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Abstract—We study a special case of Willems’s two-user Helping Encoder

multi-access channel with partially cooperating encoders from a X Legitimate Receiver

security perspective. This model differs from Willems's setup in Encoder 22 yn

the following aspects — only one encoder, Encoder 1, is allowed . Decoder i/

to conference, Encoder 2 does not transmit any message, and o MAC

there is an additional passive eavesdropper from whom the com- 0121/;

munication should be kept secret. For the discrete memoryless b Py, 21, 22)| 70

(DM) case, we establish inner and outer bounds on the capacity- H avesdropp%u@

equivocation region. The inner bound is established by a careful X7

combination of Willems’s coding scheme, noise injection scheme

and additional binning that provides randomization for security.

For the memoryless Gaussian model, we establish lower and Source

upper bounds on the secrecy capacity. We also studied some

extreme cases of cooperation between the encoders and showed

that, under certain conditions, these bounds coincide. Fig. 1.  Multi-access channel with partially cooperatingcesters and
security constraints.

W— Encoder 1

I. INTRODUCTION

Wyner, in his seminal paper|[1], introduced a basic wiretap
model to study security from an information theoretic perecisely, as depicted in Figufé 1, we consider a two-user
spective. The wiretap model consists of three nodes, aspur@ulti-access channel in which the two users can partially
a legitimate receiver and an eavesdropper. In this model ffoperate with each other via a unidirectional noiseless bi
secure communication, two constraints need to be fulfillgipe of finite capacityCi,. In addition to this, we restrict
simultaneously — transmitted information should be reegiv the role of Encoder 2 to only helping Encoder 1, i.e.,
reliably at the legitimate receiver and should be perfectiyncoder 2 has no message of its own to transmit. We also
secured from the eavesdropper. The Wiretap model has béggume that there is a passive eavesdropper who overhears
applied further to study the security of different multiusethe transmission and from whom the communication from
channels, for instance, multi-antenna wiretap chanet [2Encoder 1 and Encoder 2 to the legitimate receiver should be
[4], multi-access wiretap channél [5[] [6], relay-eavesgnrer kept secret. The eavesdropper is passive in the sense ihat it
channel [[7], [8], parallel relay channél|[9] and interferen not allowed to modify the transmitted information. The role
channel [[10], [[11]. of Encoder 2 is then to only help Encoder 1 communicate

In this contribution, we study the problem of securdith the legitimate receiver while keeping the transmitted
communication over a multi-access channel (MAC) with paiiformation secret from the eavesdropper. Practically, this
tially cooperating encoders. Willems studied the MAC witfinodel may be appropriate for example to the study of the role
partially cooperating encoders model in[12], where prid¥ backbone connections among base stations for securing
to transmitting their respective messages, the two ensodgnsmission in cellular environments. In this work, wedstu
are allowed to cooperate with each other over noiseless fifte capacity-equivocation region of this model.
pipes of finite-capacities. Willems characterizes the detep  The MAC model that we study in this paper has some con-
capacity region of this model for the DM case. The capacityections with a number of related works studied previously.
region of the corresponding Gaussian version was character contrast to the orthogonal relay-eavesdropper channel
ized by Brosset. al in [13]. In both [12] and [[1B], among studied in [14], the orthogonal link between the source and
other observations, it is shown in particular that holding the relay is here replaced by a noiseless bit-pipe of finite
conference prior to the transmission, enlarges the capaatpacityCi». In comparison to the wiretap channel with a
region relative to the standard MAC with independent inputhelper interferer (WT-HI) studied i [15], our model permits

We study a special case of Willems setup with an adeooperation among the encoders. Finally, compared with the
ditional security constraint on the communication. Morerimitive relay channel of_[16], our model imposes security



constraints on the transmitted message. alphabetGyx, k = 1,..., K. The information conferenced is
For the DM case, we establish bounds on the capacitypunded due to the finiteness of noiseless bit-pipe capacity

equivocation region. The coding scheme that we used lietween the two encoders. A conference is permissible if

construct an inner bound is based on an appropriate carefammunication functions are such that

combination of Willems coding schenle [12], noise injection K

[7, Theorem 3] and binning for randomization. The converse Zlog G1x| < nChs. (1)

proof is established by extending the converse proof of [12] 1

by taking security constraint into account and that{g] [17] Yo transmit the messag@’, Encoder 1 sends a codeword

account for the unidirectional noiseless bit-pipe coopena X% € X", where X, designates the input alphabet at

among the encoders. In doing so, we note that one nee‘d%%coder 1. Encoder 2 transmits a codewaifl € X3 where
re-define the involved auxiliary random variables appropri, designates the input alphabet at Encoder 22 Veand
o .

