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Abstract— We consider a two-user multiaccess channel
with degraded messages sets in which the channel state
information (CSI) is revealed, strictly causally or with one-
unit delay, to only the encoder that sends the common
message. We study the capacity region of this model. We
establish inner and outer bounds on the capacity region. We
also identify some special cases in which the bounds meet,
thereby characterizing the capacity region in these cases.
The outer bound is non-trivial and has a relatively simple
convenient expression (it incorporates only one auxiliary
random variable). The coding scheme that we use for the
inner bound utilizes rate-splitting to resolve a tension at the
informed encoder among exploiting the knowledge of the
(delayed) CSI (through a noisy network coding or quantize-
map-and-forward state compression) and sending informa-
tion cooperatively with the other encoder. Together with
some previous results on closely related models, the results
in this paper shed more light on the utility of delayed CSI
for increasing the capacity region of multiaccess channels;
and tie with some recent progress in this framework.

I. Introduction
In this work, we study a two-user multiaccess channel

(MAC) in which both encoders transmit a common message
and one of the encoders also transmits an individual message.
That is, a MAC with degraded messages sets or cooperative
MAC. We assume that the channel state information (CSI)
is known, strictly causally or with one-unit delay, to only
the encoder that transmits only the common message. More
precisely, let Wc and W1 denote the common message and
the individual message to be transmitted in, say, n uses of
the channel; and Sn = (S1, . . . ,Sn) denote the CSI sequence
during the transmission. At time i, Encoder 2 knows the
channel states only up to time i − 1, i.e., the sequence Si−1 =
(S1, . . . ,Si−1), and both Encoder 1 and the decoder do not the
CSI at all. We refer to this model as “asymmetric cooperative
MAC with delayed CSI”. From a practical viewpoint, the state
sequence may model an interfering signal that is overheard,
and estimated with high precision, by only Encoder 2, for
example due to proximity.

We study the capacity region of this network model. We
establish inner and outer bounds on the capacity region. The
outer bound is non trivial, and has the advantage of having a
relatively simple form that incorporates directly the channel
inputs X1 and X2 and only one auxiliary random variable.

The inner bound is based on a coding scheme in which
the encoder that knows the delayed CSI sends a compressed
version of the CSI to the receiver, in addition to the cooperative
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Fig. 1. Asymmetric cooperative Multiple Access Channel with delayed
CSI.

information that it sends collaboratively with the other
encoder. For this model, because the encoder that transmits
both messages does not know the channel states, there is a
dilemma among 1) exploiting the knowledge of these states by
the other encoder, and 2) sending information cooperatively
(i.e., the common message). The coding scheme of the inner
bound resolves this tension by splitting the common message
into two independent parts, one that is sent cooperatively by
the two encoders, and one that is sent only by the encoder that
knows the delayed CSI. The CSI compression is performed à-
la noisy network coding by Lim, Kim, El Gamal and Chung [1]
or the quantize-map-and-forward by Avestimeher, Diggavi
and Tse [2], i.e., with no binning.

Furthermore, we also identify some special cases in which
the inner and outer bounds meet, and so characterize the
capacity region in these cases. Throughout, the results are
illustrated through some insightful examples.

This work tie with recent and very recent efforts [3]–[11]
aiming at better understanding the utility of delayed CSI in
increasing the capacity region of multiaccess channels. Other
related models are treated in [12]–[15].

II. Problem Setup

We consider a stationary memoryless two-user MAC
WY|X1 ,X2 ,S whose output Y ∈ Y is controlled by the channel
inputs X1 ∈ X1 and X2 ∈ X2 from the encoders and a channel
state S ∈ S which is drawn according to a memoryless prob-
ability law QS. Both encoders transmit a common message
Wc; and one of the encoders, Encoder 1, also transmits an
independent individual message W1. The channel state is
revealed, strictly causally, to only the encoder that sends
only the common message. That is, at time i Encoder 2
knows the values of the state sequence up to time i − 1, i.e.,



Si−1 = (S1, . . . ,Si−1); and both Encoder 1 and the decoder do
not know these states at all.

