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Abstract— We consider a three-terminal state-dependent
relay channel with the channel state available non-causally
at only the source. Such a model may be of interest for node
cooperation in the framework of cognition, i.e., collaborative
signal transmission involving cognitive and non-cognitive
radios. We study the capacity of this communication model.
One principal problem in this setup is caused by the relay’s
not knowing the channel state. In the discrete memoryless
(DM) case, we establish lower bounds on channel capacity.
For the Gaussian case, we derive lower and upper bounds
on the channel capacity. The upper bound is strictly better
than the cut-set upper bound. We show that one of the
developed lower bounds comes close to the upper bound,
asymptotically, for certain ranges of rates.

I. I

We consider a three-terminal state-dependent relay channel
(RC) in which, as shown in Figure 1, the source wants to
communicate a message W to the destination through the
state-dependent RC in n uses of the channel, with the help of
the relay. The channel outputs Y2 and Y3 for the relay and the
destination, respectively, are controlled by the channel input
X1, the relay input X2 and the channel state S, through a given
memoryless probability law WY2 ,Y3 |X1 ,X2 ,S. The channel state S
is generated according to a given memoryless probability law
QS. It is assumed that the channel state is known, noncausally,
to only the source. The destination estimates the message sent
by the source from the received channel output. In this paper
we study the capacity of this communication system. We refer
to this model as state-dependent RC with informed source.
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Fig. 1. Relay channel with state information Sn available non-causally
at only the source.

The state-dependent multiaccess channel (MAC) with only
one informed encoder and degraded message sets is con-
sidered in [1], [2]; and the state-dependent relay channel

(RC) with only informed relay is considered in [3]. For all
these models, the authors develop non-trivial outer or upper
bounds that permit to characterize the rate loss due to not
knowing the state at the uninformed encoders. Key feature
to the development of these outer or upper bounds is that, in
all these models, the uninformed encoder not only does not
know the channel state but, also, can learn no information
about it.

The model for the RC with informed source that we
study in this paper seemingly exhibits some similarities with
the RC with informed relay considered in [3], and it also
connects with the MAC with asymmetric CSI and degraded
message sets considered in [1], [2], [4] and with the MAC with
two states considered in [5]. However, establishing a non-
trivial upper bound for the present model is more involved,
comparatively. Partly, this is because, here, the uninformed
encoder is also a receiver; and, so, it can potentially get some
information about the channel states from directly observing
its output. That is, at time i, the input X2,i of the relay can
potentially depend on the channel states through Yi−1

2 =

(Y2,1, . . . ,Y2,i−1). Further, since, for j = 1, . . . , i − 1, Y j
2 may

depend on the channel states in a non-causal manner (through
the source codeword X1, j(W,Sn)), and not only through the
current state Si, so does the input of the relay, potentially.

Establishing good lower bounds for the present model is
also a non-easy task, due to the asymmetry caused by know-
ing the state at only the source. In this paper, we establish
two lower bounds on the capacity of the state-dependent RC
with informed source, for both discrete memoryless (DM)
and memoryless Gaussian cases. For the Gaussian case, we
also establish a non-trivial upper bound that is strictly better
than the max-flow min cut or cut-set upper bound. Our lower
bounds exploit ideas that are inherently different; and, so,
their comparison helps providing right guidance towards
the appropriate design. We obtain the first lower bound by
a coding scheme in which the source describes the known
state to the relay and destination ahead of time, in addition
to sending the information message. The relay performs
collaborative binning against the learned state, through a
combined binning and decode-and-forward (DF) scheme. We
obtain the second lower bound by a coding scheme in which,
rather than the channel state itself, the source describes to the



relay the appropriate input that the relay would send had the
relay known the channel state. The relay then simply guesses
this input and sends it in the appropriate block. The lower
bound obtained with this scheme achieves close to optimal
for some special cases.

We note that the lower bounds that we develop in this paper
are tailored to primarily overcome the state asymmetry; and,
so, they perform well in the situations in which classic DF for
RC without state is suitable. Other interesting achievability
results which perform well in other situations can be found
in [6]–[8].

II. SM  D
As shown in Figure 1, we consider a state-dependent relay

channel denoted by WY2 ,Y3 |X1 ,X2 ,S whose outputs Y2 ∈ Y2 and
Y3 ∈ Y3 for the relay and the destination, respectively, are
controlled by the channel inputs X1 ∈ X1 from the source and
X2 ∈ X2 from the relay, along with a random state parameter
S ∈ S. It is assumed that the channel state Si at time instant i
is independently drawn from a given distribution QS and the
channel states Sn are non-causally known at the source.

