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Abstract—Parallel Two-way relay channel models a coopera-
tive communication scenario where a relay helps two terminals
to exchange their messages over independent Gaussian channels.
For the single channel case, we have shown previously that
lattice-based physical layer network coding achieves the same
rate as compress-and-forward scheme with a random coding
strategy. A direct extension of this lattice-based scheme to parallel
Gaussian channel is to repeat the same strategy for each sub-
channel. However this approach is not scalable with the number
of sub-channels since the complexity of the scheme becomes
prohibitive when a large number of sub-channels is employed.
In this contribution, we investigate a lattice-based physical layer
network coding scheme where the relay jointly processes all the
sub-channels together. We characterize the rate region allowed by
our coding scheme and assess the performance penalty compared
to the separate channel processing approach.

I. INTRODUCTION

Two-way relay channel (TWRC) is encountered in many

wireless communication scenarios: ad-hoc networks, range

extension for cellular and local networks, satellite transmis-

sions. . .

While network level routing is the standard option to

this problem, it has been shown that network coding (NC)

strategies provide better performance by leveraging the side

information that is available in each node. In fact, NC allows

to improve the rates by combining raw bits or packets at the

network layer. Is has been shown that the capacity can be

improved when NC is applied in the physical layer. It takes

advantage of the linear superposition properties of the wireless

channel in order to turn interference nuisance into useful signal

[1].

One can distinguish four main strategies that have been

investigated for physical layer network coding: Amplify and

Forward (AF), Decode and Forward (DF), Compress and

Forward (CF) and XOR emulation. The three first schemes

are direct application of the corresponding strategy in single

relaying scenarios [2], [3], [4], [5], [6]. The last scheme

consists in emulating the XOR operation at the bit level

by using specific signal mapping in each node [1]. In [7]

the authors suggested to implement this functionality using

nested lattices. The relay decodes a modulo-lattice sum of the

transmitted codewords in order to emulate the XOR operation

at the bit level. In a former contribution [8], we investigated

the use of nested lattice to implement compress and forward

scheme. The coding strategy is based on Wyner-Ziv (WZ)

source coding proposed in [9], and achieves the sames rates

as random coding techniques. The proposed approach offers

a good compromise between the complexity of the processing

borne by the relay and the noise amplification.

All the aforementioned schemes have been devised for two

way relaying over a single channel. A significant number of

modern communication scenarios are modelled by a parallel

Gaussian channel: multi-carrier systems (OFDM, OFDMA,

SCFDMA), multi-stream transmission with multiple antennas,

spread spectrum with multiple sequences to name a few. For

these systems, two way relaying offers a competitive solution

for range extension. Two-way relaying over parallel Gaussian

channel have been addressed in [10] and [11] for AF scheme,

in [12] and [13] for DF scheme and in [14] and [15] for XOR

emulation approach by duplicating the single channel strategy

for all sub-channels. However, CF strategy has been only

extended to parallel Gaussian channel for one-way relaying

in [16] and to the best of the authors’ knowledge, was not

extended to TWRC.

In this paper, we design a new relaying scheme for parallel

TWRC based on the CF strategy that we have proposed in [8].

We consider a joint processing strategy at the relay, where the

signals received over all the channels are compressed together.

The proposed scheme offers a reduced complexity compared

to the separate processing of each sub-channel. We derive

the achievable rate region for both, joint and separate source

compression and assess the gap between both strategies.

The rest of the paper is organized as follows. In section

II, we introduce our system model. In section III and IV, we

propose the joint lattice-based Wyner-Ziv Coding scheme and

we derive its achievable rate region. In section V, we present

the optimization problem that solves the optimal power and

distortion allocation for our scheme. Then we present some

numerical results. Finally, section VI concludes the paper.

Notations Random variables (r.v.) are indicated by capital

letters where the realizations are written in small letters. Vector

of r.v. or a sequence of realizations are indicated by bold fonts.