ately. We note that characterizing the capacity-equivonat Z designate the output alphabets at the legitimate receiver

][thlo?hgfct);rar;odzl 'Si\%igg:]eizl ?f,:“g?s'igztcei?ﬁd'é?‘d eavesdropper, respectively. The legitimate receiets g
' pacity-eq 9 y-cdp the channel output™ € Y™, and tries to estimate the

cIo?%y Tlﬁtegmfls t2|?tt arbe r?por:ged mtrt]henl:t%ralus&e[tis transmitted message from it. The eavesdropper overhears th
as [13], [18], [19], are still to be found — the mode ]channel outpuZ™ € Z™. The transmission over the channel

can pe seen as a special case of our model qbtglned by tal?'sn%haracterized by the memoryless conditional probabilit
a noiseless bit-pipe of zero capacity. From this viewpdirg,

) . The channel is memoryless in the sense that
inner and outer bounds that we develop here can be seed Y 2171, ¥2) y

one step further towards a better understanding of the full
capacity-equivocation region of the model that we study in p(y", "=y, 23) = Hp(yﬂzi‘ml:i’x?’i)' @)
this paper. =1

We also study the Gaussian memoryless model of the (2" n) code for the multi-access model with partially
MAC model shown in Figurd]l. For this setup, we onlyxooperating encoders shown in Figlte 1 consists of encoding
focus on the perfect secure transmission. For this model, Wwactiond
establish lower and upper bounds on the secrecy capacity.

n

The coding scheme that we use to establish the lower bound ¢r 2 W — AT,
uses ideas that are essentially similar to those for the DM o1 W—0Gu, k=1..K,
case. The upper bound on the secrecy capacity does not ¢ @ {1,...,27Ci2} — 1, A3)

involve auxiliary random variables and, so, is computable.
Furthermore, it has the same expression as the secrapgl a decoding functiog(-) at the legitimate receiver
capacity of the Gaussian wiretap channel with a two-antenna bYW 4)
transmitter, single-antenna legitimate receiver and lsing ' '
antenna eavesdroppér [Z]H4]. The average error probability for ttfg"*, n) code is defined

We also show the optimality of our lower bound for somes
extreme cases of cooperation among the encoders, including 1 )
when the two encoders fully cooperate, i€, := co. For Pl =gr > PHW £ WIW (5)
the case in which the two encoders do not conference, i.e., wew
C12 = 0, the studied model reduces to a wiretap channghe eavesdropper overhears to what the encoders transmit
with a helper interferer [15].[18]. In this case, our codingind tries to guess the information from it. The equivocation
scheme reduces to merely injecting statistically indepand rate per channel use is defined Bs = H(W|Z")/n. A
noise [7, Theorem 3]; and, by comparing it to the uppeate-equivocation paifR, R.) is said to be achievable if for

bound that we develop, we show that it is optimal undefy ¢ > 0 there exists a sequence of cod@s’, n) such
certain conditions. For the case of full cooperation amongat for anyn > n(e)

the encoders, i.e(12 := oo, our coding scheme reduces

to full two-antenna cooperation for providing secrecy ie th H(W) > R—e¢,
context of multiantenna wiretap channéels [2]-[4]. H(W\%n)
1. CHANNEL MODEL AND DEFINITIONS n > Re —¢
Figure[1 shows the channel model. LBf denote the P! <e (6)
message to be transmitted, taken uniformly from the T ) . :
W = {1,....27R}. Encoder 1 is allowed to conference thsjﬁe secrecy capacity is defined as the maximum achievable

rate at which the communication rate is equal to the equiv-

messagél to Encoder 2 usindd communicating functions ocation rate, i.e.(R, R.) — (R, R).

{$11, P12, - .., b1k }, Over the noiseless bit-pipe. L&Y, :=

¢11(W), defined as _the _OUtDUt of the communication ProCeSSiThe source encodes,, is a stochastic encoder that introduces additional
for the k4h communication, wheré/;, ranges over the finite randomization to increase secrecy.