The source wants to transmit a message W to the desti-
nation with the help of the relay, in n channel uses. The
message W is assumed to be uniformly distributed over the set
W = {1, . . . ,M}. The information rate R is defined as n−1 log M
bits per transmission.
An (M,n) code for the state-dependent relay channel with
informed source consists of an encoding function at the source

φn
1 : {1, . . . ,M} × Sn

→ Xn
1 ,

a sequence of encoding functions at the relay

φ2,i : Yi−1
2,1 → X2,

for i = 1, 2, . . . ,n, and a decoding function at the destination

ψn : Yn
3 → {1, . . . ,M}.

Let a (M,n) code be given. The sequences Xn
1 and Xn

2 from
the source and the relay, respectively, are transmitted across
a state-dependent relay channel modeled as a memoryless
conditional probability distribution WY2 ,Y3 |X1 ,X2 ,S. The joint
probability mass function on W×Sn

×Xn
1×Xn

2×Yn
2×Yn

3 is given
by

P(w, sn, xn
1 , x

n
2 , y

n
2 , y

n
3) =P(w)

n∏
i=1

QS(si)P(x1,i|w, sn)P(x2,i|yi−1
2 )

·WY2 ,Y3 |X1 ,X2 ,S(y2,i, y3,i|x1,i, x2,i, si). (1)

The destination estimates the message sent by the source
from the channel output Yn

3 . The average probability of error
is defined as Pn

e = ES

[
Pr

(
ψn(Yn

3 ) ,W|Sn = sn
)]
.

An (ε,n,R) code for the state-dependent RC with informed
source is an (2nR,n)−code (φn

1 , φ
n
2 , ψ

n) having average proba-
bility of error Pn

e not exceeding ε.
A rate R is said to be achievable if there exists a sequence

of (εn,n,R)−codes with limn→∞ εn = 0. The capacity C of the
state-dependent RC with informed source is defined as the
supremum of the set of achievable rates.

Due to space limitation, the results of this paper are either
outlined only or mentioned without proofs. Detailed proofs
can be found in [9].

III. T DM RC  I S
In this section, we assume that the alphabets S, X1, X2, Y2,

Y3 in the model are all discrete and finite.
Theorem 1: The capacity of the discrete memoryless state-

dependent relay channel with informed source is lower
bounded by

Rlo = max min {I(U; Y2|V, ŜR) − I(U; S, ŜD|V, ŜR),

I(U,V; Y3|ŜD) − I(U,V; S, ŜR|ŜD)} (2)

subject to the constraints

I(S; ŜR) ≤ I(UR; Y2, ŜR|U,V) − I(UR; S, ŜR, ŜD|U,V)
(3a)

I(S; ŜD) ≤ I(UD; Y3, ŜD|U,V) − I(UD; S, ŜR, ŜD|U,V)

+ [I(U; Y3, ŜD|V) − I(U; S, ŜR, ŜD|V)]−
(3b)

I(S; ŜR, ŜD) + I(ŜR; ŜD) ≤ I(UR; Y2, ŜR|U,V) − I(UR; S, ŜR, ŜD|U,V)

+ I(UD; Y3, ŜD|U,V) − I(UD; S, ŜR, ŜD|U,V)

+ [I(U; Y3, ŜD|V) − I(U; S, ŜR, ŜD|V)]−
− I(UR; UD|U,V,S, ŜR, ŜD) (3c)

where [x]− , min(x, 0), and the maximization is over all joint
measures on S× ŜR × ŜD ×UR ×UD ×U×V×X1 ×X2 ×Y2 ×Y3
of the form

PS,ŜR ,ŜD ,UR ,UD ,U,V,X1 ,X2 ,Y2 ,Y3
= QSPŜR ,ŜD |SPV|ŜR

PU|V,S,ŜR ,ŜD
PUR ,UD |V,U,S,ŜR ,ŜD

PX1 |UR ,UD ,U,V,S,ŜR ,ŜD
PX2 |V,ŜR

WY2 ,Y3 |X1 ,X2 ,S. (4)

and satisfying

I(V; Y3, ŜD) − I(V; ŜR) > 0. (5)

