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Abstract—Two-way relay channel (TWRC) models a coopera-
tive communication situation performing duplex transmission via
a relay station. For this channel, we have shown previously that
a lattice-based physical layer network coding strategy achieves,
at the limit of arbitrarily large dimension, the same rate as
that offered by the random coding-based regular compress-
and-forward. In this paper, we investigate this scheme in finite
dimension in order to propose a practical coding scheme that
achieves a reasonable performance-complexity trade-off. The
algorithm is based on finite dimensional nested lattices for Wyner-
Ziv coding. The relay uses the weaker side information available
at the receivers to broadcast a quantized version of its output
that is destined to be recovered at the two receivers with different
distortions. We characterize the rate region allowed by our coding
scheme, discuss the design criteria, and illustrate our results with
some numerical examples.

I. INTRODUCTION

The two way relaying problem where two communicating

nodes want to exchange information via a relay is encoun-

tered in various wireless communication scenarios: ad-hoc

networks, range extension for cellular and local networks ...

While network level routing is the standard option to this prob-

lem, it has been shown that network coding (NC) strategies

provide better performance by leveraging the side information

that is available in each node. In fact, NC allows to improve

the rates by combining raw bits or packets at the network

layer. The capacity of the system can be further improved

when NC is applied to the physical layer. It takes advantage

of the linear superposition properties of the wireless channel

in order to turn interference nuisance into useful signal [1].

In this context, we consider a physical network coding (PNC)

strategy where the overall communication takes two phases,

namely a Multiple Access (MAC) phase and a Broadcast (BC)

phase.

Various strategies have been proposed for TWRC. Amplify

and Forward [2], Decode and Forward (DF) [3], and Compress

and Forward. The latter has attracted particular attention since

it offers a good compromise between processing complexity at

the relay and noise amplification. CF for TWRC [4] follows

the same strategy of CF schemes for the relay channel [5].

Performance bounds of this scheme have been investigated in

[6], [7], [8]. It has been shown that for specific channel condi-

tions, specially symmetric channels, CF outperforms the other

relaying schemes for high SNR regimes. In the aforementioned

references, the derivation of the achievable rate regions has

employed high dimension assumptions and random coding

approach which is impractical for real systems. Interestingly,

structured codes have been found to be more advantageous

in practical settings thanks to their reduced complexity in

encoding and decoding [9]. It has been shown in [10] that for

an Additive White Gaussian Noise (AWGN) channel, lattice

based codes can achieve the Shannon capacity for Gaussian

point-to-point communication. Based on this result, lattice

coding and decoding schemes have been extended to TWRC

scenario in [11]. In this scheme, the transmitters employ nested

lattices as codebooks, and the relay decodes a modulo-lattice

sum of the transmitted codewords from the received signal

in order to emulate a XOR operation at the packet level.

In addition, all the nodes are constrained to transmit with

the same power. In [12], this scheme has been extended for

different power constraints, however only identical channel

coefficients case has been considered. In this paper, we design

a new relaying scheme for TWRC based on CF strategy and

taking into account non identical transmit power and arbitrary

channel coefficients.

In the MAC phase of the proposed scheme, the communicating

nodes send simultaneously their messages and the relay re-

ceives a mixture of the transmitted signals. The relay considers

this mixture as a source which will be compressed and sent

during the BC phase. Taking into account that each terminal

has a partial knowledge of this source (side information), the

BC phase is equivalent to a Wyner-Ziv (WZ) compression

setting with two decoders having a piece of side information

each. A lattice based lossy compression is employed to help

each user generate a local distorted version of the source. The

proposed scheme is based on lattice quantization introduced

in [13] and which we extend to the TWRC case. In [14], we

have showed that this scheme achieves for infinite dimensions

the random coding compress and forward strategy. While the

original scheme in [13], [14] assumes infinite dimensions

hence error free decoding, for the approach here, we derive

achievable rate regions with practical finite dimension lattices

and non vanishing yet constrained decoding error probabilities.

