
Compress-and-Forward on a Multiaccess Relay
Channel With Computation at the Receiver

Mohieddine El Soussi
ICTEAM, UCL

Place du Levant.2,
B-1348 Louvain-la-Neuve, Belgium

Email: mohieddine.elsoussi@uclouvain.be

Abdellatif Zaidi
Universite Paris-Est Marne-La-Vallee

Boulevard Descartes.5,
77454 Marne la Vallee Cedex 2, France

Email: abdellatif.zaidi@univ-mlv.fr

Luc Vandendorpe
ICTEAM, UCL

Place du Levant.2,
B-1348 Louvain-la-Neuve, Belgium

Email: luc.vandendorpe@uclouvain.be

Abstract—We study a system in which two sources communi-
cate with a destination with the help of a half-duplex relay. We
consider a decoding strategy, based on the compute-and-forward
strategy, in which the destination decodes two integer-valued
linear combinations that relate the transmitted codewords. In
this strategy, the relay compresses its observation using Wyner-
Ziv compression and then forwards it to the destination. The
destination appropriately combines what it gets from the direct
transmission and the relay. Then, using this combination, it
computes two integer-valued linear combinations. We discuss the
encoding/decoding strategy, and evaluate the achievable sum-
rate. Next, we consider the problem of allocating the powers
and selecting the integer-valued coefficients of the recovered
linear combinations in order to maximize the sum-rate. For the
model under consideration, the optimization problem is NP hard.
We propose an iterative algorithm to solve this problem using
coordinate descent method. The results are illustrated through
some numerical examples.

I. I NTRODUCTION

The recently proposed Compute-and-forward (CoF) strategy
[1] attracts great attention. The idea is that the receiving
node decodes a linear combination of the sources’ codewords
instead of the individual codewords. A receiver that is given
a sufficient number of linear combinations decodes the trans-
mitted messages by solving a system of independent linear
equations. This strategy has been studied for different com-
munication systems, such as the two-way relay channel [2],
the multiple access channel and multiple-input multiple-output
channels [1], [3]. A critical requirement in this strategy is that
the coefficients of the linear combinations must be integer-
valued. This is essential as the combination of codewords
should itself be a codeword so that it is decodable. Lattice
codes have this property, and are thus good codes for compute-
and-forward strategy [4].

We consider two independent sources that communicate
with a destination with the help of a relay node, as shown
in Figure 1. In previous works [5] [6], we establish a coding
strategy based on the compute-and-forward strategy [1]. In
this coding strategy, the relay uses what it receives from
the sources during the multiaccess transmission to decode an
appropriate integer-valued linear combination of the sources’
codewords; and then sends this combination to the destination.
In addition to the linear combination that it receives from the
relay, the destination decodes another integer-valued linear

combination from what it gets directly from the sources. In
this strategy, the two linear combinations are recovered ina
distributed way. By opposition to [5], in this work, we develop
a coding strategy in which both linear combinations of the
sources’ codewords are recovered locally at the destination.
More specifically, the relay compresses its observation from
the sources’ transmission during the first transmission period
using Wyner-Ziv compression [7] taking into account the
information available at the destination through the direct
transmission. It then transmits the compressed version to
the destination during the second transmission period. The
destination determines the two required linear combinations,
as follows. It utilizes an appropriate combination of the
output from the sources’ transmission during the first period
and of the output from the relay’ transmission during the
second period. From this combination, two independent linear
combinations relating the sources’ codewords are computed.

For this coding strategy, we target the optimization of the
sources and the relay powers, and of the integer coefficients
of the linear combinations to maximize the achievable sum-
rate. The optimization problem is NP-hard. We develop an
iterative approach that finds the appropriate power and integer
coefficients alternatively. More specifically, we show thatthe
problem of finding appropriate integer coefficients for a given
set of powers has the same solution as an approximated
mixed integer quadratic programming (MIQP) problem with
quadratic constraints. Also, we show that the problem of
finding the appropriate power policy at the sources and the
relay for a given set of integer coefficients is a non-linear
non-convex optimization problem. We formulate and solve
this problem through geometric programming and successive
convex approximation approach [8].

