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Abstract—We study the problem of secure transmission over a two-
user Gaussian multi-input single-output (MISO) broadcast channel
under the assumption that the channel to each receiver is conveyed
either perfectly (P) or with delay (D) to the transmitter. Denoting S1
and S2 to be the channel state information at the transmitter (CSIT)
of user 1 and user 2, respectively; the overall CSIT can then alternate
between four states, i.e., (S1,S2) ∈ {P,D}2. We denote λS1S2

be the
fraction of time the state S1S2 occurs, and focus on the symmetric case
such that λS1S2

= λS2S1
. Under these assumptions, we first consider

the Gaussian MISO wiretap channel and characterize the secure
degrees of freedom (SDoF). Next, we generalize this model to the
two-user Gaussian MISO broadcast channel and establish an inner
bound on the SDoF region. This result shows the synergistic SDoF
gains of alternating CSIT and illustrates that, as opposed to encoding
separately over different states, a higher SDoF region is achievable
by joint encoding across these states.

I. Introduction

Simultaneous transmission of information over a shared wire-
less medium emanates an important issue of interference in net-
works. A key resource to mitigate interference is the availability
of CSIT. In literature, different multi-user networks are studied
under ideal assumption of perfect channel state information
(CSI) at the transmitter in [1] (and references therein), where
quality of CSIT plays a major role in aligning interference in
networks. Recently, a growing body of research has attracted
attention to study a wide variety of two-user CSIT models, for
instance, with delayed CSI in [2], [3], no CSIT in [4], [5] and
with mixed CSIT (perfect delayed CSI along with imperfect
instantaneous CSI) in [6], all from degrees of freedom (DoF)
perspective. In all these models it is assumed that symmetric
CSI is available at the transmitter, i.e., either perfect, delayed or
no CSI is conveyed by both receivers. In [7], Tandon et al. studied
a two-user broadcast channel with asymmetric CSI conveyed
to the transmitter. In this model, the channel to one receiver is
instantaneously available at the transmitter, while the channel to
the other receiver is conveyed with certain delay. The authors
call this model as partially perfect CSIT and characterize the
DoF region. Due to the random fluctuations in the wireless
medium, it becomes difficult for the receivers to convey the
same quality of CSI over time. In another related work [8],
Tandon et al. studied the two-user broadcast channel by taking
the time varying nature of CSIT into account. The authors
assumed that the CSI conveyed by both receivers can vary over
time, and characterize the DoF region.

In this paper, we consider a two-user Gaussian MISO broad-
cast channel in which the transmitter is equipped with two
antennas, and each of the receiver is equipped with a single
antenna as shown in Figure 1. The transmitter wants to transmit
message W1 and W2 to receiver 1 and receiver 2, respectively. In
investigating this model we make three assumptions, namely, 1)
the communication is subjected to a fast fading environment, 2)
each receiver knows the perfect instantaneous CSI and also the
CSI of the other receiver with a unit delay, and 3) the channel
to each receiver is conveyed either perfect instantaneously (P)
or with a unit delay (D) to the transmitter; thus, the CSIT
configuration can alternate between four states. Furthermore,

Fig. 1. Two-user MISO broadcast channel with alternating CSIT, and
security constraints.

the transmitter wants to conceal the message W1 intended to
receiver 1 from receiver 2; and the message W2, that is intended
to receiver 2, from receiver 1. Thus, receiver 2 plays two roles;
1) it is an eavesdropper of message W1 intended to receiver 1,
and also 2) a legitimate receiver to the message W2. Similarly,
receiver 1 not only is an eavesdropper of message W2 intended
to receiver 2, it is also a legitimate receiver to the message W1.
We assume that both eavesdroppers are passive, i.e., they are
not allowed to modify the communication. The model that we
study can be seen as a special case of the one in [8] but with
imposed security constraints. We consider the case of perfect
secrecy and focus on the asymptotic behaviour of this network
model, where SDoF captures the pertinent performance metrics.

