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Abstract— In this work, coding for the relay channel and
the cooperative relay broadcast channel controlled by random
parameters are studied. In the first channel, the relay channel
(RC), information is transferred from the transmitter to th e
receiver through a multiplicity of nodes which all ”simply” act
as relays. In the second channel, the cooperative relay broadcast
channel (RBC), each intermediate node also acts as a receiver, i.e.,
it decodes a ”private message”. For each of these two channels, we
consider the situation where side information (SI) on the random
parameters is non-causally provided to the transmitter andall
the intermediate nodes but not the final receiver, and derivean
achievable rate region based on the relays using the decode-
and-forward scheme. In the special case where the channels are
degraded Gaussian and the side information (SI) is additivei.i.d.
Gaussian, we show that 1) the rate regions are tight and provide
the corresponding capacity regions and 2) the stateSn does not
affect these capacity regions, even though the final receiver has
no knowledge of the state. For the degraded Gaussian RC, the
results in this paper can be seen as an extension of those by Kim
et al. to the case of more than one relay.

I. I NTRODUCTION

Channels that depend on random parameters received con-
siderable attention over the last years, due to a wide range of
possible applications. Two examples of such channels are the
broadcast channel (BC) with random parameters [1], [2] and
the multiple access channel (MAC) with random parameters
[3]. Two key points in the study of such channels are: 1)
whether the parameters controlling the channel (also called
state or side-information (SI)) are known causally or non-
causally and 2) whether they are known to all, only some, or
none of the nodes (including the transmitter and the receiver).
As pointed out in [2], problems with SI known either at
the receiver or at the transmitter and the receiver can be
handled using (variants of) standard state-independent coding
techniques.

In this paper, we consider two other channels: 1) The
T -node relay channel (RC) with state information (SI) non
causally known to the transmitter and the relays but not to
the destination and, 2) theT -node cooperative relay broadcast
channel (RBC) with SI known to the transmitter and all
the intermediate receivers (which also act as relays) but not
to the final receiver. Relaying and cooperative relaying of
information model problems where one or more relays help

each other communicate. This may occur in a variety of
applications such as a multihop wireless network and a sensor
network. In a multi-hop wireless network, each mobile node
operates not only as a host but also as arouter, forwarding
information for other mobile nodes in the network that may
not be within direct wireless transmission range. In a sensor
network, due to limited power, nodes with sufficient available
power assist other nodes transfer information. The SI may
be any information (about the channel) that the transmitter
and all the intermediate nodes know but not the final receiver.
For instance, this may model any (measured/genie-provided)
information about channel coefficients in fading transmissions.
Another example is the case where the transmitter and the
intermediate nodes know some interfering signal that the final
receiver (located far away from this interfering source) isnot
aware about.

For the T -node RC with SI non-causally available at the
transmitter and the relays but not the destination, we first
derive an achievable rate region based on a combination of
sliding-window decoding [4]–[6] and Gelfand and Pinsker’s
binning [7]. Then, we specialize this result to the case where
the channel is degraded Gaussian and the state is additive i.i.d.
Gaussian.1 In this case, we show that the presence of the state
does not affect the channel capacity. This result may be viewed
as an extension of previous work by Kimet. al. [8, Theorem
3] to the case of more than one relay.

For the T -node cooperative RBC with SI non-causally
available at the transmitter and all the intermediate receivers
but not the final receiver, we first consider the case where
the receivers partially cooperate and derive an achievablerate
region based on a combination of window-sliding [4], [5],
superposition-coding [9] and Gelfand and Pinsker’s binning
[7]. In the Gaussian case, capacity region is provided for
the degraded-AWGN Cooperative RBC with additive i.i.d.
Gaussian state, in both situations of partially cooperating and
fully cooperating receivers. Again, we show that the state does
not affect the capacity region, meaning that the channel has
the same capacity region as if the state were zero or were

1An additive state may model any additive interference whichis non-
causally known to the transmitter and the relays but not the destination.



non-zero but known also to the final receiver.
The remaining of this paper is organized as follows. In

section II, we derive an achievable rate region for theT -
node RC with non-causal SI available at the transmitter and
the relays, but not the destination. Section III specializes
to the T -node degraded Gaussian RC with non-causal i.i.d.
additive Gaussian SI. In section IV, we derive an achievable
rate region for the partially cooperative RBC with non-causal
SI available at the transmitter and all but the final receiver.
Section V specializes the results of Section IV to the degraded-
AWGN partially/fully cooperativeT -node RBC with non-
causal additive i.i.d. Gaussian SI. Final concluding remarks
are stated in section VI.

