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Abstract— We consider a state-dependent full-duplex relay
channel with the state of the channel non-causally available
at only the relay. In the framework of cooperative wireless
networks, some specific terminals can be equipped with cognition
capabilities, i.e, the relay in our model. In the discrete memoryless
(DM) case, we derive lower and upper bounds on channel
capacity. The lower bound is obtained by a coding scheme at
the relay that consists in a combination of codeword splitting,
Gel’fand-Pinsker binning, and a decode-and-forward scheme.
The upper bound is better than that obtained by assuming that
the channel state is available at the source and the destination
as well. For the Gaussian case, we also derive lower and upper
bounds on channel capacity. The lower bound is obtained by a
coding scheme which is based on a combination of codeword
splitting and Generalized dirty paper coding. The upper bound
is also better than that obtained by assuming that the channel
state is available at the source, the relay, and the destination.
The two bounds meet, and so give the capacity, in some special
cases for the degraded Gaussian case.

I. INTRODUCTION

Channels that depend on random parameters have received con-
siderable attention over the last decade, due to a wide range of
possible applications. This includes single user models [1], [2], [3],
[4] and multiuser models (see, e.g., [5], [6], [7] and references
therein). For multiuser models, one key issue in the study of
state-dependent channels is whether the parameters controlling the
channel are known symmetrically, i.e., to all, or asymmetrically,
i.e., to only some of, the users in the communication model. The
broadcast channel (BC) with state available at the transmitter but
not at the receivers is considered in [5], [6], [8]. The multiple access
channel (MAC) with partial state information at all the encoders and
full state information at the decoder is considered in [9].

In the Gaussian case, the MAC with all informed encoders, the
BC with informed encoder, the physically degraded relay channel
(RC) with informed source and informed relay, and the physically
degraded relay broadcast channel (RBC) with informed source and
informed relay are studied in [5], [10], [11]. In all these cases, it is
shown that some variants of Costa’s dirty paper coding (DPC) [3]
achieve the respective capacity or the respective capacity region.
Also, since for all these models the variant of DPC achieves the
trivial upper or outer bound obtained by assuming that the channel
state is also available at the decoders in the model, it is not required
to obtain any non-trivial upper or outer bounds. For all these
models, the key assumption that makes the problem relatively easy
is the availability of the channel state at all the encoders in the
communication model. It is interesting to study state-dependent

multi-user models in which only some, i.e., not all, the encoders are
informed about the channel state, because the uninformed encoders
in the model cannot apply DPC.

The state-dependent MAC with some, but not all, encoders
informed of the channel state is considered in [12], [13], [14],
[15], [16] and the state-dependent relay channel with only informed
source is considered in [11], [17]. For all these models, in the
Gaussian case, the informed encoder applies a slightly generalized
DPC (GDPC) in which the channel input and the channel state are
correlated. In these models, the uninformed encoders benefit from
the GDPC applied by the informed encoders because the negative
correlation between the codewords at the informed encoders and
the channel state can be interpreted as partial state cancellation. For
the state-dependent MAC with one informed encoder, the capacity
region for the Gaussian case is obtained by deriving a non-trivial
upper bound in the case in which the message sets are degraded
[15].

In this work, we consider a three terminal state-dependent full-
duplex RC in which the state of the channel is known non-causally
to only the relay, i.e., but neither to the source nor to the destination.
We refer to this communication model as state-dependent RC with
informed relay. This model is shown in Figure 1.
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Fig. 1. RC with state information available non-causally at only the relay.

For the discrete memoryless (DM) case, we derive a lower bound
(Section III) and an upper bound (Section IV) on the capacity
of the state-dependent general, i.e., not necessarily degraded, RC
with informed relay. The lower bound is obtained by a coding
scheme at the relay that uses a combination of codeword splitting,
Gel fand-Pinsker coding, and regular encoding backward decoding
[18] for full-duplex decode-and-forward (DF) relaying [19]. The
upper bound on the capacity is better than that obtained by assum-
ing that the channel state is also available at the source and the
destination. Also, this upper bound is non-trivial and connects with
a bounding technique which is developed in the context of multiple
access channels with asymmetric channel state in [16, Theorem 2].
However, we note that, in this paper, the upper bound is proved
using techniques that are different from those in [16]. Furthermore,



we also specialize the results in the DM case to the case in which
the channel is physically degraded.

