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Abstract

This document contains the proofs of the results provided in the paper “On the Capacity of Uplink

Cloud Radio Access Networks with Oblivious Relaying”.

I. NOTATION

This document is based on the results exposed in the document “On the Capacity of Uplink

Cloud Radio Access Networks with Oblivious Relaying”. Whenever we shall refer to one equation

in such document, we refer to it as [C1]-(eq. number), e.g., [C1]-(5) refers to equation (5) of

the referred manuscript.
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II. PROOF OF THEOREM 1

A. Direct Part

In this section we show that the capacity in Theorem 1 is achieved by noisy network coding

(NNC) [1] and by compress-and-forward à la Cover-El Gamal with joint decoding and decom-

pression at the CP (CoF-JD) as in [2], [3].

In NNC each relays compresses the received signal without applying Wyner-Ziv binning. At

the CP, the transmitted messages are simultaneously decoded with the compression codewords.

The rates achievable with NNC in O-CRAN with L users and K relays follows from [1] and

are given next.

Proposition 1. The tuple (R1, . . . , RL) is achievable in the O-CRAN if for all T ⊆ L, and for

all S ⊆ K, ∑
t∈T

Rt ≤
∑
s∈S

[Cs − I(Ys;Us|XL, Q)] + I(XT ;USc|XT c , Q),

is satisfied for some pmf p(q)
∏L

l=1 p(xl|q)
∏K

k=1 p(uk|yk, q).

Alternatively to NNC, the rates region in Proposition 1 can also be achieved with CoF-JD,

in which the relays compress the received signal relying on binning distributed compression

techniques as stated in [2, Proposition IV.1]1. While in the classical compress-and-forward, the

CP first decodes the relay’s observation, and then decodes the transmitted messages could be

modified to consider the joint decoding and decompression. Such modification is motivated by

the observation that by considering joint decoding, the transmitted messages can be decoded

without fully decoding the compression [3].

B. Converse Part

Assume the rate tuple (R1, . . . , RL) is achievable. Let T be a set of L, S be a non-empty set of

K, and Jk , φrk(Y
n
k , q

n) be the message sent by relay k ∈ K, and let Q̃ = qn be the time-sharing

1Note that [2, Proposition IV.1] requires a slight generalization to include L users and N relays and the time-sharing variable
in Proposition 1.
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variable. For simplicity we define Xn
L , (Xn

1 , . . . , X
n
L), RT ,

∑
t∈T Rt and CS ,

∑
k∈S Ck.

Define Ui,k , (Jk, Y
i−1
k ) and Q̄i , (X i−1

L , Xn
L,i+1, Q̃).

From Fano’s inequality, we have with εn → 0 for n→∞ (for vanishing probability of error),

for all T ⊆ L,

H(mT |JK, FL, Q̃) ≤ H(mL|JK, FL, Q̃) ≤ nεn. (1)

We show the following inequality, used below in the proof.

H(Xn
T |Xn

T c , JK, Q̃) ≤
n∑
i=1

H(XT ,i|XT c,i, Q̄i)− nRT (2)

, nΓT . (3)

Inequality (3) can be shown as follows. From the destination side, we have

nRT = H(mT ) (4)

=I(mT ; JK, FL, Q̃) +H(mT |JK, FL, Q̃) (5)

=I(mT ; JK, FT |FT c , Q̃) +H(mT |JK, FL, Q̃) (6)

≤I(mT ; JK, FT |FT c , Q̃) + nεn (7)

=H(JK, FT |FT c , Q̃)−H(JK, FT |FT c ,mT , Q̃) + nεn (8)

=H(JK|FT c , Q̃) +H(FT |FT c , JK, Q̃) + nεn (9)

−H(FT |FT c ,mT , Q̃)−H(JK|FT c ,mT , FT , Q̃) (10)

=I(mT , FT ; JK|FT c , Q̃)− I(FT ; JK|FT c , Q̃) + nεn (11)

≤I(mT , FT ; JK|FT c , Q̃) + nεn (12)

≤I(Xn
T ; JK|FT c , Q̃) + nεn (13)

=H(Xn
T |FT c , Q̃)−H(Xn

T |FT c , JK, Q̃) + nεn (14)

≤H(Xn
T |Xn

T c , Q̃)−H(Xn
T |Xn

T c , FT c , JK, Q̃) + nεn (15)

