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Abstract— In this work, we consider a partially cooperative
relay broadcast channel (PC-RBC) controlled by random pa-
rameters. We provide rate regions for two different situations:
1) when side information (SI) Sn on the random parameters
is non-causally known at both the source and the relay and,
2) when side information Sn is non-causally known at the
source only. These achievable regions are derived for the general
discrete memoryless case first and then extended to the case
when the channel is degraded Gaussian and the SI is additive
i.i.d. Gaussian. In this case, the source uses generalized dirty
paper coding (GDPC), i.e., DPC combined with partial state
cancellation, when only the source is informed, and DPC alone
when both the source and the relay are informed. It appears that,
even though it can not completely eliminate the effect of the SI
(in contrast to the case of source and relay being informed),
GDPC is particularly useful when only the source is informed.

I. I NTRODUCTION

A three-node relay broadcast channel (RBC) is a communication
network where a source node transmits both common information
and private information sets to two destination nodes, destination
1 and destination2, that cooperate by exchanging information.
This may model ”downlink” communication systems that exploit
relaying and user cooperation to improve reliability and through-
put. In this work, we consider the RBC in which only one of the
two destinations (e.g., destination1) assists the other destination.
This channel is referred to aspartially cooperative RBC(PC-RBC)
[1], [2]. Moreover, we assume that the channel is controlled by
random parameters and that side informationSn on these random
parameters is non-causally known either at both the source and
destination1 (i.e., the relay) (we refer to this situation asPC-
RBC with informed source and relay) or at the source only (we
refer to this situation asPC-RBC with informed source only). The
random state may represent random fading, interference imposed
by other users, etc. (see [3] for a comprehensive overview on state-
dependent channels). The PC-RBC under investigation is shown
in Fig. 1. It includes the standard relay channel (RC) as a special
case, when no private information is sent to destination1, which
then simply acts as relay for destination2.
For the discrete memoryless PC-RBC with informed source and

relay (Section II), we derive an achievable rate region based on the
relay operating in the decode-forward (DF) scheme. We also show
that this region is tight and provides the full capacity region when
the channel outputs are corrupted by degraded Gaussian noise
terms and the SISn is additive i.i.d. Gaussian (referred to asD-
AWGN partially cooperative RBC). Similarly to [4], [5], it appears
that, in this case, the SI does not affect the capacity region, even
though destination2 has no knowledge of the state. The result on
the property that a known additive state does not affect capacity (as
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Fig. 1. Partially-cooperative relay broadcast channel (PC-RBC) with state
informationSn non-causally known either at both the source and the relay
(A) or at the source only (B).

long as full knowledge of this state is available at the transmitter)
has been initially established for single-user Gaussian channel in
[4], and then extended to some other multi-user Gaussian channels
in [5].

For the PC-RBC with informed source only (Section III), we
derive achievable rate regions for the discrete memoryless and the
D-AWGN memoryless cases, based on the relay operating in DF.
The D-AWGN case uses generalized dirty paper coding (GDPC),
which allows arbitrary (negative) correlation between codewords
and the SI, at the source. In this case, we show that, even though
the relay is uninformed, it benefits from the availability of the SI
at the source, which then helps the relay by allocating a fraction
of its power to cancel the state, and uses the remaining of its
power to transmit pure information using DPC. However, even
though this region is larger than that obtained by DPC alone (i.e.,
without partial state cancellation), the effect of the state can not be
completely canceled as in the case when both the source and the
relay are informed.

The results in this paper readily apply to the standard relay
channel (RC), as a special case of a PC-RBC when no private
information is sent to destination1. More generally, they shed light
on cooperation between informed and uninformed nodes and can
in principle be extended to channels with many cooperating nodes,
with only a subset of them being informed. Section IV gives an
illustrative numerical example. Section VI draw some concluding
remarks. Proofs are relegated to Section VI.