We assume that the common message Wc and the in-
dividual message W1 are independent random variables
drawn uniformly from the sets Wc = {1, · · · ,Mc} and
W1 = {1, · · · ,M1}, respectively. The sequences Xn

1 and Xn
2

from the encoders are sent across the state-dependent MAC
modeled as a memoryless conditional probability distribution
WY|X1 ,X2 ,S. The laws governing the state sequence and the
output letters are given by

Wn
Y|X1 ,X2 ,S

(yn
|xn

1 , x
n
2 , s

n) =

n∏
i=1

WY|X1 ,X2 ,S(yi|x1i, x2i, si) (1)

Qn
S(sn) =

n∏
i=1

QS(si). (2)

The receiver guesses the pair (Ŵc, Ŵ1) from the channel output
Yn.

Definition 1: For positive integers n, Mc and M1, an
(Mc,M1,n, ε) code for the multiple access channel with asym-
metric delayed states consists of a mapping

φn
1 :Wc×W1 −→ X

n
1 , (3)

at Encoder 1, a sequence of mappings

φ2,i :Wc×S
i−1
−→ X2, i = 1, . . . ,n (4)

at Encoder 2, and a decoder map

ψ : Yn
−→Wc×W1 (5)

such that the average probability of error is bounded by ε,

Pn
e = ES

[
Pr

(
ψ(Yn) , (Wc,W1)|Sn = sn

)]
≤ ε. (6)

The rate of the common message and the rate of the individual
message are defined as

Rc =
1
n

log Mc and R1 =
1
n

log M1,

respectively. A rate pair (Rc,R1) is said to be achievable if for
every ε > 0 there exists an (2nRc , 2nR1 ,n, ε) code for the channel
WY|X1 ,X2 ,S. The capacity region Casym,s-c of the state-dependent
MAC with asymmetric delayed states is defined as the closure
of the set of achievable rate pairs.

Due to space limitation, the results of this paper are either
outlined only or mentioned without proofs. Detailed proofs
can be found in [4].

III. Bounds on the Capacity Region
In this section, it is assumed that the alphabetsS,X1,X2 are

finite.

A. Outer Bound on the Capacity Region
Let Pout

asym,s-c stand for the collection of all random variables
(S,V,X1,X2,Y) such that V, X1 and X2 take values in finite
alphabetsV, X1 and X2, respectively, and satisfy

PS,V,X1 ,X2 ,Y(s, v, x1, x2, y)
= PS,V,X1X2 (s, v, x1, x2)WY|X1 ,X2 ,S(y|x1, x2, s) (7a)

PS,V,X1 ,X2 (s, v, x1, x2) = QS(s)PX2 (x2)PX1 |X2 (x1|x2)
·PV|S,X1 ,X2 (v|s, x1, x2) (7b)∑

v,x1 ,x2

PS,V,X1 ,X2 (s, v, x1, x2) = QS(s) (7c)

and 0 ≤ I(V,X2; Y) − I(V,X2; S). (8)

The relations in (7) imply that V ↔ (S,X1,X2) ↔ Y is a
Markov chain, and X1 and X2 are independent of S.

Define Rout
asym,s-c to be the set of all rate pairs (Rc,R1) such

that

R1 ≤ I(X1; Y|V,X2)
Rc + R1 ≤ I(V,X1,X2; Y) − I(V,X1,X2; S)

for some (S,V,X1,X2,Y) ∈ Pout
asym,s-c. (9)

As stated in the following theorem, the set Rout
asym,s-c is an

outer bound on the capacity region of the cooperative state-
dependent discrete memoryless MAC with delayed CSI states
at the encoder that sends only the common message.

Theorem 1: The capacity region of the cooperative multiple
access channel with delayed CSI known only at the encoder
that sends only the common message satisfies

Casym,s-c ⊆ R
out
asym,s-c. (10)

We now state a proposition that provides an alternative
outer bound on the capacity region of the cooperative
multiaccess channel with delayed CSI that we study. This
proposition will turn out to be useful in Section IV.
Let R̆out

asym,s-c be the set of all rate pairs (Rc,R1) satisfying

R1 ≤ I(X1; Y|X2,S)
Rc + R1 ≤ I(X1,X2; Y) (11)

for some measure

PS,X1 ,X2 ,Y = QSPX1 ,X2 WY|S,X1 ,X2 . (12)

Proposition 1: The capacity region Casym,s-c of the cooper-
ative multiple access channel with delayed CSI known only
at the encoder that sends only the common message satisfies

Casym,s-c ⊆ R̆
out
asym,s-c. (13)

The bound on the sum rate of Theorem 1 is at least at tight as
that of Proposition 1. This can be seen through the following
inequalities.