=H(Xn
T |Xn

T c , Q̃)−H(Xn
T |Xn

T c , JK, Q̃) + nεn, (16)
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where (4) follows since mT are independent; (6) follows since mT is independent of Q̃ and

FT c; (7) follows from (1); (11) follows since mT is independent of FL; (13) follows from

the data processing inequality;(15) follows since Xn
T c , FT c are independent from Xn

T and since

conditioning reduces entropy and; (16) follows due to the Markov chain

Xn
T −
− (Xn

T c , JK, Q̃)−
− FT c . (17)

Then, from (16) we have (3) as follows:

H(Xn
T |Xn

T c , JK, Q̃) ≤ H(Xn
T |Xn

T c , Q̃)− nRT − nεn (18)

≤
n∑
i=1

H(XT ,i|Xn
T c , X i−1

T , Q̃)− nRT (19)

=
n∑
i=1

H(XT ,i|XT c,i, X
i−1
L , Xn

L,i+1, Q̃)− nRT (20)

=
n∑
i=1

H(XT ,i|XT c,i, Q̄i)− nRT = nΓT . (21)

where (20) is due to Lemma 1 .

Continuing from (16), we have

nRT ≤
n∑
i=1

H(XT ,i|Xn
T c , Q̃,X i−1

T )−H(Xn
T ,i|Xn

T c , JK, X
i−1
T , Q̃) + nεn (22)

=
n∑
i=1

H(XT ,i|Xn
T c , Q̃,X i−1

T , Xn
T ,i+1)−H(XT ,i|Xn

T c , JK, X
i−1
T , Q̃) + nεn (23)

≤
n∑
i=1

H(XT ,i|XT c,i, Q̄i)−H(XT ,i|XT c,i, UK,i, Q̄i) + nεn (24)

=
n∑
i=1

I(XT ,i;UK,i|XT c,i, Q̄i) + nεn, (25)

where (23) follows due to Lemma 1 ; and (24) follows since conditioning reduces entropy.

On the other hand, we have the following equality

I(Y n
S ; JS |Xn

L, JSc , Q̃) =
∑
k∈S

I(Y n
k ; Jk|Xn

L, Q̃) (26)
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=
∑
k∈S

n∑
i=1

I(Yk,i; Jk|Xn
L, Y

i−1
k , Q̃) (27)

=
∑
k∈S

n∑
i=1

I(Yk,i; Jk, Y
i−1
k |Xn

L, Q̃) (28)

=
∑
k∈S

n∑
i=1

I(Yk,i;Uk,i|XL,i, Q̄i), (29)

where (26) follows due to the Markov chain

Jk −
− Y n
k −
−Xn

L −
− Y n
S\k −
− JS\k for k = [1, K], (30)

and since Jk is a function of of Y n
k ; and (28) follows due to the Markov chain Yk,i−Xn

L−Y i−1
k

which follows since the channel is memoryless.

Then, from the relay side we have,

nCS ≥
∑
k∈S

H(Jk) ≥ H(JS) (31)

≥H(JS |Xn
T c , JSc , Q̃) (32)

≥I(Y n
S ; JS |Xn

T c , JSc , Q̃) (33)

=I(Xn
T , Y

n
S ; JS |Xn

T c , JSc , Q̃) (34)

=H(Xn
T |Xn

T c , JSc , Q̃)−H(Xn
T |Xn

T c , JK, Q̃) + I(Y n
S ; JS |Xn

L, JSc , Q̃) (35)

≥H(Xn
T |Xn

T c , JSc , Q̃)− nΓT + I(Y n
S ; JS |Xn

L, JSc , Q̃) (36)

=
n∑
i=1

H(XT ,i|Xn
T c , JSc , X

i−1
T , Q̃)− nΓT + I(Y n

S ; JS |Xn
L, JSc , Q̃) (37)

≥
n∑
i=1

H(XT ,i|XT c,i, USc,i, Q̄i)− nΓT + I(Y n
S ; JS |Xn

L, JSc , Q̃) (38)

=nRT −
n∑
i=1

I(XT ,i;USc,i|XT c,i, Q̄i) +
∑
k∈S

n∑
i=1

I(Yk,i;Uk,i|XL,i, Q̄i), (39)

where (34) follows since JS is a function of Y n
S ; (36) follows from (3); (38) follows since

conditioning reduces entropy; and (39) follows from (3) and (29).
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In general, Q̄i is not independent of XL,i, YS,i, and that due to Lemma 1 , conditioned on Q̄i,

we have the Markov chain

Uk,i − Yk,i −XL,i − YK\k,i − UK\k,i. (40)