II. PARTIALLY -COOPERATIVERBC WITH INFORMED

SOURCE AND RELAY

Consider the channel model for the discrete memory-
less PC-RBC with informed source and relay denoted by
{X1×X2, p(y1, y2|x1, x2, s), Y1 × Y2, S } and depicted in Fig.1.
It consists of a source with inputX1, a relay with inputX2,
a state-dependent probability distributionp(y1, y2|x1, x2, s) and
two channel outputsY1 and Y2 at destinations1 (the relay) and
2, respectively. The source sends a common messageW0 that is



decoded by both destinations and private messagesW1 and W2

that are decoded by destinations1 and2, respectively.
In this section, we consider the scenario in which the PC-RBC is

embedded in some environment with SISn available non-causally
at both the source and the relay. We assume thatSi’s are i.i.d.
random variables∼ p(s), i = 1, . . . , n, and that the channel is
memoryless.

A. Inner bound on capacity region

The following Lemma gives an inner bound on capacity region
for the PC-RBC with informed source and relay, based on the relay
operating in the decode-and-forward (DF) scheme.

Lemma 1: For a discrete memoryless partially cooperative relay
broadcast channelp(y1, y2|x1, x2, s) with state informationSn

non-causally available at the source and destination1 (which also
acts as a relay for destination2) but not at destination2, a rate tuple
(R0, R1, R2) is achievable if

R1 < I(X1; Y1|SU1X2),

R0 + R2 < min
n

I(U2; Y1|SU1), I(U1U2; Y2) − I(U1U2; S)
o

,

(1)

for some joint distribution of the form

p(s)p(u1, u2, x1, x2|s)p(y1|x1, x2, s)p(y2|y1, x2),

whereU1 andU2 are auxiliary random variables with finite cardi-
nality bounds.
The proof is similar to that, given in Section V, for Lemma 2 (see
below). However, it is more lengthy. We omitted it here for brevity.

B. D-AWGN Partially Cooperative RBC

We now assume that the state is additive i.i.d. Gaussian. Fur-
thermore, we assume that the channel outputs are corrupted by
degraded Gaussian noise terms. We refer to this channel as the
D-AWGN PC-RBC with informed source and relay, meaning that
there exist random variableZ1 ∼ N (0, N1) andZ′

2 ∼ N (0, N2 −
N1) with N1 < N2, independent of each other and independent of
the stateSn, such that

Y1 = X1 + S + Z1,

Y2 = Y1 + X2 + Z′
2. (2)

The channel input sequences{x1,n} and {x2,n} are subject to
power constraintsP1 andP2, respectively, i.e.,

Pn
i=1 x2

1i ≤ nP1

and
Pn

i=1 x2
2i ≤ nP2; and the stateSn is distributed according to

N (0, QI).
The D-AWGN PC-RBC with no state has been introduced and

studied in [1]. It has been shown that its capacity region is given by
the region with the rate tuples(R0, R1, R2) satisfying [1]

R1 < C
“γP1

N1

”

(3a)

R0 + R2 < max
β

min



C(
βγ̄P1

γP1 + N1
),

C
“ γ̄P1 + P2 + 2

p

β̄γ̄P1P2

γP1 + N2

”

ff

, (3b)

for someγ ∈ [0, 1], whereγ̄ = 1 − γ, β̄ = 1 − β andC(x) :=

0.5 log2(1 + x).
We now turn to the case when there is an additive i.i.d. SISn

which is non-causally known to both the source and destination1

(the relay) but not to destination2. We obtain the following result,
similar in nature (and in proof) to that provided for a physically
degraded Gaussian RC in [5, Theorem 3].

Theorem 1:The capacity region of the D-AWGN Partially Co-
operative Relay Broadcast Channel with state information non-
causally available at the source, destination1 (the relay) but not
destination2 is given by the standard capacity (3).

Proof: Similarly to Costa’s approach [4], we need only prove
the achievability of the region, which follows by evaluating the
region (1) with the input distribution given by (4). Note that region
(1) has been established for the discrete memoryless case but it
can be extended to memoryless channels with discrete time and
continuous alphabets using standard techniques [6]. The choice of
p(u1, u2, x1, x2|s) is given by

U1 ∼ N (α1S, P (1)), U2 ∼ N (α2S, P (2)) (4a)

X2 = (1 − λ)(U1 − α1S), λ =

p

β̄ᾱP1√
P (1)

, (4b)

X ′
1 ∼ N (0, γP1), (4c)

X1 = λ(U1 − α1S) + (U2 − α2S) + X ′
1, (4d)

whereP (1) = (
p

β̄ᾱP1 +
√

P2)
2, P (2) = βᾱP1 and

αk =
P (k)

P (1) + P (2) + (αP1 + N2)
, k = 1, 2.

