
Secure Degrees of Freedom of MIMO X-Channels
with Output Feedback and Delayed CSI

Abdellatif Zaidi Zohaib Hassan Awan Shlomo Shamai (Shitz) Luc Vandendorpe

Abstract— We investigate the problem of secure transmission
over a two-user multi-input multi-output (MIMO) X-channel
with noiseless local feedback and delayed channel state infor-
mation (CSI) available at transmitters. The transmitters are
equipped with M antennas each, and the receivers are equipped
with N antennas each. For this model, we characterize the
optimal sum secure degrees of freedom (SDoF) region. We show
that, in presence of local feedback and delayed CSI, the sum
SDoF region of the MIMO X-channel is same as the SDoF
region of a two-user MIMO BC with 2M antennas at the
transmitter and N antennas at each receiver. This result shows
that, upon availability of feedback and delayed CSI, there is no
performance loss in sum SDoF due to the distributed nature of
the transmitters. Next, we show that this result also holds if only
global feedback is conveyed to the transmitters. We also study the
case in which only local feedback is provided to the transmitters,
i.e., without CSI, and derive a lower bound on the sum SDoF for
this model. Furthermore, we specialize our results to the case in
which there are no security constraints. In particular, similar to
the setting with security constraints, we show that the optimal
sum degrees of freedom (sum DoF) region of the(M,M,N,N)-
MIMO X-channel is same of the DoF region of a two-user MIMO
BC with 2M antennas at the transmitter andN antennas at each
receiver. We illustrate our results with some numerical examples.

I. I NTRODUCTION

We consider a two-user MIMO X-channel in which each transmit-
ter is equipped withM antennas, and each receiver is equipped with
N antennas. Each transmitter sends information messages to both
receivers. More precisely, Transmitter 1 wants to transmitmessages
W11 andW12 to Receiver 1 and Receiver 2, respectively. Similarly,
Transmitter 2 wants to transmit messagesW21 andW22 to Receiver
1 and Receiver 2, respectively. The transmission is subjectto fast
fading effects. Also, we make two assumptions, namely 1) each
receiver is assumed to have perfect instantaneous knowledge of its
channel coefficients (i.e., CSIR) as well as knowledge of theother
receiver’s channel coefficients with one unit delay, and 2) there is
a noiseless output and CSI feedback from Receiveri, i = 1, 2, to
Transmitteri. We will refer to such output feedback as beinglocal,
by opposition toglobal feedback which corresponds to each receiver
feeding back its output to both transmitters. The considered model
is shown in Figure 1. Furthermore, the messages that are destined to
each receiver are meant to be kept secret from the other receiver. That
is, Receiver 2 wants to capture the pair(W11,W21) of messages that
are intended for Receiver 1; and so, in addition to that it is alegitimate
receiver of the pair(W12,W22), it also acts as an eavesdropper on
the MIMO multiaccess channel to Receiver 1. Similarly, Receiver 1
wants to capture the pair(W12,W22) of messages that are intended
for Receiver 2; and so, in addition to that it is a legitimate receiver of
the pair(W11,W21), it also acts as an eavesdropper on the MIMO
multiaccess channel to Receiver 2. The model that we study can be
seen as being that of [1] but with security constraints imposed on the
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Fig. 1. MIMO X-channel with local feedback and delayed CSI with security
constraints.

transmitted messages. We concentrate on the case of perfectsecrecy,
and focus on asymptotic behaviors, captured by the allowed secure
degrees of freedom over this network model. The reader may refer
to [2]–[4] for some other related works.