Finally, we define the standard time-sharing variable Q′ uniformly distributed over {1, . . . , n},

XL , XL,Q′ , Yk , Yk,Q′ , Uk , Uk,Q′ and Q , [Q̄Q′ , Q′] and we have from (25)

nRT ≤
n∑
i=1

I(XT ,i;UK,i|XT ,i, Q̄i) + nεn (41)

= nI(XT ,Q′ ;UK,Q′ |XT c,Q′ , Q̄Q′ , Q′) + nεn (42)

= nI(XT ;UK|XT c , Q) + nεn, (43)

and similarly, from (39), we have

RT ≤CS −
∑
k∈S

I(Yk;Uk|XL, Q) + I(XL;USc |XT c , Q).

This completes the proof of Theorem 1 .

III. ON THE OPTIMALITY OF SEPARATE DECOMPRESSION AND DECODING IN REMARK 1

The inner bound in Theorem 3 is based on a modification of the classical compress-and-

forward scheme [4], [5] by letting the joint decoding of the compression codewords and the

transmitted messages. In this section, we focus on the classical compress-and-forward scheme in

which the decoding of the compression codewords and the decoding of the transmitted messages

is performed separately; and on a low complexity version of it, in which the compressed channel

outputs are decompressed successively and then, the users’ message decoding is also done

successively. Both strategies are shown to achieve the same sum-rate as CoF-JD in Theorem 3 .

We first define the sum-rate region. For given fronthaul tuple (C1, . . . , CK), a sum-rate Rsum

is said to be achievable if there exist an achievable tuple (R1, . . . , RL, C1, . . . , CK) such that

L∑
l=1

Rl = Rsum. (44)
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The sum-rate regionRsum(CK) is given by the closure of all achievable tuples (Rsum, C1, . . . , CK).

Since the partial sums over T in the rate constraints of Theorem 3 can be attained with

equality, it follows that the achievable sum-rate region with CoF-JD and NNC, Rsum
JD , is given

as follows.

Corollary 1. For fronthaul capacity (C1, . . . , CK), the sum-rate Rsum is achievable for the O-

CRAN if for all S ⊆ K we have

Rsum ≤
∑
s∈S

Cs − I(YS;US |XL, USc , Q) + I(USc ;XL|Q), (45)

for some pmf p(q)
∏L

l=1 p(xl|q)p(yK|xL)
∏K

k=1 p(uk|yk, q).

In the classical compress-and-forward [5], [6], the decoding complexity is reduced by con-

sidering separate decompression and user message decoding, i.e., at the CP the channel outputs

are first decompressed, and then the uses messages are decoded. We denote this scheme by

Compress-and-Forward with Separate Decompression and Decoding (CoF-SD). The sum-rate

region achievable by CoF-SD, Rsum
SD , is given in the next proposition.

Proposition 2. For fronthaul capacity (C1, . . . , CK), the sum-rate Rsum is achievable for the

O-CRAN if for all S ⊆ K we have

Rsum < I(XL;UK|Q), (46)∑
s∈S

Cs > I(US ;YS |USc , Q), (47)

for some pmf p(q)
∏L

l=1 p(xl|q)p(yK|xL)
∏K

k=1 p(uk|yk, q).

Proof: The proof follows by considering separate decompression and decoding error events in

the proof in Appendix VII as in the proof of [3, Theorem 1].

A low complexity version of CoF-SD consists on the concatenation of successive Wyner-Ziv

compression, followed by the successive decoding of the channel inputs as follows. For a given

permutation of the relays π : K → K:
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1) Relay π(1) employs conventional lossy source coding to compress Yπ(1). Relay π(k),

k = 1, . . . , K, employs Wyner-Ziv coding to compress Yπ(k) with (Uπ(1), . . . , Uπ(k−1))

being the side information at the decoder.

2) The CP first decodes the codeword Uπ(1) from relay π(1), then successively decodes the

codeword Uπ(k), k = 1, . . . , K, from relay π(k) with side information (Uπ(1), . . . , Uπ(k−1)),

k = 1, . . . ,M .

3) Finally, the CP decodes the codeword X1 from transmitter 1. Then, it successively decodes

the codeword Xl, l = 1, . . . , L from transmitter k, being (X1, . . . , Xl−1), l = 2, . . . , L

decoded codewords.