Furthermore, we letX ′
1 be independent ofU1, U2 and the stateS.

A (more intuitive) alternative approach is as follows. The source
uses superposition coding to send the information intended for
destination1, on top of that intended for destination2 (and carried
through the relay). We decompose the source inputX1 into two
parts,X ′

1 with powerαP1 (stands for the information intended for
destination1), andU with powerᾱP1 (stands for the information
intended for destination2), i.e.,X1 = X ′

1+U . For the transmission
of U , both the source and destination1 know the stateSn and
cooperate over a relay channel (consideringX ′

1 as noise) to achieve
the rate (3b) [5]. Next, to decode its own message, destination1 first
pealsS andU to make the channelY1 equivalent toY ′

1 = X ′
1 +Z1.

This gives us the rate (3a) for messageW1.

III. PARTIALLY -COOPERATIVERBC WITH INFORMED

SOURCEONLY

In this section, we assume that only the source non-causally
knows the SISn.

A. Discrete memoryless PC-RBC

The following Lemma gives an inner bound on capacity region
for the PC-RBC with informed source only. The result is based on
the relay operating in the DF scheme.

Lemma 2: For a discrete memoryless partially cooperative relay
broadcast channelp(y1, y2|x1, x2, s) with state informationSn

non-causally available at the source only, a rate tuple(R0, R1, R2)

is achievable if

R1 < I(U1; Y1|U2X2) − I(U1; S|U2X2)

R0 + R2 < min
n

I(U2; Y1|X2) − I(U2; S|X2),

I(U2X2; Y2) − I(U2; S|X2)
o

, (5)

for some joint distribution of the form

p(s)p(u1, u2, x1, x2|s)p(y1|x1, x2, s)p(y2|y1, x2),

where U1 and U2 are auxiliary random variables with finite
cardinality bounds.

The proof is based on a combination of sliding-window [7], [8],
superposition-coding [9] and Gelfand and Pinsker’s binning [10].
See Section VI for an outline of it.



B. D-AWGN Partially Cooperative RBC

Assume now that the PC-RBC with informed source only is
degraded Gaussian,i.e., the channel outputs can be written as

Y1 = X1 + S + Z1,

Y2 = Y1 + X2 + Z′
2, (6)

whereZ1 ∼ N (0, N1) andZ′
2 ∼ N (0, N2 − N1), with N1 < N2,

are independent of each other and independent of the stateSn ∼
N (0, QI); and the input sequences{x1,n} and{x2,n} are subject
to average power constraintsP1 andP2, respectively.

We obtain an inner bound on capacity region by having the
source using a generalized dirty paper coding (GDPC), which
allows arbitrary (negative) correlation between the codeword and
the SI and can be viewed as a partial state cancellation [11].

Definition 1: Let

Q′(γ, ρ) := (
p

Q −
p

ργ̄P1)
2,

A(γ, ρ, β, α) := (1 − β2)ρ̄γ̄P1

“

(1 − β2)ρ̄γ̄P1

+ Q′(γ, ρ) + γP1 + N1

”

,

B(γ, ρ, β, α) := (1 − α)2(1 − β2)ρ̄γ̄P1Q′(γ, ρ)

+ (N1 + γP1)
“

(1 − β2)ρ̄γ̄P1 + α2Q′(γ, ρ)
”

,

C(γ, ρ, β, α) := (1 − β2)ρ̄γ̄P1

“

ρ̄γ̄P1 + P2

+ Q′(γ, ρ) + 2β
p

ρ̄γ̄P1P2 + γP1 + N2

”

,

D(γ, ρ, β, α) := (1 − α)2(1 − β2)ρ̄γ̄P1Q′(γ, ρ)

+ (N2 + γP1)
“

(1 − β2)ρ̄γ̄P1 + α2Q′(γ, ρ)
”

,

r1(γ, ρ, β, α) :=
1

2
log2

„

A(γ, ρ, β, α)

B(γ, ρ, β, α)

«

,

r2(γ, ρ, β, α) :=
1

2
log2

„

C(γ, ρ, β, α)

D(γ, ρ, β, α)

«

,

for given0 ≤ γ ≤ 1, 0 ≤ ρ ≤ min{1, Q
γ̄P1

}, 0 ≤ β ≤ 1, 0 ≤ α ≤ 1
and wherēγ = 1 − γ andρ̄ = 1 − ρ.