Remark 1: The intuition for the coding scheme which we
use to establish the lower bound in Theorem 1 is as follows.
Had the relay known the state, the source and the relay
could implement collaborative binning against that state
for transmission to the destination [10]. Since the source
knows the state of the channel non-causally, it can transmit a
description of it to the relay ahead of time. The relay recovers
the state (with a certain distortion), and then utilizes it in the
relevant block through a collaborative binning scheme. The
hope is that the benefit that the source can get from being
assisted by a more capable relay largely compensates the loss
caused by the source’s spending some of its resources to make
the relay learn the state.
In general, it may also turn to be useful to send a dedicated
description of the state to the destination. The destination
utilizes the recovered state as side information at the receiver.
The coding scheme that we employ to establish the lower
bound in Theorem 1 uses block Markov encoding. In each
block i, in addition to its message, the source also sends a
two-layer description of the state s[i + 2] to the relay and
destination; a description ŝR[ιRi] of s[i + 2] intended to be
recovered at the relay and a description ŝD[ιDi] of s[i + 2]
intended to be recovered at the destination. The two layers
are possibly correlated. (In Remark 2, we will comment on
the delay of two blocks needed here). The relay guesses
the source’s message wi and the individual state description



ŝR[ιRi] dedicated to it from the source transmission and
the previously recovered state description ŝR[ιRi−2]. It will
then utilize the new state estimate as non-causal state at
the encoder for collaborative source-relay binning in block
i + 2, through a combined decode-and-forward and Gelf’and-
Pinsker binning. The destination guesses the source’s message
wi−1 sent cooperatively by the source and relay and the
individual state description ŝD[ιDi−1] which is dedicated to it
from its output (y3[i − 1],y3[i]) and the previously recovered
state (ŝD[ιDi−3], ŝD[ιDi−2]), using a window-decoding method.

Remark 2: The source sends the descriptions intended to
the relay and destination two blocks ahead of time. That is, at
the beginning of block i the source describes the state vector
s[i + 2] to the relay and destination. While one block delay
is sufficient to describe the state to the relay, a minimum of
two blocks is necessary for the state reconstruction at the
destination because of the used window decoding technique.

We can generalize Theorem 1 by allowing the source to also
send a common description of the state which is intended to
be recovered at both the relay and the destination (see [9]).

The following theorem provides a lower bound on the
capacity of the state-dependent general discrete memoryless
RC with informed source.

Theorem 2: The capacity of the discrete memoryless state-
dependent relay channel with informed source is lower
bounded by

Rlo = max min {I(U,UR; Y3) − I(U,UR; S),

I(U,UR; Y2, X̂) − I(U,UR; S) − I(X; X̂)} (6)

subject to the constraint

I(X; X̂) < I(UR; Y2, X̂|U) − I(UR; S|U) + [I(U; Y2, X̂) − I(U; S)]−
(7)

where [x]− = min(x, 0), and the maximization is over all joint
measures on S×U×UR ×X1 ×X2 ×X× X̂×Y2 ×Y3 of the form

PS,U,UR ,X1 ,X2 ,X,X̂,Y2 ,Y3

= QSPU|SPUR |U,SPX1 |UR ,U,SPX|U,SPX̂|X1X2=X̂WY2 ,Y3 |X1 ,X2 ,S. (8)

Remark 3: The rationale for the coding scheme which we
use to obtain the lower bound in Theorem 2 is as follows. With
DF relaying, had the relay known the state then in each block
the relay generates its input using the source transmission
in the previous block and the state that controls the channel
in the current block, as in [10]. For our model, the source
knows what cooperative information, i.e., part of the message,
the relay would send in each block. It also knows the state
sequence that corrupts the transmission in that block. It can
then generate the appropriate relay input vector that the relay
would send had the relay known the state. The source can
send this vector to the relay ahead of time, and if the relay can
estimate it to high accuracy, then collaborative source-relay
binning in the sense of [10] is readily realized for transmission
from the source and relay to the destination.

Outline of Proof: A detailed proof of Theorem 2 can be
found in [9]. An outline proof is as follows. A block Markov
encoding with B + 1 blocks is used. Let us denote by x[k]
the relay input carrying message wk ∈ [1, 2nR] that the relay
would send in block k had the relay known the state s[k],

assuming DF relaying, with k = 2, . . . ,B + 1. Let us now
consider transmission in two adjacent blocks i and i+1. In the
beginning of block i, the source sends information message
wi of the current block, and, in addition, describes to the relay
the input x[i + 1] that the relay would send in the next block
i + 1 had the relay known the state s[i + 1]. Let x̂[mi] be a
description of x[i+1]. The source generates its input x1[i] using
two auxiliary codewords that are superimposed, a codeword
uR[i] that carries the index mi on top of a codeword u[i]
that carries message wi. Both codewords are selected using
binning against the state s[i] that controls transmission in the
current block i. The vector x[i + 1], however, is the input that
the relay would send in the next block i + 1 had the relay
known the state s[i + 1], and so is generated at the source
using binning against the state s[i + 1]. The description of
vector x[i + 1], which is sent to the relay in block i, is intended
to combine coherently with the source transmission in block
i + 1. In the beginning of block i, the relay knows mi−1 from
the source transmission in previous block i − 1, and sends
x2[i] = x̂[mi−1].