II. A CHIEVABLE RATE REGION FOR THET -NODE RELAY

CHANNEL WITH NON-CAUSAL STATE

Consider the network model depicted in Fig.1. TheT -
node relay network has a source terminal (node1), T − 2
relays denoted sequentially as2, 3, · · · , T − 1 in arbitrary
order and a destination terminal (nodeT ). Assume each node
i ∈ {1, 2, · · · , T − 1} sendsXi(t) at time t, and each node
k ∈ {2, 3, · · · , T } receivesYk(t) at timet, where the finite sets
Xi andYk are the corresponding output and input alphabets
for the corresponding nodes, respectively. The destination
terminal has inputY , YT . The stateS is assumed to be
random, taking values in a finite setS and non-causally
known to all nodes but the destination. The source output
X1(t), t ≤ n, is function of the messageW ∈ W and the
state sequenceSn ∈ S

n, and theXi(t), i 6= 1, are functions
of node i’s past inputsY t−1

i , Yi(1), Yi(2), · · · , Yi(t − 1)
and the state sequenceSn ∈ S n. The channel is supposed to
be memoryless and is described by the following conditional
probability mass function:

p(y2, y3, · · · , yT−1, y|x1, x2, · · · , xT−1, s) (1)

for all sn ∈ S n, all

(x1, · · · , xT−1) ∈ X1 × · · · × XT−1

and all

(y2, · · · , yT−1, y) ∈ Y2 × · · · × YT−1 × Y .

Node1 NodeT

Node2 Node T-1Y2 X2 YT−1 XT−1

X1 YT

Sn

Sn Sn

· · ·

p(y2, y3, · · · , yT−1, y|x1, x2, · · · , xT−1, s)W ∈ W Ŵ ∈ W

Fig. 1. Relay network with SI non-causally known at the source terminal
and all the intermediate terminals (relays) but not the destination.

In the following section, we investigate the impact of the
SI Sn on the reliability and the throughputs of the wireless
network. We provide an achievable rate region for theT -
node RC with non-causal SI. For the single-node RC, this rate

region is contained in the one recently proposed in [8, Lemma
3] for general RC (see Remark1 below), and is equally optimal
for the special case of degraded Gaussian RC (see Remark
2 below). Results are extended to the case of multiple relay
nodes in Section II-B.

A. One relay

Assume the one-step problem in which there is only one
relay node, i.e.,T = 3. We have the following result:

Theorem 2.1:(Inner bound on the capacity of one-node RC
with state) For a discrete memoryless one-node relay channel
p(y2, y|x1, x2, s) with state informationSn non-causally avail-
able at the transmitter and the relay but not the destination,
the following rate is achievable:

R = max
p(u1,u2,x1,x2|s)

min
{
I(U1; Y2|SU2), I(U1U2; Y )

− I(U1U2; S)
}
, (2)

where the maximum is over all auxiliary random variablesU1

andU2 with finite cardinality bounds and all joint distributions
of the formp(s)p(u1, u2, x1, x2|s)p(y2|x1, x2, s)p(y|y2, x2).

Proof: The proof is based on a random code construction
which combines sliding-window decoding [4], [5] and Gelfand
and Pinsker’s binning [7]. Similar proofs based (only) on
sliding-window have already appeared in [6], [10]. Here,
binning is added to take into account the state. For brevity,we
only outline the random code construction and the encoding.
The decoding and analysis of probability of error are similar
to [6], [10]. Fix γ > 0. Let

J1 , exp(nI(U1; S|U2) + nγ)

J2 , exp(nI(U2; S) + nγ)

M1 , exp(nI(U1; Y2|SU2) − 2nγ)

M2 , exp(nI(U1U2; Y ) − nI(U1U2; S) − 2nγ)

M , min(M1, M2). (3)

We consider transmission overB blocks each with length
n. At each of the firstB − 1 blocks, a messageWi is
sent, wherei denotes the index of the block. We gener-
ate two statistically independent codebooks (codebooks1
and 2) to be used for blocks with odd and even indices,
respectively, in similar way to [6], [10]. Then, we gen-
erate an auxiliary collectiona of i.i.d. un

2 -vectors a =
{un

2 (j2, w
′), j2 ∈ {1, 2, · · · , J2}, w′ ∈ {1, 2, · · · , M}}. For

eachun
2 , un

2 (j2, w
′), we generate a collection ofun

1 -vectors
b(un

2 = {un
1 j1,w(un

2 ), j1 ∈ {1, · · · , J1}, w ∈ {1, 2, · · · , M}}
with appropriate distribution. At the beginning of blocki, if
wi is to be transmitted andwi−1 is the message being sent
in previous blocki − 1, we selectun

