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Abstract—We study a system in which two sources communi- combination from what it gets directly from the sources. In
cate with a destination with the help of a half-duplex relay. We this strategy, the two linear combinations are recovered in
consider a decoding strategy, based on the compute-and-forvdd jistripyted way. By opposition to [5], in this work, we devpl
strategy, in which the destination decodes two integer-valued . . - X L
linear combinations that relate the transmitted codewords. In & coding strategy in which both linear combinations 9f the
this strategy, the relay compresses its observation using Wyner- Sources’ codewords are recovered locally at the destimatio
Ziv compression and then forwards it to the destination. The More specifically, the relay compresses its observatiomfro
destination appropriately combines what it gets from the direct the sources’ transmission during the first transmissiofoger
transmission and the relay. Then, using this combination, it \,sing Wyner-Ziv compression [7] taking into account the
computes two integer-valued linear combinations. We discuss the . . . L .
encoding/decoding strategy, and evaluate the achievable Sum_lnforme.mo.n available at the .destlnatlon through the ‘_Wec
rate. Next, we consider the problem of allocating the powers transmission. It then transmits the compressed version to
and selecting the integer-valued coefficients of the recoveredthe destination during the second transmission period. The
linear combinations in order to maximize the sum-rate. For the ~destination determines the two required linear combinatio
model under consideration, the optimization problem is NP hard. as follows. It utilizes an appropriate combination of the

We propose an iterative algorithm to solve this problem using , o . . .
coordinate descent method. The results are illustrated through output from the sources’ transmission during the first gerio

some numerical examples. and of the output from the relay’ transmission during the
second period. From this combination, two independengtine
. INTRODUCTION combinations relating the sources’ codewords are computed

The recently proposed Compute-and-forward (CoF) strategyfFor this coding strategy, we target the optimization of the
[1] attracts great attention. The idea is that the receivirmpurces and the relay powers, and of the integer coefficients
node decodes a linear combination of the sources’ codewonisthe linear combinations to maximize the achievable sum-
instead of the individual codewords. A receiver that is giverate. The optimization problem is NP-hard. We develop an
a sufficient number of linear combinations decodes the trarterative approach that finds the appropriate power angénte
mitted messages by solving a system of independent lineaefficients alternatively. More specifically, we show tkizs
equations. This strategy has been studied for different-coproblem of finding appropriate integer coefficients for aegiv
munication systems, such as the two-way relay channel [8gt of powers has the same solution as an approximated
the multiple access channel and multiple-input multiplépot mixed integer quadratic programming (MIQP) problem with
channels [1], [3]. A critical requirement in this strategythat quadratic constraints. Also, we show that the problem of
the coefficients of the linear combinations must be integdinding the appropriate power policy at the sources and the
valued. This is essential as the combination of codewordsay for a given set of integer coefficients is a non-linear
should itself be a codeword so that it is decodable. Latticen-convex optimization problem. We formulate and solve
codes have this property, and are thus good codes for comptités problem through geometric programming and successive
and-forward strategy [4]. convex approximation approach [8].

We consider two independent sources that communicatéMe compare our strategy with standard compress-
with a destination with the help of a relay node, as showand-forward (CF), standard decode-and-forward (DF) and
in Figure 1. In previous works [5] [6], we establish a codingompute-and-forward strategies [6] for the casesyhmetric
strategy based on the compute-and-forward strategy [1]. rate. We show that for some channel gain values it is better
this coding strategy, the relay uses what it receives frotm recover the linear combinations locally at the destorati
the sources during the multiaccess transmission to deaodeirsstead of in a distributed way. Also, we show that our
appropriate integer-valued linear combination of the sesir coding strategy achieves as good as regular compress-and-
codewords; and then sends this combination to the destinatiforward; and has the advantage of utilizing feasible linear
In addition to the linear combination that it receives frdme t codes instead of random codes which are infeasible in pecti
relay, the destination decodes another integer-valueghalin More specifically, standard CF usually uses the maximum



likelihood (ML) receiver which has high computational com- During the second transmission period, the relay sends a
plexity. However, linear receivers such as the decorrel@tol codewordx, to help both sources. During this period, the
minimum-mean-squared error (MMSE) receiver are often usddstination receives
as low-complexity alternatives. . o