The main contributions of this paper can be summarized as
follows. First, we characterize the sum SDoF region of the two-user
(M,M,N,N)–MIMO X-channel with local feedback and delayed
CSI shown in Figure 1. We show that the sum SDoF region of this
model is same as the SDoF region of a two-user MIMO broadcast
channel with2M transmit antennas andN antennas at each receiver
in which delayed CSI is provided to the transmitter. This result shows
that, for symmetric antennas configurations, the distributed nature
of the transmitters does not cause any loss in terms of sum secure
degrees of freedom. The result also emphasizes the usefulness of
local output feedback when used in conjunction with delayedCSI
in securing the transmission of messages in MIMO-X channels, by
opposition to in MIMO broadcast channels. That is, for the two-user
MIMO X-channel, not only local output feedback with delayedCSI
does increase the DoF region as shown in [1], it also increases the
secureDoF region of this network model. The coding scheme that
we use for the proof of the direct part is based on an appropriate
extension of that developed by Yanget. al. [5] in the context of
secure transmission over a two-user MIMO BC with delayed CSI
at the transmitter; and it demonstrates how each transmitter exploits
optimally the available output feedback and delayed CSI.

Next, concentrating on the role of output feedback in the absence



of CSI at the transmitters from a secrecy degrees of freedom
viewpoint, we study two variations of the model of Figure 1. In
the first model, the transmitters are completely ignorant ofthe CSI,
but are provided withglobal output feedback. As we mentioned
previously, this output feedback is assumed to be noiselessly and is
provided by both receivers to both transmitters. In the second model,
the transmitters are provided with only local feedback, i.e., the model
of Figure 1 but with no delayed CSI at the transmitters.

For the model with global feedback at the transmitters, we show
that the sum SDoF region is same as the sum SDoF region of
the model with local feedback and delayed CSI available at the
transmitters, i.e., the model of Figure 1. In other terms, the lack of
CSI at the transmitters does not cause any loss in terms of sumSDoF
as long as the transmitters are provided with global output feedback.
In this case, each transmitter readily gets the side information or
interference that is available at the unintended receiver by means of
the global feedback; and, therefore, it can align it with theinformation
that is destined to the intended receiver directly, with no need of any
CSI.

For the model in which only local output feedback is provided
to the transmitters, we establish an inner bound on the sum SDoF
region. This inner bound is in general strictly smaller thanthat of the
model of Figure 1; and, so, although its optimality is shown only in
some specific cases, it gives insights about the loss incurred by the
lack of delayed CSI at the transmitters. This loss is caused by the
fact that, unlike the coding schemes that we develop for the setting
with local output feedback and delayed CSI at the transmitters and
that with global feedback at the transmitters, for the modelwith only
local feedback each transmitter can not learn the side information
that is available at the unintended receiver and which is pivotal for
the alignment of the interferences in such models.

Furthermore, we specialize our results to the case in which there
are no security constraints. Similar to the setting with security
constraints, we show that the optimal sum degrees of freedom(sum
DoF) region of the(M,M,N,N)-MIMO X-channel is same of the
DoF region of a two-user MIMO BC with2M antennas at the
transmitter andN antennas at each receiver. Finally, we illustrate
our results with some numerical examples.

II. SYSTEM MODEL AND DEFINITIONS

We consider a two-user(M,M,N,N) X-channel, as shown
in Figure 1. There are two transmitters and two receivers. Both
transmitters send messages to both receivers. Transmitter1 wants
to transmit messageW11 ∈ W11 = {1, . . . , 2nR11(P )} to Receiver
1, and messageW12 ∈ W12 = {1, . . . , 2nR12(P )} to Receiver 2.
Similarly, Transmitter 2 wants to transmit messageW21 ∈ W21 =
{1, . . . , 2nR21(P )} to Receiver 1, and messageW22 ∈ W22 =
{1, . . . , 2nR22(P )} to Receiver 2. The messages pair(W11,W21) that
is intended to Receiver 1 is meant to be concealed from Receiver 2;
and the messages pair(W21,W22) that is intended to Receiver 2 is
meant to be concealed from Receiver 1.