For the Gaussian case (Section V), we derive lower and upper
bounds on channel capacity by applying the concepts developed in
the DM case to the case in which the CSI is additive Gaussian, i.e.,
models an additive Gaussian interference, and the ambient noise is
additive Gaussian. Furthermore, we point out the loss caused by the
asymmetry and show that the lower bound is (in general) close and
is tight in a number of special cases if the channel is physically
degraded. The key idea for the lower bound is an appropriate code
construction which allows the source and the relay to send coherent
signals (by enabling correlation between source and relay signals,
though only one of the two encoders is informed) and, at the
same time, have the source possibly benefit from the availability
of the CSI at the relay (through a generalized DPC). Also, we
characterize the optimal strategy of the relay balancing the trade-
off between enhancing source’s transmitted signal and combating
the interference. Section VI presents some illustrative numerical
examples.

II. THE DM RC WITH INFORMED RELAY ONLY

The state-dependent DM RC, denoted by (X7 x
Xo, Wy, vy (X1, X2,5: Y2 X V3,S) and depicted in Figure I,
consists of five finite sets X7, X2,S,)2,Ys, a distribution
Qs on the set & and a family of conditional probability
distributions Wy, y,|x, x,,5 from X1 X X2 x § t0 Vo x V.
Let X? = (Xl’l,u' aXl,n) and Xg = (Xg’l,--- ,Xg’n)
designate the inputs of the source and the relay respectively, and
Y3h = (Y21, ,Yo,) and Y3' = (Y3.1,---,Y3,) designate the
outputs of the relay and the channel, respectively. We assume that
the channel states S™ are i.i.d., each distributed according to Qg.

As it can be seen from Figure 1, the setup we consider is
asymmetric in the sense that only the relay is informed of the
channel states. The relay observes the CSI non-causally, and we
refer to this channel as state-dependent RC with informed relay.
Also, the channel will be said to be physically degraded if the
conditional distribution Wy, y;|x, x,,5 can be written as

WYQ,Y3|X1,X2,S = WY2\X17X2,SWY3|Y2,X27S' ()]

In Section III and Section IV we establish bounds on the capacity
of the state-dependent RC with informed relay in the DM case. We
assume that the alphabets S, X1, A, are finite. The proofs of these
bounds are rather lengthy and, for the sake of brevity, they are either
outlined only or omitted here. Detailed proofs are reported in [20].

III. DM CASE: LOWER BOUND ON CAPACITY

The following theorem provides a lower bound on the capacity
of the state-dependent DM RC with informed relay.

Theorem 1: The capacity of the state-dependent DM RC with
informed relay is lower bounded by

R™ = max min {I(Xl; Ya|S, Uh),
1(X1,U17U2;Y3)—I(U2;5|U1)}, 2
over all

where the maximization is

Ps u,,U5,X1,X52,Ys,vs Of the form

joint measures

Ps.u,,U3,X1,X5,Y2, Y5 =

Qs Py, Px, v, Pusiuy,sPxo 100,05, Wys, v3 (X1, X2,5 ()

and U; and Uz are auxiliary random variables with cardinality
bounded as

th | < [S]| XX +1
vl < (ISI1 11X ] + 1) 18111 | Xa],

(4a)
(4b)

respectively.

The proof of Theorem 1 is based on a random coding scheme the
basic idea of which is conveyed in the following remarks.