We use the following notations throughout the paper. Lower- Ya = hraXr+Za, 2
case boldface letters are used to denote column vectors, e. ) ) ] o
x. Upper case boldface letters are used to denote matridé‘%,e[ef%rd is the channel gain on the link relay-to-destination,
e.g., X. Also, we useX” to designate matrix transpose oftNdZa is additive background noise. _
X; and detX) to designate the determinant . We use Throughout, we assume that all channel gains are real-
matrix whose elements are all zeros (its size will be evideHte noises at the relay and the destination are independent o
from the context). For two vectors andy ¢ R", the vector each other, and independently and identically distribited)
z = xoy € R™ denotes the Hadamard productoindy, i.e., Gaussian, with zero mean and variange Furthermore, we
the vector whoséth element is the product of thien elements consider the following individual constraints on the tnauitsed
of x andy, i.e., z; = (xoy); = z;u;. We use Vafx) to denote POwer (per codeword),
the power ofx i.e. E[|[x|]*]. Finally, logarithms are taken to
base2; and, forz € R, log* (z) := max{log(x),0}. E[[xal*] =nBaP <nPa,  E[lxo|*] =nBiP <nh,

S |12 — 2 <
Il. SYSTEM MODEL E{% ") =nf.P <nF, ®)

Two sourcesA and B communicate with a destinatio WhereP, >0, P, >0 and P, > 0 are some constraints imposed
with the help of a relayR?. The sources would like to transmitby the system> > 0 is given, andg,, 3, and 3, are some
their message¥/, € W,, W, € W, to the destination reliably, scalars that can be chosen to adjust the actual transmitted
in 2n uses of the channel. Lét, and R, be the transmission powers, and are such thak |3, <\/P./P,0 < |Bs| </ P/ P
rate of messagéV, and W, respectively. In this work, we and 0 < |3,| < /P,/P. For convenience, we will some-
focus on thesymmetricrate case, i.e.R, = R, = R, or times use the shorthand vector notatibp = [hq, hyal®,
equivalently, W,| = |Ws| = 22". We measure the systemh, = [har, her]’ € R Also, we use8 = [Ba,S,B:]"
performance in terms of the allowed achievable sum raéR?, 3, = [B.,,]" € R?, and the shorthand matrix notation
Reum= R, + Ry = 2R. Also, we divide the transmission timeH = [h%; h!] ¢ R**2. Finally, the signal-to-noise ratio
into two transmission periods having each of lengtbthannel will be denoted as sne P/N in the linear scale, and by
uses and we assume that the relay operates in a half-dugi¥R = 10log;,(snr) in decibels in the logarithmic scale.
mode.

I1l. COMPUTATION AT THE DESTINATION

(( )) In this section, we develop the coding strategy that is
é based on the compute-and-forward strategy of [1]. In this

har 5 % strategy, the relay compresses what it receives from theesu
b % """""" during the first transmission period taking into account the
g / - e information available at the destination through the direc
\@ " transmission. It then transmits the compressed version to
> the destination during the second transmission period. The
destination computes two linearly independent combinatio
of the sources’ codewords using its outputs from both trans-
Figure 1. Multiple-access channel with a half-duplex relay mission periods locally. The following proposition prog&lan
achievable sum-rate for the model that we study.

During the first transmission period, the sources encode the Proposition 1: For any set of channel vectoh =
messagedV; € [1,2?"%] i € {a,b} into codewordx; and [har, hur, had, hod, hra]® € R, the following sum rate is
send them over the channel. Lgt andy,; be the signals achievable [6]:
received respectively at the relay and at the destinatiosimglu

this period. These signals are given by (A): RCOD _ o lmin{
" sum
2

Yr = harxa + hbrxb + Z,
Ya = haaXa +hpaXp + 24, (1) log* snr ,
. . sni|B, o H vy — t||? + (a0 )Ty
where h,y and hy; are the channel gains on the links
transmitters-to-destinatior,,,- and hy,. are the channel gains log* ( snr )
on the links transmitters-to-relay, ang andz, are additive sni| B, o H v, — k||? + (ax o ) "'y

background noises at the relay and the destination. 4



whereay; = [a1s, az ]t anday, = [a1r, aor]? € R? are some with integer coefficients by performing the modulo-redanti
inflation factorsmy = [1, 1+ D/N]* € R?, and D is given by operation [4] [6],
N?(1+snfBsoh,|?) N2(sn(Bsoh,)"(Bso hd))2 Y = [¥j + jata + joup] mod A
- |hral? B2 P |hral?B2P (1 +snr B o hdl\?g)’ = [JaVa + joVe + z;] mod A 9)

and the maximization is oves,, o, 3 such thato < |3,| < Wherez] is the effective noise given by

