
Wyner-Ziv Lattice Coding for Two-Way Relay
Channel

Sinda Smirani, Mohamed Kamoun, Mireille Sarkiss
CEA, LIST, Communicating Systems Laboratory

BC 94, Gif Sur Yvette, F91191 - France
{sinda.smirani, mohamed.kamoun, mireille.sarkiss}@cea.fr

Abdellatif Zaidi
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Abstract—A Two-Way Relay Channel (TWRC) in which duplex
transmission between two users via a relay station is considered.
A physical layer network coding strategy based on compress-
and-forward relaying scheme for the TWRC is proposed. In the
underlying coding strategy, we use nested lattices for Wyner-Ziv
coding and decoding. The relay uses the weaker side information
available at the receivers from the first transmission phase to
broadcast a common quantized version of its received signal. We
characterize the achievable rate region of the presented scheme.
Then we show that lattice codes can achieve random coding rates.

I. INTRODUCTION

The two way relaying problem where two communicating
nodes want to exchange information via a relay station is
encountered in various wireless communication scenarios:
ad-hoc networks, range extension for cellular and local
networks ...
While network level routing is the classical solution to
this problem it has been shown that network coding (NC)
strategies provide better performance by leveraging the side
information that is available in each node. In fact, NC allows
to improve the rates by combining raw bits or packets at
the network layer. The capacity of the system can be further
improved when NC is applied to the physical layer. It takes
advantage of the broadcast and multiple-access properties of
the radio link that are considered usually as an interference
nuisance to the system [1]. In this context, we consider a
physical network coding (PNC) strategy where the overall
communication takes two phases, namely a multiple Access
(MAC) phase and a Broadcast (BC) phase.
Among various strategies that can be used in the TWRC, three
relaying protocols can be employed: Amplify and Forward
(AF), Decode and Forward (DF), and Compress and Forward
(CF). The AF scheme is a linear relaying protocol where the
relay only scales the received signal to meet its output power
constraint. In the DF scheme, the relay decodes separately
both messages then re-encodes them before broadcasting the
resulting codeword. Finally, CF scheme, introduced first in
[2], has been recently extended to TWRC [3]. In this protocol,
the relay station sends a quantized version of the received
signal.
Performance bounds of these schemes were investigated in
[4], [5], [3]. Independently, achievable rate regions of CF
relaying have been investigated in [6], [7]. It has been shown
that for specific channel conditions, specially symmetric
channels, CF outperforms DF for high SNR regimes and AF

at all SNR regimes. Besides, the authors in [6] proved that
CF relaying scheme achieves rates within one half bit of the
capacity region in the Gaussian case for symmetric noise
variances.
In the aforementioned references, the derivation of the
achievable rate regions has employed random coding tools.
Structured codes, on the other hand, have been found to
be more advantageous in a practical settings thanks to their
reduced complexity in encoding and decoding [8]. Lattice
codes represent an important class of structured codes that can
be used in many wireless systems. It has been shown in [9]
that for an Additive White Gaussian Noise (AWGN) channel,
lattice based codes can achieve the Shannon capacity for
Gaussian point-to-point communication. Based on this result,
lattice coding and decoding schemes have been suggested
for TWRC scenario in [10]. In this scheme, the transmitters
employ nested lattices as codebooks, and the relay decodes
a modulo-lattice sum of the transmitted codewords from the
received signal. In addition, all the nodes should transmit with
the same power. In [11], this scheme has been extended for
different power constraints, however no channel conditions
were considered.
In our work, we investigate a CF strategy at the relay for
block fading channels with different transmit powers at the
transmitting nodes. In the MAC phase, these nodes send
simultaneously their messages and the relay receives a mixture
of the transmitted signals. This received signal represents
the relay source to be encoded. Then, the relay schemes a
message which can be decoded by both receivers using the
available side information. When only the decoder has access
to side information about the source, this setting is equivalent
to Wyner-Ziv (WZ) with lossy source compression [12] or
Slepian-Wolf with lossless source compression [13]. Nested
lattice-code-based lossy source quantization is introduced in
[14] for Gaussian sources in point-to-point communication.
In this paper, we extend this scheme to the TWRC where
a common source is compressed and broadcasted to the
receivers. The proposed strategy provides a practical PNC
scheme for TWRC.
The rest of the paper is organized as follows. In section II,
we introduce our system model. In section III, we outline the
fundamentals of nested lattice codes and the lattice based WZ
scheme for the TWRC. In section VI, achievable rate region
of the considered model will be provided and then compared



with random coding achievable rate region. Finally, section V
concludes the paper.

