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Abstract— We study the capacity of a class of state-
controlled relay channels with orthogonal channels from
the source to the relay and from the source and relay
to the destination. The channel states are assumed to be
known, non-causally, to only the source. This model is
useful for relaying in the context of cognition and certain
interference-aware networks. For the discrete memoryless
case, we establish lower bounds on the channel capacity.
For the memoryless Gaussian case, we establish lower and
upper bounds on the channel capacity. The upper bound is
strictly better than the cut-set upper bound, and is tight for
certain special cases.

I. I

A state-controlled discrete memoryless relay channel (RC)
consists of: a source input X1 ∈ X1, a relay input X2 ∈ X2,
a relay output Y2 ∈ Y2, a destination output Y3 ∈ Y3, and a
random parameter S ∈ S that controls the channel, through a
given memoryless probability law WY2 ,Y3 |X1 ,X2 ,S. In this paper,
we assume that only the source knows the states of the
channel, non-causally.
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Fig. 1. Relay channel with orthogonal components from the source
to the relay and from the source and relay to destination, and state
information Sn available non-causally at only the source.

The source wants to transmit a message W to the desti-
nation with the help of the relay, in n channel uses. The
message W is assumed to be uniformly distributed over the set
W = {1, . . . ,M}. The information rate R is defined as n−1 log M
bits per transmission.
An (M,n) code for the state-dependent relay channel with
informed source consists of an encoding function at the source

φn
1 : {1, . . . ,M} × Sn

→ Xn
1 ,

a sequence of encoding functions at the relay

φ2,i : Yi−1
2,1 → X2,

for i = 1, 2, . . . ,n, and a decoding function at the destination

ψn : Yn
3 → {1, . . . ,M}.

Let a (M,n) code be given. The sequences Xn
1 and Xn

2 from
the source and the relay, respectively, are transmitted across
a state-dependent relay channel modeled as a memoryless
conditional probability distribution WY2 ,Y3 |X1 ,X2 ,S. The joint
probability mass function on W×Sn

×Xn
1×Xn

2×Yn
2×Yn

3 is given
by

P(w, sn, xn
1 , x

n
2 , y

n
2 , y

n
3) =P(w)

n∏
i=1

QS(si)P(x1,i|w, sn)P(x2,i|yi−1
2 )

·WY2 ,Y3 |X1 ,X2 ,S(y2,i, y3,i|x1,i, x2,i, si). (1)

The destination estimates the message sent by the source
from the channel output Yn

3 . The average probability of error
is defined as Pn

e = ES

[
Pr

(
ψn(Yn

3 ) ,W|Sn = sn
)]
.

An (ε,n,R) code for the state-dependent RC with informed
source is an (2nR,n)−code (φn

1 , φ
n
2 , ψ

n) having average proba-
bility of error Pn

e not exceeding ε.
A rate R is said to be achievable if there exists a sequence

of (εn,n,R)−codes with limn→∞ εn = 0. The capacity C of the
state-dependent RC with informed source is defined as the
supremum of the set of achievable rates.

A. Studied Model

In this paper, we study the following class of discrete-
memoryless relay channels with states at the source and
orthogonal components from the source to the relay and from
the source and relay to the destination.

Definition 1: A discrete memoryless state-dependent re-
lay channel with informed source WY2 ,Y3 |X1 ,X2 ,S is said
to have orthogonal components if the source alphabet
X1 = X1R×X1D and the joint probability mass function on



W×Sn
×Xn

1×Xn
2×Yn

2×Yn
3 can be expressed as

P(w, sn, xn
1 , x

n
2 , y

n
2 , y

n
3)

= P(w)
n∏

i=1

QS(si)P(x1R,i|w, sn)P(x1D,i|w, sn)P(x2,i|yi−1
2 )

·WY2 |X1R ,X2 ,S(y2,i|x1R,i, x2,i, si)WY3 |X1D ,X2 ,S(y3,i|x1D,i, x2,i, si). (2)

The studied model is shown in Figure 1.

B. Related Work
A growing body of work studies multi-user state-

dependent models. A comprehensive overview about recent
advances in this regard can be found in [1], and many other
works. Key to the investigation of a state-dependent model
is whether the parameters controlling the channel are known
to all or only some of the users in the communication model. If
the parameters of the channel are known to only some of the
users, the problem exhibits some asymmetry which makes its
investigation more difficult in general. Also, in this case one
has to expect some rate penalty due to the lack of knowledge
of the state at the uninformed encoders, relative to the case in
which all encoders would be informed.