The main contributions of this work are summarized as
follows. First, we characterize the SDoF of the (2, 1, 1)–MISO
wiretap channel with alternating CSIT. The coding scheme in
this case is based on an appropriate combination of schemes
developed for fixed CSIT configurations, namely, PP, PD, DP
and DD states. The converse proof follows by extending the
proof of [9] developed in the context of SDoF of MIMO wiretap
channel with delayed CSIT to the case with alternating CSIT;
and, also, borrows some elements from the converse proof of
[8] established for the broadcast model with alternating CSIT
by taking imposed security constraints into account. Next, we
study the MISO broadcast channel with alternating CSIT as
shown in Figure 1 and establish an inner bound on the SDoF
region. The inner bound follows by carefully choosing the
elemental coding schemes developed in [8]; and generalizes
it to account for secrecy constraints. This result shows the
synergistic gains of alternating CSIT and illustrates that the
SDoF of alternating CSIT is strictly greater than the one obtained
by the combination of appropriately scaling SDoF of fixed CSIT
schemes. Alternating CSIT not only provides significant gains in
DoF region as previously noted in [8] in the context of two-user
MISO broadcast channel, it also increases the secure DoF region
of this channel model.



II. SystemModel and Definitions

We consider a two-user Gaussian MISO broadcast channel, as
shown in Figure 1. In this setting, the transmitter is equipped
with two transmit antennas and each of the receiver is equipped
with a single antenna. The transmitter wants to reliably transmit
message W1 ∈ W1 = {1, . . . , 2nR1(P)} to receiver 1, and message
W2 ∈W2 = {1, . . . , 2nR2(P)} to receiver 2, respectively. In doing so,
the transmitter also wishes to conceal the message W1, that is
intended to receiver 1, from receiver 2; and the message W2, that
is intended to receiver 2, from receiver 1. Thus, in the considered
system configuration, receiver 2 acts as an eavesdropper on the
MISO channel to receiver 1; and receiver 1 acts an eavesdropper
on the MISO channel to receiver 2.

We consider a fast fading environment, and assume that each
receiver knows the perfect instantaneous CSI and also the past
CSI of the other receiver. The channel input-output relationship
at time instant t is given by

yt = htxt + n1t

zt = gtxt + n2t, t = 1, . . . ,n (1)

where x ∈ C2×1 is the channel input vector, h ∈ H ⊆ C1×2

is the channel vector connecting receiver 1 to the transmitter
and g ∈ G ⊆ C1×2 is the channel vector connecting receiver
2 to the transmitter, respectively; and ni is assumed to be
independent and identically distributed (i.i.d.) white Gaussian
noise, with ni ∼ CN(0, 1) for i = 1, 2. The channel input is
subjected to block power constraints,

∑n
t=1 E[‖xt‖2] ≤ nP. For

ease of exposition, we denote St =
[

ht
gt

]

as the channel state

matrix and St−1 = {S1, . . . ,St−1} denotes the collection of channel
state matrices over the past (t − 1) symbols, respectively. For
convenience, we set S0 = ∅. We assume that, at each time instant
t, the channel state matrix St is full rank almost surely. At
each time instant t, the past states of the channel matrix St−1

are known to all terminals. However the instantaneous state ht

is known only to receiver 1, and the instantaneous state gt is
known only to receiver 2.

Communication over the wireless channel is particularly sen-
sitive to the quality of CSIT. Although, there are numerous forms
of CSIT, in this setting we focus our attention to two of the
following fundamental aspects.

1) Perfect CSIT, corresponds to those instances in which
transmitter has perfect knowledge of the instantaneous
channel state information. We denote these states by ‘P’.

2) Delayed CSIT, corresponds to those instances in which at
time t, transmitter has perfect knowledge of only the past
(t− 1) channel states. Also, we assume that at time instant
t the current channel state is independent of the past (t−1)
channel states. We denote these states by ‘D’.

Let S1 denotes the CSIT state of user 1 and S2 denotes the CSIT
state of user 2, respectively. Then, based on the availability of
the CSIT, the model that we study (1) belongs to any of the four
states,

(S1,S2) ∈ {P,D}2. (2)

We denote λS1S2 be the fraction of time state S1S2 occurs, such
that

∑

(S1,S2)∈{P,D}2

λS1S2 = 1. (3)

Also, due to the symmetry of problem as reasoned in [8], in this
work we assume that λPD = λDP, i.e., the fraction of time spent
in state PD and DP are equal.