2 andun
1 such that both

(un
2 (j2, wi−1), s

n) and (un
1 j1,wi

(un
2 ), un

2 , sn) are typical (see
[11] for definition). Then, the relay sendsxn

2 = xn
2 (sn, wi−1)

such that the tuple(xn
2 , un

2 , sn) is jointly typical and the
source sendsxn

1 = xn
1 (sn, wi−1, wi) such that the tuple



(xn
2 , un

1 (un
2 ), sn) is jointly typical. Decoding uses the same

techniques as in [6], [10] and it can be shown that all the
error events have small probabilities for sufficiently large n.

Remark 1: In [8, Lemma 3], Kimet. al provided an
achievable rate region for the case of just one relay. This
rate region usesI(U1; Y2|SX2) instead ofI(U1; Y2|SU2) in
(2) and is hence generally larger (than (2)). To see that
I(U1; Y2|SX2) ≥ I(U1; Y2|SU2), observe that

I(U1U2SX2;Y2) = I(X2S;Y2) + I(U1;Y2|SX2) + I(U2;Y2|SX2U1)

= I(U2S;Y2) + I(U1;Y2|SU2) + I(X2;Y2|SU1U2).

Then, note thatI(X2; Y2|SU1U2) = 0 (sincepX2|U2S = 0, 1)
and I(U2; Y2|SX2U1) = 0 (since (U1, U2) ⊖ (X1, X2, S) ⊖
(Y2, Y ) forms a Markov chain under the specified distribu-
tion in (2.1)). Finally, useI(U2S; Y2) ≥ I(X2S; Y2) to get
I(U1; Y2|SU2) ≤ I(U1; Y2|SX2).

Remark 2: In the Gaussian case,X2 is a linear combi-
nation of U2 and S (see [12]) and hence,I(U1; Y2|SX2) =
(U1; Y2|SU2). So, for the special case of one-node Gaussian
RC, the rate region (2) is equal to the one in [8, Lemma 3].

B. Multiple relays

We now consider the problem of multiple-relay channel
with SI non-causally available at the transmitter and all the
relays but not the destination. The result in Theorem 2.1
straightforwardly extends to the case ofT nodes. Letπ(·) be
a permutation on1, 2, · · · , T with π(1) = 1 and π(T ) = T ,
and letπ(i : j) = {π(i), π(i + 1), · · · , π(j)}.

Theorem 2.2:(Inner bound on the capacity of theT -node
RC with state) For a discrete memorylessT -node relay
channelp(y2:T−1, y|x1:T−1, s) with state informationSn non-
causally available at the transmitter, all theT − 2 relays but
not the destination, the following rate is achievable:

R = max
π(·)

max
p(·|·)

min
1≤t≤T−2

{
I(Uπ(1:t); Yπ(t+1)|SUπ(t+1:T−1)),

I(Uπ(1:T−1); Y ) − I(Uπ(1:T−1); S)
}

(5)

where the second maximization is over all auxiliary random
variablesU1, · · · , UT−1 with finite cardinality bounds and all
joint distributions satisfyingp(yπ(t)|xπ(1:T−1), yπ(2:t−1), s) =
p(yπ(t)|xπ(t−1), xπ(t), yπ(t−1), s) for t = 2, · · · , T − 1 and
p(y|xπ(1:T−1), yπ(2:T−1), s) = p(y|yπ(T−1), xπ(T−1)).

Proof: In general, permutations maximize the rate, for
this can be viewed as a tacit search for the correct coding
order. For fixed permutationπ(·), the proof corresponds to a
straightforward generalization of that in Section II-A to the
case ofT − 2 relays.

Remark 3: Theorem 2.2 has an intuitive interpretation as for
the impact of the stateSn on the different throughputs: From
the point of view of communicating to relays2 throughT −1,
the additive stateSn (e.g., an interfering source) has no effect,
since this state is known to the transmitter and all the relays
(thus, conditioning onS in the first term in the RHS of (5)).
Now, from the point of view of communicating to the final
destination which does not know the stateSn, cooperation

I(U1; Y2|SU2U3)

I(U1U2; Y3|SU3)

I(U1U2U3; Y ) − I(U1U2U3; S)

W ∈ W

S

SS

Xn(W, Sn)

Y2 : X2 Y3 : X3

Y Ŵ ∈ W

Fig. 2. The information transfer for two relays, using regular encoding/sliding
window decoding combined with binning.

between the source terminal and theT − 2 relays transforms
the originalT -node relay channel into a fictitious channel with
SI non-causally known to the fictitious transmitter–theT − 1
auxiliary inputsU1, · · · , UT−1, but not to the receiverY .