We consider a fast fading model, and assume that each receiver
knows the perfect instantaneous CSI along with the past CSI of the
other receiver. Also, we assume that Receiveri, i = 1, 2, feeds back
its channel output along with the delayed CSI to Transmitteri. The
outputs received at Receiver 1 and Receiver 2 at each time instant
are given by

y1[t] = H11[t]x1[t] + H12[t]x2[t] + z1[t]

y2[t] = H21[t]x1[t] + H22[t]x2[t] + z2[t], t = 1, . . . , n (1)

where xi ∈ C
M is the input vector from Transmitteri, i = 1, 2,

andHji ∈ C
N×M is the channel matrix connecting Transmitteri to

Receiverj, j = 1, 2. We assume arbitrary stationary fading processes,
such thatH11[t], H12[t], H21[t] andH22[t] are mutually independent
and change independently across time. The noise vectorszj [t] ∈
C

N are assumed to be independent and identically distributed (i.i.d.)
white Gaussian, withzj ∼ CN (0, IN) for j = 1, 2. Furthermore, we
consider average block power constraints on the transmitters inputs,
as

n∑

t=1

E[‖xi[t]‖
2] ≤ nP, for i ∈ {1, 2}. (2)

For convenience, we letH[t] =
[

H11[t] H12[t]
H21[t] H22[t]

]

designate the chan-

nel state matrix andHt−1 = {H[1], . . . ,H[t − 1]} designate the
collection of channel state matrices for the past(t − 1) symbols.
For convenience, we setH0 = ∅. We assume that, at each time
instant t, the channel state matrixH[t] is full rank almost surely.
Also, we denote byyt−1

j = {yj [1], . . . , yj [t − 1]} the collection
of the outputs at Receiverj, j = 1, 2, over the past(t − 1)
symbols. At each time instantt, the past states of the channel
Ht−1 are known to all terminals. However the instantaneous states
(H11[t],H21[t]) are known only to Receiver 1, and the instantaneous
states(H12[t],H22[t]) are known only to Receiver 2. Furthermore,
at each time instant, Receiver 1 feeds back the output vectoryt−1

1 to
Transmitter 1, and Receiver 2 feeds back the output vectoryt−1

2 to
Transmitter 2.

Definition 1: A code for the Gaussian(M,M,N,N)–MIMO
X-channel with local feedback and delayed CSI consists of two
sequences of stochastic encoders at the transmitters,

{φ1t : W11×W12×Ht−1×YN(t−1)
1 −→ XM

1 }nt=1

{φ2t : W21×W22×Ht−1×Y
N(t−1)
2 −→ XM

2 }nt=1 (3)

where the messagesW11, W12, W21 andW22 are drawn uniformly
over the setsW11, W12, W21 and W22, respectively; and four
decoding functions at the receivers,

ψ11 : YNn
1 ×Hn−1×H11×H12 −→ Ŵ11

ψ21 : YNn
1 ×Hn−1×H11×H12 −→ Ŵ21

ψ12 : YNn
2 ×Hn−1×H21×H22 −→ Ŵ12

ψ22 : YNn
2 ×Hn−1×H21×H22 −→ Ŵ22. (4)

Definition 2: A rate quadruple
(R11(P ),R12(P ), R21(P ), R22(P )) is said to be achievable
if there exists a sequence of codes such that,

lim
P→∞

lim sup
n→∞

Pr{Ŵij 6=Wij |Wij} = 0, ∀ (i, j) ∈ {1, 2}2. (5)

Definition 3: A SDoF quadruple(d11, d12, d21, d22) is said to be
achievable if there exists a sequence of codes satisfying the following
reliability conditions at both receivers,

lim
P→∞

lim inf
n→∞

log |Wij(n, P )|

n logP
≥ dij , ∀ (i, j) ∈ {1, 2}2

lim
P→∞

lim sup
n→∞

Pr{Ŵij 6=Wij |Wij} = 0, ∀(i, j) ∈ {1, 2}2 (6)

as well as the perfect secrecy conditions

lim
P→∞

lim sup
n→∞

I(W12,W22; yn
1 ,H

n)

n logP
= 0

lim
P→∞

lim sup
n→∞

I(W11,W21; yn
2 ,H

n)

n logP
= 0. (7)