We denote this scheme by Compress and Forward with Successive Wyner Ziv and Successive

Decoding (CoF-SWZ), and define Rsum
SWZ as its achievable sum-rate region.

Proposition 3. For fronthaul capacity (C1, . . . , CK), the sum-rate Rsum is achievable for the

O-CRAN if for all S ⊆ K and for some ordering π : K → K, we have

Rsum <
L∑
l=1

I(Xl;UK|X l−1
1 , Q), (48)

Cπ(k) > I(Uπ(k);Yπ(k)|Uπ(1), . . . , Uπ(k−1), Q), k = 1 . . . , K, (49)

for some pmf p(q)
∏L

l=1 p(xl|q)p(yK|xL)
∏K

k=1 p(uk|yk, q).

Note that in general,Rsum
SWZ ⊆ Rsum

SD ⊆ Rsum
JD . It is shown in [7] that joint compression decoding

and separate decompression decoding, i.e., CoF-SD and CoF-JD, achieve the same sum-rate2,

for the class of channels satisfying [C1]-(5) . Next theorem shows that CoF-SWZ also achieves

the same sum-rate as CoF-JD for the general O-CRAN model in Section ??. The question of

whether CoF-SWZ can achieve not only the same sum-rate but the whole rate-region achievable

by CoF-JD remains as an open problem.

Theorem 1. Rsum
JD = Rsum

SD = Rsum
SWZ.

2In fact, it follow from a minor modification of the proof in [7] that CoF-SWZ also achieves the same performance as CoF-JD
in their setup.
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Proof: The proof of Theorem 1 appears in Appendix IV.

A direct consequence of Theorem 1 along with Theorem 1 is that CoF-SWZ achieves the

optimal sum-rate the class of O-CRAN satisfying [C1]-(5) .

Corollary 2. The optimal sum-rate in the O-CRAN model in Section II for the class of O-CRAN

satisfying [C1]-(5) is achieved by the CoF-SWZ in Proposition 3.

IV. PROOF OF THEOREM 1

Since Rsum
SWZ ⊆ Rsum

SD ⊆ Rsum
JD , to prove that CoF-SD and CoF-SWZ achieve same sum-rate

as CoF-JD it suffices to show Rsum
SWZ ⊇ Rsum

JD .

We prove Rsum
SWZ ⊇ Rsum

JD using the properties of submodular optimization. To this end, assume

(Rsum, C1, . . . , CK) ∈ Rsum
JD for a joint pmf p(q)

∏L
l=1 p(xl|q)

∏K
k=1 p(uk|yk, q). For such pmf,

let PR ∈ RK
+ be the polytope formed by the set of (C1, . . . , CK) such that, for all S ⊆ K,∑

s∈S

Cs ≥ [Rsum + I(US ;YS |XL, USc , Q)− I(USc ;XL|Q)]+ . (50)

Definition 1. For a pmf p(q)
∏L

l=1 p(xl|q)
∏K

k=1 p(uk|yk, q) we say a point (Rsum, C1, . . . , CK) ∈

Rsum
JD is dominated by a point in Rsum

SWZ if there exists (R′sum, C
′
1, . . . , C

′
K) ∈ Rsum

SWZ for which

C ′k ≤ Ck, for k = 1, . . . , K, and R′sum ≥ Rsum.

To show (Rsum, C1, . . . , CK) ∈ Rsum
SWZ, it suffices to show that each extreme point of PR is

dominated by a point in Rsum
SWZ that achieves a sum-rate R̄sum satisfying R̄sum ≥ Rsum.

Next, we characterize the extreme points of PR. Let us define the set function g : 2K → R as

follows:

g(S) , Rsum + I(US ;YS |USc , Q)− I(UK;XL|Q), for each S ⊆ K, (51)

It can be verified that the function g+(S) , max{g(S), 0} is a supermodular function (see

[8, Appendix C, Proof of Lemma 6]3).