Definition 1: A code for the Gaussian two user (2, 1, 1)–MISO
broadcast channel with alternating CSIT (λS1S2 ) consists of se-

quence of stochastic encoders at the transmitter,

{φ1t : W1×W2×S
t −→ X1 ×X2}

*nλPP+
t=1

{φ2t : W1×W2×S
t−1 −→ X1 ×X2}

*nλDD+
t=1

{φ3t : W1×W2×S
t−1×Ht −→ X1 ×X2}

*nλPD+
t=1

{φ4t : W1×W2×S
t−1×Gt −→ X1 ×X2}

*nλDP+
t=1 (4)

where the messages W1 and W2 are drawn uniformly over the
sets W1 and W2, respectively; and two decoding functions at
the receivers,

ψ1 : Yn×Sn−1×Hn −→ Ŵ1

ψ2 : Zn×Sn−1×Gn −→ Ŵ2. (5)

Definition 2: A rate pair (R1(P),R2(P)) is said to be achievable
if there exists a sequence of codes such that,

lim sup
n→∞

Pr{Ŵi !Wi|Wi} = 0, ∀ i ∈ {1, 2}. (6)

Definition 3: A SDoF pair (d1, d2) is said to be achievable if
there exists a sequence of codes satisfying following,

1) Reliability condition:

lim sup
n→∞

Pr{Ŵi !Wi|Wi} = 0, ∀ i ∈ {1, 2}, (7)

2) Perfect secrecy condition:

lim sup
n→∞

I(W2; yn,Sn)

n
= 0,

lim sup
n→∞

I(W1; zn,Sn)

n
= 0, (8)

3) and Communication rate condition:

lim
P→∞

lim inf
n→∞

log |Wi(n,P)|

n log P
≥ di, ∀ i ∈ {1, 2} (9)

at both receivers.

Definition 4: We define the secure degrees of freedom (SDoF)
region, CSDoF(λS1S2 ), of the MISO broadcast channel as the set of
all achievable non-negative pairs (d1, d2).

Due to the space limitations, the proofs in this work are only
outlined or omitted. Detailed proofs and equivocation analysis
are provided in [10].

III. SDoF ofMISO wiretap channel with alternating CSIT

The following theorem characterizes the SDoF of the MISO
wiretap channel with alternating CSIT.

Theorem 1: The SDoF of the (2,1,1)–MISO wiretap channel
with alternating CSIT (λS1S2 ) is given by

ds(λS1S2 ) = 1 −
λDD

3
. (10)

Proof: We provide the achievability and the converse proof
in Appendix A.

Remark 1: The outer bound generalizes the converse proof of
[9] established in the context of SDoF of MIMO wiretap channel
with delayed CSIT to the case with alternating CSIT; and, also,
uses elements from the converse proof of [8] established for
the two-user broadcast channel with alternating CSIT by taking
imposed security constraints into account. Note that, if delayed
CSI of both receivers is conveyed to the transmitter, i.e., λDD :=
1, the outer bound recovers the SDoF of MISO wiretap channel
with delayed CSI [9, Theorem 1].

The achievability in Theorem 1 follows by appropriately com-
bining several encoding schemes. It is interesting to note that,
any given fixed CSIT scheme can be completely alternated by
another encoding scheme; for example, encoding scheme using
DD state can be completely alternated by using, PD, DP or PP
states, 2

3 -rd fraction of time.



IV. SDoF ofMISO broadcast channel with alternating CSIT

In this section, before proceeding to state our result on the
general model (1) with alternating CSIT, we recall some of the
known results in related settings. Khisti et al. in [11] study
the Gaussian MIMO wiretap channel in which perfect CSI of
legitimate receiver and eavesdropper is available at the trans-
mitter and establish the secrecy capacity as well as the SDoF.
In [12], Liu et al. generalize the model in [11] to the broadcast
setting and characterize the secrecy capacity region. For the
two-user (2,1,1)–MISO broadcast channel the optimal SDoF is
(d1, d2) = (1, 1). Yang et al. [9] study the MIMO broadcast channel
in which only past or delayed CSI of both receivers is conveyed
to the transmitter, and characterize the SDoF region. In [13],
the authors generalized the model in [9] to the MIMO-X setting
with asymmetric feedback and delayed CSIT and characterize
the SDoF region. However, for the two-user MISO broadcast
channel with partially perfect CSIT (PD state) configuration, i.e.,
perfect CSI of one receiver and delayed CSI of the other receiver
is conveyed to the transmitter, SDoF region is unknown. We
first consider the (2, 1, 1)–MISO broadcast channel with partially
perfect CSIT and establish a lower bound on the SDoF region. A
trivial lower bound on the SDoF region of the two user (2,1,1)–
MISO broadcast channel with partially perfect CSIT (PD state)
is given by the set of all non-negative pairs (d1, d2) satisfying

d1 + d2 ≤ 1. (11)

The achievability in (11) follows from the coding scheme that
we use for the proof of Theorem 1 by choosing PD state.