Remark 1: The lower bound (2) is based on the relay operating
in a decode-and-forward (DF) relaying scheme [19, Theorem 1]. In
DF strategies, the source knows what cooperative information the
relay transmits. Consequently, the source generates the codeword
that achieves coherence gains as in multi-antenna transmission, by
having the channel input of the source correlated with that of the
relay. In our model, at one hand, if the relay generates its channel
input as a function of both the cooperative information and the
channel state, then it is not possible for the source to know the
relay input, because the source does not know the channel state. On
the other hand, the relay should not completely ignore the known
channel state which it can use to remove the effect of the CSI on
the communication. To resolve the existing tension at the relay, we
generate two codebooks. In one codebook, the random codewords
U7 are generated using a random variable U; which is independent
of the channel state S. The relay chooses the appropriate random
codeword from this codebook using the cooperative information
only. In another codebook, the codewords U3' are generated using
the random variable Us which is correlated with the channel state
S and Uy through Py, 7, 5. The relay chooses the codeword
from this codebook using both the cooperative information and
the channel state, to remove the effect of the channel state on the
communication. Then the relay generates the channel input X3'
from (U7",U3') using the conditional probability law Py, v,
Likewise, the source knows U7* because it is a function of only the
cooperative information, and, given U7', it generates the random
codeword X" according to the conditional probability law Py ¢, -
Thus the channel inputs of the source and the relay are correlated
through U7". This is the main idea of the coding scheme that we use
at the relay.

Remark 2: The term [I(X1,U;,Us;Y3) — I(Uz; S|U1)] in (2)
illustrates the multi-antenna system behavior when the encoders are
asymmetrically informed about the channel: it can be interpreted
as an achievable sum rate over a two-encoder MAC with only one
encoder being informed of the CSI. In [15], [14], the authors derive
the capacity region of a state-dependent MAC with one informed
encoder in the case in which the informed encoder knows the
message to be transmitted by the uninformed encoder. In our model,
transmission from the source and the relay to the destination can
also be viewed as that over a MAC with one informed encoder.
However, in our case, due to the structure of the DF scheme, the
situation is different from [15], [14] since the uninformed encoder
(the source) knows the message of the informed encoder (the relay),
not the opposite. This makes coding at the relay more difficult in our
setup.

IV. DM CASE: UPPER BOUND ON CAPACITY

The following theorem provides an upper bound on the capacity
of the state-dependent DM RC with informed relay.



Theorem 2: The capacity of the state-dependent DM RC with
informed relay is upper bounded by

R™ = maxmin{I(Xl;Y27Y3|S7X2),
I(X1, X2 Y| $) ~ I(X1: SIY3) }, - (5)

where the maximization is over all joint measures Ps x, x,.vs,v3
of the form

Pg x1,,X2,v2,vs = QsPx, Px,1x;,5Wyy v5] X1, X5,5- (0)

In the second term of the minimization in (5), the term
I1(X1;S|Y3) can be interpreted as the rate penalty in the information
conveyed to the destination caused by not knowing the channel
state at the source as well. This rate loss makes the above upper
bound tighter than the trivial upper bound which is obtained by
assuming that the channel state is also available at the source and
the destination, i.e.,

Ry =
v T
where here maximization is over all joint measures Pg x,,x,.Ys,s
of the form

max min {I(Xl;Y27Y3|S, Xg),[(Xl,XQ;Y3|S)}, 7)

Ps x1,,x5,Y2,v5 = QsPx,15Px,1x,,sWy, v31x,, x5 (8)

If the channel is physically degraded, the upper bound in Theorem
2 reduces to the one in the following corollary.

Corollary 1: The capacity of the state-dependent physically de-
graded DM RC with informed relay is upper bounded by

RY" = maxmin {I(Xl;Y2|S,X2),

I(Xl,Xg;Y3|S)—I(X1;8|Y3)} 9)

where the maximization is over all probability distributions of the
form

P57X1-,X27Y27Y3 = QSPX1PX2\X17SWY2\X17X2,SWY3|Y2,X275'
(10)

V. THE GAUSSIAN RELAY CHANNEL

In this section, we consider a state-dependent full-duplex Gaus-
sian RC in which both the channel state and the noise are additive
and Gaussian. In this model also, we assume that the additive
channel state is non-causally known to only the relay.