3Note that the proof in [8, Appendix C, Proof of Lemma 6] to show that g′(S) , I(US ;YS |USc , Q) is supermodular applies
directly to our setup in which Yk −
−XL −
− YK/k does not hold in general.
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Note the following equality of (51). For each S ⊆ K, we have

g(S) = Rsum + I(US ;YS |USc , Q)− I(UK;XL|Q) (52)

= Rsum + I(US ;XL, YS |USc , Q)− I(USc ;XL|Q)− I(US ;XL|USc , Q) (53)

= Rsum + I(US ;YS |XL, USc , Q)− I(USc ;XL|Q), (54)

where (53) follows due to the Markov chain

US −
− YS −
− (XL, USc). (55)

Then, by construction, PR is equal to the set of (C1, . . . , CK) satisfying for all S ⊆ K,∑
s∈S

Cs ≥ g+(S). (56)

Following the results in submodular optimization [7, Appendix B, Proposition 6], we have

that for a linear ordering i1 ≺ i2 ≺ · · · ≺ iK on the set K, an extreme point of PR can be

computed as follows for k = 1, . . . , K:

C̃ik = g+({i1, . . . , ik})− g+({i1, . . . , ik−1}). (57)

All the K! extreme points of PR can be enumerated by looking over all linear orderings i1 ≺ i2 ≺

· · · ≺ iK of K. Each ordering of K is analyzed in the same manner and, therefore, for notational

simplicity, the only ordering we consider is the natural ordering ik = k. By construction,

C̃k =
[
Rsum + I(Uk

1 ;Y k
1 |XL, UK

k+1, Q)− I(UK
k+1;XL|Q)

]+
(58)

−
[
Rsum + I(Uk−1

1 ;Y k−1
1 |XL, UK

k , Q)− I(UK
k ;XL|Q)

]+
.

Let j be the first index for which C̃j > 0, i.e., the first k for which g({1, . . . , j}) > 0. Then,

it follows from (58) that

C̃k =I(Uk
1 ;Y k

1 |XL, UK
k+1, Q)− I(UK

k+1;XL|Q) (59)

− I(Uk−1
1 ;Y k−1

1 |XL, UK
k , Q) + I(UK

k ;XL|Q) (60)
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=I(Uk
1 ;Y k

1 |UK
k+1, Q)− I(Uk−1

1 ;Y k−1
1 |UK

k , Q) (61)

=I(Yk;Uk|UK
k+1, Q), for all k > j, (62)

where (61) follows from 52; and (62) follows due to the Markov Chain

Uk −
− Yk −
− (XL, YK/k, UK/k). (63)

Moreover, since we must have g({1, . . . , j′}) ≤ 0 for j′ < j, C̃j can be expressed as

C̃j = Rsum + I(U j
1 ;Y j

1 |XL, UK
j+1, Q)− I(UK

j+1;XL|Q) (64)

= I(Yj;Uj|UK
j+1, Q) + g({1, . . . , j − 1}), (65)

= (1− α)I(Yj;Uj|UK
j+1, Q), (66)

where α ∈ (0, 1] is defined as

α ,
−g({1, . . . , j − 1})
I(Yj;Uj|UK

j+1, Q)
(67)

=
I(UK

j ;XL|Q)−Rsum − I(U j−1
1 ;Y j−1

1 |XL, UK
j , Q)

I(Yj;Uj|UL
j+1, Q)

. (68)

Therefore, for the natural ordering, the extreme point (C̃1, . . . , C̃K) is given as

(C̃1, . . . , C̃K) =
(
0, . . . , 0, (1− α)I(Yj;Uj|UK

j+1, Q), I(Yj+1;Uj+1|UK
j+2, Q), (69)

. . . , I(YK−1;UK−1|UK , Q), I(YK ;UK |Q)) . (70)

Next, we show that (C̃1, . . . , C̃K) ∈ PR, is dominated by a point (R̄sum, C1, . . . , CK) in Rsum
SWZ

that achieves a sum-rate R̄sum ≥ Rsum.

We consider an instance of the CoF-SWZ in which for a fraction α of the time, the CP decodes

Un
j+1, . . . , U

n
K while relays k = 1, . . . , j are inactive. For the remaining fraction of time (1−α),

the CP decodes Un
j , . . . , U

n
K and relays k = 1, . . . , j− 1 are inactive. Then, the CP decodes XL.

Formally, we consider the pfm p(q′)
∏L

l=1 p(x
′
l|q′)

∏K
k=1 p(u

′
k|yk, q′) for CoF-SZW as follows.