We now turn our attention to consider the MISO broadcast
channel with alternating CSIT (λS1S2 ) and state our main result.
For convenience, we first define the following quantity

dlow
s = ds −

6λPD

11
. (12)

The following theorem provides an inner bound on the SDoF
region of the MISO broadcast channel with alternating CSIT.

Theorem 2: An inner bound on the SDoF region CSDoF(λS1S2 )
of the two-user (2,1,1)–MISO broadcast channel with alternat-
ing CSIT is given by the set of all non-negative pairs (d1, d2)
satisfying

d1 ≤ ds (13a)

d2 ≤ ds (13b)

d1

dlow
s

+
d2

2
≤ 1 +

λPP + λPD

2
(13c)

d1

2
+

d2

dlow
s

≤ 1 +
λPP + λPD

2
. (13d)

Proof: The achievability proof is provided in [10].

Remark 2: The region established in Theorem 2 reduces to the
DoF region of the MISO broadcast channel with alternating CSIT
and no security constraints in [8, Theorem 1] by setting ds =

dlow
s := 1 in (13).

Figure 2 sheds light on the benefits of alternation between the
states and shows the SDoF regions of DD, partially perfect CSIT
(PD state), PP states and the region obtained by alternation
between PD and DP states. It can be easily seen that, alterna-
tion between PD and DP states enlarges the SDoF region in
comparison to using only PD state. This gain highlights the fact
that, as opposed to encoding separately over different states,
by encoding jointly across these states higher SDoF region is
achievable.

Remark 3 (Synergistic Gains in Asymmetric Configurations): In
Theorem 2, the inner bound provides synergistic benefits of
alternating CSIT under the symmetric assumption of λPD = λDP.
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Fig. 2. Achievable SDoF region of (2, 1, 1)–MISO broadcast channel with
alternating CSIT.

We note that this gain in SDoF region is not restricted to
symmetric setting and can also be appreciated under the
asymmetric setting, i.e., λPD ! λDP. We consider a simple
example in which states PD and DP occurs λPD = 1

6 and
λDP =

5
6 fractions of time, respectively. From (11), it is easy

to note that the achievable SDoF of each of these states is 1.
However, as previously noted in [8] for a similar model without
secrecy constraints, by synergistically using these states one
can obtain higher DoF gains with secrecy constraints as well;
for instance, by completely using scheme S4/3

1 (which is based
on synergistically using state PD and DP) 1

3 -rd fraction of time
and using DP state in the remaining fraction of time, we get

SDoF =
1

3
×

(

4

3

)

︸︷︷︸

S4/3
1

+
2

3
× (1)

︸︷︷︸

DP

=
10

9
≥ 1 (14)

which shows the benefits of alternating CSIT under asymmetric
configurations.

V. Coding Scheme

We now provide an outline of the elemental encoding schemes
that provide the main ingredients to establish the inner bound
of Theorem 2. The coding schemes, that we construct in this
section, can be seen as an extension of the one established by
Tandon et al. in the context of MISO broadcast channel with
alternating CSIT [8], by taking security constraints into account.

A. Coding scheme achieving 2-SDoF

The following scheme achieves 2-SDoF.
• S2 – using PP state, (d1, d2) = (1, 1) is achievable.

Due to the availability of perfect CSI of both receivers, transmit-
ter can zero-force the information leaked to unintended receiver.
Thus, it can be readily shown that one symbol is securely
transmitted to each receiver in a single timeslot, yielding 1-SDoF
at each receiver.

B. Coding scheme achieving 1-SDoF

The following scheme achieves 1-SDoF.

• S1 – using DD state, (d1, d2) = ( 1
2 ,

1
2 ) is achievable.