A. Channel Model

For our model of the state-dependent full-duplex Gaussian RC
with informed relay, the channel outputs Y5 ; and Y3 ; at time
instant 4 for the relay and the destination, respectively, are related
to the channel input X ; from the source and X5 ; from the relay,
and the channel state S; by

Yo, = X1+ S5+ 22,
Y3, = X1, +Xo; +S; + Z3,

(11a)
(11b)

where S; is a zero mean Gaussian random variable with variance
Q, Z>; is zero mean Gaussian with variance Na, and Z3; is
zero mean Gaussian with variance N3. The random variables
Si, Zo; and Z3; at time instant ¢ € {1,2,...,n} are mutually
independent, are independent of the channel inputs (X7, X3') , and
are independent of (S}, Z3 j, Z3 ;) for j # i.

For the full-duplex degraded additive Gaussian RC, the channel
outputs Y3 ; and Y3 ; for the relay and the destination, respectively,
are related to the channel inputs X7 ; and X» ; and the state S; by

Yo = X1+ Si + 2, (12a)
Y= Xo,+ Y, + 25, (12b)
where (Zé,l, Sy Zé,n) is a sequence of i.i.d. zero mean Gaussian
random variables with variance Né = N3 — N which is indepen-

dent of Z3'.
We consider individual power constraints on the transmitted
power, 2?21 X12,i <nPy, 2?21 X22,i <nP.

B. Bounds on Capacity

The results obtained in Section IV for the DM case can be
applied to memoryless channels with discrete time and continuous
alphabets using standard techniques [21]. We use the bounds in
Theorem 1 and Theorem 2 to compute bounds on channel capacity
for the Gaussian case.

The following theorem provides a lower bound on the capacity
of the state-dependent Gaussian RC with informed relay.

Theorem 3: The capacity of the state-dependent general Gaus-
sian RC with informed relay is lower bounded by

Pi(1-p%)
N A
Py + 0P + 2p5\/ 0P P> )
0Py + Q + N3 + 2p, /OP2Q
0P (1 — phy)
: 1
N ()

where the maximization is over parameters p}5 € [0,1], 6 € [0,1],
phs € [=1,0,and = 1 — 6.

R = max min {1 log(
Pl2 2

1
max — lo (1 +
0,p5, 2 &

1
+ 5 log(1 +

The proof of Theorem 3 is based on the evaluation of the lower
bound (2) with an appropriate jointly Gaussian input distribution
that will be specified in the sequel.

Recalling the discussion in Remark 1, for the Gaussian RC with
informed relay, we should consider two important features in the
design of an efficient coding scheme at the relay: obtaining cor-
relation or coherence between the channel inputs from the source
and the relay, and exploiting the channel state to remove the effect
of the CSI on the communication. As we already mentioned, it
is not obvious to accomplish these features because the channel
state is not available at the source. The main idea in the coding
scheme that we consider consists in splitting the relay input X5
into two independent parts, namely UP* and X%'. The first part, U},
is a function of only the cooperative information, and is generated
using standard coding. Since the source knows the cooperative
information at the relay, it can generate its codeword X' in such
a way that it is coherent with U7, i.e., by allowing correlation
between X7 and U7'. The second part, X%, which is independent
of the source input X7{', is a function of both the cooperative
information and the channel state S™ at the relay, and is generated
using a GDPC similar to that in [11], [12], [13], [16], [22].

More formally, we decompose the relay input random variable
Xs as

Xo = Uy + Xo, (14)

where: U 1 is zero mean Gaussian with variance 0 Ps, is independent
of both X5 and S, and is correlated with X; with E[U; X1] =



P2V 0P Py, for some 6 € [0,1], piy € [~1,1] ; and X3 is zero
mean Gaussian with variance 6P, is independent of X7, and is
correlated with the channel state S with E[X2S] = ph,/OPQ,
for some p5, € [—1,1]. Using the covariances o1 = E[X] Xs] =
E[X1U1] and o9, = E[X2S] = E[X2S], the parameters p}o, phs
are given by

012

/
P12 = —F—>
V0P P>

For the GDPC, we choose the auxiliary random variable Us as

02s

0PQ

phs = (1)

Uz = XQ + OéoptS (]6)
with
0P (1 — p/225) / 0P / 0P
— 1 —_—=) - —=. (17
Copt 0Py (1 — p/225) + N3 ( + P2s Q ) 2s Q (17)

We now provide an upper bound on the capacity of the state-
dependent Gaussian RC with informed relay.