Definition 4: We define the sum secure degrees of freedom region
of the MIMO X-channel with local feedback and delayed CSI, which
we denote byCsum

SDoF, as the set of all of all pairs(d11+d21, d12+d22)
for all achievable non-negative quadruples(d11, d21, d12, d22). We
also define the total (sum) secure degrees of freedom as SDoFd-CSI,F

total =
max(d11,d21,d12,d22) d11 + d21 + d12 + d22.

Due to space limitation, the results of this paper are eitheroutlined
only or mentioned without proofs. Detailed proofs can be found in
[6].

III. SUM SDOF OF (M,M,N,N)–MIMO X- CHANNEL

WITH LOCAL FEEDBACK AND DELAYED CSI
For convenience we define the following quantity that we willuse
extensively in the sequel. Let, for given non-negative(M,N),

ds(N,N,M) =







0 if M ≤ N
NM(M−N)

N2+M(M−N)
if N ≤M ≤ 2N

2N
3

if M ≥ 2N

(8)

Theorem 1:The sum SDoF regionCsum
SDoF of the two-user

(M,M,N,N)–MIMO X-channel with local feedback and delayed
CSI is given by the set of all non-negative pairs(d11+d21, d12+d22)
satisfying

d11 + d21
ds(N,N, 2M)

+
d12 + d22

min(2M, 2N)
≤ 1

d11 + d21
min(2M, 2N)

+
d12 + d22

ds(N,N, 2M)
≤ 1 (9)

for 2M ≥ N ; andCsum
SDoF = {(0, 0)} if 2M ≤ N .

Proof: The converse proof follows by allowing the transmitters to
cooperate and then using the outer bound established in [5, Theorem
3] in the context of secure transmission over MIMO broadcast
channels with delayed CSI at the transmitter, by taking2M transmit
antennas andN antennas at each receiver. Note that Theorem 3 of
[5] continues to hold if one provides additional feedback from the
receivers to the transmitter. The proof of achievability isgiven in
Section IV.

Remark 1: In the case in which2M ≥ N , the sum SDoF
region of Theorem 1 is characterized fully by the three corner points
(ds(N,N, 2M), 0), (0, ds(N,N, 2M)) and

(d11 + d21, d12 + d22) =
{ (

N(2M−N)
2M

, N(2M−N)
2M

)
if N ≤ 2M ≤ 2N

(
N

2
, N

2

)
if 2N ≤ 2M

(10)

Remark 2: The sum SDoF region of Theorem 1 is same as the
SDoF region of a two-user MIMO BC in which the transmitter is
equipped with2M antennas and each receiver is equipped withN
antennas, and delayed CSI is provided to the transmitter [5,Theorem
3]. Therefore, Theorem 1 shows that there is no performance loss in
terms of sum SDoF due to the distributed nature of the transmitters in
the MIMO X-channel that we consider. Note that, in particular, this
implies that, like the setting with no security constraints[1, Theorem
1], the total secure degrees of freedom, defined as in Definition 4
and given by

SDoFd-CSI,F
total =







0 if 2M ≤ N
N(2M−N)

M
if N ≤ 2M ≤ N

N if 2M ≥ 2N

(11)

is also preserved upon the availability of output feedback and delayed
CSI at the transmitters, although the latters are distributed.

IV. PROOF OFDIRECT PART OF THEOREM 1

In this section, we provide a description of the coding scheme
that we use for the proof of Theorem 1. This coding scheme can be
seen as an extension, to the case of non-cooperative or distributed
transmitters, of that established by Yanget al. [5] in the context of
secure transmission over a two-user MIMO BC with delayed CSI
provided to the transmitter.