Example 1: For a four-node RC with SI non-causally known
everywhere, but not to the destination, Theorem 2.2 shows that
the rate

R = max min
{
I(U1; Y2|SU2U3), I(U1U2; Y3|SU3)

I(U1U2U3; Y ) − I(U1U2U3; S)
}

(6)

is achievable. A diagram of information transfer is depicted
in Fig.2 where the incoming edges are labeled by the mutual
information expressions in (6).

III. C APACITY REGION OF DEGRADEDGAUSSIAN

T−NODE RELAY CHANNEL WITH ADDITIVE STATE

In this section, we prove explicitly the capacity of the
multiple relay degraded Gaussian channel with additive SI
non-causally known to the transmitter and all the intermediate
relays, but not the destination. It turns out that the achievable
rate (5) is the capacity of the degraded multi-relay channel
with non-causal state, which is attained with an appropriate
choice of the input distribution. In Section III-B, we use an
inductive argument to determine the capacity region. This
result can be viewed as an extension of the work [8] to the
case of more than one relay.

A. Channel model

Consider the channel depicted in Fig.1. We now assume
that the signal received at nodek, 2 ≤ k ≤ T , is corrupted
by an i.i.d. Gaussian noiseZk ∼ N (0, Nk), resulting from
the accumulation of the noise at the different beforehand
stages. We also assume that the channel is physically degraded,
meaning that there exist independently generated Gaussian
random variablesZ ′

k ∼ N (0, N ′
k) such that

yk,i = yk−1,i + xk,i + z′k,i, 3 ≤ k ≤ T

y2,i = x1,i + si + z2,i, (7)

wherezk(t) = zk−1(t) + z′k(t). Let the transmitter has power
by P1 and relayk, k = 2, · · · , T −1, has powerPk. We make
the additional assumption that the stateSn is additive Gaussian
and is independent of(Z2, · · · , ZT ). The goal is to evaluate
the capacity of this channel for any given set ofP1, · · · , PT−1

andN2, · · · , NT .



B. Multiple relays

For a specified choice ofβi,j with 1 ≤ i ≤ j ≤ T − 1
satisfying

T−1∑

j=i

βi,j = 1, ∀ 1 ≤ i ≤ T − 1, (8)

and fork ∈ {1, · · · , T − 1}, define

Rk(β) = C

(∑k

j=1

( ∑j

i=1

√
βi,jPi

)2

Nk+1

)
, (9)

where we useβ as a shorthand for{βi,j}1≤i≤j≤T−1 and
C(x) , 0.5 log(1 + x).

When there is no additive state, the physically degradedT -
node RC has capacity given by [13]

CT = max
{βi,j}

min
{
R1(β), · · · , RT−1(β)

}
. (10)

When the stateSn is available everywhere—at the transmitter,
the relays2 throughT − 1 and the receiver, these nodes can
simply subtractSn to reduce the channel to the case without
additive state and attain the same region as in (10).

Now, we turn to the case where only the receiver does not
know the stateSn. Here is the main result of this section.

Theorem 3.1:(Capacity of theT -node degraded Gaussian
RC with non-causal state) The capacity of theT -node
degraded Gaussian relay channel (7) with state information
non-causally available at the transmitter and the relays but
not the destination is given by the standard capacity (10).

Note that Theorem 3.1 means that in degraded Gaussian
relay networks, an additive Gaussian interference non-causally
known to all nodes but the destination has no impact on the
capacity of this network. Thus, it suffices for the network to
know the interference at the transmitter and the relays (but
not the destination) to cancel its effect. In this case, capacity
(10) is attained with an appropriate choice of auxiliary random
variablesU1, U2, · · · , UT−1 in the achievable rate (5) (see the
proof).

Proof: (Proof of Theorem 3.1) Proceeding similarly to
Costa’s approach [12], we need only prove the achievability
of the region. We prove this achievability by induction. We
use [8, Theorem 3] as the initial step in the induction. For
the induction step, assume that the theorem holds for aT -
node degraded GRC with state (i.e.,T − 2 relays). Fix some
appropriate choice of{βi,j}. Let CT (β) be the rate achievable
in this channel and with this choice ofβi,j ’s and assume
that the rate is achievable using a codebook choiceC̃ (T )
such that the output of transmitterk is given by a random
variable X̃k ∼ N (0, Pk) and that the appropriate choice of
the auxiliary random variable is̃Uk (Uk in Theorem 2).