The following theorem gives an inner bound on capacity region
for D-AWGN partially cooperative RBC with informed source
only.

Theorem 2:LetRin(γ) be the set of all rate tuples(R0, R1, R2)

satisfying

R1 ≤ 1

2
log2(1 +

γP1

N1
) (7a)

R0 + R2 ≤ max
α2,β,ρ

min
n

r1(γ, ρ, β, α2), r2(γ, ρ, β, α2)
o

, (7b)

for some0 ≤ γ ≤ 1, where maximization is over0 ≤ ρ ≤
min{1, Q

γ̄P1
}, 0 ≤ α2 ≤ 1 and 0 ≤ β ≤ 1. Then,Rin(γ) is

contained in capacity region of the D-AWGN PC-RBC (6), where
state informationSn is non-causally available at the source only.

Proof: The source uses a combination of superposition coding
and generalized DPC. More specifically, we decompose the source
inputX1 as

X1 = X ′
1 + U, (8a)

U = −
r

ργ̄P1

Q
S + Uw, (8b)

whereX ′
1 (of powerγP1), Uw (of power ρ̄γ̄P1) andS are inde-

pendent, andE[UwX2] = β
√

ρ̄γ̄P1P2. With this choice of input
signals, channelsY1 andY2 in (6) become

Y ′
1 = X ′

1 + Uw + S′ + Z1 (9a)

Y ′
2 = Uw + X2 + S′ + X ′

1 + Z1 + Z′
2, (9b)

where the Gaussian stateS′ = (1 −
q

ργ̄P1

Q )S is known to the

source and has powerQ′(ρ, γ) = (
√

Q − √
ργ̄P1)

2. Then, given
that the result of Lemma 2 which has been established for the
discrete memoryless case can be extended to memoryless chan-
nels with discrete time and continuous alphabets using standard
techniques [6], the proof of achievability follows by evaluating the
region (5) (in whichY1, Y2 andS are replaced byY ′

1 , Y ′
2 andS′,

respectively) with the following choice of input distribution:

U1 ∼ N (α1(1 − α2)S
′, γP1), (10a)

U2 ∼ N (α2S′, ρ̄γ̄P1), (10b)

X2 ∼ N (0, P2), (10c)

X1 = U1 + U2 − (α1 + α2 − α1α2 +

√
ργ̄P1√

Q −√
ργ̄P1

)S′, (10d)

whereα1 = γP1/(γP1 + N1) and0 ≤ α2 ≤ 1. Furthermore,
we let E[UwX2] = β

√
ρ̄γ̄P1P2 and chooseX ′

1, X2 andS′ to be
independent. Through straight algebra which is omitted for brevity,
it can be shown that (10) achieve the rates in (7) to complete the
proof.
The intuition for (10) is as follows. Consider the channel (9). The
source allocates a fractionγP1 of its power to send messageW1

(input X ′
1) to destination1 and the remaining power,̄γP1, to send

messageW2 (inputU ) to destination2, through the relay. However,
since the relay does not know the stateSn, the source allocates a
fractionρ (0 ≤ ρ ≤ min{1, Q

γ̄P1
}) of the power̄γP1 to cancel the

state so that the relay can benefit from this cancellation. Then, it
uses the remaining power,ρ̄γ̄P1, for pure information transmission
(inputUw).

For the transmission of messageW2 to destination2, we treat
the interferenceX ′

1 combined with the channel noiseZ1 + Z′
2 as

an unknown Gaussian noise. Hence, the source uses a DPC

U2 ∼ N (α2S′, ρ̄γ̄P1), (11a)

Uw = U2 − α2S′. (11b)

Furthermore, the relay can decodeU2 = Uw + α2S′ and peal it of
to make the channel to the relay equivalent to

Y ′
1 = Y1 − U2 = X ′

1 + (1 − α2)S
′ + Z1. (12)

Thus, for the transmission of messageW1 to destination1, the
source uses another DPC

U1 ∼ N (α1(1 − α2)S
′, γP1), (13a)

X ′
1 = U1 − α1(1 − α2)S

′, (13b)

where(1 − α2)S
′ is the known state andα1 = γP1/(γP1 + N1).