The state-dependent multiaccess channel (MAC) with only
one informed encoder and degraded message sets is consid-
ered in [2], [3]. The MAC with two correlated states each
known at one encoder is considered in [4], [5]. The state-
dependent relay channel (RC) with only informed relay is
considered in [6]–[8].For all these models, the authors develop
non-trivial outer or upper bounds that permit to characterize
the rate loss due to not knowing the state at the uninformed
encoders. Key feature to the development of these outer or
upper bounding techniques is that, in all these models, the
uninformed encoder not only does not know the channel state
but can learn no information about it.

The state-dependent relay channel with only informed
source seemingly exhibits some similarities with the afore-
mentioned models. However, it departures from them in
that establishing a non-trivial upper bound on the channel
capacity is more involved, comparatively. Mostly, this is
because, in this model, the uninformed encoder (the relay) is
also a receiver, and so, it can potentially get some information
about the channel states from directly observing the past
received sequence from the informed encoder. That is, at time
i, the input X2,i of the relay can potentially depend on the
channel states through Yi−1

2 = (Y2,1, . . . ,Y2,i−1).
The state-dependent relay channel with informed source

has been studied in many recent works. In [8]–[12] (and the
references therein), the authors establish lower bounds on
the capacity. In the very recent works [13], [14], the authors
establish lower as well as well non-trivial upper bounds on the
capacity of the state-dependent relay channel with informed
source. The derived bounds agree in certain special cases, and
so fully characterize the capacity for these cases.

C. Main Contributions
In this work, we study a class of state-dependent relay

channels with orthogonal components from the source to the
relay and from the source and relay to the destination and
states known (noncausally) only at the source. We focus on

discrete memoryless (DM) as well as Gaussian models. For
both cases, we derive lower bounds on the channel capacity;
and for the Gaussian case, we also derive an upper bound on
the capacity. The upper bound in the Gaussian case is tighter
than that obtained by assuming that the channel state is also
available at the relay and the destination, i.e., the max-flow
min-cut or cut-set upper bound, and it helps characterizing
the rate loss due to the asymmetry caused by having the
channel state available at the source but not the relay.

A key feature of the studied model is that, assuming
decode-and-forward relaying, the input of the relay should
be generated using binning against the state that controls
the channel in order to combat its effect and, at the same
time, combine coherently with the source transmission. We
develop two lower bounds on the capacity by using coding
schemes which achieve this goal differently. In the first coding
scheme, the source describes the channel state to the relay,
through a combined classic rate distortion, binning and
decode-and-forward scheme. The relay guesses an estimate of
the transmitted information message and of the channel state
and then utilizes the state estimate to perform cooperative
binning with the source for sending the information message
on the multiaccess part of the channel.

In the second coding scheme, the source describes to the
relay the appropriate input that the relay would send had
the relay known the channel state. The relay then simply
guesses this input and sends it in the next block. We show that
the lower bound obtained with this scheme achieves close to
optimal for some special cases

The results in this paper are extended to general state-
dependent relay channels with states at the source in [13],
[14].

II. DM C
In this section, we assume that the alphabets S, X1, X2, Y2,

Y3 in the model are all discrete and finite.

A. Lower Bound on Channel Capacity: State Description
The following theorem provides a lower bound on the

capacity of the state-dependent discrete memoryless RC with
orthogonal components and informed source.

Theorem 1: The capacity of the discrete memoryless state-
dependent relay channel with orthogonal components and
informed source is lower bounded by

Rlo = max min
{
I(UR,U1; Y2|V, ŜR) − I(UR,U1; S|V, ŜR) − I(S; ŜR),

I(V; Y3) − I(V; ŜR)
}

+ [I(U2; Y3|V) − I(U2; S, ŜR|V)] (3)

subject to the constraint

I(S; ŜR) ≤ I(UR; Y2|V,U1, ŜR) − I(UR; S|V,U1, ŜR)

+ [I(U1; Y2|V, ŜR) − I(U1; S|V, ŜR)]− (4a)

where [x] , min(x, 0), and the maximization is over all joint
measures on S × ŜR × UR × U1 × U2 × V × X1 × X2 × Y2 × Y3 of
the form