For the case in which delayed CSI of both receivers is conveyed
to the transmitter, (d1, d2) = ( 1

2 ,
1
2 ) SDoF is achievable. The coding

scheme in this case is established in [9] and is omitted for
brevity.

C. Coding schemes achieving 4/3-SDoF

The following schemes achieve 4/3 SDoF.
1) S4/3

1 – using DP, PD state for ( 1
2 ,

1
2 ) fraction of time, (d1, d2) =

( 2
3 ,

2
3 ) SDoF is achievable.

2) S4/3
2 – using DD, DP, PD state for ( 1

3 ,
1
3 ,

1
3 ) fraction of time,

(d1, d2) = ( 2
3 ,

2
3 ) SDoF is achievable.



1) S4/3
1 — Coding scheme using DP and PD states: In the coding

scheme that follows, we highlight the benefits of alternation
between the states. We now show that by using PD and DP state,
(d1, d2) = ( 2

3 ,
2
3 ) SDoF is achievable. Transmitter wants to transmit

four symbols (v1, v2, v3, v4) to receiver 1 and wishes to conceal
it from receiver 2; and four symbols (w1,w2,w3,w4) to receiver
2 and wishes to conceal it from receiver 1, respectively. The
communication takes place in six phases, each comprising of
only one time slot. In this scheme, transmitter alternate between
different states and choose DP at t = 1, 3, 5, and PD at t = 2, 4, 6,
respectively. In the first phase transmitter chooses DP state and
injects artificial noise, u = [u1,u2]T. The channel input-output
relationship is given by

y1 = h1u, (15a)

z1 = g1u. (15b)

At the end of Phase 1, the past CSI of receiver 1 is conveyed
to the transmitter. In the second phase, utilizing the leverage
provided by the alternating CSIT model, transmitter switches
from DP to PD state and sends ṽ := [v1, v2]T along with a
linear combination of channel output y1 of receiver 1 during
the first phase. Due to the availability of past CSI of receiver
1 (h1) in phase 1 and since the transmitter already knows u, it
can easily re-construct the channel output y1. During this phase,
transmitter sends

x2 =

[

v1

v2

]

+

[

y1

φ

]

. (16)

At the end of phase 2, the channel input-output relationship is
given by

y2 = h2ṽ + h21 y1, (17a)

z2 = g2ṽ + g21 y1
︸!!!!!!!︷︷!!!!!!!︸

interference

. (17b)

At the end of phase 2, receiver 2 feeds back the delayed CSI to
the transmitter. Since receiver 1 knows the CSI (h2) and also the
channel output y1 from Phase 1, it subtracts out the contribution
of y1 from the channel output y2, to obtain one equation with
two unknowns (ṽ := [v1, v2]T). Thus, receiver 1 requires one extra
equation to successfully decode the intended variables, being
available as interference (side information) at receiver 2.

In the third phase, the transmitter alternate from PD to DP
state and sends w̃ := [w1,w2]T and v3 along with a linear
combination of channel output z1 of receiver 2 during the first
phase. In phase 3, perfect CSI of receiver 2 (g3) at transmitter is
utilized in two ways, 1) it zero-forces the interference at receiver
2 being caused by symbol v3, and in doing so 2) it also secures
symbol v3 which is intended to receiver 1, being eavesdropped
by receiver 2. During this phase, transmitter sends

x3 =

[

w1

w2

]

+

[

z1

φ

]

+ b1v3, (18)

where b1 ∈ C2×1 denotes the precoding vector chosen such
that g3b1 = 0. At the end of phase 3, the channel input-output
relationship is given by

y3 = h3w̃ + h31z1
︸!!!!!!!!︷︷!!!!!!!!︸

interference

+h3b1v3, (19a)

z3 = g3w̃ + g31z1. (19b)

At the end of phase 3, receiver 1 feeds back the delayed CSI
to the transmitter. Since receiver 2 knows the CSI (g3) and
also the channel output z1 from Phase 1, it subtracts out the
contribution of z1 from the channel output z3, to obtain one
equation with two unknowns (w̃ := [w1,w2]T). Thus, it requires
one extra equation to successfully decode the intended variables

being available as interference or side information at receiver 1.
Receiver 1 gets the intended symbol v3 embedded in with some
interference (h3w̃+h31z1) from the transmitter. If this interference
can be conveyed to the receiver 1, it can then subtracts out
the interference’s contribution from y3 and decodes v3 through
channel inversion.

