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Abstract—We study a special case of Willems’s two-user
multi-access channel with partially cooperating encoders from a
security perspective. This model differs from Willems’s setup in
the following aspects — only one encoder, Encoder 1, is allowed
to conference, Encoder 2 does not transmit any message, and
there is an additional passive eavesdropper from whom the com-
munication should be kept secret. For the discrete memoryless
(DM) case, we establish inner and outer bounds on the capacity-
equivocation region. The inner bound is established by a careful
combination of Willems’s coding scheme, noise injection scheme
and additional binning that provides randomization for security.
For the memoryless Gaussian model, we establish lower and
upper bounds on the secrecy capacity. We also studied some
extreme cases of cooperation between the encoders and showed
that, under certain conditions, these bounds coincide.

I. I NTRODUCTION

Wyner, in his seminal paper [1], introduced a basic wiretap
model to study security from an information theoretic per-
spective. The wiretap model consists of three nodes, a source,
a legitimate receiver and an eavesdropper. In this model for
secure communication, two constraints need to be fulfilled
simultaneously — transmitted information should be received
reliably at the legitimate receiver and should be perfectly
secured from the eavesdropper. The Wiretap model has been
applied further to study the security of different multiuser
channels, for instance, multi-antenna wiretap channel [2]–
[4], multi-access wiretap channel [5], [6], relay-eavesdropper
channel [7], [8], parallel relay channel [9] and interference
channel [10], [11].

In this contribution, we study the problem of secure
communication over a multi-access channel (MAC) with par-
tially cooperating encoders. Willems studied the MAC with
partially cooperating encoders model in [12], where prior
to transmitting their respective messages, the two encoders
are allowed to cooperate with each other over noiseless bit-
pipes of finite-capacities. Willems characterizes the complete
capacity region of this model for the DM case. The capacity
region of the corresponding Gaussian version was character-
ized by Brosset. al in [13]. In both [12] and [13], among
other observations, it is shown in particular that holding a
conference prior to the transmission, enlarges the capacity
region relative to the standard MAC with independent inputs.

We study a special case of Willems setup with an ad-
ditional security constraint on the communication. More
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Fig. 1. Multi-access channel with partially cooperating encoders and
security constraints.

precisely, as depicted in Figure 1, we consider a two-user
multi-access channel in which the two users can partially
cooperate with each other via a unidirectional noiseless bit-
pipe of finite capacityC12. In addition to this, we restrict
the role of Encoder 2 to only helping Encoder 1, i.e.,
Encoder 2 has no message of its own to transmit. We also
assume that there is a passive eavesdropper who overhears
the transmission and from whom the communication from
Encoder 1 and Encoder 2 to the legitimate receiver should be
kept secret. The eavesdropper is passive in the sense that itis
not allowed to modify the transmitted information. The role
of Encoder 2 is then to only help Encoder 1 communicate
with the legitimate receiver while keeping the transmitted
information secret from the eavesdropper. Practically, this
model may be appropriate for example to the study of the role
of backbone connections among base stations for securing
transmission in cellular environments. In this work, we study
the capacity-equivocation region of this model.

The MAC model that we study in this paper has some con-
nections with a number of related works studied previously.
In contrast to the orthogonal relay-eavesdropper channel
studied in [14], the orthogonal link between the source and
the relay is here replaced by a noiseless bit-pipe of finite
capacityC12. In comparison to the wiretap channel with a
helper interferer (WT-HI) studied in [15], our model permits
cooperation among the encoders. Finally, compared with the
primitive relay channel of [16], our model imposes security



constraints on the transmitted message.
For the DM case, we establish bounds on the capacity-