II. SYSTEM MODEL

We consider a two way relaying scenario where K parallel

Gaussian channels are employed. Two nodes T1 and T2

exchange two individual messages m1 and m2, with the help



Fig. 1. The two-phase transmission of parallel Gaussian TWRC

of a relay R as shown in Fig.1. The relay operates in half-

duplex mode. The communication takes n channel uses that

are split into two phases: a multiple access (MAC) phase

during which each node sends its message to the relay and

a broadcast (BC) phase where the relay sends a signal which

helps each node to decode its destined message. The MAC

and BC phases are of lengths n1 = αn and n2 = (1 − α)n
, α ∈ [0, 1] respectively. The channel coefficient between

node Ti and the relay in sub-channel k (respectively the

relay and node Ti) is denoted hi→r,k (respectively hr→i,k).

Without loss of generality, channel reciprocity is assumed

for each sub-channel, i.e. hi→r,k = hr→i,k = hi,k. During

the MAC phase, node Ti, i = 1, 2, draws a message mi

from a set Mi = {1, 2, · · · , 2nRiī} according to a uniform

distribution. Each message mi is encoded to a codeword

xi(mi) = [xi,1(mi) · · ·xi,K(mi)] which is spread over K
sub-channels and n1 channel uses. xi,k(mi) is a n1 sized row

vector codeword which is sent by node Ti in the sub-channel

k. Transmission at node Ti is subject to an individual power

constraint Pi such as:

K
∑

k=1

Pi,k ≤ Pi (1)

with Pi,k is the allocated power in sub-channel k.

The messages are transmitted simultaneously through the

memoryless Gaussian sub-channels and the relay R receives

in each sub-channel k a signal Yr,k given by

Yr,k = h1,kX1,k + h2,kX2,k + Zr,k (2)

where Zr,k ∼ N (0, σ2
r,k) is an i.i.d additive white Gaussian

noise (AWGN).

Let Yr = [Yr,1 · · ·Yr,K ] be the row-wise concatenation of

all signals received by the relay during the MAC phase. During

the BC phase, the relay generates a codeword xr(yr) =
[xr,1(yr) · · ·xr,K(yr)] which is spread over n2 channel uses

and K sub-channels. The signals Xr,k are transmitted through

broadcast memoryless channels and the received signals at

node Ti are Yi,k , i = 1, 2 for k ∈ {1, 2, · · · ,K}

Yi,k = hi,kXr,k + Zi,k, (3)

Zi,k ∼ N (0, σ2
i,k) is an AWGN. We assume that perfect

CSI is available for all nodes and that noise components are

independent of each other and from the channel inputs. In

the sequel, we investigate the achievable rates and present the

design of our scheme.

III. ACHIEVABLE RATE REGIONS

Theorem 1: For parallel Gaussian TWRC, the convex hull

of the following end-to-end rates (R12, R21) is achievable:

R12≤
α
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K
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log2



























1+
|h1,k|2P1,k

σ2
r,k+

1

D∗ −
1

max
i∈{1,2}

K
∑

k=1

|hi,k|
2Pi,k + σ2

r,k



























(4)
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where D∗ satisfies:

α log2
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(1− α) min
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K
∑

k=1

log2
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σ2
i,k
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(6)

with α ∈ [0, 1].

IV. PROOF OF THEOREM 1

In this section, we present a detailed proof of Theorem 1.

The main idea of the proposed scheme is the following: during

the BC phase, the relay station sends a compressed version of

the collection of signals received during the MAC phase. The

relay employs a lossy compression Wyner-Ziv scheme using

nested lattices that is tuned to the user with the global weakest

side information. The proof is divided into three paragraphs: in

section IV-A, we present the WZ strategy which is tailored to

the weakest side information at the receivers. In section IV-B,

we introduce the lattice coding scheme for the WZ model and

finally in IV-C, we derive the achievable rates of the proposed

scheme.