VPP, 0< B <\/P/P, and0 < |3,| < \/P-/P and over

the integer coefficientk andt such thatdet(k, t)| > 1. z f[auzd +ag;zy + azjd + (Qjhaa + 02jhar - g—“)x(ﬁ
Proof: Let A be ann-dimensional lattice of second moment j “
o2 = P and normalized second mome@{A), andV be its (a1jhpa + cgjhp, — ﬁ_b)Xb] mod A. (10)
b

fundamental Voronoi region. Also similarly as in [4] [6],tle

Arne 2 A be chosen such that the codebabk Agnen )V be  Finally, by decoding the lattice points = [t,v, + tpvp] € A

of cardinality2?"%. Letk = [k,, ky] € Z? andt = [t,,t,] € Z*> andey = [kava + kyvy] € A Using y}, the destination obtains

be given such thadet(k,t)| = |kats — kpta| > 1. two linear combinations with integer coefficients. Hende, i
Encoding: Let (W,,W,) be the pair of messages to beobtains the transmitted codewords by solving a system of two

transmitted. Lei,, u, andu, be some dither vectors that areequations with two variables.

drawn independently and uniformly ovérand known by all Rate Analysis:

nodes in the network. Also, lef,(-) and¢;(-) be one-to-one  Usingy} given by (9), we get that the destination obtains

mapping functions between the 4V, } and the codebook the desired combinatiofy j € {t, k}, at mutual information

and between the s€fi1,} and the codebook, respectively. satisfying [4] [6]

Letv, = ¢, (W,) andvy, = ¢,(W,,), wherev,, € C andv,, € C. 5

During the first transmission period, to transmit message %](ej;y;) > 111 log*( Ox )_ llog(QweG(A))

Wi, i € {a,b}, the sources send N Var(z;) ) 4
1 snr
i = Di i —; dA). 6 > = log* -
x; = fi ([vi —u;] mod A) (6) 1 o8 (SnIH,BSOHTaj—j|2+(ajoaj)Tnd)
During this period, the relay quantizes what it receivenigisi 1

Wyner-Ziv compression [7], taking into account the avdiab 1 log (2meG(4)), (11)

side informationy, at the destination. Lef.,. be the com-
pressed version of, given by

yr ZYT+d (7)

whered is a Gaussian random vector whose elements are i.i.d - - oo
with zero mean and varianc®; and is independent of all Where G = [(8, o ha)"; (B, o h,)"] ¢ R™* and Ny =
other signals. [1/snr, 0; 0, 1/snr+ D/P] € R**2,

During the second transmission period, the relay conveyst-t R:(A) be the RHS of (11) foy = ¢ and R, (A) the RHS
the descriptiony,. of y, to the destination. To this end, it®f (11) forj = k. The above means that the destination can
sends an independent Gaussian irputvith power 32P and decode the sources’ codewords correctly at the transmissio
carries the Wyner-Ziv compression index f. sum r_ateﬁglj’n?(A) = 2 min{R;(A), Rr(A)}. Furthermore,

Decoding at the destinatiorDuring the two transmission Investigating the expression dt;(A), it can easily be seen
periods, the destination receives and ¥, as given in (1) that it decreases with .|nc.:rea3|rig. Also, observing that _the
and (2). The destination first recovers the compressedorersRHS of (5) decreases i, increases, the largest rafg (A) is
of the relay’'s output sent by the relay during the secorlgen tha|r21ed by taklng the equality in the distortion craiat
transmission periods(.), by utilizing its outputy, as well (3) With . = P./P. Finally, observing thalmeG(A) — 1
as the available side informatiog, [6]. The destination Whenn — oo [4], thg Ddeswed sum rate (4) is obtained by
computes two linearly independent combinations with iategt@king the limit of RGG'(A) asn goes to infinity; and this
coefficients, as follows. It combineg, and §, and uses COMPletes the proof of Proposition 1. =
the obtained signal to compute the two integer-valued finea
combinations. More precisely, let

wherea; should be chosen to minimize the effective naise
in (10), i.e., such that

o) = (GG"+N,) " Gj, (12)

IV. Sum RATES OPTIMIZATION
This section is dedicated to evaluate the optimal powers

Yi =15¥a + Q2 Y- and integer-coefficients that maximize the sum-rate of &op
=(v1jhaq + a2har ) Xq + (c1hog + czjhur )xp+ sition 1. In order to comput&S°P as given by (4), we develop
(1,24 + QojZy + aiz;d, @) the following iterative algorithm which optimizes the igt

coefficients and the powers alternatively, and to which vierre
for somea; = [, az;]7 and forj € {t, k}. The destination, to as “Algorithm A” in reference to the optimization problem
using the obtained signgl;, decodes two linear combinations(A) in (4).