Now consider adding another relay (nodeT +1) at the end
of the last stage. One way to do this is to turn the final receiver
(nodeT ) into a relay, provide it with the stateSn and add a

new receiver (nodeT +1) which does not know the stateSn,
after this relay. We shall show that there exists a good choice
of a codebookC (T + 1) such that the theorem also holds for
the newly formedT +1-node GRC with state. For instance, we
will provide expressions for the optimal outputXT of nodeT

and the corresponding optimal auxiliary random variableUT .
We considerB blocks, each ofn symbols. A sequence of

B−T +1 messageswi ∈ {1, · · · , 2nR}, i = 1, · · · , B−T +1,
will be sent over the channel innB transmissions. Similarly
to the approach in [14] and [13], we assume that at timeti–
the beginning of transmission blocki, relayk has successfully
decoded messagesw1, w2, · · · , wi−k+1 (in particular, at time
ti, all relays up to and including relayT have successfully
decoded messagewi−T+1). This assumption should be thought
of as part of the induction hypothesis. Following the approach
in [14], each nodek, k ∈ {1, · · · , T − 1}, allocates a part
βk,kPk of its power to assist nodeT transmit, by sending
refinement informationon top of the information that node
k would have transmitted if there were no added relay. Let
XT ∼ N (0, βT,T PT ) be a random codebook to be used to
assist nodeT transmit. At timeti , nodek sends

Xk =
√

1 − βk,T X̃k +

√
βk,T Pk

βT,T PT

XT . (11)

Thus, from the point of view of communicating to the newly
added relayT , the ensemble formed by the transmitter and
all nodesk, k = 2, · · · , T − 1, can be viewed as a single
fictitious node which knowsSn and which , at timeti, sends
X̄T−1 = X̄T−1

1 + X̄T−1
2 , where

X̄T−1
1 =

T−1∑

k=1

√
1 − βk,T X̃k, (12a)

X̄T−1
2 = (

T−1∑

k=1

√
βk,T Pk)

XT√
βT,T PT

. (12b)

Now, in theT -node channel formed by all nodes but the final
receiver, the relays2 throughT can successfully remove the
contribution fromXT to the received signal (since they are
all assumed to have successfully decoded messagewi−T+1

at time ti). Thus, the rateCT (β) as defined by (10) is
achievable. Then, since relayT also knowswi−T+1 at time
ti, the channel to the final receiver can be viewed as a
fictitious two-user multiple access channel (MAC) with two
independent inputs — the information̄XT−1

1 with power

P̄T−1
1 =

∑T−1
j=1

(∑j

i=1

√
βi,jPi

)2

and the cooperative in-

formationX̄T−1
2 + XT with powerP̄T

2 = (
∑T

i=1

√
βi,T Pi)

2,
i.e.,

Y = YT+1 = X̄T−1
1 + (X̄T−1

2 + XT ) + S + ZT+1. (13)

The SISn is non-causally known to the two users, but not the
receiver. Using [8, Theorem 2], optimal inputs for this channel



can be generated as

UT−1 ∼ N (αT−1S, P̄T−1
1 ), X̄T−1

1 = UT−1 − αT−1S,

(14a)

UT ∼ N (αT S, P̄T
2 ), XT =

√
βT,T

PT

P̄T
2

(UT − αT S),

(14b)

αT−1 =
P̄T−1

1

P̄T−1
1 + P̄T

2 + NT+1

, αT =
P̄T

2

P̄T−1
1 + P̄T

2 + NT+1

.

(14c)

This allows to attain the MAC sum rate

Rsum
MAC = C

( P̄T−1
1 + P̄T

2

NT+1

)

= C
(∑T

j=1

( ∑j

i=1

√
βi,jPi

)2

NT+1

)

, RT (β). (15)

Finally, the rate

min (CT (β), RT (β)) = min {R1(β), · · · , RT (β)} , CT+1(β)

is achievable, since we can communicate reliably at this rate
to all receivers. This completes the proof of achievability. For
the converse, note that one can do no better since this is the
capacity of the degraded channel with no state at all.

Remark 4: In the proof of Theorem 3.1, degradedness is
only needed for the converse. If the channel is Gaussian but
not degraded a lower bound on capacity can be obtained by
evaluating the region (5) with the choice ofUi’s given by (14).