A. Wyner-Ziv using the weakest global side information

Let Si = [hi,1Xi,1, hi,2Xi,2, · · · , hi,KXi,K ], be the collec-

tion of side information available at terminal Ti, i = 1, 2.

We will denote by T∗ (resp. T+) the user that has

lowest (resp. largest) side information variance given by



min
i∈{1,2}

K
∑

k=1

|hi,k|
2Pi,k (resp. max

i∈{1,2}

K
∑

k=1

|hi,k|
2Pi,k). We will

refer to their corresponding variables by (.)∗ and ()+ respec-

tively.

The quantization performed by the relay is tuned so that T∗

reconstructs a local version Ŷ∗
r of Yr with a distortion D∗

such as 1

n1K
E‖Yr − Ŷ∗

r‖
2 ≤ D∗. The other terminal T+ will

undergo this choice on its decoded signal at the end of the

transmission.

The source Yr, of dimension n1K , can be written as the

sum of two independent Gaussian random vectors: the side

information S∗ and the unknown part U∗ = Yr|S∗ that will

be decoded at the end. The variance per dimension of U∗ is

σ2
U∗ = V AR(Yr|S

∗) = max
i∈{1,2}

K
∑

k=1

|hi,k|
2Pi,k + σ2

r,k (7)

B. Lattice based source coding

We use a pair of (n1K)-dimensional nested lattices (Λ1,Λ2)
chosen: the fine lattice Λ1 is good for quantization with

basic Voronoi region V1 of volume V1 and second moment

per dimension σ2(Λ1) = D∗ and the coarse lattice Λ2 is

good for channel coding with basic Voronoi region V2 of

volume V2 and second moment σ2(Λ1) = σ2
U∗ . The encoding

operation is performed in a WZ Lattice Coder (WZLC) with

four successive operations: first, the input signal Yr is scaled

with a factor β. Then, a random dither which is uniformly

distributed over V1 is added. This dither is known by all nodes.

The dithered scaled version of Yr, βyr+t is quantized to the

nearest point in Λ1. The outcome of this operation is processed

with a modulo-lattice operation in order to generate a vector

vr of size n1K as shown in Fig.2.

Fig. 2. WZ lattice encoding and decoding at Ti, i = 1, 2

vr = Q1(βyr + t) mod Λ2 (8)

The relay recovers the index of vr that identifies the coset of

Λ2 relative to Λ1 that contains Q1(βyr + t). The coset leader

vr is represented with
V2

V1

bits. Thus, the global source coding

rate of the scheme is

R(D∗) =
1

n1K
log2 |Λ1 ∩ V2| =

1

n1K
log2

V2

V1

(bits/dim.)

(9)

The relay sends K n2-sized codewords to represent vr. At

both users, vr is generated from the subchannel-wise received

codewords. Ŷr,i|Ŝi = Ûi is reconstructed with a WZ Lattice

Decoder (WZLD) using the side information Si as

ûi = β((vr − t− βsi) mod Λ2), i = 1, 2 (10)

C. Rate analysis

At the relay, the coset leader vr is represented with a

message mr which is mapped to K n2-sized codewords. Let

Rr be the common broadcast rate. This rate is bounded by:

n1KR(D∗) ≤ n2Rr (11)

On the other hand,

Rr ≤ min

{

K
∑

k=1

I (Xr,k;Y1,k) ,

K
∑

k=1

I (Xr,k;Y2,k)

}

(12)

Since real Gaussian codebooks are used for all transmissions,

we have: I(Xr,k;Yi,k) = 1

2
log2

(

1 +
|hi,k|

2Pr,k

σ2
i,k

)

, i = 1, 2.