The rest of the paper is organized as follows. In section II, we

introduce our system model. In section III and IV, we propose

a new lattice-based Wyner-Ziv Coding scheme and we derive

its achievable rate region for finite dimensions. In section



V, we present a numerical implementation of the achievable

rates with practical finite dimension lattices. Finally, section

VI concludes the paper.

Notations Random variables (r.v.) are indicated by capital

letters where the realizations are written in small letters. Vector

of r.v. or a sequence of realizations are indicated by bold fonts.

II. SYSTEM MODEL

Fig. 1. The two-phase transmission of TWRC

We consider a Gaussian TWRC in which two nodes T1 and

T2 exchange two individual messages m1 and m2, with the

help of a relay R as shown in Fig.1. The relay operates in half-

duplex mode. The communication takes n channel uses that

are split among MAC phase and BC phase with lengths n1 =
αn and n2 = (1 − α)n , α ∈ [0, 1] respectively. During the

MAC phase, node Ti, i = 1, 2 draws uniformly a message mi

from the set Mi = {1, 2, · · · , 2nRiī} and sends it to the other

terminal. Let xi(mi) denotes the codeword of length n1 sent

by node Ti, i = 1, 2. The messages are transmitted through

a memoryless Gaussian channel and the relay R receives a

signal Yr.

During the BC phase, the relay generates a codeword xr(mr)
of dimension n2 from the received sequence yr. The signal Xr

is transmitted through a broadcast memoryless channel and the

received signal at node Ti is Yi, i = 1, 2.

All input distributions are real valued: Xk ∼ N (0, Pk), k =
{1, 2, r}, where N (0, Pk) denotes a zero mean real Gaussian

variable with power Pk. The received signals can be modeled

as follows:

Yr = h1X1 + h2X2 + Zr (1)

Yi = hiXr + Zi, (2)

where hi denotes the channel coefficient between Ti and R,

i = 1, 2. Without loss of generality, channel reciprocity is

assumed, i.e. hi→r = hr→i = hi. Zr ∼ N (0, σ2
r ) is the

additive white Gaussian noise at the relay and Zi ∼ N (0, σ2
i )

is the AWGN at node Ti, i = 1, 2. We assume perfect CSI for

all nodes and the noise components are independent of each

other and from the channel inputs. In the sequel, we investigate

the achievable rates and the design of our scheme.

III. ACHIEVABLE RATE REGION FOR TWRC

Theorem 3.1: Let (Λ1,Λ2), a pair of two nested lattices

of dimension n1, with Λ2 ⊂ Λ1. For Gaussian TWRC, the

convex hull of the following end-to-end rates (R12, R21) is

achievable:

R12 ≤
α

2
log2

(

1 +
|h1|2P1(|h1|2P1 + σ2

r −D2)

σ2
r(|h1|2P1 + σ2

r −D2) +D2

)

(3)

R21 ≤
α

2
log2

(

1 +
|h2|2P2(|h1|2P1 + σ2

r −D2)

σ2
r(|h1|2P1 + σ2

r −D2) +D2

)

(4)

where D2 satisfies:

α(log2

(

σ2
U2

D2

)

+ log2 (G(Λ1)µ(Λ2))) ≤

(1− α)min

{

log2

(

1 +
|h2|2Pr

σ2
2

)

, log2

(

1 +
|h1|2Pr

σ2
1

)}

(5)

with G(Λ1) being the normalized second moment of Λ1 and

µ(Λ2) being the volume to noise ratio of Λ2 [15], and α ∈
[0, 1].

Remark 1: Letting n1 → ∞, the left-hand side expression

in (5) reduces to its first term since the second term corre-

sponds to the penalty of using finite dimension, that vanishes

asymptotically. We have shown in [14] that the achievable

rate region coincides with the random coding compress and

forward achievable rate region presented in [8].