We compare our strategy with standard compress-
and-forward (CF), standard decode-and-forward (DF) and
compute-and-forward strategies [6] for the case ofsymmetric
rate. We show that for some channel gain values it is better
to recover the linear combinations locally at the destination
instead of in a distributed way. Also, we show that our
coding strategy achieves as good as regular compress-and-
forward; and has the advantage of utilizing feasible linear
codes instead of random codes which are infeasible in practice.
More specifically, standard CF usually uses the maximum



likelihood (ML) receiver which has high computational com-
plexity. However, linear receivers such as the decorrelator and
minimum-mean-squared error (MMSE) receiver are often used
as low-complexity alternatives.

We use the following notations throughout the paper. Lower-
case boldface letters are used to denote column vectors, e.g.,
x. Upper case boldface letters are used to denote matrices,
e.g., X. Also, we useXT to designate matrix transpose of
X; and det(X) to designate the determinant ofX. We use
In to denote then-by-n identity matrix; and0 to denote a
matrix whose elements are all zeros (its size will be evident
from the context). For two vectorsx andy ∈ Rn, the vector
z = x○y ∈ Rn denotes the Hadamard product ofx andy, i.e.,
the vector whoseith element is the product of theith elements
of x andy, i.e.,zi = (x○y)i = xiyi. We use Var(x) to denote
the power ofx i.e. E[∣∣x∣∣2]. Finally, logarithms are taken to
base2; and, forx ∈ R, log+(x) ∶=max{log(x),0}.

II. SYSTEM MODEL

Two sourcesA andB communicate with a destinationD
with the help of a relayR. The sources would like to transmit
their messagesWa ∈Wa, Wb ∈Wb to the destination reliably,
in 2n uses of the channel. LetRa andRb be the transmission
rate of messageWa and Wb respectively. In this work, we
focus on thesymmetricrate case, i.e.,Ra = Rb = R, or
equivalently, ∣Wa∣ = ∣Wb∣ = 22nR. We measure the system
performance in terms of the allowed achievable sum rate
Rsum = Ra +Rb = 2R. Also, we divide the transmission time
into two transmission periods having each of lengthn channel
uses and we assume that the relay operates in a half-duplex
mode.

Figure 1. Multiple-access channel with a half-duplex relay

During the first transmission period, the sources encode their
messagesWi ∈ [1,22nR] i ∈ {a, b} into codewordxi and
send them over the channel. Letyr and yd be the signals
received respectively at the relay and at the destination during
this period. These signals are given by

yr = harxa + hbrxb + zr

yd = hadxa + hbdxb + zd, (1)

where had and hbd are the channel gains on the links
transmitters-to-destination,har andhbr are the channel gains
on the links transmitters-to-relay, andzr and zd are additive
background noises at the relay and the destination.

During the second transmission period, the relay sends a
codeword x̃r to help both sources. During this period, the
destination receives

ỹd = hrdx̃r + z̃d, (2)

wherehrd is the channel gain on the link relay-to-destination,
and z̃d is additive background noise.

Throughout, we assume that all channel gains are real-
valued, fixed and known to all the nodes in the network; and
the noises at the relay and the destination are independent of
each other, and independently and identically distributed(i.i.d)
Gaussian, with zero mean and varianceN . Furthermore, we
consider the following individual constraints on the transmitted
power (per codeword),

E[∥xa∥2] = nβ2

aP ≤ nPa, E[∥xb∥2] = nβ2

bP ≤ nPb,

E[∥x̃r∥2] = nβ2

rP ≤ nPr, (3)

wherePa ≥ 0, Pb ≥ 0 andPr ≥ 0 are some constraints imposed
by the system;P ≥ 0 is given, andβa, βb and βr are some
scalars that can be chosen to adjust the actual transmitted
powers, and are such that0 ≤ ∣βa∣ ≤√Pa/P , 0 ≤ ∣βb∣ ≤√Pb/P
and 0 ≤ ∣βr ∣ ≤ √Pr/P . For convenience, we will some-
times use the shorthand vector notationhd = [had, hbd]T ,
hr = [har, hbr]T ∈ R

2. Also, we useβ = [βa, βb, βr]T
∈ R3, βs = [βa, βb]T ∈ R2, and the shorthand matrix notation
H = [hT

d ; hT
r ] ∈ R

2×2. Finally, the signal-to-noise ratio
will be denoted as snr= P /N in the linear scale, and by
SNR= 10 log10(snr) in decibels in the logarithmic scale.