Algorithm A Iterative algorithm for computing?S3>

(4) in Proposition 1
1
2:

as given by

Choose an initial feasible vectg.(”) and set. = 1.

Solve (4) with 3, = 3.~ for the optimalk and t using
Algorithm A-1 and assign it t&® andt(*).

Solve (4) withk = k) andt = t() for the optimal3, using
Algorithm A-2 and assign it tg3,*).

. Increment the iteration index as= ¢ + 1 and go back to Step 2.
. Terminate if|B.) - B,V <€, |RSR[¢] - RSSR[t—1]| < € or
if Rein[e] < R&amle - 1]

3:

1) Integer Coefficients Optimizationtn this section, we
focus on the problem of evaluating the integer veclorsZ?
andt e Z?* for a given value of3,. Examining the objective

optimization problems, is that the involved matrices asged
with the quadratic constraints must all be semi-definite. In
our case, it is easy to see that the matritgsand F, are
positive semi-definite. However, the matrl; is indefinite,
irrespective to the values & andt.

In order to transform the optimization problem (15) into one
that is MIQP-compatible, we replace the quadratic constrai
(13d) with one that is linear. We introduce the following two
real-valued vectork = [k,, k|7 € R? andt = [{,,7,]" € R?
defined such that they satisfy

k=roexp(k), t=7oexp(t), (16)

wherek = [kq, k)7 € R? and T = [7,,7,]7 € R? are constant
vectors to be chosen appropriately. Thus, the constraBd)(1

function in (4), it can easily be seen that this problem can lsan now be rewritten equivalently as

equivalently stated as

kTI'}}IGl)l 6, (13a)
s.t. O, >tTQt (13b)
0, > k' Qk (13c)

det(k, t) = |katy — kpta| > 1 (13d)

k, teZ? O;¢€R, (13e)

where @ = (GT(GGT + Ny)'G - I,)T(GT(GGT +
Ny 1G-L)+((GGT +N)1G)TNG((GGT +Ny)1G).

|na7'bexp(l;:a +1p) - mbraexp(l;b +1,)| 2 1. a7)

Now, we linearize the constraint (17) by selecting the camist
vectorsk and T such that the first order Taylor series approx-
imationsexp(k) ~ 1+ k andexp(t) ~ 1 +t hold. Hence, the
constraint (13d) can be rewritten as

|I€a7'b(1+];3a+£b)—HbTa(1+];}b+£a)|21. (18)

Note that the constraint (18) is now linear, and the opti-
mization problem (13) has the same solution as the following
problem which is MIQP-compatible,

Note that®; is simultaneously an extra optimization variable k,t,©1

and the objective function in (13). Also, we should note that

the integer coefficientk andt are independent ak, anda.

In order to solve the problem (13), we need to reformulate it

in a convenient manner. We introduce the following quaatiti
Let ap = [0,0,0,0,1]%; a; = ap = [0,0,0,0,-1]7 and
az = [0,0,0,0,0]7. Also, letb = [t,,ty, kq, Kk, ©01]7; and
the scalars; = ¢y = 0, andcs = —1. We also introduce the
following five-by-five matricesF;, F,, andF'3, where

0 0 0
Flz[zgl g], F,=| 0 20 o |,
0 0 0
00 -2 0
and Fs;=|0 2 0 0 (14)
00 0 0

1:
The optimization problem (13) can now be reformulatech:

equivalently as
. T
b
ngn ao
1
s. t. §bTFib +alb<e i=1,2,3

keZ? teZ? ©;¢R (15)

The equivalent optimization problem (15) is a MIQP prob-

lem with quadratic constraints [9]. There are known aldponis

for solving MIQP optimization problems, such as branch and

bound algorithm [9]. A critical condition for solving MIQP

min 6, (19a)
s.t. 0, >tTQt (19b)
0, > k' Qk (19¢)

- |l€aTb(1 + ];‘a + fb) - HbTa(l + ];/’b + Ea)| S -1 (lgd)

k; ~ k; ~ .
——-1-k; <0, —-—+1+k;<0, 7=a,b (196)
Kj Kj

t; - 17 - )

——-1-t<0, —-—+1+t;<0, i=a,b (29f)
Ti Ti

k, teZ? k, t, k, TcR? 0O, eR. (199)

The optimization problem (19) can be solved iterativelyngsi
Algorithm A-1 hereinafter.