II. SYSTEM MODEL

Fig. 1. The two-phase transmission of TWRC

We consider a Gaussian TWRC as presented in Fig.1. The
communication takes n channel uses split into two phases
MAC and BC. We use the index i ∈ {1, 2} to refer to the
nodes T1 and T2 and r to refer the Relay R. We assume that
all nodes are half-duplex so they are not able to transmit and
receive at the same time.
During the MAC phase, each node Ti chooses randomly a
message mi ∈ Mi = {1, 2, · · · ,Mi} according to a uniform
distribution, to be sent to the other terminal via the relay
station. The message mi is then mapped by a function fi(.)
to a codeword xi(mi) = (xi,1(mi), xi,2(mi), · · · , xi,n1(mi))
of dimension n1 which is sent to the relay. We assume that
the codewords xi correspond to the realizations of a random
variable Xi whose probability distribution is given by pi(xi).
The messages are transmitted through a memoryless channel
represented by the Gaussian transition probability p(yr|x1, x2).
The relay R receives the signal Yr that belongs to the output
alphabet Yr.
During the BC phase, an encoding function at the relay
generates a codeword xr of dimension n2 from the received
signal yr. The symbols are chosen from a set Xr. The signal Xr

is transmitted through a broadcast memoryless channel with
Gaussian transition probability p(y1, y2|xr), where Yi are the
received signals at nodes Ti that belong to the output set Yi.
Both nodes use the received signal and their side information
taken from their previously sent data to decode their intended
messages.
The MAC and BC phases take respectively n1 and n2 channel
uses such as n1 + n2 = n. Let α ∈ [0, 1] be the time
division coefficient such that n1 = αn and n2 = (1 − α)n.
We assume that both phases are statistically independent
such that the probability distribution p(yr, y1, y2|x1, x2, xr) =
p(yr|x1, x2)p(y1, y2|xr).
All input distributions are real valued: Xk ∼ N (0, Pk),
k ∈ {1, 2, r}, where N (0, Pk) denotes a zero mean real
Gaussian variable with power Pk. The received signals can
be modeled as follows:

Yr = h1X1 + h2X2 + Zr (1)
Yi = hiXr + Zi, (2)

where hi denotes the channel coefficient between Ti and R.
We consider channel reciprocity such that the gain between
a node and the relay is equal to the gain between the relay

and that node i.e. hi→r = hr→i = hi. Zr ∼ N (0, σ2
r) is the

additive white Gaussian noise at the relay and Zi ∼ N (0, σ2
i )

the AWGN at node Ti, i ∈ {1, 2}. We assume perfect CSI
which means that each node is aware of all the channel gains,
and the noise components are independent of each other and
from the channel inputs.

In the sequel, we investigate the design of an
(M1,M2, n1, n2)-code for TWRC using a Lattice-based
Wyner-Ziv strategy. We will provide an achievable rate region
for the code given by a set of achievable rate pairs (R12, R21).

Definition A rate pair (R12, R21) is said to be achievable if
∃ a sequence of (M1,M2, n1, n2)-codes with logM1

n → R12

and logM2

n → R21 such that the decoding error probability
approaches zero for n sufficiently large.

III. WYNER-ZIV LATTICE CODING FOR TWRC

In this section, we explain our proposed scheme based on
WZ encoding for TWRC. In [14], nested lattice codes have
been shown to achieve the WZ rate distortion for both binary
hamming and the quadratic Gaussian case in point-to-point
communication. In our work, the main idea is the following:
during BC phase, the relay station sends a compressed version
of the signal received during the MAC phase. The relay
employs a lossy compression scheme based on nested lattice
codes for Wyner-Ziv strategy. This scheme is motivated by the
presence of the side information at both receivers. We first
outline some preliminaries on lattice coding. More details for
real lattices can be found in [9], [14].

A. Fundamentals on Lattice codes

A real k-dimensional lattice Λ is a subgroup of the Euclidean
space (Rk,+). Thus ∀λ1, λ2 ∈ Λ, then λ1 + λ2 ∈ Λ. We
present below some fundamental properties associated with a
lattice:

• The nearest neighbor lattice quantizer of Λ is defined as
QΛ(x) = argmin

λ∈Λ
||x − λ|| where x ∈ Rk and ∥.∥ is the

Euclidean norm.
• The basic Voronoi cell of Λ is the set of points in Rk

closest to the zero vector, V(Λ) = {x | QΛ(x) = 0}
• The volume of a lattice V := Vol(V(Λ))
• The mod-Λ operation is defined as x modΛ = x−QΛ(x).