I11. DISCRETEMEMORYLESSCASE the information message that is sent only by Encoder 1 can

In this section we consider the MAC shown in Figlile P€ regarded as an individual message. The random variable

and establish bounds on the capacity-equivocation region in TheorenT 2 represents this individual information. The
input of Encoder 2 is composed of the common information,

A. Outer Bound which it has received through noiseless finite capacity link
The following theorem provides an outer bound on th&om Encoder 1, and a statistically independent artifictase
capacity-equivocation region of the MAC with partially gpo component. The random variablig in Theoreni® represents
erating encoders and security constraints shown in Figurethe input from Encoder 2. The transmission of both common
information and artificial noise components at Encoder 2 in
Theorem[D is adjusted by appropriate selection of random
variableV'. Additional random binning is employed to secure
oth individual and common information from the passive
eavesdroppel[1]. Finally, the random variablen Theorem

Theorem 1. For the MAC with partially cooperating en-
coders and security constraints shown in Fidilire 1, and fpr
achievable rate-equivocation pdiR, R.), there exist some
random variable® < (V1,V3) <> (X1, X2) <> (Y, Z), such

o f h | fix.
that (R, R.) satisfies [@ stands for a channel prefix O
R < min{I(Vi,Va; V), I(Vi;Y|Va) + Cia} IV. MEMORYLESSGAUSSIAN MODEL
R.<R Now, we study the Gaussian version of the MAC channel
R < min{I(Vi, Va; Y|U) — I(Vi, Va: Z|U), shown in Figurd1l.

I(Vi; YVo,U) + Cp — I(V4, Va; Z|U)}. (7) A, Channel Model

For the Gaussian model, the outputs of the MAC at the
legitimate receiver and eavesdropper for each symbol time
are given by

Proof: The proof of Theoreni]l is provided in_[20,
Appendix ].

B. Inner Bound
Y = h1aX1 + hoa X2 + Ny

Next, we establish an inner bound on the capacity- 7 — b X1 4 hou X+ N ©)
= NleA1 2e<\2 2

equivocation region of the MAC shown in Figure 1.

Theorem 2: For the MAC with partially cooperating en- Wherehia, haa, i, andhy. are the channel gain coefficients
coders and security constraints shown in Figdre 1, the r@gsociated with Encoder 1-to-destination (1-D), Encoder 2

pairs in the closure of the convex hull of 4k, R, ) satisfying to-destination (2-D), Encoder 1-to-eavesdropper (1-BH a
Encoder 2-to-eavesdropper (2-E) links respectively. Tdisen

processe$N; ;} and{N, ;} are independent and identically

R < min{I(V1,Va; Y|U), I(Vi;Y[V2,V,U) + Ci2} distributed (i.i.d) with the components being zero meanszau
R. <R sian random variables with variance$ ando2, respectively;
R, < [min{I(Va; Y|V, U), I(Va; Z|V4,V,U)} and X, ; and X, ; are the channel inputs from Encoder 1 and

Encoder 2 respectively. The channel inputs are bounded by

+min{I(Vy, Va; Y|U), I(V1; Y[V2, V, U) + Cra} average block power constraints

— I(V1, Va; Z|U )T (8) n n
for some measure p(u,v,vi,ve,T1,T2,Y,2) = ZE[X%J < nky, ZE[ng] < nbs. (10)
p(w)p(v]u)p(vs|v, w)p(va|v, w)p(z1v1)p(z2|v2)p(y, 2|01, 22), =1 =t
are achievable. B. Upper Bound on the Secrecy Capacity
Outline of Proof: In this section, we establish an upper bound on the secrecy

We briefly outline the coding scheme that we use to prove tigpacity on Gaussian MAC](9). We establish a computable
achievability of the inner bound of Theoréih 2. The details @fpper bound using the techniques developed earlier to-estab
the proof is provided in([20, Appendix II]. The inner boundish the secrecy capacity of a multiple-input multiple-joutt

of Theorem 2 is based on a coding scheme that consistyMMO) wiretap channell[R]-]4] — taking a setup with two
appropriate careful combination of Willems'’s coding sckeemantennas at the transmitter, one antenna at the legitimate

[12], noise injection[[7, Theorem 3] and binning for randomreceiver and one antenna at the eavesdropper in our case.
ization to provide security. Lel denote the message to be

transmitted. Using the noiseless bit-pipe of finite capacit . . .
d PIp B Corollary 1: For the Gaussian MAC with partially coop-