PS,ŜR ,UR ,U1 ,U2 ,V,X1 ,X2 ,Y2 ,Y3

= QSPŜR |SPV|ŜR
PU1 ,UR |V,S,ŜR

PU2 ,|V,S,ŜR
PX1R |V,U1 ,UR ,S,ŜR

·PX1D |V,U2 ,S,ŜR
WY2 |X1R ,X2 ,SWY3 |X1D ,X2 ,S (5)



and satisfying

I(U2; Y3|V) − I(U2; S, ŜR|V) > 0. (6)

Remark 1: The intuition for the coding scheme which we
use to establish the lower bound in Theorem 1 is as follows.
Had the relay known the state, the source and the relay
could implement collaborative binning against that state
for transmission to the destination [15]. Since the source
knows the state of the channel non-causally, it can transmit a
description of it to the relay ahead of time. The relay recovers
the state (with a certain distortion), and then utilizes it in the
relevant block through a collaborative binning scheme. The
hope is that the benefit that the source can get from being
assisted by a more capable relay largely compensates the loss
caused by the source’s spending some of its resources to make
the relay learn the state.

Remark 2: The coding scheme that we employ to establish
the lower bound in Theorem 1 uses a combination of gener-
alized block Markov encoding [16], Gel’fand-Pinsker binning
[17], and classic rate distortion theory [18].
The message W to be transmitted is split into two indepen-
dent parts, W = (Wr,Wd), where message Wr will be sent
cooperatively with the relay at rate Rr, and message Wd will
be sent directly to the destination at rate Rd. The total rate is
R = Rr + Rd. Transmission is performed in B blocks. In each
block i, the source sends message wri and a description of the
state sequence s[i+1] on the channel to the relay. Also, it sends
cooperative information wri−1 and additional information wdi
on the multiaccess channel that connects the source and relay
to the destination. Let ŝR[ιRi] be the description of s[i + 1]
intended to be recovered at the relay. The relay guesses the
source’s message wri and recovers the description ŝR[ιRi]. It
will then utilize the state estimate ŝR[ιRi] as non-causal state
at the encoder for sending the cooperative information wri−1 to
the destination in block i + 1, through a collaborative source-
relay binning. The destination jointly decodes the source’s
message wri−1 sent cooperatively by the source and relay and
the additional information wdi sent directly by the source from
its output y3[i].

B. Lower Bound on Channel Capacity: Transmitting Analog
Input

The following theorem provides a lower bound on the
capacity of the state-dependent discrete memoryless RC with
orthogonal components and informed source.

Theorem 2: The capacity of the discrete memoryless
state-dependent relay channel with orthogonal components
WY2 |X1R ,X2 ,SWY3 |X1D ,X2 ,S with informed source is lower bounded
by

R = max I(U; Y3) − I(U; S) (7)

subject to the constraint

I(X; X̂) ≤ I(V; Y2) − I(V; S) (8)

where the maximization is over all joint measures on S × V ×

U × X1R × X1D × X2 × X × X̂ × Y2 × Y3 of the form

PS,V,U,X1R ,X1D ,X2 ,X,X̂,Y2 ,Y3

= QSPV,X1R |SPU,X|SPX̂|X1X2=X̂1X1D=XWY2 |X1R ,X2 ,SWY3 |X1D ,X2 ,S. (9)

Remark 3: The rationale for the coding scheme which we
use to obtain the lower bound in Theorem 2 is as follows.
With DF relaying, had the relay known the state then in
each block the relay generates its input using the source
transmission in the previous block and the state that controls
the channel in the current block, as in [15]. For our model, the
source knows what cooperative information, i.e., part of the
message, the relay would send in each block. It also knows
the state sequence that corrupts the transmission in that
block. It can then generate the appropriate relay input vector
that the relay would send had the relay known the state. The
source can send this vector to the relay ahead of time, and if
the relay can estimate it to high accuracy, then collaborative
source-relay binning in the sense of [15] is readily realized
for transmission from the source and relay to the destination.