I(V,X1,X2; Y) − I(V,X1,X2; S)
= I(X1,X2; Y) + I(V; Y|X1,X2) − I(V; S|X1,X2) (14)
= I(X1,X2; Y) + I(V; Y|S,X1,X2) − I(V; S|X1,X2,Y) (15)
= I(X1,X2; Y) − I(V; S|X1,X2,Y) + H(Y|S,X1,X2)
−H(Y|V,S,X1,X2) (16)
= I(X1,X2; Y) − I(V; S|X1,X2,Y) + H(Y|S,X1,X2)
−H(Y|S,X1,X2) (17)
= I(X1,X2; Y) − I(V; S|X1,X2,Y) (18)
≤ I(X1,X2; Y) (19)

where: (14) follows since X1 and X2 are independent of the
state S; (17) follows since for all random variables A, B and
C, we have I(A; B) − I(A; C) = I(A; B|C) − I(A; C|B); and (17)
follows since V ↔ (S,X1,X2)↔ Y is a Markov chain.



For some channels, the outer bound of Theorem 1 is strictly
contained in the outer bound of Proposition 1, i.e.,

R
out
asym,s-c ( R̆

out
asym,s-c. (20)

The following example, shows this.
Example 1: Consider the following discrete memoryless

channel, considered initially in [7],

Y = XS (21)

where X1 = X2 = Y = {0, 1}, and the state S is uniformly
distributed over the setS = {1, 2} and acts as a random switch
that connects a randomly chosen transmitter to the output.
For this channel, the rate-pair (Rc,R1) = (1/2, 1/2) is in the
outer bound of Proposition 1, but not in that of Theorem 1,
i.e., (1/2, 1/2) ∈ R̆out

asym,s-c and (1/2, 1/2) < Rout
asym,s-c.

B. Inner Bound on the Capacity Region
Let Pin

asym,s-c stand for the collection of all random variables
(S,U,V,X1,X2,Y) such that U, V, X1 and X2 take values in
finite alphabetsU,V, X1 and X2, respectively, and satisfy

PS,U,V,X1 ,X2 ,Y(s,u, v, x1, x2, y)
= PS,U,V,X1 ,X2 (s,u, v, x1, x2)WY|X1 ,X2 ,S(y|x1, x2, s) (22a)

PS,U,V,X1 ,X2 (s,u, v, x1, x2)
= QS(s)PUPX2 |U(x2|u)PX1 |U(x1|u)PV|S,U,X2 (v|s,u, x2) (22b)∑

u,v,x1 ,x2

PS,U,V,X1 ,X2 (s,u, v, x1, x2) = QS(s) (22c)

The relations in (22) imply that (U,V) ↔ (S,X1,X2) ↔ Y,
X1 ↔ U ↔ X2 and (U,X1) ↔ (V,X2) ↔ S are Markov chains;
and X1 and X2 are independent of S.

Define Rin
asym,s-c to be the set of all rate pairs (Rc,R1) such

that

R1 ≤ I(X1; Y|U,V,X2)
R1 ≤ I(V,X1,X2; Y|U) − I(V; S|U,X2)

Rc + R1 ≤ I(U,V,X1,X2; Y) − I(V; S|U,X2)

for some (S,U,V,X1,X2,Y) ∈ Pin
asym,s-c.

(23)

As stated in the following theorem, the setRin
asym,s-c is an inner

bound on the capacity region of the state-dependent discrete
memoryless cooperative MAC with delayed CSI known only
at the encoder that sends only the common message.

Theorem 2: The capacity region of the cooperative multiple
access channel with delayed CSI revealed only to the encoder
that sends only the common message satisfies

R
in
asym,s-c ⊆ Casym,s-c. (24)

Proof: A description of the coding scheme that we use for
the proof of Theorem 2 is given in Section V-A.

The following remark helps better understanding the
coding scheme that we use for the proof of Theorem 2.

Remark 1: For the model that we study, a good codebook
at the encoder that sends only the common message should
resolve a dilemma among 1) exploiting the knowledge of
the state that is available at this encoder and 2) sending
information cooperatively with the other encoder (i.e., the

common message). The coding scheme of Theorem 2 resolves
this tension by splitting the common rate Rc into two parts.
More specifically, the common message Wc is divided into
two parts, W = (Wc1,Wc2). The part Wc1 is sent cooperatively
by the two encoders, at rate Rc1; and the part Wc2 is sent only
by the encoder that exploits the available state, at rate Rc2.
The total rate for the common message is Rc = Rc1 + Rc2. In
Theorem 2, the random variable U stands for the information
that is sent cooperatively by the two encoders, and the random
variable V stands for the compression of the state by the
encoder that sends only the common message, in a manner
that is described in more details in Section V-A.