Remark 4: In the scheme we described briefly in Remark 3,
the relay needs only estimate the code vector x[i] sent by the
source in block i − 1, and transmit the obtained estimate in
the next block i. For instance, the relay does not need know
the state sequence that actually controls the channel. Thus,
transmission from the source terminal to the relay terminal
can be regarded as that of an analog source which, in block i,
produces a sequence x[i+1]. This source has to be transmitted
by the source terminal over a state-dependent channel and
reconstructed at the relay terminal. The reconstruction error
at the relay terminal influences the rate at which information
can be decoded reliably at the destination by acting as an
additional noise term.

IV. T G RC  I S
In this section, we consider a full-duplex state-dependent

RC informed source in which the channel states and the noise
are additive and Gaussian. In this model, the channel state can
model an additive Gaussian interference which is assumed to
be known (non-causally) to only the source.

General Gaussian Model: For the general Gaussian model,
the channel outputs Y2,i and Y3,i at time instant i for the relay
and the destination, respectively, are related to the channel
input X1,i from the source and X2,i from the relay, and the
channel state Si, by

Y2,i = X1,i + Si + Z2,i (9a)
Y3,i = X1,i + X2,i + Si + Z3,i. (9b)

The channel state Si is zero mean Gaussian random variable
with variance Q; and only the source knows the state
sequence Sn (non-causally). The noises Z2,i and Z3,i are zero
mean Gaussian random variables with variances N2 and N3,
respectively; and are mutually independent and independent
from the state sequence Sn and the channel inputs (Xn

1 ,X
n
2 ).

We consider the following individual power constraints on
the average transmitted power at the source and the relay

n∑
i=1

X2
1,i ≤ nP1,

n∑
i=1

X2
2,i ≤ nP2. (10)



Some Special Cases: We shall also consider the following
subclass of Gaussian RC with informed source, the frequency-
division (FD) Gaussian RC with informed source and orthog-
onal components where X1,i = (X1R,i,X1D,i), Y3,i = (Y(1)

3,i ,Y
(2)
3,i )

and

Y2,i = X1R,i + Si + Z2,i (11a)

Y(1)
3,i = X1D,i + Si + Z(1)

3,i (11b)

Y(2)
3,i = X2,i + Si + Z(2)

3,i , (11c)

where the noises Z(1)
3,i and Z(2)

3,i are zero mean Gaussian random
variables with variances N3, and are mutually independent
and independent from the state sequence Sn and the channel
inputs (Xn

1 ,X
n
2 ).

A FD Gaussian RC with informed source and orthogonal
components in which the state Si does not affect transmission
from the relay to the destination will be said to be degenerate.
Its input-output relation is given by (11) with (11c) substituted
by Y(2)

3,i = X2,i + Z(2)
3,i .

The reader may refer to [9], where we also consider the
following other interesting special cases.

1) Deaf helper problem: The relay does not hear the source,
and receives Y2,i = Si + Z2,i.

2) Gaussian RC with orthogonal state-independent link be-
tween the source and the relay. The source communicates
with the relay over a noise-free bit-pipe of given capacity.

A. Upper Bound on the Capacity
Theorem 3: The capacity of the state-dependent general

Gaussian RC with informed source is upper-bounded by

Rup
G = max min

{
1
2

log
(
1 + P1(1 − ρ2

12)(
1

N2
+

1
N3

)
)
,

1
2

log
(
1 +

(
√

P2 + ρ12
√

P1)2

P1(1 − ρ2
12 − %

2
1s) + (

√
∆Q + %1s

√
P1)2 + N3

)
+

1
2

log
(
1 +

P1(1 − ρ2
12 − %

2
1s)

N3

)}
, (12)

where ∆Q = QN2/((
√

Q +
√

P1)2 + N2) and the maximization
is over parameters ρ12 ∈ [0, 1], %1s ∈ [−1, 0] such that

ρ2
12 + %2

1s ≤ 1. (13)

Outline of Proof: We only sketch the important steps, due to
lack of space. A detailed proof of Theorem 3 can be found
in [9]. The proof of the bound given by the first term of
the minimization in (12) trivially follows by revealing the
state Sn to the relay and the destination. The proof of the
bound given by the second term of the minimization in
(12) is as follows. First, we show that there is an inevitable
residual uncertainty at the relay about the state sequence Sn

after observing the channel outputs Yi−1
2 = (Y2,1, . . . ,Y2,i−1).