III. C OMPUTATION AT THE DESTINATION

In this section, we develop the coding strategy that is
based on the compute-and-forward strategy of [1]. In this
strategy, the relay compresses what it receives from the sources
during the first transmission period taking into account the
information available at the destination through the direct
transmission. It then transmits the compressed version to
the destination during the second transmission period. The
destination computes two linearly independent combinations
of the sources’ codewords using its outputs from both trans-
mission periods locally. The following proposition provides an
achievable sum-rate for the model that we study.

Proposition 1: For any set of channel vectorh =[har, hbr, had, hbd, hrd]T ∈ R5, the following sum rate is
achievable [6]:

(A): RCoD
sum =max

1

2
min

⎧⎪⎪⎨⎪⎪⎩
log+ ( snr

snr∣∣βs ○H
Tαt − t∣∣2 + (αt ○αt)Tnd

) ,
log
+ ( snr

snr∣∣βs ○H
Tαk − k∣∣2 + (αk ○αk)Tnd

)⎫⎪⎪⎬⎪⎪⎭,
(4)



whereαt = [α1t, α2t]T andαk = [α1k, α2k]T ∈ R2 are some
inflation factors,nd = [1, 1+D/N]T ∈ R2, andD is given by

D =
N2 (1 + snr∥βs ○ hr∥2)∣hrd∣2β2

rP
−
N2(snr(βs ○ hr)T (βs ○ hd))2∣hrd∣2β2

rP (1 + snr∥βs ○ hd∥2) ,
(5)

and the maximization is overαt, αk, β such that0 ≤ ∣βa∣ ≤√
Pa/P , 0 ≤ ∣βb∣ ≤ √Pb/P , and0 ≤ ∣βr ∣ ≤ √Pr/P and over

the integer coefficientsk andt such that∣det(k, t)∣ ≥ 1.
Proof: Let Λ be ann-dimensional lattice of second moment

σ2

Λ
= P and normalized second momentG(Λ), andV be its

fundamental Voronoi region. Also similarly as in [4] [6], let
ΛFINE ⊇ Λ be chosen such that the codebookC = ΛFINE∩V be
of cardinality22nR. Let k = [ka, kb] ∈ Z2 andt = [ta, tb] ∈ Z2

be given such that∣det(k, t)∣ = ∣katb − kbta∣ ≥ 1.
Encoding: Let (Wa,Wb) be the pair of messages to be

transmitted. Letua, ub andur be some dither vectors that are
drawn independently and uniformly overV and known by all
nodes in the network. Also, letφa(⋅) andφb(⋅) be one-to-one
mapping functions between the set{Wa} and the codebookC
and between the set{Wb} and the codebookC , respectively.
Let va = φa(Wa) andvb = φb(Wb), whereva ∈ C andvb ∈ C .

During the first transmission period, to transmit message
Wi, i ∈ {a, b}, the sources send

xi = βi ([vi − ui] mod Λ) . (6)

During this period, the relay quantizes what it receives using
Wyner-Ziv compression [7], taking into account the available
side informationyd at the destination. Let̂yr be the com-
pressed version ofyr given by

ŷr = yr + d (7)

whered is a Gaussian random vector whose elements are i.i.d
with zero mean and varianceD; and is independent of all
other signals.

During the second transmission period, the relay conveys
the descriptionŷr of yr to the destination. To this end, it
sends an independent Gaussian inputx̃r with powerβ2

rP and
carries the Wyner-Ziv compression index ofŷr.

Decoding at the destination:During the two transmission
periods, the destination receivesyd and ỹd as given in (1)
and (2). The destination first recovers the compressed version
of the relay’s output sent by the relay during the second
transmission period (̂yr), by utilizing its output ỹd as well
as the available side informationyd [6]. The destination
computes two linearly independent combinations with integer
coefficients, as follows. It combinesyd and ŷr and uses
the obtained signal to compute the two integer-valued linear
combinations. More precisely, let

yj =α1jyd + α2j ŷr

=(α1jhad + α2jhar)xa + (α1jhbd + α2jhbr)xb+

α1jzd + α2jzr + α2jd, (8)

for someαj = [α1j , α2j]T and forj ∈ {t, k}. The destination,
using the obtained signalyj , decodes two linear combinations

with integer coefficients by performing the modulo-reduction
operation [4] [6],

y′j = [yj + jaua + jbub]mod Λ

= [java + jbvb + z
′

j]mod Λ (9)

wherez′j is the effective noise given by

z′j ≜[α1jzd + α2jzr + α2jd + (α1jhad + α2jhar −
ja

βa

)xa+

(α1jhbd + α2jhbr −
jb

βb

)xb]mod Λ. (10)

Finally, by decoding the lattice pointset = [tava + tbvb] ∈ Λ
andek = [kava + kbvb] ∈ Λ usingy′j , the destination obtains
two linear combinations with integer coefficients. Hence, it
obtains the transmitted codewords by solving a system of two
equations with two variables.