Algorithm A-1 Integer coefficients selection fde53°

(4) in Proposition 1

. Initialization: set; = 1.

Use the branch-and-bound algorithm of [10] to solve @ff'’,
k) and t(1) with the constraint (19d) substituted with
—KaTb(l + k‘a + Eb) + KbTa(l + k’b + Ea) < -1.

Update the values ok and = in a way to satisfy (16); and
increment the iteration index as = ¢; + 1.

Terminate ifexp(k1)) ~ 1+ k1) andexp(t“")) ~ 1 + (1),
Denote the found solution &7

Redo steps 1 to 4 with in Step 2 the constraint (19d) substituted
With ko7, (1+kq +1,) = kp7a (1+kp +12) < —1. In Step 4, denote
the found solution a®}"™?,

6: Select the integer coefficients corresponding to the minimum
among®]"™' and @™

as given by

3:

4.

5:




2) Power Allocation Policy:The problem of optimizing the Algorithm A-2 Power allocation policy forRS$y as given by (4)

power valued, for fixed integer coefficient& andt, can be n Proposition 1
written as, 1: Setd:(%? to some initial value and set = 1 and 3 = 0.
2: Compute@$> 1) o{27143) and (>~ using 627118,
3: Approximate g(égLQ’Ls),Og”’LS)) with §(6§L2’L3),@§L2"3))
arounds{2~"*3) and@{2"1+3),

min O (20a)  4: Solve the resulting approximated GP problem using an interior
B, at, o, ©2 point approach. Denote the found solutions &$'>**) and
sni|B, o H a; — t]|> + (a0 ) Ty o2,
S. 1Oy > snr ) 5: Increment the iteration index as = 1> + 1 and go back to Step

(20b) 3 usingds and ©, of step 4.
6: Terminate if [6,(23) — §,(2718)| < ¢ or if ©2") >

sni|B, o H' vy — k||” + (a0 ) "y ©{>7"*3) and denote by the final value.
Oy > . ) -
snr ’ 7: Increment the iteration index as = (3 + 1, setwe = 1, and
(20c) slzts) 2§ and then go back to Step 2. .
9 9 8: Terminate if |[Rsom[t3] — Rsumlts — 1]| < € or if Rgom[es] <
ps Vo0 j;””"f]j ohel?) REL1s - 1.
rd T
NQ(Snr(ﬁsohr)T(/Bsohd))Q 20d
|hya2 P, (1 +snt|Bs o hy?) (20d) in the following form,
P P .
-\/ FZ <Bi<y/ FZ7 i=ab (20€) 5. aron. 0, ©: (21a)
ﬁSERQ, GQER. (Zof) S. t fl(ésa(—)Qaahak) Sl, f2(687®27at1ak) Sl,
91(683627at7ak’) 92(6S7@27ataak)
(21b)
s
% <1 (21c)
93(0s
Note that3, depends omx; and ay,. The complexity of 2 P
optimizing these variables simultaneously is very high @nd -1/ ?’ +c; <0</ ?’ +¢i ,i=a,b (21d)
decreases if the optimization is carried out in two stepstFi 9 )
d,€R®, ceR”, ©y¢R. (21e)

we optimize the power valug, using geometric programming
with successive convex approximation as described betmw, f
a fixed value ofa; and a;,. Next, we optimize the value of
a; and oy, for a fixed value of8, using (12). This process is
repeated until convergence.

The functions in (21b) and (21c) consist of ratios of
posynomials, i.e., are not posynomial. This is a non-convex
class of GP problems known as Complementary GP [8]. We

The optimization problem in (20) is non-linear and nonean transform the Complementary GPs into GPs by a series
convex for a fixed value otx; and ;.. We use geometric of approximations. The ratio between two posynomials can be
programming (GP) [8] to solve it. The GP algorithm requiretirned into GPs by approximating the denominator of therati
that the constraints are posynomial and the variables afeposynomialsg(), with a monomialg() [8].
strictly positive [8]. In our case, in the problem (20), the The optimization problem (21) is now turned to a GP
constraints (20b), (20c) and (20d) contain functions thrat aproblem, and can be solved using an interior point method.
non posynomial. Also, the variables in (20) are not all pesit The problem of finding the appropriate value &f can be
In what follows, we first transform the problem (20) into ongolved using Algorithm A-2.
equivalent in which the constraints involve functions thed
all posynomial and the variables are all positive; and themn, V. NUMERICAL EXAMPLES

develop an algorithm for solving the equivalent problem. Throughout this section, we assume that the channel coeffi-