IV. PROOF OF THEOREM 3.1

In this section, we present a detailed proof of theorem

3.1. The main idea of the proposed scheme is the following:

during the BC phase, the relay station sends a compressed

version of the signal received during the MAC phase. The

relay employs a lossy compression Wyner-Ziv scheme using

nested lattices that is tuned to the side information of the user

with the weakest side information. The proof is divided into

three paragraphs: in section IV-A, we present the WZ strategy

based on the weakest side information at the receivers. In

section IV-B, the lattice coding scheme for the WZ model

is introduced and finally the achievable rates of the proposed

scheme are derived in IV-C.

A. Wyner-Ziv using the weakest side information

Let Si = hiXi be the side information available at terminal

Ti, i = 1, 2. Without loss of generality, we assume that

|h2|2P2 ≤ |h1|2P1. With this setting, T2 is the terminal who

experiences the weakest side information. The quantization

performed by the relay is tuned so that T2 reconstructs a local

version Ŷr,i of Yr with a distortion D2: 1
n1

E‖Yr−Ŷr,2‖2 ≤
D2. The terminal T1 will undergo this choice on its decoded

signal at the end of transmission.

The source Yr can be written as the sum of two independent

Gaussian r.v.: the side information S2 and the unknown part

U2 = Yr|S2 = h1X1 + Zr that will be decoded at the end.

The variance per dimension of U2 is σ2
U2

= V AR(Yr|S2) =
|h1|2P1 + σ2

r .

B. Lattice based source coding

We use a pair of n1-dimensional nested lattices (Λ1,Λ2)
chosen as in [13]: the fine lattice Λ1 is good for quantization

with basic Voronoi region V1 of volume V1 and second

moment per dimension σ2(Λ1) = D2 and the coarse lattice

Λ2 is good for channel coding with basic Voronoi region V2

of volume V2 and second moment σ2(Λ1) = σ2
U2

.

The encoding operation is performed with four successive

operations: first, the input signal Yr is scaled with a factor

β. Then, a random dither which is uniformly distributed over



V1 is added. This dither is known by all nodes. The dithered

scaled version of Yr, βyr+ t is quantized to the nearest point

in Λ1. The outcome of this operation is processed with a

modulo-lattice operation in order to generate a vector vr of

size n1 as shown in Fig.2.

Fig. 2. WZ Lattice Coding and Decoding at Ti, i = 1, 2

vr = Q1(βyr + t) mod Λ2 (6)

The relay sends the index of vr that identifies the coset of Λ2

relative to Λ1 that contains Q1(βyr + t). The coset leader vr

is represented with
V2

V1
. bits. Thus, the source coding rate of

the scheme is

R(D2) =
1

n1
log2 |Λ1 ∩ V2| =

1

n1
log2

V2

V1
(bits per dimension)

(7)

At both users, vr is decoded first. Then Ŷr,i|Ŝi = Ûi is

reconstructed with a WZ lattice decoder (WZLD) using the

side information Si as

ûi = β((vr − t − βsi) mod Λ2), i = 1, 2 (8)

C. Rate analysis

At the relay, the message mr corresponding to the index

of vr is mapped to a codeword xr of size n2. Let Rr be the

common broadcast rate. This rate is bounded by

n1R(D2) ≤ n2Rr (9)

On the other hand,

Rr ≤ min(I(Xr;Y1), I(Xr;Y2)) (10)

Since real Gaussian codebooks are used for all transmissions,

we have: I(Xr;Yi) = 1
2 log2

(

1 + |hi|
2Pr

σ2

i

)

, i = 1, 2. This

constraint ensures that the index mr is transmitted reliably to

both terminals and vr is available at the input of WZLD at

both receivers. At terminal T2, û2 in (8) can be written as:

û2 = β((βu2 + eq) modΛ2) (11)

≡ β(βu2 + eq) (12)

where eq = Q1(βyr + t) − (βyr + t) = −(βyr + t)
mod Λ1, is the quantization error. By the Crypto Lemma, Eq is

independent from Yr, thus U2, and it is uniformly distributed

over V1 i.e VAR(Eq) = σ2(Λ1) = D2. The equivalence

between (11) and (12) is valid only if βu2 + eq ∈ V2. With

finite dimension lattices, the probability Pr(βU2 + Eq /∈ V2)
can be made arbitrarily small provided that:

1

n1
E‖Eq + βU2‖

2 ≤ σ2(Λ2) (13)

The rates are calculated by ensuring that this probability does

not exceed a fixed threshold.