This law satisfies the distributive law: (x mod Λ + y)
mod Λ = (x + y) mod Λ

• Crypto Lemma: For a dither vector T independent of X
and uniformly distributed over V(Λ), then Y = (X + T)
mod Λ is uniformly distributed over V(Λ) and is inde-
pendent of X [9]

• The second moment per dimension of Λ is σ2(Λ) :=
1
k .

1
V

∫
V(Λ)

||x||2dx
• The dimensionless normalized second moment is defined

as G(Λ) := σ2(Λ)
V 2/k

Let Gk, the minimum possible value of G(Λ) over all lattices
in Rk. The figure of merit of this variable comes from an
important result in the quantization theory. It is shown in [15]
that for large dimension k there exist lattice quantizers Λ∗

k such



that G(Λ∗
k) = Gk −→

k→∞
1

2πe . These lattices are called ”good”
lattices for quantization. Furthermore, lattices which are good
for channel coding as defined in [16] have for large dimension
k a volume V < 2k(h(Z)+ϵ) for any ϵ > 0, where h(Z) =
1
2 log(2πeσ

2) is the differential entropy of Gaussian noise Z
with variance σ2. In this case, the decoding error probability
defined as Pe = P{Z /∈ V(Λ)} vanishes when k goes to ∞.
A pair of k-dimensional lattices (Λ1,Λ2) is said nested if Λ2 ⊂
Λ1. The fine lattice is Λ1 with basic Voronoi region V1 of
volume V1 and the coarse lattice is Λ2 with basic Voronoi
region V2 of volume V2. The points of the set Λ1 ∩ V2 = Λ1

mod Λ2 represent the coset leaders of Λ2 relative to Λ1, where
for each λ ∈ {Λ1 mod Λ2}, the shifted lattice Λ2,λ = Λ2+λ

is called a coset of Λ2 relative to Λ1. There are
V2

V1
distinct

cosets. It follows that the coding rate when using nested lattices
is

R =
1

k
log2 |Λ1 ∩ V2| =

1

k
log2

V2

V1
(bits per dimension) (3)

B. Nested Lattice codes for WZ problem
Recalling the described system in II, the global channel

model can be summarized as in Fig.2. The messages m1

and m2 carry each nR12 and nR21 bits, these messages are
transmitted over n1 channel uses to the relay. Upon receiving
Yr, the relay generates an index mr by applying nested lattice
codes for WZ source coding. Each terminal Ti regenerates a
local version of Yr denoted Ŷr,i with a controlled amount of
distortion Di, i ∈ {1, 2} such as

1

n1
E∥Yr − Ŷri∥2 ≤ Di (4)

In our system, we consider a single quantization scheme which
is adapted to the worst terminal (i.e. the one which has
the weakest side information). Without loss of generality we
assume that |h2|2P2 ≤ |h1|2P1 which makes the node T2 the
worst user in terms of side information. Therefore, the source
encoding at the relay will be performed with respect to the
second decoder T2 with distortion D2. In this case, T1 will
undergo the effect of this choice on its decoded signal at the
end of transmission.
The side information available at T2 is S2 = h2X2 with
variance σ2

S2
= |h2|2P2 that is the source is given by

Yr = S2+h1X1+Zr. Let U2 = h1X1+Zr the unknown part
of the source with variance σ2

U2
= |h1|2P1 + σ2

z . Thus, the
source Yr can be written as Yr = S2 + U2. By construction,
it is clear that U2 and S2 are independent random variables of
dimension n1. The WZ rate distortion function R(D2) of the
Gaussian source Yr with side information S2 at the decoder is
defined as the minimum achievable rate with distortion D2. It
is given by:

R(D2) =
1

2
log+2

(
VAR(Yr|S2)

D2

)
, 0 ≤ D2 ≤ VAR(Yr|S2)

(5)

=
1

2
log+2

(
σ2
U2

D2

)
, 0 ≤ D2 ≤ σ2

U2
(6)

VAR(Yr|S2) is the conditional variance of Yr given S2 which
is equal to σ2

U2
.