Remark 5: The question of the impact of the state on
the throughputs when the channel is only Gaussian (not
necessarily degraded) is trickier to be dealt with. While the
rate obtained with the Gaussian codebooks (14) (see Remark
4) is independent of the state, this is only an achievable region
and one can not claim that the state has no effect (though one
is tempted to), since capacity of the Gaussian RC with no state
is not known yet.

IV. A CHIEVABLE RATE REGION FOR THEPARTIALLY

COOPERATIVE RBC WITH NON-CAUSAL STATE

We now turn to the cooperative RBC. In the case when there
is no state, such channel has previously been considered by
others, most notably by Liang and Veeravalli [10], but also by
Kramer et. al. [6] and Reznik et. al. [15]. The aim there was
to show that the original capacity of the BC is enlarged due
to relaying and user cooperation. Here, we consider the same
channel with, this time, SI non-causally known to all nodes
but the final receiver. Fig.3 illustrates the setup for aT -node
cooperative RBC with nodes2 throughT−1 acting not only as
relays but also as receivers (of private messages). We assume
that messageWi, i = 0, 2, · · · , T is transmitted at rateRi

(messageW0 is common and messageWi, i 6= 0, is dedicated
to receiveri). Each nodek , k = 2, · · · , T −2, receivesYk(t)
at timet and tries to decode the pair(Wk, W0) ∈ Wk ×W0 .

We use the following definitions (introduced for the first time
in [10]): The channel ispartially cooperative if every nodek
assists only those nodes that are ”further away” decode their
messages. The channel isfully cooperative if, in addition, node
k assists nodej, wherej = 2, · · · , k − 1.

Tx Rx T

Relay

Rx 2

Relay

Rx T-1

W1

WT

Y2 X2 YT−1 XT−1

X1 YT

Sn Sn

Sn · · ·

...

&&

p(y2, y3, · · · , yT−1, y|x1, x2, · · · , xT−1, s) ŴT ∈ WT

Fig. 3. GeneralT -node Cooperative RB network with SI non-causally known
at the source terminal, all the intermediate receivers but not the final receiver.

A. One-node Partially Cooperative RBC

Assume the one-step problem in which there is only one
relay node, i.e.,T = 3. Here, we have a common message
W0 at rateR0 which is decoded by the relay (node2) and
the final receiver (node3), and private messagesW2 and
W3 at ratesR2 and R3 that are decoded by nodes2 and 3,
respectively. The following result holds:

Theorem 4.1:(Inner bound on the capacity of one-node
Partially Cooperative RBC with state) For a discrete memory-
less one-node Partially Cooperative Relay Broadcast Channel
p(y2, y|x1, x2, s) with state informationSn non-causally avail-
able at the transmitter and the relay but not the destination,
the following rate is achievable:

R2 < I(X1; Y2|SU1X2)

R0 + R3 < min
{

I(U1; Y2|SU2), I(U1U2; Y ) − I(U1U2; S)
}
,

(16)

where the maximum is over all auxiliary random variablesU1

andU2 with finite cardinality bounds and all joint distributions
of the formp(s)p(u1, u2, x1, x2|s)p(y2|x1, x2, s)p(y|y2, x2).

Remark 6: The intuition behind (16) is as follows: The
source terminal employs superposition coding to transmit
messageW2 intended to the relay on top of that,W3, intended
to the destination. For the transmission ofW3 through the
relay, the situation is equivalent to that in Section II and rate
min

{
I(U1; Y2|SU2), I(U1U2; Y ) − I(U1U2; S)

}
is achiev-

able, as showed above. Then, how much informationW2 can
be transferred to the relay? exactly as much as the information
contained inX1 and which is not intended to carry message
W3, i.e.,I(X1; Y2|SU1X2). Conditioning onS andX2 is there
because the relay knows the state andX2.

Now, we turn to the proof of Theorem 4.1. Note that
it suffices to show the result for the case without common
messageW0. This is because, one can view part of the rate
R3 to be the common rateR0, since the relay also decodes
messageW3 (see proof below).