Rate Analysis:
Using y′j given by (9), we get that the destination obtains

the desired combinationj, j ∈ {t, k}, at mutual information
satisfying [4] [6]

1

2n
I(ej ;y′j) ≥ 1

4
log+ ( σ2

Λ

Var(z′j)) −
1

4
log (2πeG(Λ))

≥
1

4
log
+ ( snr

snr∣∣βs ○H
Tαj − j∣∣2 + (αj ○αj)Tnd

)−
1

4
log (2πeG(Λ)) , (11)

whereαj should be chosen to minimize the effective noisez′j
in (10), i.e., such that

α⋆j = (GGT
+Nd)−1Gj, (12)

where G = [(βs ○ hd)T ; (βs ○ hr)T ] ∈ R
2×2 and Nd =[1/snr, 0; 0, 1/snr+D/P ] ∈ R2×2.

Let Rt(Λ) be the RHS of (11) forj = t andRk(Λ) the RHS
of (11) for j = k. The above means that the destination can
decode the sources’ codewords correctly at the transmission
sum rateRCoD

sum(Λ) = 2 min{Rt(Λ),Rk(Λ)}. Furthermore,
investigating the expression ofRj(Λ), it can easily be seen
that it decreases with increasingD. Also, observing that the
RHS of (5) decreases ifβr increases, the largest rateRj(Λ) is
then obtained by taking the equality in the distortion constraint
(5) with β2

r = Pr/P . Finally, observing that2πeG(Λ) → 1

when n → ∞ [4], the desired sum rate (4) is obtained by
taking the limit of RCoD

sum(Λ) as n goes to infinity; and this
completes the proof of Proposition 1. ◻

IV. SUM RATES OPTIMIZATION

This section is dedicated to evaluate the optimal powers
and integer-coefficients that maximize the sum-rate of Propo-
sition 1. In order to computeRCoD

sum as given by (4), we develop
the following iterative algorithm which optimizes the integer
coefficients and the powers alternatively, and to which we refer
to as “Algorithm A” in reference to the optimization problem
(A) in (4).



Algorithm A Iterative algorithm for computingRCoD
sum as given by

(4) in Proposition 1

1: Choose an initial feasible vectorβ
s

(0) and setι = 1.
2: Solve (4) with β

s
= β

s

(ι−1) for the optimalk and t using
Algorithm A-1 and assign it tok(ι) andt(ι).

3: Solve (4) withk = k
(ι) and t = t

(ι) for the optimalβ
s

using
Algorithm A-2 and assign it toβ

s

(ι).
4: Increment the iteration index asι = ι+ 1 and go back to Step 2.
5: Terminate if∥β

s

(ι) −β
s

(ι−1)∥ ≤ ε, ∣RCoD
sum[ι]−R

CoD
sum[ι−1]∣ ≤ ε or

if RCoD
sum[ι] ≤ R

CoD
sum[ι − 1].

1) Integer Coefficients Optimization:In this section, we
focus on the problem of evaluating the integer vectorsk ∈ Z2

and t ∈ Z2 for a given value ofβs. Examining the objective
function in (4), it can easily be seen that this problem can be
equivalently stated as

min
k, t,Θ1

Θ1 (13a)

s. t. Θ1 ≥ t
TΩt (13b)

Θ1 ≥ k
TΩk (13c)

det(k, t) = ∣katb − kbta∣ ≥ 1 (13d)

k, t ∈ Z2, Θ1 ∈ R, (13e)

where Ω = (GT (GGT
+ Nd)−1G − I2)T (GT (GGT

+

Nd)−1G−I2)+((GGT
+Nd)−1G)TNd((GGT

+Nd)−1G).
Note thatΘ1 is simultaneously an extra optimization variable
and the objective function in (13). Also, we should note that
the integer coefficientsk andt are independent ofαt andαk.