The lattice coding is based on the scheme proposed in [14]
and it is adapted to TWRC. We use a pair of n1-dimensional
nested lattices (Λ1,Λ2) chosen to be good lattices: the fine
lattice Λ1 is good for quantization with second moment
per dimension σ2(Λ1) = D2 and the coarse lattice Λ2 is
chosen to be good lattice for channel coding with moment
σ2(Λ1) = σ2

U2
. According to the properties of good lattices,

we have 1
n1

log2(Vi) ≈ 1
2 log2(2πeσ

2(Λi)) , i ∈ {1, 2}.
Let t a dither vector uniformly distributed over V1. We assume
that it is available at both the encoder and the decoder. β is a
scaling factor to be determined later.
Encoding: It consists in performing a WZ lattice coding
(WZLC) with two successive operations: first the signal βyr+t
is quantized to the nearest point in Λ1 then the outcome of this
operation is processed with a modulo-lattice operation in order
to generate a vector vr of size n1 as shown in Fig.3.

vr = Q1(βyr + t) mod Λ2 (7)

The relay sends the index of vr that identifies the coset of Λ2

relative to Λ1 that contains Q1(βyr + t). The coset leader vr

is represented with
V2

V1
−→

n1→∞

n1

2
log2

(
σ2
U2

D2

)
bits. Thus, the

corresponding coding rate is equal to WZ distortion rate in
(6).
Decoding: At both users, vr is decoded first. Then the un-
known part of the source is reconstructed with a WZ lattice
decoder(WZLD) using the side information Si as

ûi = β((vr − t − βsi) mod Λ2) for i ∈ {1, 2} (8)

IV. ACHIEVABLE RATE REGION

Theorem 4.1: For Gaussian TWRC, the convex hull of the
following end-to-end rates (R12, R21) is achievable using WZ
nested lattice codes at the relay:

R12 ≤ α

2
log2

(
1 +

|h1|2P1(|h1|2P1 + σ2
z −D2)

σ2
z(|h1|2P1 + σ2

z −D2) +D2

)
(9)

R21 ≤ α

2
log2

(
1 +

|h2|2P2(|h1|2P1 + σ2
z −D2)

σ2
z(|h1|2P1 + σ2

z −D2) +D2

)
(10)

subject to:

α log2

(
|h1|2P1 + σ2

z

D2

)
≤ (1− α)min

{
log2

(
1 +

|h2|2Pr

σ2
2

)
,

log2

(
1 +

|h1|2Pr

σ2
1

)}
(11)

for α ∈ [0, 1].

Proof: At the relay, the message mr corresponding to the
index of vr is mapped to a codeword xr of size n2. Let R and
Rr be the common source rate and broadcast rate, respectively.
From the Shannon’s source-channel separation theorem [17],
we have that:

n1R ≤ n2Rr (12)



Fig. 2. Chanel Model for TWRC

Fig. 3. WZ Lattice Coding and Decoding at T2

with large dimension lattices we have:

R = R(D2) (13)

On the other hand, the nodes receive Y1 and Y2 as given by
(2). The error probability of decoding Xr vanishes for n2

sufficiently large if :

Rr ≤ min(I(Xr;Y1), I(Xr;Y2)) (14)

For the real Gaussian case:

I(Xr;Y1) =
1

2
log2

(
1 +

|h1|2Pr

σ2
1

)
and

I(Xr;Y2) =
1

2
log2

(
1 +

|h2|2Pr

σ2
2

)
Finally (11) is obtained by putting equations (12) and (13) into
equation (14) and by replacing n1 by αn and n2 by (1−α)n.
This constraint ensures that the index mr is transmitted reliably
to both terminals and vr is available at the input of WZLD at
both receivers. In the sequel, (9) and (10) will be demonstrated
therefore we present first the details of the source decoders.

Source decoder at receiver T2

Given the sequence s2, û2 is reconstructed such as:

û2 = ŷr,2 − s2 (15)
= β((vr − t − βs2) modΛ2) (16)
= β((Q1(βyr + t) modΛ2 − t − βs2) modΛ2)(17)
= β((βu2 + eq) modΛ2) (18)
≡ β(βu2 + eq) (19)

where eq = Q1(βyr+t)−(βyr+t) = −(βyr+t) mod Λ1, is
the quantization error. By the Crypto Lemma in Section III-A,
Eq is independent from Yr (and therefore from U2) and it is
uniformly distributed over V1 i.e VAR(Eq) = σ2(Λ1) = D2.
Equation (17) to Equation (18) follows from the lattice dis-
tributive law.
The equivalence from (18) to (19) is valid for n1 → ∞.
According to [14], with good channel coding lattices the
decoding error probability vanishes asymptotically. i.e.