Proof: (Proof of Theorem 4.1) The proof is similar in
nature to that in Section II-A and is omitted for brevity. We



only outline the main steps. Generate two random codebooks
U1 and U2 to transmit messageW3 through the relay to the
final receiver (in a similar way to that in II-A as this is
basically a relaying task, i.e., by a combination of sliding
window and binning). Then for eachun

2 , for eachun
1 (un

2 ), use
superposition coding to generate2nR2 i.i.d. xn

1 and index them
asxn

1 (un
2 , un

1 , w2,i). Thesexn
1 ’s are intended to carry message

W2 (on top of messageW3). Potential encoding errors (ofW2

andW3) and potential decoding errors of messageW3 at both
the relay and the destination can be shown to be small for
sufficiently largen, by similar arguments to those in Section
II-A. Two additional potential decoding error events at the
relay (related to decoding messageW2) can be shown to be
small for sufficiently largen, using standard joint typicality
decoding arguments.

V. CAPACITY REGION OFD-AWGN T−NODE

PARTIALLY /FULLY COOPERATIVE RELAY BROADCAST

CHANNEL WITH STATE

In this section, we consider a partially/fully cooperative
RBC with additive i.i.d. Gaussian state where the channel out-
puts are corrupted by degraded Gaussian noise terms. We refer
to this channel as the D-AWGN cooperative RBC with state.
In sections V-A and V-B, we focus on the case of partially
cooperating receivers, meaning that there exist independently
generated Gaussian random variablesZk ∼ N (0, Nk) and
Z ′

k ∼ N (0, N ′
k) such that

yk,i = yk−1,i + xk,i + z′k,i, 3 ≤ k ≤ T

y2,i = x1,i + si + z2,i, (17)

wherezk,i = zk−1,i + z′k,i andZk−1 andZ ′
k are statistically

independent. LetE[X2
k ] = Pk, k = 1, · · · , T − 1. The goal is

to determine the capacity region of this channel for any given
set ofP1, · · · , PT−1 andN2, · · · , NT . It turns out that, in this
case, (16) is the capacity region. In section V-C, we shortly
discuss the case of fully cooperating receivers.

A. D-AWGN Partially Cooperative RBC

Assume the one-step problem in which there is only one
relay node, i.e.,T = 3. Extension to theT -node case is
undertaken below. Note that when there is no additive state,
capacity region is given by the region with the rate tuples
(R0, R1, R2) satisfying [10]

R2 < C
(αP1

N2

)
(18a)

R0 + R3 < max
β

min

{
C(

βᾱP1

αP1 + N2
),

C
(P2 + ᾱP1 + 2

√
β̄ᾱP1P2

αP1 + N3

)}
, (18b)

for someα ∈ [0, 1], whereᾱ = 1− α and β̄ = 1− β. When
the stateSn is available everywhere —at the transmitter,
receiver 2 and the final receiver, these nodes can simply
subtractSn to reduce the channel to the case without additive
state and attain the same region as in (18). Now, we turn to

the case where only the final receiver does not know the state
Sn. Here is the main result of this section.

Theorem 5.1:(Capacity of single-node D-AWGN Partially
Cooperative RBC with State) The capacity region of the D-
AWGN Partially Cooperative Relay Broadcast Channel with
state information non-causally available at the transmitter and
the relay but not the final receiver is given by the standard
capacity (18).

Proof: Proceeding similarly to Costa’s approach [12], we
need only prove the achievability of the region. The proof of
achievability follows by evaluating the achievable region(16)
with the input distribution given by (20) and (21).

Alternative proof:A (more intuitive) alternative proof is as
follows. We decompose the input signalX1 into two parts,X ′

1

with powerαP1 (stands for the information carried byX1 and
intended for the relay), andU with powerᾱP1 (stands for the
information carried byX1 through the relay and intended for
the final receiver), i.e.,X1 = X ′

1 + U . Next, we decompose
the signalU into two parts,U (1) of powerβᾱP1 andU (2) of
power β̄ᾱP1 and carrying, respectively,fresh and refinement
information for the transmission ofW3. Then, assuming the
relay decoded the previously sent messageW3,i−1 correctly,
the channel to the final receiver

Y = X1 + X2 + S + Z3

= (U (2) + X2) + U (1) + S + (X ′
1 + Z3), (19)

can be viewed as a MAC with independent inputs–the cooper-
ative transmission(U (2) + X2) with power P̄ := (

√
β̄ᾱP1 +√

P2)
2 by nodes1 and 2 and the independent transmission

U (1) of the fresh information with power̄P2 := βᾱP1. This
MAC has SI non-causally known to the two-fictitious users
but not to the receiver and transmission is corrupted by total
Gaussian noise(X ′

1 + Z3) of power αP1 + N3. Using [8,
Theorem 2], optimal inputs for this channel can be generated
as

U2 ∼ N (α2S, P̄2), U (1) = U2 − α2S, (20a)

U1 ∼ N (α1S, P̄ ), U (2) + X2 = U1 − α1S, (20b)

α2 =
P̄2

P̄2 + P̄ + (αP1 + N3)
, α1 =

P̄

P̄2 + P̄ + (αP1 + N3)
.