This gives us the rate12 log2(1 + γP1

N1
) for rateR1.

Remark 1 :Here, we have used in essence two superimposed
DPCs, with one of them being generalized. The first approach
which suggests itself and which consists in using two standard
(not generalized) DPCs corresponds to the special case ofρ = 0.
Also, note that, for the GDPC, there is no loss in restricting the
correlation (between the source inputU and the stateS) to have
the form in (8b), in this case.

Remark 2 :A straightforward outer bound for the capacity region
of the D-AWGN partially-cooperative RBC with only the source
being informed is given by (3), for this is the capacity region of the
D-AWGN PC-RBC without state or with state known everywhere.

Remark 3 :The results of Lemmas 1 and 2 and Theorems 1 and 2
specialize to the relay channel (RC), by letting destination1 decode
no private message (i.e.,R1=0). For the case of a RC with informed
source and relay, this gives us the achievability of the rate

R = max
p(u1,u2,x1,x2|s)

min
n

I(U1; Y1|SU2), I(U1U2; Y2)

− I(U1U2; S)
o

. (14)



Note that, even thought this rate is in general smaller than the one
given in [5, Lemma 3] (in whichI(U1; Y1|SX2) is used instead of
I(U1; Y1|SU2) in (14)), the two rates coincide in the Gaussian (not
necessarily physically degraded) case. To see that, note that in the
Gaussian case,X2 is a linear combination ofU2 andS [4], and
henceI(U2S; Y1) = I(X2S; Y1). Then, writing

I(U1U2SX2; Y1) = I(X2S; Y1) + I(U1; Y1|SX2) + I(U2; Y1|SX2U1),

= I(U2S; Y1) + I(U1; Y1|SU2) + I(X2; Y1|SU1U2),

and noticing thatI(X2; Y1|SU1U2) = 0 (sincepX2|U2S = 0, 1)
and I(U2; Y1|SX2U1) = 0 (since (U1, U2) ⊖ (X1, X2, S) ⊖
(Y1, Y2) forms a Markov chain under the specified distribution in
(14)), we getI(U1; Y1|SX2) = I(U1; Y1|SU2).

IV. N UMERICAL EXAMPLE

This section illustrates the achievable rate regions for D-AWGN
PC-RBC and physically degraded Gaussian RC, with the help of an
example. We illustrate the effect of applying GDPC in improving
the throughput when only the source is informed.

Fig.2 depicts the inner bound using generalized DPC in Theorem
2. Also shown for comparison are: an inner bound using DPC
alone (i.e., GDPC withρ = 0) and an outer bound, obtained by
assuming both the source and the relay being informed. Rate curves
are depicted for both D-AWGN PC-RBC and physically degraded
Gaussian RC. We see that even though the state is known only at
the source, both the source and the relay benefit.

For the physically degraded Gaussian RC, the improvement is
mainly visible at high SNR= P1/N1 [dB]. This is because, the
relay being operating in DF, cooperation between the source and
the relay ismore efficientat high SNR. In such range of SNR,
capacity of the degraded Gaussian RC is driven by the amount of
information that the source and the relay can, together, transfer to
the destination (given by the termI(X1X2; Y2) in the capacity of
the degraded RC). At small SNR however, capacity of the degraded
Gaussian RC is constrained by the broadcast bottleneck (term
I(X1; Y2|X2)). Hence, in such range of SNR, there is no need for
the source to assist the relay by (partially) cancelling the state for it
(since this would be accomplished at the cost of the power that can
be allocated to transmit information from the source to the relay).
An alternative interpretation is as follows. At high SNR, the source
and the relay form two fictitious users (with only one of them
being informed) sending information to same destination, over a
MAC. The sum rate over this MAC is more enlarged (by the use of
GDPC) at high SNR. This interpretation conforms with the result
in [11] for a MAC with only one informed encoder. However, note
this interpretation deviates from [11], in that the fictitious MAC
considered here has correlated inputs).

