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Abstract— We consider a two-user state-dependent mul-
tiaccess channel in which the states of the channel are
known non-causally to one of the encoders and only strictly
causally to the other encoder. The two transmitters only
send a common message. We study the capacity of this
communication model, to which we refer as the common-
message capacity. We establish the common-message capacity
in the discrete memoryless case as well as in the memoryless
Gaussian case. The converse proofs show that, for this
model, strictly causal knowledge of the state at one of the
encoders does not increase capacity if the other is informed
non-causally, a result which is somewhat in sharp contrast
with very recent results by Lapidoth and Steinberg on a
closely connected model with only strictly causal state at
both encoders and independent messages.

I. Introduction

The capacity of a two-user state-dependent multiple
access channel with common message and states known
non-causally at only one encoder is established in [1],
for both discrete memoryless (DM) and memoryless
Gaussian cases. Lower and non-trivial upper bounds in
the DM case and an alternative proof of the capacity for
the Gaussian case are given in [2]. A key element in the
converse proofs of [1] and [2] is that one of the encoders,
referred to as the uninformed encoder, sends inputs which
are function of only the message to transmit.

In this paper, we generalize the model of [1], [2] by
assuming that one encoder knows the states in a non-
causal manner as in [1], [2] and, different from [1], [2],
the other encoder knows the states in a strictly causal
manner. More precisely, let W denote the common mes-
sage to transmit in, say, n uses of the channel, and Sn =
(S1, . . . ,Sn) denote the state affecting the channel during
this time. At time i, one of the encoders, say Encoder 1,
knows the complete sequence Sn = (S1, . . . ,Si−1,Si, . . . ,Sn)
and sends X1i = φ1(W,Sn), and Encoder 2 knows only
Si−1 = (S1, . . . ,Si−1) and sends X2i = φ2,i(W,Si−1) – the
functions φ1 and φ2,i are some encoding functions.

We show that this model has the same capacity as the
one in [1], [2]. That is, the knowledge of the states strictly

causally at Encoder 2 does not increase the capacity; or,
equivalently, Encoder 2 does no better than had it known
only the message W.

The importance of this result can be seen in regard to
very recent results by Lapidoth and Steinberg on closely
connected models [3], [4]. In [3], Lapidoth and Steinberg
study a state-dependent MAC with states known in a
strictly causal manner at both encoders and independent
messages, and show that the strict knowledge of the
state can be beneficial, in the sense that it increases
the capacity for this model. This result is reminiscent
of Dueck’s proof [5] that feedback can increase capacity
in some multiuser channels. In accordance with [5], the
main idea of the achievability results in [3] is a block
Markov coding scheme in which the two users collab-
orate to describe the state to the decoder by sending
cooperatively a compressed version of it. Although some
non-zero rate that otherwise could be used to transmit
pure information is spent in describing the state to the
decoder, the net effect can be an increase in the capacity.

The converse proof in this paper shows that a coding
scheme à-la Lapidoth-Steinberg (or any other) would not
increase capacity for our model. The non-utility of a joint
description of the state Si−1 to the decoder in the spirit of
[3] is not due to that the encoders send the same message
here.

II. Problem Setup

We consider a stationary memoryless state-dependent
MAC WY|X1,X2,S whose output Y ∈ Y is controlled by the
channel inputs X1 ∈ X1 and X2 ∈ X2 from the encoders
and the channel state S ∈ S which is drawn according
to a memoryless probability law QS. We assume that
the channel state Sn is known non-causally at Encoder
1, i.e., beforehand, at the beginning of the transmission
block. Encoder 2 knows the channel states only strictly-
causally; that is, at time i, it knows the states only up to
time i − 1, Si−1 = (S1, . . . ,Si−1).



We assume that the common message W is a random
variable drawn uniformly from the set M = {1, · · · ,M}.
The sequences Xn

1 and Xn
2 from the encoders are sent

across a state-dependent multiple access channel mod-
eled as a memoryless conditional probability distribu-
tion WY|X1,X2,S. The joint probability mass function on
W×S

n
×X

n
1×X

n
2×Y

n is given by

P(w, sn, xn
1 , x

n
2 , y

n) = P(w)
n∏

i=1

QS(si)P(x1,i|w, sn)P(x2,i|w, si−1)

·WY|X1,X2,S(yi|x1,i, x2,i, si). (1)

The receiver guesses the message sent by the encoders
from the channel output Yn.

Definition 1: For positive integers n and M, an
(M,n, ε) code for the multiple access channel with states
known noncausally at one encoder and only strictly
causally at the other encoder consists of a mapping

φ1 :M×Sn
−→ X

n
1

at Encoder 1, a sequence of mappings

φ2,i :M×Si−1
−→ X2, i = 1, . . . ,n

at Encoder 2, and a decoder map

ψ : Yn
−→M

such that the average probability of error is bounded by
ε,

Pn
e = ES

[
Pr

(
ψ(Yn) ,W|Sn = sn

)]
≤ ε.