Encoder 1 conferences a part of the information mes$tge ; . .
to Encoder 2. After completion of the conferencing procesgratlng encoders and security constraifils (9), an upperchou

this part can be regarded as a common information to B the secrecy capacity is given by
transmitted by both encoders. The random varialdlein R = max[I(Xy, Xo;Y) — (X1, Xo: Z)] (11)
Theoren 2 represents this common information. The part of ‘ ¥



where [X1, Xa] ~ N(0,Kp) with Kp = {Kp . Kp=

Py /PP, ; 2 2 2 2
[Wﬁ P -1 < v < 1), with ELXZ), E[X3) AP — o {C(|h1d| ]E[Xl])
satisfying KIf)). E[X7]<Py, 2k
E[X3]< Py
C. Lower Bound on the Secrecy Capacity C( |hiePE[X?] ):|+ 13
For the Gaussian MAC with partially cooperating encoders 03 + |hae|?E[X]

and security constraint$](9), we obtain a lower bound on2) A lower bound on the secrecy capacity is given by
the secrecy capacity by using our result for the DM model

in Theoren{ 2. The results established for the DM case can |h1al?E[X?]

be readily extended to memoryless channels with discrete R'eow = max [C(Ugl)

time and continuous alphabets using standard technigdes [2 ! o [PE[X?) n

Chapter 7]. _ le 1 14
(3 rmg)|

Corollary 2: For the Gaussian MAC with partially coop- T )
erating encoders and security constraifits (9), a lower doun ~ Where the maximization is oveE[Xj] < P; and

on the secrecy capacity is given by E[X3] < P, such that
hog|*E[ X3 hoe|PE[ X2
low . Blhaal? P> B|hae|* Pe |h14|*E[X?] 4 07 05
R, zoina<x1 min { C| — + alhialP ,C 5
0<p<1 oA 72 Proof:
e alhia® Py o Upper Bound. We bound the term if(13) as follows. The
min o} + O, proof follows by using elements from an upper bounding

technique developed in_[14]. We assume that there is a
noiseless link between Encoder 2 and the legitimate regeive
and the eavesdropper onstrained to treat Encoder 2’s
. signal as unknown noise. The upper bound established for
2) this alternate model, with full cooperation between Encode
2 and the legitimate receiver and a constrained eavesdroppe

Proof: The achievability follows by computing the in_also applies to the model of Corollaty 3. The details of the

ner bound in Theorerh] 2 with the choidé := constant, proof is provided in[[2D].

Vi=Xyand Vs := Xo, Xy = \/(apl)f(l ++/(aP)V, Lower Bound. The proof of the lower bound follows
X, = /(BP)Xs + /(BP:)V, where X, X, andV be by evaluating the equivocation rate in Theor&in 2 with a
independent random variables witti(0, 1), anda € [0,1], specific choice of the variables. More specifically, evahgat
a:=1-a, B €]0,1], andf := 1 — A. Straightforward Theorem[2 with the choic&’y, = 0, U = V = ¢,

2

C(\h1d|2p1 + \th‘2P2 + 2\/@B|hld|2P1|h2d|2P2)

01

2
g3

_ C(\h1e|2P1 + |h2e|2P2 + 2\/64B|h1e|2p1|h2e‘2p2):| *
(1

algebra that is omitted for brevity gives{12). O Vi:=X; andV; := Xy, with X; ~ N(0, P1) independent
of Xy ~ N(0, ), and such tha{{15) is satisfied, we obtain
D. Analysis of Some Extreme Cases the rate expression if_(IL4). The RHS Bf](14) then follows
. . : , by maximization overE[X?] < P, and E[X3] < P, and

In this section we consider two special cases of ﬂE%tisfying ) 0
Gaussian MAC[(9) with partially cooperating encoders shown ' _
in Figure[d, where the capacity of the bit-pipe is either, Remark 1: The bounds on the secrecy capacity [inl (13)

_ and [I4) have identical expressions but the maximization is
1) Ci2 =0, 0r . . L. .
2) Cyy = oo over different sets of inputs. The bounds coincide in thecas

_ ~in which the inputs £[X?], E[X2]) that maximize the RHS
The Case 1 corresponds to the wiretap channel WlthoﬁM) also satisfy the conditiof (IL5). In this case, thefgugr

helping interferer (WT-HI) studied in_[15][[18]. The Casesecrecy of the studied model is given by
2 corresponds to a two-antenna transmitter wiretap channel

2 X2 2E[X? "
@l 221, Cs = max {C(M;I%E[)(l]> N C(O‘% |—}: |ehziE|5éb](22})]

1) Case (4, := 0: In this case the encoders do not cooper-
ate. Since Encoder 2 does not know the common informatigfhere the maximization is ov@{ X2 < P, andE[X2] < P,
to transmit, it only injects statistically independentifarial  satisfying

noise.
. . C( |h2d|2E[X22] ) > C(|h26‘2]E[X22]) (17)
Corollary 3: For the Gaussian modél](9) with;, := 0: |h1a|?E[X2] + 02 2 :