This constraint ensures that the message mr is transmitted

reliably to both terminals over all sub-channels and vr is

available at the input of WZLD at both receivers. At terminal

Ti, ûi in (10) can be written as:

ûi = β((βui + eq) modΛ2) (13)

≡ β(βui + eq) (14)

where eq = Q1(βyr+t)−(βyr+t) = −(βyr+t) mod Λ1,

is the quantization error. By the Crypto Lemma, Eq is inde-

pendent from Yr, thus Ui, and it is uniformly distributed over

V1 i.e VAR(Eq) = σ2(Λ1) = D∗. The equivalence between

(13) and (14) is valid only if βui + eq ∈ V2. According

to [9], with good channel coding lattices, the probability

Pr(βUi +Eq /∈ V2) vanishes asymptotically provided that:

1

n1K
E‖βUi +Eq‖

2 ≤ σ2(Λ2) (15)

According to the properties of good lattices, we have
1

n1K
log2(Vi) ≈ 1

2
log2(2πeσ

2(Λi)) , i ∈ {1, 2}. Thus the

coding rate in (9) reads:

R(D∗) =
1

2
log2

(

σ2
U∗

D∗

)

(16)

Finally, (6) is obtained by combining equations (11), (12) and

(16).

The parameter β has to be chosen so that to verify (15) and

(17).

1

n1K
E‖Yr − Ŷ∗

r‖
2 = (1− β2)2σ2

U∗ + β2D∗ ≤ D∗ (17)

Taking into account that

1

n1K
E||βU∗ +Eq||

2 =
1

n1K
E||βU∗||2 +

1

n1K
E||Eq||

2

= β2σ2
U∗ +D∗

The optimal scaling factor β is β =

√

1−
D∗

σ2
U∗

as shown in

[8] and [9].

The decoder at each terminal is tailored to its side information



σ2
Si

. Since for i ∈ {1, 2}, σ2
Si

≥ σ2
S∗ , the following inequali-

ties are verified at each node Ti, i = 1, 2:

σ2
Ui

≤ σ2
U∗ ,

Pr(βUi +Eq /∈ V2) ≤ Pr(βU∗ +Eq /∈ V2) −→
n1→∞

0,

1

n1K
E‖Yr − Ŷr,i‖

2 ≤ D∗

where Ŷr,i is the reconstructed source at Ti. Thus by replacing

Ui by its value, we conclude that:

Ûi =





β2hi,1Xi,1 + β2Zr,1

· · ·
β2hi,KXi,K + β2Zr,K





T

+ βEq (18)

Let Zeq,k = β2Zr,k + βEq(n1(k − 1) : n1k) be the effective

global additive noise. The communication between T1 and

T2 (resp. T2 and T1) is equivalent to virtual additive parallel

Gaussian channels where the noise components are given by

Zeq,k for k ∈ {1, · · · ,K}. We approximate Eq by a Gaussian

variable Zq with the same variance. The equivalence is valid

for asymptotic regime as n1 → ∞ [17]. Thus the achievable

rate of both links satisfy:

nR12 ≤
n1

2

K
∑

k=1

log2

(

1 +
β2|h1,k|2P1,k

β2σ2
r,k +D∗

)

nR21 ≤
n1

2

K
∑

k=1

log2

(

1 +
β2|h2,k|

2P2,k

β2σ2
r,k +D∗

)

by replacing
n1

n
= α and β by its value, (4) and (5) are

verified and the proof is concluded. We refer to the proposed

coding scheme as joint-WZLC.

Remark 1: It is possible to use the best side information

S+ as the side information for the WZ lattice coding scheme

to achieve a controlled distortion D+ at terminal T+. For this

purpose, we need two coding layers: a common layer to be

sent to both nodes and a refinement layer to be decoded only

by T+. In this case, the achievable rates can be ameliorated.

This study is under investigation.

Remark 2: When the WZ lattice coding scheme in [8] is

performed at each sub-channel separately, different distortion

constraints should be verified in each sub-channel. We refer

to this scheme as Separate-WZLC. The achievable rate region

of this scheme is given in Theorem 2.