Outline of Proof: A block Markov encoding with B + 1
blocks is used. Let us denote by x[k] the relay input carrying
message wk ∈ [1, 2nR] that the relay would send in block k
had the relay known the state s[k], assuming DF relaying,
with k = 2, . . . ,B + 1. That is, for k = 2, . . . ,B + 1, the
vector x[k] is generated as a deterministic function of s[k]
and some auxiliary random vector u[k] which represents
the associated Gel’fand-Pinsker auxiliary random vector that
carries message wk. Let x̂[mi] be a description of vector x[i+1].
In the beginning of block i, the source sends the index mi on
the channel to the relay, and message wi on the multiaccess
channel connecting the source and relay to the destination.
Let v[i] be the Gel’fand-Pinsker auxiliary random vector that
the source utilizes to implement binning against the state
s[i] for transmission of message mi on the channel to the
relay, and x1R[i] the corresponding input, generated as a
deterministic function of s[i] and v[i] as in classical Gel’fand-
Pinsker binning. In the beginning of block i, the source sends
x1[i] = (x1R[i], x1D[i]), with x1D[i] := x[i]. In the beginning of
block i, the relay knows mi−1 from the source transmission
in previous block i − 1, and sends x2[i] = x̂[mi−1]. (Observe
that since x̂[mi−1] is a description of x[i], the source and relay
inputs on the multiacess part of the channel will then combine
coherently).

III. M G C
In this section, we consider a state-dependent RC with

orthogonal components and informed source in which the
channel states and the noise are additive and Gaussian. In
this model, the channel state can model an additive Gaussian
interference which is assumed to be known (non-causally) to
only the source.

The channel outputs Y2,i and Y3,i at time instant i for the
relay and the destination, respectively, are related to the
channel input X1,i = (X1R,i,X1D,i) from the source and X2,i
from the relay, and the channel state Si, by

Y2,i = X1R,i + Si + Z2,i (10a)
Y3,i = X1D,i + X2,i + Si + Z3,i. (10b)

The channel state Si is zero mean Gaussian random variable
with variance Q; and only the source knows the state



sequence Sn (non-causally). The noises Z2,i and Z3,i are zero
mean Gaussian random variables with variances N2 and N3,
respectively; and are mutually independent and independent
from the state sequence Sn and the channel inputs (Xn

1R,X
n
1D)

and Xn
2 .

We shall also consider the following subclass of Gaussian
RC with orthogonal components and informed source, the
parallel Gaussian RC with orthogonal components and in-
formed source with Y3,i = (Y(1)

3,i ,Y
(2)
3,i ) and

Y2,i = X1R,i + Si + Z2,i (11a)

Y(1)
3,i = X1D,i + Si + Z(1)

3,i (11b)

Y(2)
3,i = X2,i + Si + Z(2)

3,i , (11c)

where the noises Z(1)
3,i and Z(2)

3,i are zero mean Gaussian random
variables with variances N3, and are mutually independent
and independent from the state sequence Sn and the channel
inputs (Xn

1 ,X
n
2 ).

A parallel Gaussian RC with informed source and or-
thogonal components in which the state Si does not affect
transmission from the relay to the destination will be said to
be degenerate. Its input-output relation is given by (11) with
(11c) substituted by Y(2)

3,i = X2,i + Z(2)
3,i .

We consider the following individual power constraints on
the average transmitted power at the source and the relay

n∑
i=1

X2
1,i ≤ nP1,

n∑
i=1

X2
2,i ≤ nP2. (12)

The definition of a code for this channel is the same as that
given in the discrete case, with the additional constraint that
the channel inputs should satisfy the power constraints (12).

A. Upper Bound on the Capacity

The following theorem provides an upper bound on the
capacity of the state-dependent Gaussian RC with orthogonal
components and informed source.

Theorem 3: The capacity of the state-dependent Gaussian
RC orthogonal components and informed source is upper-
bounded by

Rup
G = max min

{
1
2

log
(
1 +

γP1

N2

)
+

1
2

log
(
1 +

γ̄P1(1 − ρ2
12)

N3

)
,

1
2

log
(
1 +

(
√

P2 + ρ12
√
γ̄P1)2

γ̄P1(1 − ρ2
12 − %

2
1s) + (

√
∆Q + %1s

√
γ̄P1)2 + N3

)
+

1
2

log
(
1 +

γ̄P1(1 − ρ2
12 − %

2
1s)

N3

)}
, (13)

where ∆Q = QN2/((
√

Q +
√
γP1)2 + N2) and the maximization

is over parameters γ ∈ [0, 1], ρ12 ∈ [0, 1], %1s ∈ [−1, 0] such that

ρ2
12 + %2

1s ≤ 1. (14)

Remark 4: In the upper bound in Theorem 3, for given ρ12,
the maximization over %1s can in fact be restricted to either