In the case in which2M ≥ N ,it is enough to prove that the
corner points that are given in Remark 1 are achievable, since the
entire region can then be achieved by time-sharing. The achievability
of each of the two corner points(ds(N,N, 2M), 0) follows by the
coding scheme of [5, Theorem 1], by having the transmitters sending
information messages only to one receiver and the other receiver
acting as an eavesdropper. In what follows, we show that the point
given by (10) is achievable. We concentrate on the analysis of the
caseN ≤ 2M ≤ 2N . If M ≥ N , it is enough to use the coding
scheme below with each transmitter utilizingN of its antennas.

A. Case 1:N ≤ 2M ≤ 2N

The achievability in this case follows by a careful combination
of Maddah Ali-Tse coding scheme [7] developed for the MIMO
broadcast channel with additional noise injection. Also, as we already
mentioned, it has connections with, and can be seen as an extension
to the case of distributed transmitters of that developed byYang
et. al. [5] in the context of secure transmission over a two-user
MIMO broadcast channel with delayed CSI at the transmitter.The
scheme also extends Tandonet. al. [1] coding scheme about X-
channels without security constraints to the setting with secrecy.
The communication takes place in four phases. For simplicity of the
analysis and, in accordance with the degrees of freedom framework,
we ignore the additive noise impairment.
Phase 1: Injecting artificial noise
In the first phase, the communication takes place inT1 = N2

channel uses. Letu1 = [u1
1, . . . , u

MT1

1 ]T andu2 = [u1
2, . . . , u

MT1

2 ]T

denote the artificial noises injected by Transmitter 1 and Transmitter
2 respectively. The channel outputs at Receiver 1 and Receiver 2
during this phase are given by

y
(1)
1 = H̃

(1)
11 u1 + H̃

(1)
12 u2 (12)

y
(1)
2 = H̃

(1)
21 u1 + H̃

(1)
22 u2 (13)

where H̃
(1)
ji = diag({H(1)

ji [t]}t) ∈ C
NT1×MT1 , for t = 1, . . . , T1,

i = 1, 2, j = 1, 2, y
(1)
1 ∈ C

NT1 and y
(1)
2 ∈ C

NT1 . During this
phase, each receiver getsNT1 linearly independent equations that
relate 2MT1 u1- and u2-variables. At the end of this phase, the
channel output at Receiveri, i = 1, 2, is fed back along with the
past CSI to Transmitteri.
Phase 2: Fresh information for Receiver 1
In this phase, the communication takes place inT2 = N(2M −N)
channel uses. Both transmitters transmit to Receiver 1 confidential
messages that they want to conceal from Receiver 2. To this end,
Transmitter 1 sends fresh informationv11 = [v111, . . . , v

MT2

11 ]T along
with a linear combination of the channel outputy

(1)
1 of Receiver 1

during the first phase; and Transmitter 2 sends only fresh information
v21 = [v121, . . . , v

MT2

21 ]T intended for Receiver 1, i.e.,

x1 = v11 +Θ1y
(1)
1 , x2 = v21 (14)

whereΘ1 ∈ CMT2×NT1 is a matrix that is known at all nodes and
whose choice will be specified below. The channel outputs at the



receivers during this phase are given by

y
(2)
1 = H̃

(2)
11 (v11 +Θ1y

(1)
1 ) + H̃

(2)
12 v21 (15a)

y
(2)
2 = H̃

(2)
21 (v11 +Θ1y

(1)
1 ) + H̃

(2)
22 v21 (15b)

where H̃
(2)
ji = diag({H(2)

ji [t]}t) ∈ C
NT2×MT2 , for t = 1, . . . , T2,

i = 1, 2, j = 1, 2, y(2)
1 ∈ C

NT2 andy
(2)
2 ∈ C

NT2 . At the end of
this phase, the channel output at Receiveri, i = 1, 2, is fed back
along with the delayed CSI to Transmitteri.
Since Receiver 1 knows the CSI(H̃(2)