The rate of the code is defined as

R =
1
n

log M.
A rate R is said to be achievable if for every ε > 0

there exists an (2nR,n, ε) code for the channel WY|X1,X2,S.
The common-message capacity of the considered state-
dependent MAC is defined as the supremum of all the
achievable rates.

III. Main Result and Comments

A. Main Result

The following theorem provides the capacity of the
studied DM model.

Theorem 1: The capacity, C, of the multiple access
channel with common message and states known non-
causally at one encoder and strictly causally at the other
encoder is given by

C = max I(U,X2; Y) − I(U; S|X2) (2)

where the maximization is over joint measures PS,U,X1,X2,Y
of the form

PS,U,X1,X2,Y = QSPX2 PU,X1 |S,X2 . (3)

B. Remarks

Remark 1: The capacity of our model in Theorem 1 is
the same as the one of the model with state Sn at Encoder
1 and no state at all at Encoder 2 established in [1]. This
shows that the strictly causal knowledge of the state at
Encoder 2 does not increase capacity.

In contrast to [1], the converse proof (see below) does
not follow directly from the converse part proof of
the capacity formula for the standard Gelf’and-Pinsker
channel [6] because, at time i, Encoder 2 sends inputs
which are function of not only the message to transmit,
but also the past state sequence Si−1. For instance, our
converse proof includes a redefinition of the involved
auxiliary random variable.

Remark 2: Our converse proof proves that, for our
model, it is optimal to just ignore the known Si−1 at
Encoder 2 and use the coding scheme of [1] or the
alternate scheme of [2]. That is, one can do no better
exploitation of the state Si−1 at Encoder 2. While one
could expect some utility of collaborative transmission of
Si−1 à-la Lapidoth and Steinberg [3], a direct consequence
of our converse proof is that this would be of no help (in
the sense that it would not result in a better transmission
rate).

In the stated-dependent MAC model with strictly
causal side information at the encoders studied in [3],
the utility of the strictly causal part of the state known
at both encoders is created by utilizing a block Markov
coding scheme in which, in block i, the encoders co-
operate to send a compressed version of the state Si−1
to the decoder in addition to their individual messages.
The encoders cannot cooperate in the transmission of the
messages but they do in that of the compressed version
of Si−1. The decoder estimates Si−1 from the output re-
ceived in block i and then uses it to decode the messages
transmitted in block i−1. Although some non-zero rate –
that otherwise could be used for sending the individual
messages, is spent on sending the joint description of
the state Si−1, the net effect can be an increase in the
capacity because, in block i, each encoder can benefit
from the decoder’s knowledge of some estimation of the
state Si−1.

The effect of the joint transmission of the state Si−1 in
block i in Lapidoth and Steinberg coding scheme is some
reduction of the state effect in block i − 1 in decoding
the individual messages. Our converse proof shows that
the net effect is not beneficial in our case. While this
can be understood easily in the additive Gaussian case
since Encoder 1 knows the state and can cancel its effect
completely using a dirty paper scheme [7], i.e., without
need to diminishing its effect via the joint transmission of
the compressed version of Si−1, the result is less intuitive
in the discrete case.



IV. GaussianModel

In this section, we consider a two-user state-dependent
Gaussian MAC in which the channel states Sn and the
noise are additive and Gaussian. As in Section II, we
assume that Encoder 1 knows the channel states non-
causally and Encoder 2 knows the channel states strictly
causally. The two encoders send only some common
message.

At time instant i, the channel output Yi is related to
channel inputs X1,i and X2,i from the two encoders, the
channel state Si and the noise Zi by

Yi = X1,i + X2,i + Si + Zi, (4)

where Si and Zi are zero-mean Gaussian random vari-
ables with variance Q and N, respectively. The random
variables Si and Zi at time instant i ∈ {1, · · · ,n} are
mutually independent, and independent from (S j,Z j) for
j , i. Also, at time i, the input X2,i is independent from
the state Si.

We consider the individual power constraints on the
transmitted power

n∑
i=1

X2
1,i ≤ nP1,

n∑
i=1

X2
2,i ≤ nP2. (5)

The definition of a code for this channel is the same as
given in Section II, with the additional power constraint
(5).
The following corollary provides the capacity of the
studied Gaussian model.

Corollary 1: The capacity, CG, of the Gaussian model
(4) is given by

C = max
1
2

log
(
1 +

(
√

P2 + ρ12
√

P1)2

P1(1 − ρ2
12 − ρ

2
1s) + (

√
Q + ρ1s

√
P1)2 + N

)
+

1
2

log
(
1 +

P1(1 − ρ2
12 − ρ

2
1s)

N

)
, (6)

where the maximization is over ρ12 ∈ [0, 1], ρ1s ∈ [−1, 0]
such that

ρ2
12 + ρ2

1s ≤ 1. (7)

Outline Proof: The above results for the DM MAC
can be readily extended to memoryless channels with
discrete time and continuous alphabets using standard
techniques [8]. The capacity of the model (4) with state
Sn known at Encoder 1 and Si−1 known at Encoder 2 is
the same as that of the same model but with no state at
all Encoder 2. The capacity of this model can be obtained
by specializing the results in [1] and [2], to the case in
which the encoders transmit a common message and no
individual messages.