In order to solve the problem (13), we need to reformulate it
in a convenient manner. We introduce the following quantities.
Let a0 = [0,0,0,0,1]T ; a1 = a2 = [0,0,0,0,−1]T and
a3 = [0,0,0,0,0]T . Also, let b = [ta, tb, ka, kb,Θ1]T ; and
the scalarsc1 = c2 = 0, and c3 = −1. We also introduce the
following five-by-five matricesF1, F2, andF3, where

F1 = [ 2Ω 0

0 0
] , F2 =

⎡⎢⎢⎢⎢⎢⎣
0 0 0

0 2Ω 0

0 0 0

⎤⎥⎥⎥⎥⎥⎦
,

and F3 =

⎡⎢⎢⎢⎢⎢⎣
0 0 −2 0

0 2 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
. (14)

The optimization problem (13) can now be reformulated
equivalently as

min
b

aT0 b

s. t.
1

2
bTFib + a

T
i b ≤ ci i = 1,2,3

k ∈ Z2, t ∈ Z2, Θ1 ∈ R (15)

The equivalent optimization problem (15) is a MIQP prob-
lem with quadratic constraints [9]. There are known algorithms
for solving MIQP optimization problems, such as branch and
bound algorithm [9]. A critical condition for solving MIQP

optimization problems, is that the involved matrices associated
with the quadratic constraints must all be semi-definite. In
our case, it is easy to see that the matricesF1 and F2 are
positive semi-definite. However, the matrixF3 is indefinite,
irrespective to the values ofk andt.

In order to transform the optimization problem (15) into one
that is MIQP-compatible, we replace the quadratic constraint
(13d) with one that is linear. We introduce the following two
real-valued vectors̃k = [k̃a, k̃b]T ∈ R2 and t̃ = [t̃a, t̃b]T ∈ R2

defined such that they satisfy

k = κ ○ exp(k̃), t = τ ○ exp(t̃), (16)

whereκ = [κa, κb]T ∈ R2 andτ = [τa, τb]T ∈ R2 are constant
vectors to be chosen appropriately. Thus, the constraint (13d)
can now be rewritten equivalently as

∣κaτbexp(k̃a + t̃b) − κbτaexp(k̃b + t̃a)∣ ≥ 1. (17)

Now, we linearize the constraint (17) by selecting the constant
vectorsκ andτ such that the first order Taylor series approx-
imationsexp(k̃) ≈ 1 + k̃ andexp(t̃) ≈ 1 + t̃ hold. Hence, the
constraint (13d) can be rewritten as

∣κaτb(1 + k̃a + t̃b) − κbτa(1 + k̃b + t̃a)∣ ≳ 1. (18)

Note that the constraint (18) is now linear, and the opti-
mization problem (13) has the same solution as the following
problem which is MIQP-compatible,

min
k, t,Θ1

Θ1 (19a)

s.t. Θ1 ≥ t
TΩt (19b)

Θ1 ≥ k
TΩk (19c)

− ∣κaτb(1 + k̃a + t̃b) − κbτa(1 + k̃b + t̃a)∣ ≲ −1 (19d)
ki

κi

− 1 − k̃i ≤ 0, −
ki

κi

+ 1 + k̃i ≤ 0, i = a, b (19e)

ti

τi
− 1 − t̃i ≤ 0, −

ti

τi
+ 1 + t̃i ≤ 0, i = a, b (19f)

k, t ∈ Z2, k̃, t̃, κ, τ ∈ R2,Θ1 ∈ R. (19g)

The optimization problem (19) can be solved iteratively using
Algorithm A-1 hereinafter.

Algorithm A-1 Integer coefficients selection forRCoD
sum as given by

(4) in Proposition 1
1: Initialization: setι1 = 1.
2: Use the branch-and-bound algorithm of [10] to solve forΘ

(ι1)
1

,
k
(ι1) and t

(ι1) with the constraint (19d) substituted with
−κaτb(1 + k̃a + t̃b) + κbτa(1 + k̃b + t̃a) ≤ −1.

3: Update the values ofκ and τ in a way to satisfy (16); and
increment the iteration index asι1 = ι1 + 1.

4: Terminate ifexp(k̃(ι1)) ≈ 1 + k̃(ι1) andexp(t̃(ι1)) ≈ 1 + t̃(ι1).
Denote the found solution asΘmin,2

1
.

5: Redo steps 1 to 4 with in Step 2 the constraint (19d) substituted
with κaτb(1+ k̃a+ t̃b)−κbτa(1+ k̃b+ t̃a) ≤ −1. In Step 4, denote
the found solution asΘmin,2

1
.