Let B denote a Bernoulli random variable with parameter α ∈ (0, 1], i.e., B = 1 with probability
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α and B = 0 with probability (1− α). We let α as in (68). We consider the reverse ordering π

such that π(1) = K, π(2) = K − 1, . . . , π(K) = 1, i.e., compression is done from relay K to

relay 1. Then, we let Q′ = (B,Q) and the tuple of random variables be distributed as

(Q′, X ′L, U
′
K) =

((1, Q), XL, ∅, . . . , ∅, Uj+1, . . . , UK) if B = 1,

((0, Q), XL, ∅, . . . , ∅, Uj, . . . , UK) if B = 0.
(71)

From Proposition 3, the following tuple (R̄sum, C1, . . . , CK) ∈ Rsum
SWZ is achievable, where

Ck = I(Yk;U
′
k|U ′k+1, . . . , U

′
K , Q

′), for k = 1, . . . , K, (72)

R̄sum = I(X ′L;U ′K|Q′). (73)

For k = 1, . . . , j − 1, we have

Ck = I(Yk;U
′
k|U ′k+1, . . . , U

′
K , Q

′) (74)

= 0 = C̃k, (75)

where (75) follows since U ′k = ∅ for k < j independently of B. For k = j + 1, . . . , K, we have

Ck = I(Yk;U
′
k|U ′k+1, . . . , U

′
K , Q

′) (76)

= αI(Yk;Uk|Uk+1, . . . , UK , Q,B = 1) + (1− α)I(Yk;Uk|Uk+1, . . . , UK , Q,B = 0) (77)

= I(Yk;Uk|Uk+1, . . . , UK , Q) = C̃k, (78)

where (78) follows since U ′k = Uk for k > j independently of B. For k = j, we have

Cj = I(Yj;U
′
j|U ′j+1, . . . , U

′
K , Q

′) (79)

= αI(Yj;Uj|Uj+1, . . . , UK , Q,B = 1) + (1− α)I(Yj;Uj|Uj+1, . . . , UK , Q,B = 0) (80)

= (1− α)I(Yj;Uj|Uj+1, . . . , UK , Q) = C̃j; (81)

where (81) follows since U ′j = ∅ for B = 1 and U ′j = Uj for B = 0.
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On the other hand, the sum-rate satisfies

R̄sum =I(X ′L;U ′K|Q′) (82)

=αI(XL;UK
j+1|Q,B = 1) + (1− α)I(XL;UK

j |Q,B = 0) (83)

=I(XL;UK
j |Q)− αI(XL;Uj|UK

j+1, Q) (84)

=I(XL;UK
j |Q)−

I(XL;Uj|UK
j+1, Q)

I(Yj;Uj|UL
j+1, Q)

·
[
I(UK

j ;XL|Q)−Rsum − I(U j−1
1 ;Y j−1

1 |XL, UK
j , Q)

]
(85)

≥Rsum + I(U j−1
1 ;Y j−1

1 |XL, UK
j , Q) (86)

≥Rsum, (87)

where (85) follows from (68); and (86) follows since I(Yj;Uj|UL
j+1, Q) ≥ I(XL;Uj|UK

j+1, Q)

due to the Markov Chain (63).

Therefore, from (75), (78), (81) and (87), it follows that the extreme point (C̃1, . . . , C̃K) ∈ PR
is dominated by the point (R̄sum, C1, . . . , CK) ∈ Rsum

SWZ satisfying R̄sum ≥ Rsum.

Similarly, considering all possible orderings, each extreme point of PR can be shown to be

dominated by a point (Rsum, C1, . . . , CK) which lies in Rsum
SWZ (associated to a permutation π).

Since Rsum is the convex hull of all such extreme points, this completes the proof.

V. PROOF OF THEOREM 2

The proof has some similarities to [7, Proof of Theorem 4] but differs from it due to the

time-sharing variable Q. Before proving the result, we provide the following lemmas.

Definition 2. Let (X,Y) be a pair of random vectors with joint probability distribution p(x,y).

The Fischer information matrix of X is defined as

J(X) , E[∇ log p(X)∇ log p(X)T ]. (88)

The Fischer information matrix of X conditional on Y is defined as

J(X|Y) , E[∇ log p(X|Y)∇ log p(X|Y)T ]. (89)
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Lemma 1 (Fischer Information Inequality). Let (X,U) be an arbitrary complex random vector

where the conditional Fischer information X conditioned on U exists. We have

h(X|U) ≥ log |(πe)J−1(X|U)|. (90)

Lemma 2 (Brujin Identity). Let V1,V2 be an arbitrary random vector with finite second

moments, and N be a zero-mean Gaussian random vector with covariance ΛN . Assume (V1,V2)

and N are independent. We have

mmse(V2|V1,V2 + N) = ΛN −ΛNJ(V2 + N|V1)ΛN . (91)

Let Hm be the set of all m×m Hermitian matrices. A positive semidefinite partial order on

Hm is B � A if B−A is positive semidefinite.