Theorem 4: The capacity of the state-dependent general Gaus-
sian RC with informed relay is upper bounded by

2
P12 L1
R )
(VPI + p12vPs)? )
Py(1—p3y — p3,) + (V@ + p2svV/P2)? + N3
1 132(1_"%2_9%9))} (18)

RY" = max min {;log (1 + P(1—

1
§log(1+
= log(1
+20g( + N

where the maximization is over parameters pi2 € [0, 1] and pas €
[—1, 0] such that

pla + p3s < L. (19)

The proof of Theorem 4 follows by evaluating the upper bound
(5) using an appropriate joint distribution of X7p, X9, S, Ys, Y3.
It is based on showing that for the Gaussian channel (11),
one can restrict attention to jointly Gaussian (S, X1, X2, Ys,Y3)
with E[XlS] = 0, 12 = preovPiP = E[X1X2} and
o2s = p2sv/P2Q = E[X2S]. The allowable values for the
covariances o1 and oo are such that the covariance matrix
Ax, . X5.8,2,,25 f (X1,X2,S, Z2, Z3) has a non-negative discrim-
inant, i.e. QP; PyNaN3(1 — p3o — p3,) > 0. For Q > 0, this gives
(19).

Similarly to in Theorem 4, we obtain an upper bound on channel
capacity for the degraded Gaussian case by evaluating the upper
bound (9) in Corollary 1 using an appropriate jointly Gaussian
distribution of S, X1, X9, Y2, Ys.

Corollary 2: The capacity of the state-dependent degraded
Gaussian RC with informed relay is upper bounded by (18) in
which the first term of the minimization is replaced by

IR
%bg(l-&-Pl(l P12 P2s)).

20
No(1—p3,) 20

C. Special Cases Analysis

We note that comparing the bounds in Theorem 3 and Theorem 4
analytically can be tedious in the general case. In the following, we
focus only on the physically degraded case. In this case, we show
that the lower bound in (13) is tight for certain values of the channel
statistics, and thus obtain the capacity expression for these cases.

In the following corollary we recast the upper bound (18) into an
equivalent form by substituting x = p12/4/1 — p% s and p = pos.

Corollary 3: For the state-dependent degraded Gaussian RC
with informed relay, the upper bound (18) can be written as

P1(1 - Iiz)

Py(1 = w*(1 = p*) = p%)
N3 )

Pi + 1%(1 — p*)Pa + 26\/1 — p2/P1 Py )

Py(1—k2(1—p?) +Q+2pvV/P2Q + N3/ [’

RS = maxmin { % log (1 +
K

max 1 log(1 +
p 2

1
+ 3 log (1 +
21

where the maximization is over parameters € [0,1] and
g eIn[veitjig]aiting the lower bound (13) and the upper bound (21), it
can be shown that the lower bound for the degraded case is tight
for certain values of P;, Po, QQ, N2, N3. The following proposition
provides some cases for which the lower bound is tight.

Proposition 1: For the physically degraded Gaussian RC chan-
nel, we have the following.

1) If P, Py, Q, Na, N3 satisty
PyN3(P2 + Q 4+ N3 + 2¢/P2Q)

Ns > max s
¢e[-1,0] PLN3 + Po(1 = (3)(P1 + P + Q + N3 + 20v/ Q)
(22)
then channel capacity is given by
1 Py
Coc = 5 log(1 + N ), (23)

which is the same as the interference-free capacity, i.e., the capacity
when the channel state is also known to the source or is not present
in the model.

2) If the maximizing p;12 and pas in the upper bound in Theorem
4 are such that condition (19) is met with equality, i.e., p35 + p3, =
1, then the lower bound (13) is tight and gives capacity.
Extreme Cases
We now summarize the behavior of the capacity Cpg =
Cpg(P1, P2, Q, N2, N3) in some extreme cases.