6: Select the integer coefficients corresponding to the minimum
amongΘmin,1

1
andΘmin,2

1
.



2) Power Allocation Policy:The problem of optimizing the
power valueβs for fixed integer coefficientsk and t, can be
written as,

min
β

s
,αt,αk,Θ2

Θ2 (20a)

s. t.Θ2 ≥
snr∣∣βs ○H

Tαt − t∣∣2 + (αt ○αt)Tnd

snr
,

(20b)

Θ2 ≥
snr∣∣βs ○H

Tαk − k∣∣2 + (αk ○αk)Tnd

snr
,

(20c)

D ≥
N2 (1 + snr∥βs ○ hr∥2)∣hrd∣2Pr

−

N2(snr(βs ○ hr)T (βs ○ hd))2∣hrd∣2Pr (1 + snr∥βs ○ hd∥2) (20d)

−

√
Pi

P
≤ βi ≤

√
Pi

P
, i = a, b (20e)

βs ∈ R
2, Θ2 ∈ R. (20f)

Note thatβs depends onαt and αk. The complexity of
optimizing these variables simultaneously is very high andit
decreases if the optimization is carried out in two steps. First,
we optimize the power valueβs using geometric programming
with successive convex approximation as described below, for
a fixed value ofαt andαk. Next, we optimize the value of
αt andαk for a fixed value ofβs using (12). This process is
repeated until convergence.

The optimization problem in (20) is non-linear and non-
convex for a fixed value ofαt and αk. We use geometric
programming (GP) [8] to solve it. The GP algorithm requires
that the constraints are posynomial and the variables are
strictly positive [8]. In our case, in the problem (20), the
constraints (20b), (20c) and (20d) contain functions that are
non posynomial. Also, the variables in (20) are not all positive.
In what follows, we first transform the problem (20) into one
equivalent in which the constraints involve functions thatare
all posynomial and the variables are all positive; and then,we
develop an algorithm for solving the equivalent problem.

Let c = [ca, cb]T ∈ R2 and δs = [δa, δb]T ∈ R2, such that
ci >
√
Pi/P and δi = βi + ci for i ∈ {a, b}. Note that the ele-

ments ofδs are all strictly positive. Also, we define the posyn-
omial functions f1(δs,Θ2,αt,αk) and g1(δs,Θ2,αt,αk)
which correspond to the constraint (20b), the posynomial func-
tions f2(δs,Θ2,αt,αk) andg2(δs,Θ2,αt,αk) which corre-
spond to the constraint (20c), and the posynomial functions
f3(δs) and g3(δs) which correspond to the constraint (20d).
These functions are not given here due to space limitation. It
is now easy to see that the optimization problem can be stated

Algorithm A-2 Power allocation policy forRCoD
sum as given by (4)

in Proposition 1

1: Setδs
(0,0) to some initial value and setι2 = 1 and ι3 = 0.

2: ComputeΘ(ι2−1,ι3)
2

, α(ι2−1,ι3)t andα(ι2−1,ι3)
k

usingδ(ι2−1,ι3)s .
3: Approximate g(δ

(ι2,ι3)
s ,Θ

(ι2,ι3)
2

) with g̃(δ
(ι2,ι3)
s ,Θ

(ι2,ι3)
2

)

aroundδ(ι2−1,ι3)s andΘ(ι2−1,ι3)
2

.
4: Solve the resulting approximated GP problem using an interior

point approach. Denote the found solutions asδs
(ι2,ι3) and

Θ
(ι2,ι3)
2

.
5: Increment the iteration index asι2 = ι2 + 1 and go back to Step

3 usingδs andΘ2 of step 4.
6: Terminate if ∥δs

(ι2,ι3) − δs
(ι2−1,ι3)∥ ≤ ε or if Θ

(ι2,ι3)
2

≥

Θ
(ι2−1,ι3)
2

and denote byδ the final value.
7: Increment the iteration index asι3 = ι3 + 1, set ι2 = 1, and

δ
(ι2−1,ι3)
s = δ and then go back to Step 2.