equivocation region. The coding scheme that we used to
construct an inner bound is based on an appropriate careful
combination of Willems coding scheme [12], noise injection
[7, Theorem 3] and binning for randomization. The converse
proof is established by extending the converse proof of [12]
by taking security constraint into account and that of [17] to
account for the unidirectional noiseless bit-pipe cooperation
among the encoders. In doing so, we note that one needs to
re-define the involved auxiliary random variables appropri-
ately. We note that characterizing the capacity-equivocation
region of our model in the general setting is not easy; and, in
fact, the capacity-equivocation region or secrecy-capacity of
closely related models that are reported in the literature,such
as [15], [18], [19], are still to be found — the model of [15]
can be seen as a special case of our model obtained by taking
a noiseless bit-pipe of zero capacity. From this viewpoint,the
inner and outer bounds that we develop here can be seen as
one step further towards a better understanding of the full
capacity-equivocation region of the model that we study in
this paper.

We also study the Gaussian memoryless model of the
MAC model shown in Figure 1. For this setup, we only
focus on the perfect secure transmission. For this model, we
establish lower and upper bounds on the secrecy capacity.
The coding scheme that we use to establish the lower bound
uses ideas that are essentially similar to those for the DM
case. The upper bound on the secrecy capacity does not
involve auxiliary random variables and, so, is computable.
Furthermore, it has the same expression as the secrecy
capacity of the Gaussian wiretap channel with a two-antenna
transmitter, single-antenna legitimate receiver and single-
antenna eavesdropper [2]–[4].

We also show the optimality of our lower bound for some
extreme cases of cooperation among the encoders, including
when the two encoders fully cooperate, i.e.,C12 := ∞. For
the case in which the two encoders do not conference, i.e.,
C12 := 0, the studied model reduces to a wiretap channel
with a helper interferer [15], [18]. In this case, our coding
scheme reduces to merely injecting statistically independent
noise [7, Theorem 3]; and, by comparing it to the upper
bound that we develop, we show that it is optimal under
certain conditions. For the case of full cooperation among
the encoders, i.e.,C12 := ∞, our coding scheme reduces
to full two-antenna cooperation for providing secrecy in the
context of multiantenna wiretap channels [2]–[4].

II. CHANNEL MODEL AND DEFINITIONS

Figure 1 shows the channel model. LetW denote the
message to be transmitted, taken uniformly from the set
W = {1, . . . , 2nR}. Encoder 1 is allowed to conference the
messageW to Encoder 2 usingK communicating functions
{φ11, φ12, . . . , φ1K}, over the noiseless bit-pipe. LetG1k :=
φ1k(W ), defined as the output of the communication process
for the k-th communication, whereG1k ranges over the finite

alphabetG1k, k = 1, . . . ,K. The information conferenced is
bounded due to the finiteness of noiseless bit-pipe capacity
between the two encoders. A conference is permissible if
communication functions are such that

K
∑

k=1

log |G1k| ≤ nC12. (1)

To transmit the messageW , Encoder 1 sends a codeword
Xn

1 ∈ Xn
1 , where X1 designates the input alphabet at

Encoder 1. Encoder 2 transmits a codewordXn
2 ∈ Xn

2 where
X2 designates the input alphabet at Encoder 2. LetY and
Z designate the output alphabets at the legitimate receiver
and eavesdropper, respectively. The legitimate receiver gets
the channel outputY n ∈ Yn, and tries to estimate the
transmitted message from it. The eavesdropper overhears the
channel outputZn ∈ Zn. The transmission over the channel
is characterized by the memoryless conditional probability
p(y, z|x1, x2). The channel is memoryless in the sense that

p(yn, zn|xn1 , x
n
2 ) =

n
∏

i=1

p(yi, zi|x1,i, x2,i). (2)

A (2nR, n) code for the multi-access model with partially
cooperating encoders shown in Figure 1 consists of encoding
functions1

φ1 : W −→ Xn
1 ,

φ1k : W −→ G1k, k = 1, ...,K,

φ2 : {1, . . . , 2nC12} −→ Xn
2 , (3)

and a decoding functionψ(·) at the legitimate receiver

ψ : Yn −→ W. (4)

The average error probability for the(2nR, n) code is defined
as

Pne =
1

2nR

∑

W∈W
Pr{Ŵ 6=W |W}. (5)