%1s = −
√

1 − ρ2
12, %1s = 0, or a real root %1s of the third-order

polynomial F(%1s) that satisfies %1s ∈ [−
√

1 − ρ2
12, 0], where

F(%1s) = A%3
1s + B%2

1s + C% + D (15)

with

A = 4(γ̄P1∆Q)
3
2 (16a)

B = γ̄P1∆Q

[
(
√

P2 + ρ12
√
γ̄P1)2 + 4(γ̄P1(1 − ρ2

12) + ∆Q + N3)
]

(16b)

C = (γ̄P1∆Q)
1
2

[
(
√

P2 + ρ12
√
γ̄P1)2 + γ̄P1(1 − ρ2

12) + ∆Q + N3

]
·

[
γ̄P1(1 − ρ2

12) + ∆Q + N3

]
(16c)

D = ∆Q

[
γ̄P1(1 − ρ2

12) + N3

][√
P2 + ρ12

√
γ̄P1

]2
. (16d)

Outline of Proof: The proof of Theorem 3 follows along the
lines of that of [13, Theorem 3]. Thus, we only sketch the
important steps, for brevity. The proof of the bound given
by the first term of the minimization in (13) trivially follows
by revealing the state Sn to the relay and the destination.
The proof of the bound given by the second term of the
minimization in (13) is as follows. First, we show that
there is an inevitable residual uncertainty at the relay about
the state sequence Sn after observing the channel outputs
Yi−1

2 = (Y2,1, . . . ,Y2,i−1). Then, considering transmission from
the source and relay to the destination, we upper bound the
sum rate that can be conveyed to the destination on the
multiaccess part of the channel by accounting for the rate
penalty that is caused by not knowing the state fully at the
relay. In doing so, we assume that the message is revealed to
the relay by a genie.

B. Lower Bounds on the Capacity
The following theorem provides a lower bound on the

capacity of the state-dependent Gaussian RC with orthogonal
components and informed source.

Theorem 4: The capacity of the state-dependent Gaussian
RC with orthogonal components and informed source is
lower-bounded by

Rlo
G = max

1
2

log
(
1 +

(
√
γ̄P1 +

√
P2 −D)2

N3 + D

)
, (17)

where

D := P2
N2

N2 + γP1
(18)

and the maximization is over γ ∈ [0, 1].
The following three remarks are useful for a better under-

standing of the coding scheme which we use to achieve the
lower bound in Theorem 4. A detailed description of this
coding scheme will follow.

Remark 5: In (10), if the source and the relay both know
the state Sn, then channel capacity can be achieved through
a cooperation binning scheme that consists in an appropriate
combination of generalized block-Markov coding [16] and
binning [17]. Similar to the case of degraded Gaussian RC
with informed source and informed relay studied in [15], it
can be shown that the capacity expression in this case is same



as if there were no state at all [16, Section III] or the state were
known at all terminals. Because source and relay both know
the state in this case, they can cooperate to mitigate its effect
completely; and this achieves the max-flow min-cut upper
bound for the RC with orthogonal components model.

Remark 6: The rationale for the coding scheme which we
use to obtain the lower bound (17) is as follows. Ideally, in each
block the relay should send an appropriate code vector which
is precoded against the state that corrupts the transmission
in that block, in the manner described in Remark 5. This is
relevant as it would allow sending at maximal rate on the
multiaccess part of the channel through joint source-relay
binning.
For our model, the source knows what cooperative
information, i.e., part of the message, the relay should send
in each block. It also knows the state sequence that corrupts
the transmission in that block. It can then generate the
appropriate relay input vector that the relay should send had
the relay known the state. The source can send this vector to
the relay ahead of time, and if the relay can estimate it to high
accuracy, then appropriate source-relay cooperation similar
to that in the scheme in Remark 5 is readily obtained for
transmission from source and relay to the destination.

Proof of Theorem 4: The result of Theorem 2 for the DM
case can be extended to memoryless channels with discrete
time and continuous alphabets using standard techniques [19,
Chapter 7]. For the state-dependent Gaussian relay channel
with orthogonal components (10), we evaluate the rate (7)
with the following choice of input distribution. The input X is
Gaussian with zero mean and variance P2, and is independent
of S. The source input is such that X1R is Gaussian with zero
mean and variance γP1, for some γ ∈ [0, 1], is independent of
S and X2; and X1D =

√
γ̄P1/P2X. Furthermore, we choose X̂

according to the test channel X = X̂+Z, where X̂ is a Gaussian
random variable with zero mean and variance P2 − D and Z
is a Gaussian random variable with zero mean and variance
D independent of X̂. The relay input is X2 =

√
P2/(P2 −D)X̂.