IV. Capacity Results
Consider the following class of discrete memoryless chan-

nels, which we denote as DIH. Encoder 1 does not know the
state sequence at all, and transmits an individual message
W1 ∈ [1, 2nR1 ]. Encoder 2 knows the state sequence strictly
causally, and does not transmits any message. In this model,
Encoder 2 plays the role of a helper that is informed of the
channel state sequence only strictly causally. This network
may model one in which there is an external node that
interferes with the transmission from Encoder 1 to the
destination, and that is overheard only by Encoder 2 which
then assists the destination by providing some information
about the interference. Furthermore, we assume that the state
S an be obtained as a deterministic function of the inputs X1,
X2 and the channel output Y, as

S = f (X1,X2,Y). (25)

For channels with a helper that knows the states strictly
causally, the class of channels DIH is larger than that consid-
ered in [9], as the channel output needs not be a deterministic
function of the channel inputs and the state. The following
theorem characterizes the capacity region for the class of
channelsDIH.

The capacity of the class of channelsDIH can be character-
ized as follows.

Theorem 3: For any channel in the classDIH defined above,
the capacity Cs-c is given by

Cs-c = max
{
I(X1; Y|S,X2), I(X1,X2; Y)

}
(26)

where the maximization is over measures of the form

PS,X1 ,X2 ,Y = QSPX1 PX2 WY|S,X1 ,X2 . (27)

Remark 2: The class DIH includes the Gaussian model
Y = X1 + X2 + S where the state S ∼ N(0,Q) comprises the
channel noise, and the inputs are subjected to the input power
constraints (1/n)

∑n
i=1 E[X2

k,i] ≤ Pk, k = 1, 2. Encoder 1 does not
know the state sequence and transmits message W1. Encoder
2 knows the state sequence strictly causally, and does not
transmit any message. The capacity of this model is given by

CG
s-c =

1
2

log(1 +
P1 + P2

Q
). (28)

The capacity (31) can be obtained from Theorem 3 by
maximizing the two terms of the minimization utilizing the
Maximum Differential Entropy Lemma [16, Section 2.2]. Observe
that the first term of the minimization in (26) is redundant in



this case. Also, we note that the capacity (31) of this example
can also be obtained as a special case of that of the Gaussian
example considered in [9, Remark 4].

In the following example the channel output can not be
obtained as a deterministic function of the channel inputs and
the channel state, and yet, its capacity can be characterized
using Theorem 3.

Example 2: Consider the following Gaussian example with
Y = (Y1,Y2), and

Y1 = X1 + X2 + S (29)
Y2 = X2 + Z (30)

where the state process is memoryless Gaussian, with S ∼
N(0,Q), and the noise process is memoryless Gaussian
independent of all other processes, Z ∼ N(0,N). Encoder
1 does not know the state sequence, and transmits message
W1 ∈ [1, 2nR1 ]. Encoder 2 knows the state strictly causally, and
does not transmit any message. The inputs are subjected to the
input power constraints

∑n
i=1 E[X2

1,i] ≤ nP1 and
∑n

i=1 E[X2
2,i] ≤

nP2. The capacity of this model can be computed easily using
Theorem 3, as

CG
s-c =

1
2

log
(
1 +

P1

Q
+

P2

Q
N

P2 + N

)
+

1
2

log
(
1 +

P2

N

)
. (31)

Note that the knowledge of the states strictly causally at
Encoder 2 makes it possible to send at positive rates by
Encoder 1 even if the allowed average power P1 is zero.

Example 3: Consider the following binary example in
which the state models fading. The channel output has two
components, i.e., Y = (Y1,Y2), with

Y1 = S·X1 (32a)
Y2 = X2 + Z (32b)

where X1 = X2 = S = Z = {+1,−1}, and the noise Z is
independent of (S,X1,X2) with Pr{Z = 1} = p and Pr{Z =
−1} = 1− p, 0 ≤ p ≤ 1, and the state S, known strictly causally
to only Encoder 2, is such that Pr{S = 1} = Pr{S = −1} = 1/2.
Using Theorem 3, it is easy to compute the capacity of this
example, as

CB
s-c = max

0≤q1 ,q2≤1
min

{
h2(q1), g(p, q2) − h2(p)

}
(33)

where

g(p, q2) = −pq2 log(pq2) − (1 − p)(1 − q2) log((1 − p)(1 − q2))
− p ∗ q2 log(p ∗ q2). (34)

Observe that CB
s-c ≥ 1 − 1

2 h2(p) ≥ 0.5.