The eavesdropper overhears to what the encoders transmit
and tries to guess the information from it. The equivocation
rate per channel use is defined asRe = H(W |Zn)/n. A
rate-equivocation pair(R,Re) is said to be achievable if for
any ε > 0 there exists a sequence of codes(2nR, n) such
that for anyn ≥ n(ε)

H(W )

n
≥ R− ε,

H(W |Zn)

n
≥ Re − ε,

Pne ≤ ε. (6)

The secrecy capacity is defined as the maximum achievable
rate at which the communication rate is equal to the equiv-
ocation rate, i.e.,(R,Re) = (R,R).

1The source encoder,φ1, is a stochastic encoder that introduces additional
randomization to increase secrecy.



III. D ISCRETEMEMORYLESSCASE

In this section we consider the MAC shown in Figure 1
and establish bounds on the capacity-equivocation region.

A. Outer Bound

The following theorem provides an outer bound on the
capacity-equivocation region of the MAC with partially coop-
erating encoders and security constraints shown in Figure 1.

Theorem 1: For the MAC with partially cooperating en-
coders and security constraints shown in Figure 1, and for any
achievable rate-equivocation pair(R,Re), there exist some
random variablesU ↔ (V1, V2) ↔ (X1, X2) ↔ (Y,Z), such
that (R,Re) satisfies

R ≤ min{I(V1, V2;Y ), I(V1;Y |V2) + C12}

Re ≤ R

Re ≤ min{I(V1, V2;Y |U)− I(V1, V2;Z|U),

I(V1;Y |V2, U) + C12 − I(V1, V2;Z|U)}. (7)

Proof: The proof of Theorem 1 is provided in [20,
Appendix I].

B. Inner Bound

Next, we establish an inner bound on the capacity-
equivocation region of the MAC shown in Figure 1.

Theorem 2: For the MAC with partially cooperating en-
coders and security constraints shown in Figure 1, the rate
pairs in the closure of the convex hull of all(R,Re) satisfying

R ≤ min{I(V1, V2;Y |U), I(V1;Y |V2, V, U) + C12}

Re ≤ R

Re ≤ [min{I(V2;Y |V,U), I(V2;Z|V1, V, U)}

+min{I(V1, V2;Y |U), I(V1;Y |V2, V, U) + C12}

− I(V1, V2;Z|U)]+ (8)

for some measure p(u, v, v1, v2, x1, x2, y, z) =
p(u)p(v|u)p(v1|v, u)p(v2|v, u)p(x1|v1)p(x2|v2)p(y, z|x1, x2),
are achievable.

Outline of Proof:
We briefly outline the coding scheme that we use to prove the
achievability of the inner bound of Theorem 2. The details of
the proof is provided in [20, Appendix II]. The inner bound
of Theorem 2 is based on a coding scheme that consists in
appropriate careful combination of Willems’s coding scheme
[12], noise injection [7, Theorem 3] and binning for random-
ization to provide security. LetW denote the message to be
transmitted. Using the noiseless bit-pipe of finite capacity,
Encoder 1 conferences a part of the information messageW
to Encoder 2. After completion of the conferencing process,
this part can be regarded as a common information to be
transmitted by both encoders. The random variableV in
Theorem 2 represents this common information. The part of

the information message that is sent only by Encoder 1 can
be regarded as an individual message. The random variable
V1 in Theorem 2 represents this individual information. The
input of Encoder 2 is composed of the common information,
which it has received through noiseless finite capacity link
from Encoder 1, and a statistically independent artificial noise
component. The random variableV2 in Theorem 2 represents
the input from Encoder 2. The transmission of both common
information and artificial noise components at Encoder 2 in
Theorem 2 is adjusted by appropriate selection of random
variableV . Additional random binning is employed to secure
both individual and common information from the passive
eavesdropper [1]. Finally, the random variableU in Theorem
2 stands for a channel prefix.