8: Terminate if ∣RCoD
sum[ι3] − RCoD

sum[ι3 − 1]∣ ≤ ε or if RCoD
sum[ι3] ≤

RCoD
sum[ι3 − 1].

in the following form,

min
δs,αt,αk,Θ2

Θ2 (21a)

s. t.
f1(δs,Θ2,αt,αk)
g1(δs,Θ2,αt,αk) ≤ 1,

f2(δs,Θ2,αt,αk)
g2(δs,Θ2,αt,αk) ≤ 1,

(21b)

f3(δs)
g3(δs) ≤ 1 (21c)

−

√
Pi

P
+ ci ≤ δi ≤

√
Pi

P
+ ci , i = a, b (21d)

δs ∈ R
2, c ∈ R2, Θ2 ∈ R. (21e)

The functions in (21b) and (21c) consist of ratios of
posynomials, i.e., are not posynomial. This is a non-convex
class of GP problems known as Complementary GP [8]. We
can transform the Complementary GPs into GPs by a series
of approximations. The ratio between two posynomials can be
turned into GPs by approximating the denominator of the ratio
of posynomials,g(), with a monomialg̃() [8].

The optimization problem (21) is now turned to a GP
problem, and can be solved using an interior point method.
The problem of finding the appropriate value ofδs can be
solved using Algorithm A-2.

V. NUMERICAL EXAMPLES

Throughout this section, we assume that the channel coeffi-
cients are modeled with independent and randomly generated
variables, each generated according to a zero-mean Gaussian
distribution whose variance is chosen according to the strength
of the corresponding link. More specifically, the channel
coefficient associated with the link from sourceA to the
relay is modeled with a zero-mean Gaussian distribution with
varianceσ2

ar. Similar assumptions and notations are used for
the other links. Furthermore, we assume that, at every time
instant, all the nodes know, or can estimate with high accuracy,
the values taken by the channel coefficients at that time, i.e.,



full channel state information (CSI). Also, we setPa = 20

dBW, Pb = 20 dBW, Pr = 20 dBW andP = 20 dBW.
We compare the sum-rate of the strategy in proposition 1

with the coding strategy of [5], and with standard CF and DF
protocols. The sum-rate is evaluated under the constraint of
symmetricrate by the sources. LetRCF

sum, RDF
sum , RCoF

sum denote
the sum-rate obtained by using standard CF, standard DF and
the coding strategy of [5] respectively.

The coding strategy of [5] and the coding strategy of
Proposition 1 both decode two linear combinations of the
transmitted codewords. However, these linear combinations
are recovered differently in the two strategies. In [5], they
are computed in a distributed manner while in Proposition 1,
they are both computed locally at the destination.

A direct significance of recovering the linear combinations
locally at the destination is that both recovered linear combi-
nations utilizeall the output available at the destination in a
joint manner. The coding strategy of [5] is implemented such
that the first linear combination is recovered at the destination
using only the output received directly from the sources, and
the second one is recovered at the relay and forwarded to
the destination. The computation of the second one is limited
by the weaker output between the output at the relay and
the output at the destination (since this linear combination is
decoded at the relay and has to be recovered at the destination).

For the example shown in Figure 2, we notice that; although
the strategy of [5] (RCoF

sum) performs better than the DF strategy,
it performs worse than the CF strategy for given channel
gains. Also, we notice that the strategy in Proposition 1
(RCoD

sum) almost gives the same performance as the CF strategy.
However, there are advantages for using the coding strategy
of Proposition 1 instead of standard CF. In particular, while
standard CF utilizes the rather complex joint typicality decod-
ing, or maximum-likelihood decoding, the coding strategy of
Proposition 1 utilizes linear decoding, and thus is more easily
feasible.

We also should note that with a good initial point the
iterative Algorithm A converges to an optimum value as given
by standard CF with almost three iterations.

VI. CONCLUSION

In this paper, we study a two-source half-duplex multiaccess
relay channel. Based on the compute-and-forward strategy,we
develop and evaluate the performance of a coding strategy
in which the destination does not decode the information
messages directly from its output. Instead, it uses its output
to first recover two linearly independent integer-valued com-
binations that relate the sources’ codewords. It then decodes
the messages using the two linear combinations. We discuss
the design criteria and establish the allowed sum rate. Next,
we investigate the problem of allocating the powers and the
integer-valued coefficients of the recovered equations in away
to maximize the offered sum rate. We show that our coding
strategy achieves as good as regular compress-and-forward;
and has the advantage of utilizing feasible linear codes instead
of random codes which are infeasible in practice.
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Figure 2. Achievable sum rates under symmetric rate constraint. Numerical
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