Theorem 2: For parallel Gaussian TWRC, the convex hull

of the following end-to-end rates (R12, R21) is achievable:

R12≤
α

2

K
∑

k=1

log2






1+

|h1,k|2P1,k

σ2
r,k+

1

D∗
k
− 1

max{|h1,k|2P1,k,|h2,k|2P2,k}+σ2
r,k







(19)

R21≤
α

2

K
∑

k=1

log2






1+

|h1,k|
2P1,k

σ2
r,k+

1

D∗
k
− 1

max{|h1,k|2P1,k,|h2,k|2P2,k}+σ2
r,k







(20)

where D∗
k satisfies for k ∈ {1, 2, · · · ,K}:

α log2





max
i∈{1,2}

|hi,k|
2Pi,k + σ2

r,k

D∗
k



 ≤

(1− α) min
i∈{1,2}

{

log2

(

1 +
|hi,k|2Pr,k

σ2
i,k

)}

(21)

with α ∈ [0, 1].

V. NUMERICAL RESULTS

A. Optimization problems

We characterize the whole region of achievable rates

(R12, R21) by considering all possible values for the time

division coefficient α ∈ [0, 1], and by optimizing power

allocation and distortions under the constraint presented in

(6). The boundary points are determined by maximizing the

weighted sum of both rates R12 and R21. The rate region can

also be calculated as follows: we calculate the intersection of

the achievable rate region with the line y = tan(θ) for all

θ ∈ [0, π/2]. For each value of θ, the limit of this intersection

is found by solving the following optimization problem OP1:

max R12(θ) (22a)

s.t. 0 ≤ α ≤ 1, (22b)
K
∑

k=1

Pi,k ≤ Pi , i = 1, 2, r (22c)

Pi,k ≥ 0, (22d)

D∗ satisfies (6), (22e)

D∗ ≥ 0 (22f)

with R21(θ) = tan(θ)R12(θ).
The optimization problem that corresponds to the achievable

rates presented in Theorem 2 is different from OP1 since

it requires to optimize K distortion variables, D∗
k, k ∈

{1, 2, · · · ,K}. We denote it OP2.

The considered optimization problems are not convex in gen-

eral. Thus, the optimal joint power/time/distortion allocation

policy for this problem cannot be expressed in a simple form.

Hence, we are not able to provide an intuitive graphical

interpretation for the optimal allocation in the general case.

We provide in the sequel numerical results obtained by via

Monte Carlo simulations.

B. Simulations

We consider K = 8 sub-channels. The channel gains are

generated using 4 i.i.d Rayleigh distributed time-domain taps.

The noise variances are equal to one at each sub-channel. We

present the Monte Carlo simulations for this setting where the

optimization problems OP1 and OP2 are solved.

In Fig. 3, we consider the same power at all receivers, i.e.,

P1 = P2 = Pr = P . We can observe that Separate-WZLC

is only 0.1 bit/channel use better than the joint-WZLC rate

region.
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Fig. 3. Comparison between achievable rates for equal powers, P = 10 dB

The simulation results corresponding to the case where power

constraints are different is represented in Fig. 4, we can notice

that Joint-WZLC improves compared to Separate-WZLC with

achievable rates R21 > R12 for P1 > P2.

In addition, it is worth noting that the proposed scheme offers
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Fig. 4. Comparison between achievable rates for P1 = 15 dB, P2 = 5 dB
and Pr = 10 dB

a significant complexity gain compared to Separate-WZLC

scheme.

VI. CONCLUSION

In this paper, we have derived a new achievable rate

region for parallel Gaussian TWRC. For this purpose, we

have proposed a new practical lattice-based physical layer

network coding scheme. The scheme is based on joint Wyner-

Ziv source coding strategy and nested lattice codes for all

sub-channels. We have shown that it achieves rates close to

separate Wyner-Ziv coding at each sub-channel with reduced

complexity.
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