Pr(βU2 + Eq /∈ V2) ≤ Pe (14)

Given that V1 =

(

σ2(Λ1)

G(Λ1)

)n1/2

where G(Λ1) is the NSM of

Λ1 and σ2(Λ1) = D2, the coding rate in (7)reads:

R(D2) =
1

2
log2

(

σ2
U2

D2

)

+
1

2
log2 (G(Λ1)µ(Λ2)) (15)

The WZ rate distorsion function is achieved with a redundancy

term L =
1

2
log2 (G(Λ1)µ(Λ2)), where

µ(Λ2) =
V

2

n1

2

σ2
U2

(16)

is the Λ2 volume to noise ratio (VNR) associated with proba-

bility of error Pe. This term has been introduced by Poltyrev

in [16] for lattice codes in AWGN setting. For a probability

Pe and a lattice Λ with volume V , µ(Λ) = V
2

n1 /σ2, σ2 is

the variance of a Gaussian noise Z which verifies Pr(Z /∈
V) ≤ Pe. By analogy to our problem, taking into account the

constraints expressed in (13) and (14), the VNR is given by

(16). Finally, (5) is obtained by combining equations (9), (10)

and (15).

The parameter β has to be chosen so that to verify (13) and

(17).

1

n1
E‖Yr − Ŷr,2‖

2 = (1− β2)2σ2
U2

+ β2D2 ≤ D2 (17)

Taking into account that

1

n1
E||Eq + βU2||

2 =
1

n1
E||Eq||

2 +
1

n1
E||βU2||

2

= D2 + β2σ2
U2

The optimal scaling factor β is β =

√

1−
D2

σ2
U2

(see [13]). By

replacing U2 by its value we conclude that:

Û2 = β2h1X1 + β2Zr + βEq (18)

Let Zeq = β2Zr + βEq be the effective additive noise. The

communication between T1 and T2 is equivalent to a virtual

additive Gaussian channel where the noise is given by Zeq . We

approximate Eq by a Gaussian variable Zq with same variance.

The equivalence is valid for high resolution assumption as

D2 → 0. Based on the results in [17], we can show that

D(Û2, β
2U2 + βZq) = h(β2U2 + βZq)− h(Û2) −→

D2→0
0

where D(., .) is the relative entropy. Thus the achievable rate

of this link satisfies:

nR12 ≤
n1

2
log2

(

1 +
β2|h1|2P1

β2σ2
r +D2

)

by replacing
n1

n
= α and β by its value, (3) is verified.

At terminal T1, the decoder is tailored to the side information



S1. Thus, at the decoder we subtract βs1 and û1 is recon-

structed similarly to û2 in (11). Since σ2
S1

≥ σ2
S2

, we have

σ2
U1

≤ σ2
U2
,

Pr(βU1 + Eq /∈ V2) ≤ Pr(βU2 + Eq /∈ V2),

D1 =
1

n1
E‖Yr − Ŷr,1‖

2 ≤ D2

The communication between T2 and T1 is equivalent to a

virtual Gaussian channel with an additive noise Zeq and a

rate:

nR21 ≤
n1

2
log2

(

1 +
β2|h2|

2P2

β2σ2
r +D2

)

which verifies (4) and concludes the proof. The whole coding

scheme is summarized in Fig.3.