Thus, the input signals are given by

X2 = (1 − λ)(U1 − α1S), λ =

√
P2√
P̄

(21a)

X1 = λ(U1 − α1S) + (U2 − α2S) + X ′
1. (21b)

The second term in the RHS of (18b) can be attained as
the sum rate over this MAC. The first term in the RHS of
(18b) can be attained since the relay can peel ofS andU (1)

before decoding the refinement information contained inU (2).
The RHS of (18a) can be attained since the relay can peel
of S, U (1) and U (2) to make the channelY2 equivalent to
Y ′

2 = X ′
1 + Z2.



B. Multiple receivers

The two-receiver case extends in a rather straightforward
manner to theT -node D-AWGN Partially Cooperative RBC
with state where each receiver can act as a relay for the
receivers that are ”farther away”. More specifically, letT − 1
receivers each experiencing Gaussian noise with varianceNk

and indexed such thatN2 ≤ · · · ≤ NT . Define the set{βi,j}
with 1 ≤ i ≤ j ≤ T − 1 such that

∑T−1
j=i βi,j = 1 and

the set{αi,j,k} with 1 ≤ i ≤ j ≤ k ≤ T − 1 such that∑T−1
j=i αi,j,k = βi,k. And for 1 ≤ l < k ≤ T , define

Rl,k(α, β) = C

( ∑l

j=1

( ∑j

i=1

√
αi,j,kPi

)2

Nl+1 +
∑l

i=1 Pi

∑k−1
j=l+1 βi,j

)
, (22)

where we useβ andα for {βi,j} and{αi,j,k}. When there is
no additive state (or the state is available everywhere), capacity
region is given by [15]

CT =
⋃

α,β

{
R2, · · · , RT : Rk ≤ min

1≤l<k
Rl,k(α, β)

}
. (23)

By using an inductive argument similar to that used above to
prove Theorem 3.1 (here, Theorem 5.1 serves as the initial
step), we can show that capacity is also given by (23), even
when the receiver does not know the stateSn.

C. On Fully Cooperative RBC with state

To derive an achievable region for the Fully Cooperative
RBC with state, we need to choose relaying schemes for users
to assist each other. A natural choice is one where ”better”
receivers use decode-and-forward and those receivers thatare
further away (to which we loosely refer to as ”degraded”
receivers) use compress-and-forward. When, in addition, we
assume that there is some SI non-causally known to the
receivers, the random code construction (for the general case)
becomes complex, especially if we have more than3 nodes.
There is one case for which code construction is particularly
easy: the D-AWGN Fully Cooperative RBC with state. In this
case, the feedback from those degraded receivers does not
increase the capacity region [10]. Hence, the D-AWGN Fully
Cooperative RBC with sate has the same capacity (23) as the
D-AWGN Partially Cooperative RBC with sate. If, however,
the channel is Gaussian but not necessarily degraded, full
cooperation may enlarge the achievable rate region.

VI. CONCLUDING REMARKS

In this paper, we derived an achievable rate region for
two channels controlled by random parameters: theT -node
relay channel with state information non-causally known to
the source terminal and all the relays but not the destination,
and the partially cooperative relay-broadcast channel with state
information non-causally known to the source terminal and
all the intermediate receivers (which also act as relays in this
case) but not the final receiver. These achievable rate regions
are derived based on the relays using the decode-and-forward
scheme. Next, we considered the special case where the two

considered channels are degraded Gaussian and the state is
additive (i.e., interference-like) i.i.d. Gaussian and show that
the derived rate regions are then the corresponding capacity
regions. An immediate consequence is that, in this case, the
state has no impact on the capacity region of the considered
channels, even though the final receiver does not know it. For
the degraded Gaussian relay channel, the results in this paper
can be viewed as an extension of those by Kimet. al. to the
case of more than one relay.
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channel: Capacity and optimal power allocation,”IEEE Transactions on
Information Theory, vol. 50, pp. 3037–3046, 2004.

[14] T. M. Cover and A. A. E. Gamal, “Capacity theorems for therelay
channel,”IEEE Transactions on Information Theory, vol. IT-25, pp. 572–
584, September 1979.

[15] A. Reznik, S. Kulkarni, and S. Verdù, “Broadcast-relay channel: capacity
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