For the D-AWGN PC-RBC, we see that both destination1 and
destination2 benefits from using GDPC at the source. This can be
easily understood as follows. Since applying GDPC at the source
improves rateR2 for destination2 (w.r.t. using DPC alone), the
source needs lesser power, for the same amount of information to
be transmitted to destination2 (i.e., for the sameR2). Hence, the
power put aside can be used to increase rateR1 (see the zoom on
the top left of Fig. 2(a)).

V. CONCLUDING REMARKS

In many practical communication systems that exploit node
cooperation to increase throughput or improve reliability, different
(possibly not co-located) cooperating nodes rarely have access to
the same state information (SI) about the channel (interference,
fading, etc.). In this case, a more general approach to address
node cooperation in such channels is to consider different SI at
the different nodes. Also, as these nodes rarely have the ability to
measure directly, or estimate, the channel state, a more involved
approach would be to account for the cost of conveying SI (e.g.,
by a third party) to the different nodes (as already done for MAC,

(a) D-AWGN Partially Cooperative RBC
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Fig. 2. Achievable rate regions for D-AWGN PC-RBC and physically
degraded Gaussian RC. (a)P1 = P2 = 1 = Q, N1 = 10N2 = 1. (b)
P1 = P2 = 1, Q = 2, N2 = 1.

in [12]). In this paper, we have considered the basic three-node
network in which two nodes transmit information over a partially
cooperative relay broadcast channel (PC-RBC). We investigated
two different situations: when both the source and the relay non-
causally know the channel state and, when only the source knows
the state. One important finding in the latter case is that, in the
degraded Gaussian case, the source can still help the relay (which
suffers from the interfering channel state), by using generalized
dirty paper coding (GDPC),i.e., DPC combined with partial state
cancellation.

VI. OUTLINE OF PROOF FORLEMMA 2

In the following, we denote the set of strongly jointlyǫ-typical
sequences (see [13, Chapter 14.2]) with distributionp(x, y) as
Tn

ǫ [x,y]. We defineTn
ǫ [x,y|xn] as

Tn
ǫ [x,y|xn] = {yn : (xn, yn) ∈ Tn

ǫ [x,y]}. (16)

Note that it suffices to prove the result for the case without common
message (i.e.R0 = 0). This is because one can view part of the
rateR2 to be common rateR0, since destination1 also decodes
messageW2.

We assume that the source uses a combination of superposition
coding [13, Chapter 14.6] and Gelfand and Pinsker’s binning [10].
We adopt the regular encoding/sliding window decoding strategy
[8] for the decode-and-forward scheme. Decoding is based on a
combination of joint typicality and sliding-window.



We consider a transmission overB blocks, each with lengthn.
A each of the firstB − 1 blocks, a pair of messages(w1,i, w2,i) ∈
W1 × W2 is sent, wherei denotes the index of the block,i =
1, . . . , B − 1. For fixed n, the rate pair(R1

B−1
B , R2

B−1
B ) ap-

proaches(R1, R2) asB −→ +∞. We use random codes for the
proof.

Fix a joint probability distribution ofU1, U2, X1, X2, S, Y1, Y2

of the form

p(s)p(u1, u2, x1, x2|s)p(y1|x1, x2, s)p(y2|y1, x2),

whereU1 andU2 are two auxiliary random variables with bounded
alphabet cardinality which stand for the information being carried
by the source inputX1 and intended for destination1 and destina-
tion 2, respectively.

Fix ǫ > 0. Let

J1 , 2n(I(U1;S|U2X2)+2ǫ),

J2 , 2n(I(U2;S|X2)+2ǫ),

M1 , 2n(R1−4ǫ),

M2 , 2n(R2−6ǫ).

Random codebook generation:We generate two statistically
independent codebooks (codebooks1 and2) by following the steps
outlined below twice. These codebooks will be used for blocks with
odd and even indices, respectively (see theencodingstep).

1. GenerateM2 i.i.d. codewordsx2(w
′′), of length n each,

indexed byw′′ ∈ {1, 2, . . . , M2}, and each with distribution
Πip(x2i).