Definition 3. Let A = (A1, . . . ,An) be an n-tuple of positive definite matrices from Hm, and let

w = (w1, . . . , wn) be an n-tuple of non-negative reals whose sum is 1. We define the arithmetic

mean of A with weight w as

An(A; w) ,
n∑
i=1

wiAi, (92)

and the harmonic mean of A with weights w as

Hn(A; w) ,

(
n∑
i=1

wiA
−1
i

)−1
. (93)

Lemma 3. [9], [10] We have An(A; w) � Hn(A; w).

Lemma 4. Let A and B be two positive-definite matrices from Hm satisfying B � A. Then for

any positive-definite matrix C in Hm, we have |I + BC| ≥ |I + AC|.

Proof. The proof is given in Appendix VI.

Next, we obtain an outer bound the capacity region in Theorem 1 for jointly Gaussian channel
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inputs and average covariance constraint,

E[‖Xl‖2] � Kl, l = [1, L]. (94)

For convenience, we define the covariance matrix of XT as KT , diag[{Kt}t∈T ] for T ⊆ L.

For Q = q, the channel input satisfies XL,q ∼ CN (0,KL,q). Thus, from (94), we have

E[‖Xl‖2] =
∑
q∈Q

p(q)E[Xl,q|Q = q] =
∑
q∈Q

p(q)Kl,q � Kl, l = [1, L]. (95)

On the other hand, for a fixed Q = q, input XL,q and
∏K

k=1 p(ŷk|yk, q), we choose Bk,q with

0 � Bk,q � Σ−1k such that

mmse(Yk|XL,q,Uk,q, q) = Σk −ΣkBk,qΣk, q = [1, |Q|], k = [1, K]. (96)

Such Bk,q always exists since 0 � mmse(Yk|XL,q,Uk,q, q) � Σk for all q = [1, |Q|], k = [1, K].

We have for k = [1, K], and q = [1, |Q|]

I(Yk; Uk|XL,q, Q = q) = log |(πe)Σk| − h(Ys|XL,q,Us,q, Q = q) (97)

≥ log |(πe)Σk| − log |(πe) mmse(Yk|XL,q,Uk, q)| (98)

≥ log
|Σ−1k |

|Σ−1k −Bk,q|
. (99)

On the other hand, for k = [1, K], and q = [1, |Q|]

I(XT ,q; USc|XT c,q, Q = q) = h(XT ,q|Q = q)− h(XT ,q|XT c,q,USc,q, Q = q) (100)

≤ log |KT ,q| − log |J−1(XT ,q|XT c,q,USc,q, q)|, (101)

≤ log |KT ,q|+ log

∣∣∣∣∣∑
k∈Sc

HH
k,TBk,qHk,T + K−1T ,q

∣∣∣∣∣ , (102)

where (101) is due to Lemma 1; and (102) is due to

J(XT ,q|XT c,q,USc,q, q) =
∑
k∈Sc

HH
k,TBk,qHk,T + K−1T ,q. (103)
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Equality (103) is obtained as follows. Since

YSc = HSc,TXT ,q + HSc,T cXT c,q + NSc (104)

it follows from the MMSE estimation of Gaussian random vectors [11], that

XT ,q = E[XT ,q|XT c,q,YSc ] + ZT ,Sc =
∑
k∈Sc

GT ,k(Yk −Hk,T cXT c) + ZT ,Sc , (105)

where

GT ,k =

(
K−1T ,q +

∑
j∈Sc

HH
j,TΣ−1j Hj,T

)−1
HH
k,TΣ−1k , (106)

and ZT ,Sc ∼ CN (0,ΛZ) with covariance matrix

ΛZ =

(
K−1T ,q +

∑
k∈Sc

HH
k,TΣ−1k Hk,T

)−1
. (107)

Note that ΛZ is independent of XT c,q,YSc due to the orthogonality principle of the MMSE and

its Gaussian distribution. Hence, ΛZ is also independent of USc,q. Then, by Lemma 2, we have

