative Relay Broadcast Channel with
asay (uf, ul, wa,;). Thesex]’s are intended to carry messagestate information non-causally available at the trangmand
W, (on top of messag#/s). Potential encoding errors (8F>  the relay but not the final receiver is given by the standard
andW3) and potential decoding errors of messate at both capacity (18).
the relay and the destination can be shown to be small for Proof: Proceeding similarly to Costa’s approach [12], we
sufficiently largen, by similar arguments to those in Sectiomeed only prove the achievability of the region. The proof of
II-A. Two additional potential decoding error events at thachievability follows by evaluating the achievable reg{d8)
relay (related to decoding messagé) can be shown to be with the input distribution given by (20) and (21).
small for sufficiently largen, using standard joint typicality  Alternative proof:A (more intuitive) alternative proof is as
decoding arguments. B follows. We decompose the input signl into two parts, X/
with powera P, (stands for the information carried by; and
intended for the relay), and with powera P, (stands for the
information carried byX; through the relay and intended for
the final receiver), i.e.X; = X| + U. Next, we decompose
In this section, we consider a partially/fully cooperativgne signall/ into two parts,U(!) of powerSaP;, andU®? of
RBC with additive i.i.d. Gaussian state where the channgl Oower BaP; and carrying, respectivelresh and refinement
puts are corrupted by degraded Gaussian noise terms. We rgfgsrmation for the transmission dfs. Then, assuming the

to this channel as the D-AWGN COOpel’ative RBC with Stat%|ay decoded the previous'y sent messwﬁi71 Correcﬂy’
In sections V-A and V-B, we focus on the case of partiallyhe channel to the final receiver ’

cooperating receivers, meaning that there exist indepglyde
generated Gaussian random variablgs ~ N (0, N) and Y = X1+ X+ S+2;

Z}, ~ N (0, N}) such that = (U +X)+ UMW + S+ (X]+Zs), (19)

S = : 4t <k< . o :
Yk = Yk-1i+ i+ 2, 3SEST can be viewed as a MAC with independent inputs—the cooper-
Y2,i = Z1i + Si + 22,4, (17)  ative transmissioni/(® + X,) with power P := (v/BaP; +
wherez,; = z,_1.: + 2, and Z,_, and Z, are statistically VP,)? by nodesl and 2 and the independent transmission
independent LeE[XQ] fpk k=1, .T —1. The goal is UM of the fresh information with poweP, := 3aP;. This
. Lkl — » v — 1, ) . s
to determine the capacity region of this channel for any miv AC has Sl non-c_ausally known Fo _the _two-flctmous USErs
setofP,, .-~ Pp_, andNy.--- . Np. It turns out that, in this ut not to the receiver and transmission is corrupted by tota
Y i i | ' aussian noisé X| + Z3) of power aP; + N3. Using [8,
heorem 2], optimal inputs for this channel can be generated

V. CAPACITY REGION OFD-AWGN T—NODE
PARTIALLY /FULLY COOPERATIVE RELAY BROADCAST
CHANNEL WITH STATE

case, (16) is the capacity region. In section V-C, we short
discuss the case of fully cooperating receivers.

as
A. D-AWGN Partially Cooperative RBC _ @

Assume the one-step problem in which there is only ong2 ~ N(@28, ITQ)’ U2 = U2 — a2, (202)
relay node, i.e.T — 3. Extension to theT-node case is Ui ~N(a1S,P), U® + Xy =U; — a1, (20b)
undertaken below. Note that when there is no additive state, =) P

capacity region is given by the region with the rate tupleS2 = Py + P+ (aP, + N3)’ a1 = Py + P+ (aPy + N3)°
(Ro, R1, R2) satisfying [10]
Thus, the input signals are given by

OéPl
— 18
Ry < C( NQ) ( a) \/ﬁ
507P1 ng(l—/\)(Ul —alS), A= ? (21a)
Ry + R3 < max min{C’(i , P
B aP) + N X4 :)\(Ul—als)+(Ug—QQS)+X{. (21b)
Py +aP; +2+/BaP, P
C( 2 aaiD +Nﬁa ! 2)}, (18b) The second term in the RHS of (18b) can be attained as
1 3

the sum rate over this MAC. The first term in the RHS of
for somea € [0,1], wherea = 1 —« and3 = 1 — 3. When (18b) can be attained since the relay can pee$ @ind U(")

the stateS™ is available everywhere —at the transmittetefore decoding the refinement information containet .
receiver2 and the final receiver, these nodes can simpljhe RHS of (18a) can be attained since the relay can peel
subtractS™ to reduce the channel to the case without additiva S, UY) and U to make the channets equivalent to
state and attain the same region as in (18). Now, we turn¥g = X| + Z,. |



B. Multiple receivers considered channels are degraded Gaussian and the state is

The two-receiver case extends in a rather straightforweggditive (i.e., interference-like) i.i.d. Gaussian andwtthat
manner to thel-node D-AWGN Partially Cooperative RBCthe.denved rate regions are then the_correspondl_ng cgpacit
with state where each receiver can act as a relay for tfR9IONS. An immediate consequence is that, in this case, the
receivers that are "farther away”. More specifically, Tet- 1 state has no impact on the_capacny_ region of the cons_ldered
receivers each experiencing Gaussian noise with variafice channels, even though the final receiver does not know it. For

and indexed such tha¥, < - -- < Ny. Define the se{s3; ;} the degrgded Gaussian relay channel, the res_ults in thisr pap
with 1 < i < j < T — 1 such thatz;‘.r:_il B, = 1 and can be viewed as an extension of those by Kmal. to the

the set{a, i} With 1 < i < j < k < T — 1 such that Case of more than one relay.

S ik = Bik. And for 1 <1< k < T, define ACKNOWLEDGEMENT
; i 2 The authors would like to thank the NEWCOM project for
Zj:l (22:1 vV O‘i-,j,kpi) funding.
Rl,k(ga é) =C i k—1 ) (22)
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