2. For eachx2(w
′′), generate a collectionb(x2(w

′′)) of u2-
vectors

b
“

x2(w
′′)

”

=
n

u2j2,w′(x2(w
′′)), j2 ∈ {1, 2, · · · , J2},

w′ ∈ {1, 2, · · · , M2}
o

independently of each other, each with distribution
Πip(u2i|x2i(w

′′)).
3. For eachx2(w

′′), for eachu2j2,w′(x2(w
′′)), generate a

collectiona of u1-vectors

a
“

x2(w
′′),u2j2,w′(x2(w

′′))
”

=
n

u1j1,w(u2j2,w′(x2(w
′′))),

j1 ∈ {1, 2, · · · , J1}, w ∈ {1, 2, · · · , M1}
o

independently of each other, each with distribution
Πip(u1i|u2i(j2, w′), x2i(w

′′)). Reveal the collectionsa and
b and the sequences{x2} to the source and destinations1
and2.

Encoding: We encode messages using codebooks1 and 2,
respectively, for blocks with odd and even indices. Using indepen-
dent codebooks for blocks with odd and even indices makes the
error events corresponding to these blocks independent and hence,
the corresponding probabilities easier to evaluate.

At the beginning of blocki, let (w1,i, w2,i) be the new message
pair to be sent from the source and(w1,i−1, w2,i−1) be the pair
sent in the previous blocki − 1. Assume that at the beginning of
block i, the relay has decodedw2,i−1 correctly. The relay sends
x2(w2,i−1) . Given a state vectors = sn, let j2(s, w2,i−1, w2,i) be
the smallest integerj2 such that

u2j2,w2,i
(x2(w2,i−1)) ∈ Tn

ǫ [u2,x2, s|xn
2 ]. (17)

If such j2 does not exist, setj2(s, w2,i−1, w2,i) = J2. Some-
times, we will use j⋆

2 as shorthand for the chosenj2. Let
j1(s, w2,i−1, w2,i, w1,i) be the smallest integerj1 such that

“

u1j1,w1,i
(u2j⋆

2
,w2,i

(x2(w2,i−1))), s
”

∈ Tn
ǫ [u1,u2,x2, s|un

2 , xn
2 ]. (18)

If such j1 does not exist, setj1(s, w2,i−1, w2,i, w1,i) = J1.
Sometimes, we will usej⋆

1 as shorthand for the chosenj1. Finally,
generate a vector of input lettersx1 ∈ X

n
1 according to the

memoryless distribution defined by then−product of

Πip(x1i|u1i(u2(x2)), u2i(x2), si) (19)

Decoding: The decoding procedures at the end of blocki are
as follows.

1. destination1, having knownw2,i−1, declares that̂w2,i is
sent if there is a uniquêw2,i such that

“

u2j2,ŵ2,i
(x2(w2,i−1)),y1(i)

”

∈ Tn
ǫ [u2,x2,y1(i)|xn

2 ].

It can be shown that the decoding error in this step is small
for sufficiently largen if

R2 < I(U2; Y1|X2) − I(U2; S|X2). (20)

2. destination1, having knownw2,i−1 andw2,i, declares that
the messagêw1,i is sent if there is a uniquêw1,i such that

“

u1j1,ŵ1,i
(u2j2,ŵ2,i

(x2(w2,i−1))),y1(i)
”

∈ Tn
ǫ [u1,u2,x2,y1(i)|xn

2 , un
2 ].

It can be shown that the decoding error in this step is small
for sufficiently largen if

R1 < I(U1; Y1|U2X2) − I(U1; S|U2X2). (21)

3. Destination2 knowsw2,i−2 and decodesw2,i−1 based on
the information received in blocki−1 and blocki. It declares
that the messagêw2,i−1 is sent if there is a uniquêw2,i−1

such that
„

x2(ŵ2,i−1),y2(i)

«

∈ Tn
ǫ [x2,y2],

„

u2j2,ŵ2,i−1
(x2(w2,i−2)),y2(i − 1)

«

∈ Tn
ǫ [u2,x2,y2|xn

2 ].

It can be shown that the decoding error in this step is small
for sufficiently largen if

R2 < I(U2X2; Y2) − I(U2; S|X2). (23)
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