IV. M EMORYLESSGAUSSIAN MODEL

Now, we study the Gaussian version of the MAC channel
shown in Figure 1.

A. Channel Model

For the Gaussian model, the outputs of the MAC at the
legitimate receiver and eavesdropper for each symbol time
are given by

Y = h1dX1 + h2dX2 +N1

Z = h1eX1 + h2eX2 +N2 (9)

whereh1d, h2d, h1e, andh2e are the channel gain coefficients
associated with Encoder 1-to-destination (1-D), Encoder 2-
to-destination (2-D), Encoder 1-to-eavesdropper (1-E), and
Encoder 2-to-eavesdropper (2-E) links respectively. The noise
processes{N1,i} and{N2,i} are independent and identically
distributed (i.i.d) with the components being zero mean Gaus-
sian random variables with variancesσ2

1 andσ2
2 , respectively;

andX1,i andX2,i are the channel inputs from Encoder 1 and
Encoder 2 respectively. The channel inputs are bounded by
average block power constraints

n
∑

i=1

E[X2
1,i] ≤ nP1,

n
∑

i=1

E[X2
2,i] ≤ nP2. (10)

B. Upper Bound on the Secrecy Capacity

In this section, we establish an upper bound on the secrecy
capacity on Gaussian MAC (9). We establish a computable
upper bound using the techniques developed earlier to estab-
lish the secrecy capacity of a multiple-input multiple-output
(MIMO) wiretap channel [2]–[4] — taking a setup with two
antennas at the transmitter, one antenna at the legitimate
receiver and one antenna at the eavesdropper in our case.

Corollary 1: For the Gaussian MAC with partially coop-
erating encoders and security constraints (9), an upper bound
on the secrecy capacity is given by

Rup
e = max

ψ
[I(X1, X2;Y )− I(X1, X2;Z)] (11)



where [X1, X2] ∼ N (0,KP) with KP =
{

KP : KP=
[

P1 ψ
√
P1P2

ψ
√
P1P2 P2

]

, −1 ≤ ψ ≤ 1
}

, with E[X2
1 ], E[X2

2 ]

satisfying (10).

C. Lower Bound on the Secrecy Capacity

For the Gaussian MAC with partially cooperating encoders
and security constraints (9), we obtain a lower bound on
the secrecy capacity by using our result for the DM model
in Theorem 2. The results established for the DM case can
be readily extended to memoryless channels with discrete
time and continuous alphabets using standard techniques [21,
Chapter 7].

Corollary 2: For the Gaussian MAC with partially coop-
erating encoders and security constraints (9), a lower bound
on the secrecy capacity is given by

R
low
e = max

0≤α≤1,
0≤β≤1

[

min

{

C

(

β|h2d|
2P2

σ2
1 + α|h1d|2P1

)

, C

(

β|h2e|
2P2

σ2
2

)}

+min

{

C

(

α|h1d|
2P1

σ2
1

)

+ C12,

C

(

|h1d|
2P1 + |h2d|

2P2 + 2
√

ᾱβ̄|h1d|2P1|h2d|2P2

σ1
2

)}

− C

(

|h1e|
2P1 + |h2e|

2P2 + 2
√

ᾱβ̄|h1e|2P1|h2e|2P2

σ2
2

)]+

.

(12)

Proof: The achievability follows by computing the in-
ner bound in Theorem 2 with the choiceU := constant,
V1 := X1 andV2 := X2, X1 :=

√

(αP1)X̃1 +
√

(ᾱP1)V ,
X2 :=

√

(βP2)X̃2 +
√

(β̄P2)V , whereX̃1, X̃2 and V be
independent random variables withN (0, 1), andα ∈ [0, 1],
ᾱ := 1 − α, β ∈ [0, 1], and β̄ := 1 − β. Straightforward
algebra that is omitted for brevity gives (12).

D. Analysis of Some Extreme Cases

In this section we consider two special cases of the
Gaussian MAC (9) with partially cooperating encoders shown
in Figure 1, where the capacity of the bit-pipe is either,

1) C12 = 0, or
2) C12 = ∞.