Then, considering transmission from the source and relay to
the destination, we upper bound the sum rate that can be
conveyed to the destination on the multiaccess part of the
channel by accounting for the rate penalty that is caused by
not knowing the state fully at the relay. In doing so, we assume
that the message is revealed to the relay by a genie.

Remark 5: The established upper bound improves upon
the cut-set upper bound through the second term of the
minimization. The second term of the minimization is strictly
tighter than that of the cut-set upper bound because it
accounts for not knowing a part ∆n

S of the state of power
∆Q at the relay.
B. Lower Bound on the Capacity

Definition 1: Let

Q̃S(t,Q,D) := (1 − t)2Q − t(t − 2)D

R(α,P,Q,N) :=
1
2

log
( P(P + Q + N)

PQ(1 − α)2 + N(P + α2Q)

)
for non-negative t,D,P,Q,N, and α ∈ A(P,Q,N) := {x ∈ R :
R(x,P,Q,N) ≥ 0}.

The following theorem provides a lower bound on the
capacity of the state-dependent general Gaussian RC with
informed source.

Theorem 4: The capacity of the state-dependent Gaussian
RC with informed source is lower-bounded by

Rlo
G = max min

{
R(α, βγ̄P1, Q̃,N2 + γP1),

R(α, βγ̄P1, Q̃,N3 + γP1) +
1
2

log
(
1 +

(
√
β̄γ̄P1 +

√
P2)2

N3 + D + γP1 + βγ̄P1

)}
,

(14)

where

D = Q
N2

N2 + γP1
, Q̃ = Q̃S(α2,Q,D) (15)

α2 =
(
√
β̄γ̄P1 +

√
P2)2

(
√
β̄γ̄P1 +

√
P2)2 + βγ̄P1 + (N3 + D + γP1)

(16)

and the maximization is over β ∈ [0, 1], γ ∈ [0, 1] and α ∈
A(βγ̄P1, Q̃,N2 + γP1) ∩A(βγ̄P1, Q̃,N3 + γP1).

Outline of Proof of Theorem 4: A detailed proof of
Theorem 4 can be found in [9]. An outline of proof is as
follows. The result in Theorem 1 for the DM case can be
extended to memoryless channels with discrete time and
continuous alphabets using standard techniques [11, Chapter
7]. For the state-dependent Gaussian relay channel (9), we
evaluate the rate (2) with the following choice of input
distribution. We choose ŜD = Ø, UD = Ø. Furthermore, we
consider the test channel ŜR = aS+ S̃R, where a := 1−D/Q and
S̃R is a Gaussian random variable with zero mean and variance
σ2

S̃R
= D(1 −D/Q), independent from S. The random variable

X2 is Gaussian with zero mean and variance P2, independent
of S and ŜR. The random variable X1 is composed of two
parts, X1 = X1R + X, where X1R is Gaussian with zero mean
and variance γP1, for some γ ∈ [0, 1], is independent of S,
ŜR, X2; and X =

√
β̄γ̄P1/P2X2 + X′, where X′ is Gaussian

with zero mean and variance βγ̄P1, for some β ∈ [0, 1], and
is independent of X1R, X2 and (S, ŜR). The auxiliary random
variables are chosen as

V =
(√ β̄γ̄P1

P2
+ 1

)
X2 + α2ŜR (17a)

U = X′ + α(S − α2ŜR) (17b)
UR = X1R + αR(1 − α)S (17c)



where

α2 =
(
√
β̄γ̄P1 +

√
P2)2

(
√
β̄γ̄P1 +

√
P2)2 + βγ̄P1 + (N3 + D + γP1)

(18a)

αR =
γP1

γP1 + N2
, D := Q

N2

N2 + γP1
. (18b)

Remark 6: In [9], we also establish another lower bound
on the capacity of the state-dependent Gaussian RC with
informed source. This lower bound is obtained by a coding
scheme in which the source sends to the relay in block i a
quantized version of the input the relay would send in block
i + 1 had the relay known the state of the channel in that
block, in the spirit of Theorem 2. This result is not included
in this paper due to space limitation. However, it is depicted
for some numerical examples in Section IV-D, for comparison
reasons; and is shown to be asymptotically optimal for very
small noise at the relay. The reader may refer to [9] for the
details of this scheme.