Fig. 3. Wyner-Ziv lattice-based coding scheme for TWRC

Remark 2: It is possible to use S1 as the side information

for the WZ lattice coding scheme to achieve a controlled

distortion D1 at terminal T1. For this purpose, we need two

coding layers: a common layer to be sent to both nodes and a

refinement layer to be decoded only by the best node T1. In

this case, the achievable rates can be ameliorated. This study

is under investigation.

V. NUMERICAL IMPLEMENTATION

In this section, we present the achievable rates for practical

finite dimensional lattices. In this case, a rate loss is incurred

in the coding rate comparing to the WZ rate distortion function

as described in previous sections (III and IV). The achievable

rate region is calculated by ensuring that the error probability

Pr(βU2 + Eq /∈ V2) ≤ Pe. The analytical derivation of the

error probability for practical lattice pairs is difficult in general

since it requires the integration over the Voronoi region of the

coarse lattice. Though it can be computed numerically using

Monte Carlo integration or approximated by an upper bound.

An approximation of the error probability can be obtained

using union bound and Chernoff bound:

Pr(βU2 + Eq /∈ V2) ≈ K(Λ2) exp

(

−
1

8
γc(Λ2)µ(Λ2, Pe)

)

(19)

for sufficiently large µ(Λ2, Pe) and γc(Λ2) =
d2min(Λ2)

V (Λ2)2/n1

is

the coding gain of Λ2 with dmin(Λ2) is the minimum distance

between two points in Λ2. We choose the VNR in (15) as

follows

µ(Λ2, Pe) ≈
8

γc(Λ2)
log2

(

K(Λ2)

Pe

)

(20)

TABLE I
SOME IMPORTANT BINARY LATTICES AND THEIR USEFUL PROPERTIES

Lattice Λ dimension n1 G(Λ) γc(Λ) K(Λ)

Z
k k 0.0833 1 2k

D4 4 0.07660
√

2 24

E8 8 0.071682 2 240

Λ16 16 0.06829 23/2 4320

Λ24 24 0.00657 4 196560

Note that µ(Λ2, Pe) ≫
1

γc(Λ2)
for small error probability. This

guarantees that the union bound approximation is valid and the

error probability is upper bounded by Pe.

Furthermore, given that the error probability of the scheme is

defined by the goodness of the coarse lattice, the performance

of the end to end scheme depends more on this lattice rather

than the choice of the fine lattice. Therefore, the simple cubic

lattice Z
n1 with normalized second moment (NSM) G(Λ1) =

1
12 will be the preferred choice for the fine lattice. In this case,

for a good coarse lattice with NSM G(Λ2) =
1

2πe , the rate loss

with respect to the ideal WZ scheme is only 1
2 log2(2πe/12) =

0.2546 bit per sample. Moreover, in the quantization problem,

the choice of the fine (resp. coarse) lattice is equivalent to the

choice of the coarse (resp. fine) lattice for the dual channel

coding problem. It has been shown in [18] that practically

Z
n1 suffices as a shaping lattice that verifies arbitrary small

error probability. Thus, a sublattice of Z
n1 can be a simple

engineering choice for the fine lattice. In the sequel, Λ1 is a

scaled version of Zn
1 i.e. Λ1 = ηZn1 .

Table I gives the kissing number and the coding gain for

a set of commonly used finite lattices, that can be used to

calculate µ(Λ2, Pe) for fixed Pe. Comparison between lattice

pairs can be found in Fig. 4 for symmetric channels, equal

SNRs and Pe = 10−5. We present the maximum achievable

rates with optimized time division between MAC and BC

phases and optimal distortion choice at the relay. We notice

that the difference between the infinite scheme and the pair

(Z4,Λ24) is about 0.15 bit/channel use which is significantly

small.

VI. CONCLUSION

In this paper, we derived a new achievable rate region for

TWRC with finite dimension. We proposed for this purpose

a new practical lattice-based physical layer network coding

scheme. The scheme is based on Wyner-Ziv source coding

strategy and nested lattice codes. We presented a numerical

implementation of the achievable rates with practical finite

dimension lattices.
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