At the end of phase 3, due to availability of delayed CSI
(g2,h3), transmitter can learn the interference at receiver 2 in
phase 2 and at receiver 1 in phase 3, respectively. In the fourth
phase, transmitter switches from DP to PD state and sends the
interference (g2ṽ + g21 y1) at receiver 2 during the second phase
and fresh information w3. During this phase, transmitter sends

x4 =

[

g2ṽ + g21 y1

φ

]

+ b2w3, (20)

where b2 ∈ C2×1 denotes the precoding vector chosen such
that h4b2 = 0. At the end of phase 4, the channel input-output
relationship is given by

y4 = h41(g2ṽ + g21 y1), (21a)

z4 = g41(g2ṽ + g21 y1) + g4b2w3. (21b)

At the end of phase 4, receiver 1 subtracts out the contribution of
y1 from the channel outputs (y2, y4) and decodes (v1, v2) through
channel inversion. Similarly, since receiver 2 knows the CSI and
z2 from phase 2, it first subtracts out the contribution of z2 from
the channel output z4 and decodes w3.

In the fifth phase, transmitter switches from PD to DP state
and sends the interference (h3w̃ + h31z1) at receiver 1 during
phase 3 and fresh information v4 to receiver 1. During this phase,
transmitter sends

x5 =

[

h3w̃ + h31z1

φ

]

+ b3v4, (22)

where b3 ∈ C2×1 denotes the precoding vector chosen such
that g5b3 = 0. At the end of phase 5, the channel input-output
relationship is given by

y5 = h51(h3w̃ + h31z1) + h5b3v4, (23a)

z5 = g51(h3w̃ + h31z1). (23b)

At the end of phase 5, receiver 2 subtracts out the contribution
of z1 from the channel outputs (z3, z5) and decodes (w1,w2)
through channel inversion. Receiver 1 gets the intended symbol
v4 embedded within the same interference as in phase 3. If
this interference can be conveyed to the Receiver 1, it can then
subtracts out the interference’s contribution from y5 and decodes
v4 through channel inversion.

In the sixth phase, transmitter switches from DP to PD state
and sends interference (h3w̃ + h31z1) at receiver 1 during phase
3 with fresh information w4 for receiver 2. During this phase
transmitter sends

x6 =

[

h3w̃ + h31z1

φ

]

+ b4w4, (24)

where b4 ∈ C2×1 denotes the precoding vector chosen such
that h6b4 = 0. At the end of phase 6, the channel input-output
relationship is given by

y6 = h61(h3w̃ + h31z1), (25a)

z6 = g61(h3w̃ + h31z1) + g6b4w4. (25b)

At the end of phase 6, since receiver 1 knows the CSI and by
using y6, subtracts out the contribution of (h3w̃+h31z1) from the
channel outputs (y3, y5) and decodes v3 and v4 through channel
inversion. Similarly, since receiver 2 knows the CSI and also z5,
it can then subtracts out the contribution of (h3w̃ + h31z1) from
channel output z6 and decodes w4 through channel inversion.



The complete security analysis of this scheme is provided
in [10]. Then, through straightforward algebra, it can be easily
seen that 4 symbols are securely transmitted to each receiver
over 6 time slots, thus yielding (d1, d2) = (2/3, 2/3) SDoF.

The coding scheme S4/3
2 follows along the same lines as in S4/3

1
and is provided in [10].

Appendix A
Proof of Theorem 1

Achievability. We first digress to construct some elemental
coding schemes which form the basic building blocks to estab-
lish the achievability in Theorem 1. These schemes have some
connections to the one in section V and so we outline it briefly.

S1—Coding schemes achieving 1-SDoF: For PP, and DP state
1-SDoF is achievable. Due to the availability of perfect CSI of the
unintended receiver (wire-taper), the transmitter can zero-force
the information leaked to it. Thus, it can be readily shown that
one symbol is securely transmitted to the legitimate receiver in
a single timeslot, yielding 1-SDoF.