V. Proof of Theorem 1
A. Outline Proof of Achievability

The achievability follows by just ignoring the state at
Encoder 2 and using the scheme of the common message
capacity of [1, Corollary 1] or the alternate scheme of [2,
Theorem 1].

B. Proof of Converse
We prove that for any (M,n, ε)−code consisting of a

mapping φ1 : M×Sn
−→ X

n
1 at Encoder 1, a sequence

of mappings φ2,i : M×Si−1
−→ X2, i = 1, . . . ,n, at

Encoder 2, and a mapping ψ : Yn
−→ M at the

decoder with average error probability Pn
e → 0 as n→ 0

and rate R = n−1 log2 M, there exists a quadruple of
random variables (U,S,X1,X2) ∈ U×S×X1×X2 with joint
distribution PU,S,X1,X2 of the form

PU,S,X1,X2 = QSPX2 PU,X1 |S,X2 (8)

and such that the marginal distribution of S is QS(s), i.e.,∑
u,x1,x2

PU,S,X1,X2 (u, s, x1, x2) = QS(s) (9)

and

R ≤ I(U,X2; Y) − I(U; S) (10)

Fix n and consider a given code of block length n. The
joint probability mass function onW×Sn

×X
n
1×X

n
2×Y

n is
given by

p(w, sn, xn
1 , x

n
2 , y

n) =p(w)
n∏

i=1

p(si)p(x1i|w, sn)p(x2i|w, si−1)

p(yi|x1i, x2i, si), (11)

where, p(x1i|w, sn) is equal 1 if x1i = f (w, sn) and 0
otherwise.

The decoding rule ψ recovers W from Yn with the
average error probability Pe :=

∑M
i=1 Pr(Ŵ , W). Fano’s

inequality gives

H(W|Yn) ≤ H(Pe) + Pe log(|M| − 1) (12)
≤ H(Pe) + Pe log(|M|) (13)
= nPeR + H(Pe) (14)
:= nεn. (15)

Then, we have

nR − nεn ≤ I(W; Yn) (16)
(a)
≤ I(W; Yn)
(b)
= I(W; Yn) − I(W; Sn) (17)

=

n∑
i=1

I(W; Yi|Yn
i+1) − I(W; Si|Si−1) (18)

=

n∑
i=1

I(W,Si−1; Yi|Yn
i+1) − I(Si−1; Yi|W,Yn

i+1) − I(W; Si|Si−1)

(19)



=

n∑
i=1

I(W,Si−1; Yi|Yn
i+1) − I(W; Si|Si−1) −

n∑
i=1

I(Si−1; Yi|W,Yn
i+1)

(20)

(c)
=

n∑
i=1

I(W,Si−1; Yi|Yn
i+1) − I(W; Si|Si−1) −

n∑
i=1

I(Yn
i+1; Si|W,Si−1)

(21)

=

n∑
i=1

I(W,Si−1; Yi|Yn
i+1) −H(Si|Si−1) + H(Si|W,Si−1,Yn

i+1)

(22)

(d)
=

n∑
i=1

I(W,Si−1; Yi|Yn
i+1) −H(Si) + H(Si|W,Si−1,Yn

i+1) (23)

(e)
≤

n∑
i=1

I(W,Si−1,Yn
i+1; Yi) − I(W,Si−1,Yn

i+1; Si) (24)

( f )
=

n∑
i=1

I(Ui; Yi) − I(Ui; Si) (25)

(g)
=

n∑
i=1

I(Ui,X2i; Yi) − I(Ui,X2i; Si) (26)

=

n∑
i=1

I(Ui,X2i; Yi) −H(Si) + H(Si|Ui,X2i) (27)

(h)
=

n∑
i=1

I(Ui,X2i; Yi) −H(Si|X2i) + H(Si|Ui,X2i) (28)

=

n∑
i=1

I(Ui,X2i; Yi) − I(Ui; Si|X2i) (29)

(30)

where (a) follows by Fano’s inequality; (b) follows from
the fact that W is independent of the state sequence Sn;
(c) follows from Csiszar and Korner’s “summation by
parts”-lemma [9]

n∑
i=1

I(Yn
i+1; Si|W,Si−1) =

n∑
i=1

I(Si−1; Yi|W,Yn
i+1) (31)

(d) follows from the fact that state Sn is i.i.d.; (e) follows
from the non-negativeness of I(Yn

i+1; Yi); ( f ) follows from
the substitution Ui := (W,Si−1,Yn

i+1); (g) follows from the
fact that X2i is a deterministic function of (W,Si−1), and
(h) follows from the fact that X2i is independent from Si.

The rest of the proof follows by standard single-
letterization.
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