The auxiliary random variables are chosen as

V = X1R + α1RS (19)

U =
(√ γ̄P1

P2
+

√
P2 −D

P2

)
X + αS, (20)

with

α1R =
γP1

γP1 + N2
(21)

α =
(
√
γ̄P1 +

√
P2 −D)2

(
√
γ̄P1 +

√
P2 −D)2 + N3 + D

(22)

and

D := P2
N2

N2 + γP1
. (23)

Through straightforward algebra which is omitted for brevity,
it can be shown that (7) achieves (17).

Remark 7: In classic Gaussian RC with orthogonal com-
ponents, i.e., Gaussian channels without states, the capacity
achieving coding scheme is such that, on the multiacess part of
the channel, the source sends additional new information on

top of the cooperative information that is also sent by the relay,
i.e., not only the cooperative information. That is, the source
input is composed of two parts, one part which is proportional
to the relay input and carries cooperative information and
another part which is independent from the relay input and
carries additional information. This is relevant in this case
as the rate of the cooperative information is limited by the
information that the relay decodes reliably from Y2, and so
allowing the source to send some additional information is
beneficial in general. In our case, however, the source needs
not send additional information as the additional degree of
freedom to the source over the relay is (already) captured by
the distortion between their inputs. That is, the input X1D = X
from the source carries more information than does the input
X2 = X̂ from the relay.

C. Extreme Cases

We now summarize the behavior of the lower and upper
bounds in some special and extreme cases.

Corollary 1: The capacity of the degenerate parallel Gaus-
sian RC with informed source and orthogonal components is
given by

CG-DegPar = max
0≤γ≤1

min
{1
2

log(1 +
γP1

N2
),

1
2

log(1 +
P2

N3
)
}

+
1
2

log(1 +
(1 − γ)P1

N3
). (24)

1. If N2 −→ 0, e.g, the relay is located spatially very
close to the source, the lower and upper bounds tend
asymptotically to the same value

CG =
1
2

log
(
1 +

(
√

P1 +
√

P2)2

N3

)
− o(1) (25)

where o(1) −→ 0 as N2 −→ 0.
Equation (25) reflects the rationale for our coding scheme
for the lower bound which is tailored to be asymptot-
ically optimal whenever the relay can learn the input
which it should send with negligible distortion. In this
case, the rate (25) can be interpreted as the information
between two transmit antennas which both know the
channel state and one receive antenna.

2. If N2 −→ ∞, the link to the relay is broken or too noisy
and the distortion is equal to its maximum value P2,
resulting in

Rup
G =

1
2

log(1 +
P1

N3
)

Rlo
G =

1
2

log(1 +
P1

N3 + P2
). (26)

Equation (26) reflects a limitation of our coding scheme
for the lower bound if the relay fails to reconstruct the
input described by the source. In this case, the input
from the relay acts as additional noise at the destination,
thus causing the cooperative transmission to perform
less good than simple direct transmission. The achievable
rate (26) is, however, still better than had the state been
merely treated as unknown noise if P2 ≤ Q.

3. If P2 = 0, the lower and upper bounds meet and yield the
capacity of transmission to the destination through only



the direct link,

CG =
1
2

log(1 +
P1

N3
). (27)

4. If P1 −→ ∞, the lower bound reaches the upper bound
asymptotically in the power at the source if P2 � P1,
yielding

CG =
1
2

log(1 +
P1

N3
). (28)

D. Numerical Examples
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Fig. 2. Lower and upper bounds on the capacity of the state-
dependent Gaussian RC with orthogonal components and informed
source versus the SNR in the link source-to-relay, for two examples of
numerical values (a) P2 = 20 dB, P2 = 5 dB, Q = 10 dB, N3 = 20 dB,
and (b) P1 = 20 dB, P2 = N3 = 5 dB, Q = 80 dB.

Figure 2 illustrates the lower bound (17) and the upper
bound (13) as functions of the signal-to-noise-ratio (SNR) at
the relay, i.e., SNR = P1/N2 (in decibels), for a degraded chan-
nel. Also shown for comparison are the cut-set upper bound
given by the channel capacity had the state been known
also at the relay and the trivial lower bound obtained by

considering the channel state as unknown noise a generalized
block-Markov coding schemes [16].
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