Let ¢ = [cq,cp]” € R? and 8, = [64,05]7 € R?, such that cients are modeled with independent and randomly generated
ci >/ P;/P and¢; = §; + ¢; for i € {a,b}. Note that the ele- variables, each generated according to a zero-mean Gaussia
ments ofd; are all strictly positive. Also, we define the posyndistribution whose variance is chosen according to thegthe
omial functions f1(ds, ©2, as, ) and g1(ds, 02,4, ;) Of the corresponding link. More specifically, the channel
which correspond to the constraint (20b), the posynomiatfu coefficient associated with the link from sourck to the
tions f2(ds, O2, i, ) and go(ds, ©2, g, o) Which corre- relay is modeled with a zero-mean Gaussian distributioh wit
spond to the constraint (20c), and the posynomial functiomariances?. Similar assumptions and notations are used for
f3(ds) and g3(ds) which correspond to the constraint (20d)the other links. Furthermore, we assume that, at every time
These functions are not given here due to space limitation.instant, all the nodes know, or can estimate with high acyra
is now easy to see that the optimization problem can be stathd values taken by the channel coefficients at that time, i.e



full channel state information (CSI). Also, we s&} = 20
dBW, P, =20 dBW, P, =20 dBW and P = 20 dBW.

We compare the sum-rate of the strategy in proposition
with the coding strategy of [5], and with standard CF and D
protocols. The sum-rate is evaluated under the constrdint
symmetricrate by the sources. L&kSh,, RDF, RSOM denote
the sum-rate obtained by using standard CF, standard DF
the coding strategy of [5] respectively.

The coding strategy of [5] and the coding strategy ¢
Proposition 1 both decode two linear combinations of tF
transmitted codewords. However, these linear combinatio
are recovered differently in the two strategies. In [5],ythe
are computed in a distributed manner while in Proposition
they are both computed locally at the destination.

A direct significance of recovering the linear combination
locally at the destination is that both recovered linear lsiem
nations utilizeall the output available at the destination in a
joint manner. The coding strategy of [5] is implemented su
that the first linear combination is recovered at the destina
using only the output received directly from the sourcesl an
the second one is recovered at the relay and forwarded to
the destination. The computation of the second one is ldnite
by the weaker output between the output at the relay an
the output at the destination (since this linear combimaito
decoded at the relay and has to be recovered at the destinati

For the example shown in Figure 2, we notice that; althou
the strategy of [5] RSSF) performs better than the DF strategy,
it performs worse than the CF strategy for given chann
gains. Also, we notice that the strategy in Proposition
(RSSD) almost gives the same performance as the CF strate
However, there are advantages for using the coding strategy
of Proposition 1 instead of standard CF. In particular, @hil [1]
standard CF utilizes the rather complex joint typicalitgold-
ing, or maximume-likelihood decoding, the coding stratedy o
Proposition 1 utilizes linear decoding, and thus is morélyeas
feasible.

We also should note that with a good initial point thel3]
iterative Algorithm A converges to an optimum value as giveq A
by standard CF with almost three iterations.

VI. CONCLUSION [5]

In this paper, we study a two-source half-duplex multiasces
relay channel. Based on the compute-and-forward stravegy,
develop and evaluate the performance of a coding strate
in which the destination does not decode the information
messages directly from its output. Instead, it uses itswutp
to first recover two linearly independent integer-valuetheo
binations that relate the sources’ codewords. It then dexod
the messages using the two linear combinations. We discuks$
the design criteria and establish the allowed sum rate.,Next
we investigate the problem of allocating the powers and thg
integer-valued coefficients of the recovered equationsviaya
to maximize the offered sum rate. We show that our codirtf’)
strategy achieves as good as regular compress-and-forward
and has the advantage of utilizing feasible linear coddsaas
of random codes which are infeasible in practice.

(7]

Sum-Rate (bits per channel use)

SNR

dhigure 2. Achievable sum rates under symmetric rate constidirmerical
values areP = 20 dBW, o2 = o2 = 14 dBW, o2 = 26 dBW, ando2, =

o2y =0 dBW.
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