Pr(βU2 + Eq) /∈ V2 −→
n1→∞

0 (20)

Note that
1

n1
E||Eq + βU2||2 =

1

n1
E||Eq||2 +

1

n1
E||βU2||2

= D2 + β2σ2
U2

β should be chosen carefully to guarantee that

1

n1
E∥Eq + βU2∥2 ≤ σ2(Λ2) (21)

Furthermore, we have:

Yr − Ŷr,2 = U2 + S2 − Û2 + S2

= U2 − Û2

= (1− β2)U2 − βEq

(22)

So the reconstruction distortion can be expressed as:

1

n1
E∥Yr − Ŷr,2∥2 =

1

n1
E∥(1− β2)U2 − βEq∥2

=
1

n1
E||(1− β2)U2||2 +

1

n1
E||βEq||2

= (1− β2)2σ2
U2

+ β2D2



β should guarantee also

1

n1
E∥Yr − Ŷr,2∥2 ≤ D2 (23)

Thus the optimal estimation factor β that verifies (21) and (23)

is β =

√
1− D2

σ2
U2

.

Finally from (19), Û2 = β(βU2 + Eq) which represents an
equivalent forward test channel given in Fig.4.

Fig. 4. Equivalent Channel at T2

By replacing U2 by its value we conclude that:

Û2 = β2h1X1 + β2Zr + βEq (24)

Let Zeq = β2Zr + βEq be the effective additive noise.
The communication between T1 and T2 is equivalent to a
virtual Gaussian channel where the noise is given by Zeq . We
approximate Eq by a Gaussian variable with same variance.
The equivalence is valid for asymptotic regime as n1 → ∞
[18]. The achievable rate of this link satisfies:

nR12 ≤ n1

2
log2

(
1 +

β2|h1|2P1

β2σ2
z +D2

)
by replacing

n1

n
= α and β by its value, (9) is verified.

Source decoder at receiver T1

For terminal T1, the decoder is adapted in order to fit to the
side information S1. Thus, at the decoder we subtract βs1 and
û1 is reconstructed such as:

û1 = ŷr,1 − s1 (25)
= β((vr − t − βs1) mod Λ2) (26)
= β((Q1(βyr + t)modΛ2 − t − βs1)modΛ2) (27)
= β((βu1 + eq)modΛ2) (28)
≡ β(βu1 + eq) (29)

The equality in (29) is conditioned on correct decoding at
decoder T1. It follows from the choice of good shaping lattice
Λ2 that Pr{βu1 + eq /∈ V2} −→

n1→∞
0. In fact, we have:

1

n1
E∥Eq + βU1∥2 = D2 + β2σ2

U1

= σ2
U2

+ β2(σ2
U1

− σ2
U2
)

and σ2
U1

≤ σ2
U2

since σ2
S1

≥ σ2
S2

, thus
1

n1
E∥Eq + βU1∥2 ≤

σ2
U2

. This means that asymptotically Eq +βU1 ∈ V2. Besides,

Yr − Ŷr,1 = U1 − Û1

= (1− β2)U1 − βEq
(30)

Thus, the reconstruction distortion at T1 can be calculated as
follows

D1 =
1

n1
E∥Yr − Ŷr,1∥2 =

1

n1
E∥(1− β2)U1 − βEq∥2

= (1− β2)2σ2
U1

+ β2D2

= D2 − D2
2

σ4
U2

(σ2
U2

− σ2
U1
)

≤ D2

Similarly from (29), Û1 = β2U1 + βEq ,

Û1 = β2h2X2 + Zeq (31)

Again the communication between T1 and T2 is equivalent to
a virtual Gaussian channel with an additive noise Zeq . The rate
of this link satisfies:

nR21 ≤ n1

2
log2

(
1 +

β2|h2|2P2

β2σ2
z +D2

)
which verifies (10). This concludes the proof.
In practice, the messages X̂1 and X̂2 can be decoded by
applying an MMSE estimator after the reconstruction of Û1

and Û2 and finally both nodes apply a de-mapping function
to obtain the messages m̂1 and m̂2. On the other hand, the
achievable rates can be optimized by maximizing over all
α ∈ [0, 1].