11 , H̃
(2)
12 ) and the channel output

y(1)
1 from Phase 1, it subtracts out the contribution ofy(1)

1 from
the received signaly(2)

1 and, thus, obtainsNT2 linearly indepen-
dent equations with2MT2 v11- and v21-variables. Thus, Receiver
1 requires(2M − N)T2 extra linearly independent equations to
successfully decode thev11- and v21-symbols that are intended
to it during this phase. Let̃y(2)

2 ∈ C
(2M−N)T2 denote a set of

(2M − N)T2 such linearly independent equations, selected among
the availableNT2 side information equationsy(2)

2 ∈ C
NT2 (recall

that 2M −N ≤ N in this case). If these equations can be conveyed
to Receiver 1, they will suffice to help it decode thev11- and v21-
symbols, since the latter already knowsy(1)

1 . These equations will
be transmittedjointly by the two transmitters in Phase 4, and are
learned as follows. Transmitter 2 learnsy(2)

2 , and soỹ(2)
2 , directly

by means of the output feedback from Receiver 2 at the end of this
phase. Transmitter 1 learnsy(2)

2 , and soỹ(2)
2 , by means of output as

well as delayed CSI feedback from Receiver 1 at the end of Phase
2, as follows. First, Transmitter 1 utilizes the fed back output y(2)

1 to
learn thev21-symbols that are transmitted by Transmitter 2 during
this phase. This can be accomplished correctly since Transmitter 1,
which already knowsv11 and y(1)

1 , has also gotten the delayed CSI
(H̃

(2)
11 , H̃

(2)
12 ) andM ≤ N . Next, Transmitter 1, which also knows

the delayed CSI(H̃(2)
21 , H̃

(2)
22 ), reconstructsy(2)

2 as given by (15b).
Phase 3: Fresh information for Receiver 2
This phase is similar to Phase 2, with the roles of Transmitter 1
and Transmitter 2, as well as those of Receiver 1 and Receiver2,
being swapped. More specifically, the communication takes place in
T2 = N(2M −N) channel uses. Fresh information is sent by both
transmitters to Receiver 2, and is to be concealed from Receiver 1.
Transmitter 1 transmits fresh informationv12 = [v112, . . . , v

MT2

12 ]T

to Receiver 2, and Transmitter 2 transmitsv22 = [v122, . . . , v
MT2

22 ]T

along with a linear combination of the channel outputy
(1)
2 at Receiver

2 during Phase 1, i.e.,

x1 = v12, x2 = v22 +Θ2y
(1)
2 (16)

whereΘ2 ∈ CMT2×NT1 is matrix that is known at all nodes and
whose choice will be specified below. The channel outputs during
this phase are given by

y
(3)
1 = H̃

(3)
11 v12 + H̃

(3)
12 (v22 +Θ2y

(1)
2 ) (17a)

y
(3)
2 = H̃

(3)
21 v12 + H̃

(3)
22 (v22 +Θ2y

(1)
2 ) (17b)

where H̃
(3)
ji = diag({H(3)

ji [t]}t) ∈ CNT2×MT2 for t = 1, . . . , T2,

i = 1, 2, j = 1, 2, y(3)
1 ∈ C

NT2 andy
(3)
2 ∈ C

NT2 . At the end of
this phase, the channel output at Receiveri, i = 1, 2, is fed back
along with the delayed CSI to Transmitteri.
Similar to Phase 2, at the end of Phase 3 Transmitter 1 learnsy(3)

1 ,
and soỹ(3)

1 , directly by means of the output feedback from Receiver
1 at the end of this phase. Also, Transmitter 2 learnsy(3)

1 , and sõy(3)
1 ,

by means of output as well as delayed CSI feedback from Receiver
2 at the end of Phase 3.