Proof: Using (32), we have S = Y1/X1, and, so, S is a
deterministic function of (X1,X2,Y). Thus, the capacity of this
channel can be computed using Theorem 3. Let 0 ≤ q1 ≤ 1
such that Pr{X1 = 1} = q1 and Pr{X1 = −1} = 1 − q1. Also, let
0 ≤ q2 ≤ 1 such that Pr{X2 = 1} = q2 and Pr{X2 = −1} = 1 − q2.
Then, considering the first term on the RHS of (26), we get

I(X1; Y|S,X2) = H(Y|S,X2) −H(Y|S,X1,X2) (35)
= H(SX1,X2 + Z|S,X2) −H(Z|S,X1,X2) (36)
= H(X1,Z|S,X2) −H(Z) (37)
= H(X1,Z) −H(Z) (38)
= H(X1) (39)
= h2(q1) (40)

where (37) holds since Z is independent of (S,X1,X2), (38)
holds since (X1,Z) is independent of (S,X2), and (39) holds
since X1 and Z are independent.

Similarly, considering the second term on the RHS of (26),
we get

I(X1,X2; Y) = H(Y) −H(Y|X1,X2) (41)
= H(Y) − (SX1,Z|X1,X2) (42)
= H(Y) −H(Z) −H(S) (43)
= H(SX1) + H(X2 + Z) −H(Z) −H(S) (44)
= H(X2 + Z) −H(Z) (45)
= g(p, q2) − h2(p) (46)

where (43) holds since S and Z are independent of (X1,X2)
and independent of each other, (44) holds since Y1 = SX1 and
Y2 = X2 + Z are independent, (45) follows because

Pr{SX1 = 1} = Pr{SX1 = −1} =
1
2

(47)

and, so, H(SX1) = 1 = H(S), and (46) follows because

Pr{X2 + Z = 0} = p ∗ q2, Pr{X2 + Z = 2} = pq2

Pr{X2 + Z = −2} = (1 − p)(1 − q2) (48)

and, so, H(X2 + Z) = g(p, q2) as given by (34).
Remark 3: The result of Theorem 3 can be extended to the

case in which the encoders send separate messages and each
observes (strictly causally) an independent state. In this case,
denoting by S1 the state that is observed by Encoder 1 and by
S2 the state that is observed by Encoder 2, it can be shown that,
if both S1 and S2 can be obtained as deterministic functions
of the inputs X1 and X2 and the channel output Y, then the
capacity region is given by the set of all rates satisfying

R1 ≤ I(X1; Y|X2,S2) (49a)
R2 ≤ I(X2; Y|X1,S1) (49b)

R1 + R2 ≤ I(X1,X2; Y) (49c)

for some measure of the form QS1 ,S2 ,X1 ,X2 = QS1 QS2 PX1 PX2 . This
result can also be obtained by noticing that, if both S1 and S2
are deterministic functions of (X1,X2,Y), then the inner bound
of [9, Theorem 2] reduces to (49), which is also an outer bound
as stated in [8, Proposition 3].

V. Proofs

A. Proof of Theorem 3
The transmission takes place in B blocks. The common

message Wc and the individual message W1 are sent over
all blocks. We thus have BWc = nBRc, BW1 = nBR1, N = nB,
RWc = BWc/N = Rc and RW1 = BW1/N = R1, where BWc is
the number of common message bits, BW1 is the number of
individual message bits, N is the number of channel uses
and RWc and RW1 are the overall rates of the common and
individual messages, respectively.
Codebook Generation: Fix a measure PS,U,V,X1 ,X2 ,Y ∈ P

in
asym,s-c.

Fix ε > 0, ηc > 0, η1 > 0, η̂ > 0, δ > 1 and denote Mc =

2nB[Rc−ηcε], M1 = 2nB[R1−η1ε], and M̂ = 2n[R̂+η̂ε]. Also, let ηc1 > 0,
ηc2 > 0 and Mc1 = 2nB[Rc1−ηc1ε] and Mc2 = 2nB[Rc2−ηc2ε] such that
Rc = Rc1 + Rc2.