C. Analysis of Some Special Cases
Corollary 1: The capacity of the degenerate frequency-

division Gaussian RC with informed source and orthogonal
components is given by

CG-DegParOrth = max
0≤γ≤1

min
{1
2

log(1 +
γP1

N2
),

1
2

log(1 +
P2

N3
)
}

+
1
2

log(1 +
(1 − γ)P1

N3
). (19)

1) If N2 −→ ∞, the upper bound of Theorem 3 tends to

CG =
1
2

log(1 +
P1

N3
), (20)

which is achieved by standard DPC at the source.
2) Arbitrarily strong channel state: In the asymptotic case Q→
∞, the lower bound of Theorem 4 tends to

Rlo
G =

1
2

log
(
1 +

P1

max(N2,N3)

)
. (21)

D. Numerical Examples and Discussion
Figure 2 illustrates the upper bound of Theorem 3, the lower

bound of Theorem 4 and the lower bound of [9, Theorem 5]
(as mentioned in Remark 6) for the model (9) as functions
of SNR = P1/N2 (in decibels). Also shown for comparison
are the cut-set upper bound and the trivial lower bound
obtained by considering the channel state as unknown noise
and implementing classic DF at the relay. The figure shows
that the lower bound of [9, Theorem 5] is asymptotically
optimal in SNR. Note that it outperforms the lower bound
(14) of Theorem 4 for almost all SNR values. Also, the upper
bound (12) is strictly better than the cut-set upper bound, as
we indicated in the proof of Theorem 3.
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Fig. 2. Lower and upper bounds on the capacity of the state-
dependent General Gaussian RC with informed source versus the SNR
in the link source-to-relay, for two examples of numerical values (a)
P1 = N3 = 10 dB, P2 = 5 dB, Q = 30 dB, and (b) P2 = 20 dB,
P1 = Q = N3 = 10 dB. R
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multiple access encoding with states available at one transmitter,”
IEEE Trans. Inf. Theory, vol. 54, pp. 4448–4469, Oct. 2008.

[3] A. Zaidi, S. Kotagiri, J. N. Laneman, and L. Vandendorpe, “Co-
operative relaying with state available non-causally at the relay,”
IEEE Trans. Inf. Theory, vol. 56, pp. 2272–2298, May 2010.

[4] ——, “Multiaccess channels with state known to one encoder:
Another case of degraded message sets,” in Proc. IEEE Int. Symp.
Information Theory, Seoul, Korea, Jun.-Jul. 2009, pp. 2376–2380.

[5] T. Philosoph, A. Khisti, U. Erez, and R. Zamir, “Lattice strategies
for the dirty multiple access channel,” in Proc. IEEE Int. Symp.
Information Theory, Nice, France, Jun. 2007, pp. 386–390.

[6] B. Akhbari, M. Mirmohseni, and M. R. Aref, “Compress-and-
forward strategy for the relay channel with non-causal state
information,” in Proc. IEEE Int. Symp. Information Theory, Seoul,
Korea, Jun.-Jul. 2009, pp. 1169–1173.

[7] M. N. Khormuji and M. Skoglund, “On cooperative downlink
transmission with frequency reuse,” in Proc. IEEE Int. Symp.
Information Theory, Seoul, Korea, Jun.-Jul. 2009, pp. 849–853.

[8] A. Zaidi and L. Vandendorpe, “Lower bounds on the capacity of
the relay channel with states at the source,” EURASIP Journal on
Wireless Commnunications and Networking, vol. Article ID 634296.
doi:10.1155/2009/634296, 2009.

[9] A. Zaidi, S. Shamai (Shitz), P. Piantanida, and L. Vandendorpe,
“Bounds on the capacity of the relay channel with noncausal state
at source,” Draft, 2010.

[10] Y.-H. Kim, A. Sutivong, and S. Sigurjonsson, “Multiple user
writing on dirty paper,” in Proc. IEEE Int. Symp. Information
Theory, Chicago-USA, Jun. 2004, p. 534.

[11] R. G. Gallager, Information Theory and Reliable Communication.
New York: John Willey, 1968.