Phase 4: Interference alignment and decoding
Recall that, at the end of Phase 3, Receiver 1 requires(2M −N)T2

extra equations to successfully decode the sentv11- andv21-symbols,
and Receiver 2 requires(2M−N)T2 extra equations to successfully
decode the sentv12- and v22-symbols. Also, recall that at the
end of this third phase,both transmitters can re-construct the side
information, or interference, equations̃y(3)

1 ∈ C
(2M−N)T2 and

ỹ
(2)
2 ∈ C

(2M−N)T2 that are required by both receivers. In this phase,
both transmitters transmit these equations jointly, as follows.
The communication takes place inT3 = (2M −N)2 channel uses.
Let

I = Φ1[ ỹ
(2)
2

︸︷︷︸

(2M−N)T2

φ
︸︷︷︸

(2N−2M)T2

]T + Φ2[ ỹ
(3)
1

︸︷︷︸

(2M−N)T2

φ
︸︷︷︸

(2N−2M)T2

]T

whereΦ1 ∈ C2MT3×NT2 andΦ2 ∈ C2MT3×NT2 are linear combina-
tion matrices that are assumed to be known to all the nodes. During
this phase, the transmitters send

x1 = [I1, . . . , IMT3 ], x2 = [I(M+1)T3 , . . . , I2MT3 ].

At the end of Phase 4, Receiver 1 getsNT3 equations in2NT3

variables. Since Receiver 1 knowsy(3)
1 from Phase 3 as well as the

CSI, it can subtract out the contribution ofỹ(3)
1 from its received

signal to getNT3 equations inNT3 variables. Thus, Receiver 1 can
recover theỹ(2)

2 ∈ C
(2M−N)T2 interference equations. Then, using

the pair of output vectors(y(2)
1 , ỹ

(2)
2 ), Receiver 1 first subtracts out

the contribution ofy(1)
1 ; and, then, it inverts the resulting2MT2

linearly independent equations relating the sent2MT2 v11- andv21-
symbols. Thus, Receiver 1 successfully decodes thev11- and v21-
symbols that are intended to it. Receiver 2 performs similaroperations
to successfully decode thev12- andv22-symbols that are intended to
it.
The complete analysis of the secrecy level that is enabled bythis
scheme can be found in [6]. Through algebra that we omit here
for brevity, it is shown therein that2MN(2M − N) symbols are
transmitted securely to each receiver over a total of4M2 time
slots, thus yielding the achievability of the sum SDoF point(d11 +
d21, d12 + d22) = (N(2M −N)/2M,N(2M −N)/2M).

V. SDOF OF MIMO X- CHANNEL WITH ONLY OUTPUT

FEEDBACK

In this section, we focus on the two-user MIMO X-channel with
only feedback available at transmitters. We study two special cases
of availability of feedback at transmitters, 1) the case in which each
receiver feeds back its channel output to both transmitters, to which
we will refer asglobal feedback, and 2) the case in which Receiver
i, i = 1, 2, feeds back its output only to Transmitteri, i.e., local
feedback. In both cases, no CSI is provided to the transmitters.

A. MIMO X-channel with global feedback

Theorem 2:The sum SDoF region of the two-user
(M,M,N,N)–MIMO X-channel with global output feedback
is given by that of Theorem 1.

Remark 3: The sum SDoF region of the MIMO X-channel with
global feedback is same as the sum SDoF region of the MIMO
X-channel with local feedback and delayed CSI. Investigating the
coding scheme of the MIMO X-channel with local feedback and
delayed CSI of Theorem 1, it can be seen that the delayed CSI is
utilized therein to provide each transmitter with the equations (or, side
information) that are heard at the other receiver, which is unintended.
With the availability of global feedback, this informationis readily



available at each transmitter; and, thus, there is no need for any CSI
at the transmitters in order to achieve the same sum SDoF as that of
Theorem 1.