For the case in which PD state occurs, the transmitter trans-
mits one confidential message (v) along with the artificial noise
(u). In this state, perfect CSI of the legitimate receiver is utilize to
zero force the injected artificial noise. The communication takes
place in only one time slot and transmitter sends

x =

[

v

φ

]

+ bu, (26)

where b ∈ C2×1 denotes the precoding vector chosen such that
h1b = 0. The channel input-output relationship is given by

y = h11v (27a)

z = g11v + g1bu (27b)

Receiver 1 knows the CSI (h) and can easily decodes v via
channel inversion. Receiver 2 gets the confidential message v
embedded in artificial noise and is unable to decode it. Then,
following security analysis similar to in [10], it can be easily
shown that 1 symbol is securely transmitted to the legitimate
receiver over 1 timeslot yielding 1-SDoF.

S2/3—Coding scheme achieving 2/3-SDoF: For the case in
which DD state occurs, 2/3 SDoF is achievable. The coding
scheme in this case is similar to the one in [9, Section IV-B-
2] for the MIMO wiretap channel with delayed CSIT from both
receivers.

Then, the achievable SDoF follows by choosing PP,PD,DP and
DD states, λPP, λPD, λDP and λDD fractions of time, respectively,
yields λPP.(1) + λPD.(1) + λDP.(1) + λDD.( 2

3 ) = 1 − λDD
3 .

Converse Proof. The converse borrows elements from the
proof established in the context of MIMO wiretap channel with
delayed CSIT [9] and the one established in the context of
MISO broadcast channel with alternating CSIT [8]. For con-
venience, we denote the channel output at each receiver as
yn := (yn

PP, y
n
PD, y

n
DP, y

n
DD), and zn := (zn

PP, z
n
PD, z

n
DP, z

n
DD), where

yn
S1S2

(zn
S1S2

) denotes the part of channel output at receiver 1
(receiver 2), when (S1S2) ∈ {P,D}2 channel state occurs. We begin
the proof as follows.

nRe

= H(W|zn)
(a)
= H(W|zn,Sn)

= H(W|Sn) − I(W; zn|Sn)

= I(W; yn|Sn) +H(W|yn,Sn) − I(W; zn|Sn)
(b)
≤ I(W; yn|Sn) − I(W; zn|Sn) + nεn

= h(yn
PP, y

n
PD, y

n
DP, y

n
DD|S

n) − h(yn
PP, y

n
PD, y

n
DP, y

n
DD|W,S

n)

− I(W; zn
DD|S

n) − I(W; zn
PP, z

n
PD, z

n
DP|z

n
DD,S

n) + nεn

≤h(yn
PP|S

n) + h(yn
PD |S

n) + h(yn
DP|S

n) + h(yn
DD|S

n) − h(yn
DD|W,S

n)

− h(yn
PP, y

n
PD, y

n
DP|y

n
DD,W,S

n) − I(W; zn
DD|S

n)

− I(W; zn
PP, z

n
PD, z

n
DP|z

n
DD,S

n) + nεn

(c)
≤ h(yn

PP|S
n) + h(yn

PD |S
n) + h(yn

DP|S
n) + h(yn

DD|S
n) − h(yn

DD|W,S
n)

− h(yn
PP, y

n
PD, y

n
DP|y

n
DD,W, x

n,Sn)
︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸

≥no(log(P))

−I(W; zn
DD|S

n) + nεn

(d)
≤ h(yn

PP |S
n) + h(yn

PD |S
n) + h(yn

DP|S
n) + I(W; yn

DD|S
n)

− I(W; zn
DD|S

n) + nεn

≤n log(P)(λPP + λPD + λDP) + I(W; yn
DD|S

n) − I(W; zn
DD|S

n) + nεn

(e)
≤ n log(P)(λPP + λPD + λDP) +

2λDD

3
n log(P) + nεn

( f )
= n log(P)(1 −

λDD

3
) + nεn (28)

where εn → 0 as n→∞; (a) follows due to the independence of
W and Sn, (b) follows from Fano’s inequality, (c) follows from
the non-negativity of I(W; zn

PP, z
n
PD, z

n
DP|z

n
DD,S

n) and the fact that
conditioning reduces entropy, (d) follows because (yn

PP, y
n
PD, y

n
DP)

can be obtained within noise distortion form (xn,Sn), (e) follows
by exploiting the properties of channel output symmetry as in
[9, Lemma 1] for the MIMO wiretap channel with delayed CSI;
and ( f ) follows by definition (3).
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