02
1) An upper bound on the secrecy capacity is given by




S

Upper Bound%) each and the path loss exponent2. We consider a network

N — Lower ound Ty =1 | |- | geometry in which Encoder 1 is located at the point (0,0),
v Lower Bound [IR)Cyy =4 | | Encoder 2 is located at the point,0), the legitimate receiver

S 1 [—— Wiretag ound R =6 1 f 3 1 islocated at the point (1,0) and the eavesdropper is loated

the point (1.5,0), where is the distance between Encoders
1 and 2. The upper(11) and the lowér](12) bounds are
1 optimized numerically for Gaussian inputs. Figlile 2 shows
the upper and lower bounds on the secrecy capacity for
different values of finite capacity link. As a reference we
consider the case in which there is no helping Encoderai.e.,
basic wiretap channel. If we sét, := 0, Encoder 1 does not
8 conference to Encoder 2, for this setup the MAC (9) reduces
Destnation Eavesdropper to the classic WT-HI[[15],[[18]. In this case Encoder 2 can
1 i's 2 help Encoder 1 by injecting confusion codewords to confuse
the eavesdroppelr][7, Theorem 3]. If we increase the capacity
of noiseless bit-pipe, the achievable secrecy rate inesgas
this follows because Encoder 2 is more informed about the
information message from Encoder 1 and can cooperate with
2) Case Cy5 := oo: In this case the model[(9) reduces t&ach other. For instance, if we consider a very large value of
a wiretap channel in which the transmitter equipped withOiSeless bit-pipe capacity, the upper and lower bounds wil
two antenna and the legitimate receiver and eavesdropf¥entually coincide. This is due to the fact that a large alu
equipped with single antennas. As it will be shown below, ifif C12 results in full cooperation between the encoders, due
this case the upper bound of Corollady 1 and the lower bouf Which the channel reduces to a two-antenna transmitter
of Corollary[2 coincide, thus providing a characterizatain Wiretap channel for which secrecy capacity is established
the secrecy capacity, which can also be obtained figm [§forollary[4).

[N
1

N

=
I}

=

Perfect Secrecy Rate (bits/channel use)

o
3]

Encgder 1
0

|
[e=]
(&)

05 1
Location of Encoder 2

Fig. 2. Bounds on the secrecy capacity.

[4] in this specific case. VI. CONCLUSION
Corollary 4: For the Gaussian moddl](9) with fully co- n this contribution, we studied a special case of Willems's
operating encoders, the secrecy capacity is given by multi-access channel with partially cooperating encoftE2$
Cy = max|[I(X1, Xo;Y) — I(X1, Xo; Z)] (18) from security perspective. We established outer and inner

bounds on the capacity-equivocation region, for the DM case
. The inner bound is established by an appropriate careful
where [X;, Xo] ~ N(0,Kp) with Kp = {KP * Kp= combination of Willems's coding scheme, noise injection
[ il wm}, 1<y < 1}, with E[X2] and E[X2] [7l Theorem 3] and additional random binning for security.
YVPiP, P . . . .

satisfying ij)). The converse proof is obtained by using the techniques

developed earlier in the context of broadcast channels with
confidential messages and Willems’s MAC to the considered
setup. We note that the outer and inner bounds which we
fiave established do not agree in general, but can be seen as
. . : B step ahead towards characterizing the capacity-equigaca
is obtained by setting’;» := oo, U := constantVy := X1, aqion. For the Gaussian setup, we establish lower and upper
V="V=X,n Theorenﬂiwhgrﬁ%Xﬂ ~N(0.Kp)  pounds on the secrecy capacity. We also study some extreme
with K = {KP  Kp= {wﬁ s 2}' —1 <% <1, cases of cooperation between the encoders. For the setup
andE[X?] andE[X2] satisfying [10). in which the encoders do not cooperate, we show that under
With straightforward algebra, it can be checked that thisertain conditions, our lower and upper bounds agree. feor th
corresponds also to the special ca§e = o in Corollary[2. case of full cooperation between the encoders, the studied
[0 setup reduces to a multi-antenna wiretap channel and the

developed bounds coincide.

Proof: The upper bound follows by Corollafy 1. The
proof of the lower bound follows by evaluating the equiv
ocation rate in Theorerfl] 2 with a specific choice of th

random variables. More specifically, the rate expressi@) (

V. NUMERICAL RESULTS

We consider the Gaussian MAC] (9) in which the outputs VII. ACKNOWLEDGMENT
at the legitimate receiver and eavesdropper are corrupted b This work has been supported in part by the European
additive white Gaussian noise (AWGN) of zero mean andommission in the framework of the Network of Excellence
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