B. MIMO X-channel with only local feedback

We now consider the case in which only local feedback is provided
from the receivers to the receivers, i.e., Receiveri, i = 1, 2, feeds
back its output to only Transmitteri.
For convenience we define the following quantity. Let, for given non-
negative(M,N),

dlocal
s (N,N,M) =







0 if M ≤ N

M2(M−N)

2N2+(M−N)(3M−N)
if N ≤M ≤ 2N

2N
3

if M ≥ 2N
(18)

Theorem 3:An inner bound on the sum SDoF region of the two-
user(M,M,N,N)–MIMO X-channel with local feedback is given
by the set of all non-negative pairs(d11 + d21, d12 + d22) satisfying

d11 + d21
dlocal
s (N,N, 2M)

+
d12 + d22

min(2M, 2N)
≤ 1

d11 + d21
min(2M, 2N)

+
d12 + d22

dlocal
s (N,N, 2M)

≤ 1 (19)

for 2M ≥ N ; andCsum
SDoF = {(0, 0)} if 2M ≤ N .

Remark 4: The main reason for which the SDoF of the MIMO
X-channel with local feedback is smaller than that in Theorem 1 for
the model with local feedback and delayed CSI can be explained as
follows. Consider the Phase 4 in the coding scheme of Theorem1.
Each receiver requiresN(2M − N)(2M − N) extra equations to
decode the symbols that are intended to it correctly. Given that there
are more equations that need to be transmitted to both receivers than
the number of available antennas at the transmitters, some of the
equations need to be sent by both transmitters, i.e., some ofthe
available antennas send sums of two equations, one intendedfor each
receiver. Then, it can be seen easily that this is only possible if both
transmitters know the ensemble of side information equations that
they need to transmit, i.e., not only a subset of them corresponding
to one receiver. In the coding scheme of Theorem 1, this is made
possible by means of availability of both local output feedback and
delayed CSI at the transmitters. Similarly, in the coding scheme of
Theorem 2, this is made possible by means of availability of global
feedback at the transmitters. For the model with only local feedback,
however, this is not possible because of the lack of CSI knowledge;
and this explains the loss incurred in the sum SDoF region.

VI. MIMO-X C HANNELS WITHOUT SECURITY

CONSTRAINTS

In this section, we consider an(M,M,N,N)-X channelwithout
security constraints. We show that the main equivalences that we
established in the previous sections continue to hold.

Theorem 4:The sum DoF region Csum
DoF of the two-user

(M,M,N,N)–MIMO X-channel with local feedback and delayed
CSI is given by the set of all non-negative pairs(d11+d21, d12+d22)
satisfying

d11 + d21
min(2M, 2N)

+
d12 + d22

min(2M,N)
≤ 1

d11 + d21
min(2M,N)

+
d12 + d22

min(2M, 2N)
≤ 1. (20)

Remark 5: The sum DoF region of Theorem 4 is same as the DoF
region of a two-user MIMO BC in which the transmitter is equipped
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Fig. 2. Sum SDoF and sum DoF regions of the(M,M,N,N)-X channel
with local output feedback and delayed CSI, for different antennas configu-
rations.

with 2M antennas and each receiver is equipped withN antennas,
and delayed CSIT is provided to the transmitter [8, Theorem 2]. Thus,
similar to Theorem 1, Theorem 4 shows that, in the context of no
security constraints as well, the distributed nature of thetransmitters
in the MIMO X-model with a symmetric antenna configuration does
not cause any loss in terms of sum degrees of freedom. This canbe
seen as a generalization of [1, Theorem 1] in which it is shownthat
the loss is zero from a total degrees of freedom perspective.

Remark 6: Like for the setting with secrecy constraints, it can
be easily shown that the sum DoF of the(M,M,N,N)-MIMO
X-channel with global output feedback is also given by that of
Theorem 4.

Figure 2 illustrates the optimal sum SDoF and sum DoF regions
of the (M,M,N,N)-MIMO X-channel with local output feedback
and delayed CSI as given in Theorem 1 and Theorem 4, respectively,
for different values of the transmit- and receive antennas.
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