The Case 1 corresponds to the wiretap channel with a
helping interferer (WT-HI) studied in [15], [18]. The Case
2 corresponds to a two-antenna transmitter wiretap channel
[4], [22].

1) Case C12 := 0: In this case the encoders do not cooper-
ate. Since Encoder 2 does not know the common information
to transmit, it only injects statistically independent artificial
noise.

Corollary 3: For the Gaussian model (9) withC12 := 0:

1) An upper bound on the secrecy capacity is given by

Rup
e = max

E[X2

1
]≤P1,

E[X2

2
]≤P2

[

C
( |h1d|

2
E[X2

1 ]

σ2
1

)

− C
( |h1e|

2
E[X2

1 ]

σ2
2 + |h2e|2E[X2

2 ]

)

]+

. (13)

2) A lower bound on the secrecy capacity is given by

Rlow
e = max

[

C
( |h1d|

2
E[X2

1 ]

σ2
1

)

− C
( |h1e|

2
E[X2

1 ]

σ2
2 + |h2e|2E[X2

2 ]

)

]+

(14)

where the maximization is overE[X2
1 ] ≤ P1 and

E[X2
2 ] ≤ P2 such that

C
( |h2d|2E[X2

2 ]

|h1d|2E[X2
1 ] + σ2

1

)

≥ C
( |h2e|2E[X2

2 ]

σ2
2

)

. (15)

Proof:
Upper Bound. We bound the term in (13) as follows. The

proof follows by using elements from an upper bounding
technique developed in [14]. We assume that there is a
noiseless link between Encoder 2 and the legitimate receiver,
and the eavesdropper isconstrained to treat Encoder 2’s
signal as unknown noise. The upper bound established for
this alternate model, with full cooperation between Encoder
2 and the legitimate receiver and a constrained eavesdropper,
also applies to the model of Corollary 3. The details of the
proof is provided in [20].

Lower Bound. The proof of the lower bound follows
by evaluating the equivocation rate in Theorem 2 with a
specific choice of the variables. More specifically, evaluating
Theorem 2 with the choiceC12 := 0, U = V = φ,
V1 := X1 andV2 := X2, with X1 ∼ N (0, P1) independent
of X2 ∼ N (0, P2), and such that (15) is satisfied, we obtain
the rate expression in (14). The RHS of (14) then follows
by maximization overE[X2

1 ] ≤ P1 and E[X2
2 ] ≤ P2 and

satisfying (15).

Remark 1: The bounds on the secrecy capacity in (13)
and (14) have identical expressions but the maximization is
over different sets of inputs. The bounds coincide in the case
in which the inputs (E[X2

1 ],E[X
2
2 ]) that maximize the RHS

of (13) also satisfy the condition (15). In this case, the perfect
secrecy of the studied model is given by

Cs = max

[

C
( |h1d|

2
E[X2

1 ]

σ2
1

)

− C
( |h1e|

2
E[X2

1 ]

σ2
2 + |h2e|2E[X2

2 ]

)

]+

(16)

where the maximization is overE[X2
1 ] ≤ P1 andE[X2

2 ] ≤ P2

satisfying

C
( |h2d|

2
E[X2

2 ]

|h1d|2E[X2
1 ] + σ2

1

)

≥ C
( |h2e|

2
E[X2

2 ]

σ2
2

)

. (17)
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2) Case C12 := ∞: In this case the model (9) reduces to
a wiretap channel in which the transmitter equipped with
two antenna and the legitimate receiver and eavesdropper
equipped with single antennas. As it will be shown below, in
this case the upper bound of Corollary 1 and the lower bound
of Corollary 2 coincide, thus providing a characterizationof
the secrecy capacity, which can also be obtained from [3],
[4] in this specific case.