1. For @Q = 0, i.e., no channel state at all in the model, capacity

is given by
_ 1 Pi(1-5%
%log (1+ P+ P -;725\/131132)}7
3

(24)

which is the same as the capacity of the standard degraded
Gaussian channel [19, Theorem 5]. This can be directly
obtained by substituting @ = 0 in (13) and (21). In this case,
the maximizing parameters are = 0, ph, = 0 for (13) and
p = 0 for (21).



2. In the case of arbitrary strong channel state, i.e., Q — oo,
capacity is given by

Pyl P2)}. (25)

.01
Cpc = mln{ilog(l + E), §log(l + N,

In this case, the lower bound in (13) is maximized for
0 = 1,phs = 0,p)s = 0, and the upper bound in (21) is
maximized for p = 0, x = 0, and the two bounds meet. We
note that, in this strong channel state case, (25) suggests that
traditional multi-hop transmission achieves the capacity. A
multi-hop scheme allows to completely cancel the effect of
the channel state by subtracting it out upon reception at the
relay, and by applying standard DPC for transmission from
the relay to the destination.
3. If P, = 0, capacity is given by
Py
* Q+ N3
In this case, the informed relay cannot help the source, and
the channel state is simply treated as an unknown noise.

1
3 log(1 )- (26)

Cpc =

VI. NUMERICAL EXAMPLES AND CONCLUDING REMARKS

In this section we discuss some numerical examples, for both the
degraded Gaussian case and the general Gaussian case.

1.2

Rate

Lower bound
o4r — .= Trivial upper bound ||
= = = Upper bound
=+ Trivial lower bound
0.2 -
(] 5 15 25 30
P,/N, [dB]
Fig. 2. Lower and upper bounds on the capacity of the state-dependent

degraded Gaussian RC with informed relay versus the SNR in the link source-
to-relay. Numerical values are P} = P» = Q = N3 = 10 dB.

Figure 2 illustrates the lower bound (13) and the upper bound
(21) as functions of the signal-to-noise-ratio (SNR) at the relay, i.e.,
SNR = Pj; /N2 (in decibels). Also shown for comparison are the
trivial upper bound (7) computed for the degraded Gaussian case
and the trivial lower bound obtained by considering the channel
state as an unknown noise. The curves show that the lower bound
and the upper bound do not meet for all SNR regimes. However, as
it is visible from the depicted numerical examples, the gap between
the two bounds is small for the degraded case. Furthermore, the
curves in Figure 2 also illustrate the results in proposition 1, by
showing that the lower bound and the upper bound meet for the
cases stated in Proposition 1. We note that the pentagram marker
visible in Figure 2 indicates capacity when the noise at the relay is
equal to the RHS of (22).

Figure 3 illustrates the lower bound (13) and the upper bound
(18) as functions of the SNR at the relay for the general Gaussian
channel. Also shown for comparison are the trivial upper bound (7)
computed for the general Gaussian case and the trivial lower bound
obtained by considering the channel state as an unknown noise. The

1.4 T T T T T T T

Rate

= Lower bound H
— = Trivial upper bound

= = = Upper bound
+ Trivial lower bound

20 25 30
o
(-~}
SR ]
[e) L L
20 25 30
S - T
2 ‘{
j=A
20 25 30
<& <{
a
-10 -5 0] 20 25 30

10
P,/N, [dB]

Fig. 3.  Lower and upper bounds on the capacity of the state-dependent
general Gaussian RC with informed relay and the maximizing 6, p/ 5, pf, in
(13) as functions of the SNR at the relay. Numerical values are Py = P> =
Q@ = N3 =10 dB.

curves show that the lower bound is close to the upper bound at
large SNR, i.e., when capacity of the channel is determined by the
sum rate of the MAC formed by transmission from the uninformed
source and the informed relay to the destination. Furthermore, Fig-
ure 3 also shows the variation of the maximizing 6, p/ 5, p5, in (13)
as function of the SNR at the relay. This shows how the informed
relay allocates its power among combating the interference for the
source (related to the value of p),) and sending signals that are
coherent with the transmission from the source (related to the values
of # and p,).
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