Comparison with random coding
As detailed earlier, our proposed scheme is a CF relaying
strategy based on structured codes at the relay. However, CF
scheme have been widely investigated with random coding
for TWRC in [4], [6] and [7].
The achievable rate region of random coding CF for TWRC
with time division optimization is given by the convex hull of
all rates (R12, R21) ([4], [6], [7]):

R12 ≤ αI(X1; Ŷr|X2, Q) (32)
R21 ≤ αI(X2; Ŷr|X1, Q) (33)

subject to:

αI(Ŷr;Yr|X1, Q) ≤ (1− α)I(Xr;Y1) (34)
αI(Ŷr;Yr|X2, Q) ≤ (1− α)I(Xr;Y2) (35)

over some joint probability distributions

p(q)p(x1|q)p(x2|q)p(yr|x1, x2)p(ŷr|yr)p(xr|q)

were Ŷr is the estimate of Yr at the relay.
To prove this achievable rate, the source coding strategy is
based on random coding WZ encoding.
In the classical Wyner-Ziv coding [12], [19], the reconstruction
of Yr at decoder Ti, Ŷr,i, is a function of the compressed source
Ŷr and the side information i.e. Ŷr,i = f(Ŷr, Xi) and for
Gaussian sources I(Yr; Ŷr|X1) = I(Yr; Ŷr,i|Xi). Broadcasting
a common source and considering only the receiver T2 with
weaker side information [20], the optimal forward test channel
for a Gaussian source and side information as given in [19] is

Ŷr = a(Yr +Ψ) (36)



where a =
VAR(Yr|X2)−D2

VAR(Yr|X2)
=

σ2
U2

−D2

σ2
U2

= β2 and Ψ ∼

N (0,
σ2
U2

D2

σ2
U2

−D2
).

We note that VAR(Ψ) =
D2

β2
and Ŷr = β2Yr + β2Ψ. Thus,

we can rewrite the rates according to this Gaussian model as:

R12 ≤ αI(X1; Ŷr|X2)
= αI(X1;β

2Yr + β2Ψ|X2)
= αI(X1;β

2(h2X2 + h1X1 + Zr +Ψ)|X2)
= αI(X1;β

2(h1X1 + Zr +Ψ))
= αh(β2(h1X1 + Zr +Ψ))− h(β2(Zr +Ψ))

=
α

2
log2

 |h1|2P1 + σ2
z +

D2

β2

σ2
z +

D2

β2


=

α

2
log2

(
1 +

β2|h1|2P1

β2σ2
z +D2

)
R21 can be computed similarly. By replacing β with its value
we found the same rates as in (9) and (10).
Moreover, limited by the bad receiver T2,

max(I(Ŷr;Yr|X1), I(Ŷr;Yr|X2)) = I(Ŷr;Yr|X2)

Thus the constraints (34) and (35) reduce to

αI(Ŷr;Yr|X2) ≤ (1− α)min{I(Xr;Y1), I(Xr;Y2)} (37)

The left-hand side of the inequality can be computed as:

I(Ŷr;Yr|X2) = I(β2Yr + β2Ψ;Yr|X2)
= I(β2(h1X1 + Zr +Ψ);h1X1 + Zr)
= h(β2(h1X1 + Zr +Ψ))− h(β2Ψ)

=
1

2
log2

(
|h1|2P1 + σ2

z +
D2

β2

D2

β2

)
=

1

2
log2

(
1 + β2 |h1|2P1 + σ2

z

D2

)
=

1

2
log2

(
|h1|2P1 + σ2

z

D2

)
= R(D2)

which corresponds to the WZ rate-distortion function. Thus,
the equation (37) corresponds to WZLC scheme equation (11).
Therefore, the derived achievable rates for WZLC is equivalent
to the ones using random coding for TWRC with CF scheme
[4], [6], [7].

V. CONCLUSION

In this paper, we have proposed a lattice-based WZ coding
at the relay using good nested lattices for TWRC. We have
derived the achievable rate region of the scheme by consider-
ing optimal time division between both transmission phases.
Moreover, we have shown that the compress-and-forward rates
are achievable for the TWRC using lattices at the relay.
In general, broadcasting a single quantized source is not
optimal for both users since they have different channel and
side information qualities. However, the problem addressed in
this paper gives us an insight on the application of structured
codes, namely lattice codes. These codes can achieve rate

regions equal to those achievable by random coding schemes
while offering practical coding/decoding strategies.
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