Corollary 4: For the Gaussian model (9) with fully co-
operating encoders, the secrecy capacity is given by

Cs = max
ψ

[I(X1, X2;Y )− I(X1, X2;Z)] (18)

where [X1, X2] ∼ N (0,KP) with KP =
{

KP : KP=
[

P1 ψ
√
P1P2

ψ
√
P1P2 P2

]

, −1 ≤ ψ ≤ 1
}

, with E[X2
1 ] andE[X2

2 ]

satisfying (10).

Proof: The upper bound follows by Corollary 1. The
proof of the lower bound follows by evaluating the equiv-
ocation rate in Theorem 2 with a specific choice of the
random variables. More specifically, the rate expression (18)
is obtained by settingC12 := ∞, U := constant,V1 := X1,
V = V2 = X2, in Theorem 2 where[X1, X2] ∼ N (0,KP)

with KP =
{

KP : KP=
[

P1 ψ
√
P1P2

ψ
√
P1P2 P2

]

, −1 ≤ ψ ≤ 1
}

andE[X2
1 ] andE[X2

2 ] satisfying (10).
With straightforward algebra, it can be checked that this
corresponds also to the special caseC12 = ∞ in Corollary 2.

V. NUMERICAL RESULTS

We consider the Gaussian MAC (9) in which the outputs
at the legitimate receiver and eavesdropper are corrupted by
additive white Gaussian noise (AWGN) of zero mean and
unit variance each. We model channel gains between node
i ∈ {1, 2} and j ∈ {d, e} as distance dependent path loss,
hi,j = d

−γ/2
i,j , whereγ is the path loss exponent. We assume

that both users have an average power constraint of 1 watt

each and the path loss exponentγ:=2. We consider a network
geometry in which Encoder 1 is located at the point (0,0),
Encoder 2 is located at the point (d,0), the legitimate receiver
is located at the point (1,0) and the eavesdropper is locatedat
the point (1.5,0), whered is the distance between Encoders
1 and 2. The upper (11) and the lower (12) bounds are
optimized numerically for Gaussian inputs. Figure 2 shows
the upper and lower bounds on the secrecy capacity for
different values of finite capacity link. As a reference we
consider the case in which there is no helping Encoder, i.e.,a
basic wiretap channel. If we setC12 := 0, Encoder 1 does not
conference to Encoder 2, for this setup the MAC (9) reduces
to the classic WT-HI [15], [18]. In this case Encoder 2 can
help Encoder 1 by injecting confusion codewords to confuse
the eavesdropper [7, Theorem 3]. If we increase the capacity
of noiseless bit-pipe, the achievable secrecy rate increases,
this follows because Encoder 2 is more informed about the
information message from Encoder 1 and can cooperate with
each other. For instance, if we consider a very large value of
noiseless bit-pipe capacity, the upper and lower bounds will
eventually coincide. This is due to the fact that a large value
of C12 results in full cooperation between the encoders, due
to which the channel reduces to a two-antenna transmitter
wiretap channel for which secrecy capacity is established
(Corollary 4).

VI. CONCLUSION

In this contribution, we studied a special case of Willems’s
multi-access channel with partially cooperating encoders[12]
from security perspective. We established outer and inner
bounds on the capacity-equivocation region, for the DM case.
The inner bound is established by an appropriate careful
combination of Willems’s coding scheme, noise injection
[7, Theorem 3] and additional random binning for security.
The converse proof is obtained by using the techniques
developed earlier in the context of broadcast channels with
confidential messages and Willems’s MAC to the considered
setup. We note that the outer and inner bounds which we
have established do not agree in general, but can be seen as
a step ahead towards characterizing the capacity-equivocation
region. For the Gaussian setup, we establish lower and upper
bounds on the secrecy capacity. We also study some extreme
cases of cooperation between the encoders. For the setup
in which the encoders do not cooperate, we show that under
certain conditions, our lower and upper bounds agree. For the
case of full cooperation between the encoders, the studied
setup reduces to a multi-antenna wiretap channel and the
developed bounds coincide.
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