We randomly and independently generate a codebook for
each block.

1) For each block i, i = 1, . . . ,B, we generate Mc1 indepen-
dent and identically distributed (i.i.d.) codewords ui(wc1)
indexed by wc1 = 1, . . . ,Mc1, each with i.i.d. components
drawn according to PU.

2) For each block i, for each codeword ui(wc1), we generate
Mc2M̂ independent and identically distributed (i.i.d.)
codewords x2,i(wc1,wc2, t′i ) indexed by wc2 = 1, . . . ,Mc2,
t′i = 1, . . . , M̂, each with i.i.d. components drawn accord-
ing to PX2 |U.

3) For each block i, for each pair of codewords
(ui(wc1), x2,i(wc1,wc2, t′i )), we generate M̂ i.i.d. codewords
vi(wc1,wc2, t′i , ti) indexed by ti = 1, . . . , M̂, each with i.i.d.
components drawn according to PV|U,X2 .

4) For each block i, for each codeword ui(wc1), we generate
M1 independent and identically distributed (i.i.d.) code-
words x1,i(wc1,w1) indexed by w1 = 1, . . . ,M1, each with
i.i.d. components drawn according to PX1 |U.

Encoding: Suppose that a common message Wc = wc =
(wc1,wc2) and an individual message W1 = w1 are to be
transmitted. As we mentioned previously, wc and w1 will
be sent over all blocks. We denote by s[i] the state affecting
the channel in block i, i = 1, . . . ,B. For convenience, we let
s[0] = ∅ and t−1 = t0 = 1 (a default value). The encoding at the
beginning of block i, i = 1, . . . ,B, is as follows.
Encoder 2, which has learned the state sequence s[i−1], knows
ti−2 and looks for a compression index ti−1 ∈ [1 : M̂] such that
vi−1(wc1,wc2, ti−2, ti−1) is strongly jointly typical with s[i−1] and
x2,i−1(wc1,wc2, ti−2). If there is no such index or the observed
state s[i − 1] is not typical, ti−1 is set to 1 and an error is
declared. If there is more than one such index ti−1, choose
the smallest. It can be shown that the error in this step has
vanishing probability as long as n and B are large and

R̂ > I(V; S|U,X2). (50)

Encoder 2 then transmits the vector x2,i(wc1,wc2, ti−1). Encoder
1 transmits the vector x1,i(wc1,w1).

Decoding: At the end of the transmission, the decoder has
collected all the blocks of channel outputs y[1], . . . ,y[B].
Step (a): The decoder estimates message wc = (wc1,wc2) using
all blocks i = 1, . . . ,B, i.e., simultaneous decoding. It declares
that ŵc = (ŵc1, ŵc2) is sent if there exist tB = (t1, . . . , tB) ∈ [1 :
M̂]B and w1 ∈ [1 : M1] such that ui(ŵc1), x2,i(ŵc1, ŵc2, ti−1),
vi(ŵc1, ŵc2, ti−1, ti), x1,i(ŵc1,w1) and y[i] are jointly typical for
all i = 1, . . . ,B. One can show that the decoder obtains the
correct wc = (wc1,wc2) as long as n and B are large and

Rc2 + R1 ≤ I(V,X1,X2; Y|U) − R̂ (51a)

Rc1 + Rc2 + R1 ≤ I(U,V,X1,X2; Y) − R̂. (51b)

Step (b): Next, the decoder estimates message w1 using again
all blocks i = 1, . . . ,B, i.e., simultaneous decoding. It declares
that ŵ1 is sent if there exist tB = (t1, . . . , tB) ∈ [1 : M̂]B such
that ui(ŵc1), x2,i(ŵc1, ŵc2, ti−1), vi(ŵc1, ŵc2, ti−1, ti), x1,i(ŵc1,w1)
and y[i] are jointly typical for all i = 1, . . . ,B. One can show
that the decoder obtains the correct wc = (wc1,wc2) as long as

n and B are large and

R1 ≤ I(X1; Y|U,V,X2) (52a)

R1 ≤ I(V,X1,X2; Y|U) − R̂. (52b)

The rest of the proof follows by applying Fourier-Motzkin
Elimination to successively eliminate Rc2 and R̂ from the rate
constraints defined by (50), (51) and (52).
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