J(XT ,q|XT c,q,USc,q, q) = Λ−1Z −Λ−1Z mmse

(∑
k∈Sc

GT ,k(Yk −Hk,T cXT c,q)|XL,q,USc,q, q

)
Λ−1Z

(108)

= Λ−1Z −Λ−1Z mmse

(∑
k∈Sc

GT ,kYk|XL,q,USc,q, q

)
Λ−1Z (109)

= Λ−1Z −Λ−1Z

(∑
k∈Sc

GT ,kmmse (Yk|XL,q,USc,q, q) GH
T ,k

)
Λ−1Z (110)

= Λ−1Z −
∑
k∈Sc

HH
k,T
(
Σ−1k −Bk

)
Hk,T (111)

= K−1T ,q +
∑
k∈Sc

HH
k,TBkHk,T , (112)
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where (110) follows since the cross terms are zero due to the Markov chain,

(Uk,q,Yk)−
−Xq −
− (UK/k,q,YK/k), (113)

and (111) is due to (96).

Let us define the arithmetic mean B̄k ,
∑

q∈Q p(q)Bk,q. We have

I(Yk; Uk|XL, Q) =
∑
q∈Q

p(q)I(Yk; Uk|XL, Q = q) (114)

≥
∑
q∈Q

p(q) log
|Σ−1k |

|Σ−1k −Bk,q|
(115)

≥ log
|Σ−1k |

|Σ−1k −
∑

q∈Q p(q)Bk,q|
(116)

= log
|Σ−1k |

|Σ−1k − B̄k|
, (117)

where (115) follows from (99) and (116) follows from the concavity of the log-det function and

Jensen’s Inequality [12].

For each T ⊆ L, let K = (KT ,1, . . . ,KT ,|Q|) and p = (p(1), . . . , p(|Q|)), and let us consider

the arithmetic mean and harmonic mean A|Q|(K,p) and H|Q|(K,p). We have

I(XT ; USc |XT c,q, Q)

≤
∑
q∈Q

p(q)

(
log |Kq,T |+ log

∣∣∣∣∣∑
k∈Sc

HH
k,TBk,qHk,T + K−1T ,q

∣∣∣∣∣
)

(118)

≤ log

∣∣∣∣∣∑
q∈Q

p(q)Kq,T

∣∣∣∣∣+ log

∣∣∣∣∣∑
q∈Q

p(q)
∑
k∈Sc

HH
k,TBk,qHk,T +

∑
q∈Q

p(q)K−1T ,q

∣∣∣∣∣ (119)

= log
(
|A|Q|(K,p)| · |H−1|Q|(K,p)|

)
+ log

∣∣∣∣∣H|Q|(K,p)
∑
k∈Sc

HH
k,T B̄kHk,T + I

∣∣∣∣∣ (120)

= log
(
|A|Q|(K,p)| · |H−1|Q|(K,p)|

)
+ log

∣∣∣∣∣KT ∑
k∈Sc

HH
k,T B̄kHk,T + I

∣∣∣∣∣ (121)

≤ log

∣∣∣∣∣KT ∑
k∈Sc

HH
k,T B̄kHk,T + I

∣∣∣∣∣ , (122)
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where (118) follows from (102);(119) is due to the concavity of the log-det function and Jensen’s

inequality; (120) follows due to the definition of B̄k and the arithmetic and harmonic means;

(121) follows due to Lemma 4, since
∑

k∈Sc HH
k,T B̄kHk,T is positive-definite and the ordering

H|Q|(K,p) � A|Q|(K,p) � KT , which follows from (95) and Lemma 3; (122) follows since

|A|Q|(K,p)| · |H−1|Q|(K,p)| = |H−1/2|Q| (K,p)A|Q|(K,p)H
−1/2
|Q| (K,p)| (123)

=
∏
i=1

λi(H
−1/2
|Q| (K,p)A|Q|(K,p)H

−1/2
|Q| (K,p)) (124)

≤
∏
i=1

λi(I) ≤ 1, (125)

where (125) follows since H
−1/2
|Q| (K,p)A|Q|(K,p)H

−1/2
|Q| (K,p) � I, due to Lemma 3. Note that

if w1 = · · · = w|Q| and KT ,1 = · · · = KT ,|Q|, we have A|Q|(K,p) = H|Q|(K,p) and the bound

is satisfied with equality.

Substituting (117) and (122) in [C1]-(6) for each T ⊆ L gives the desired outer bound.

The direct part of Theorem 2 follows by noting that this outer bound is achieved by evaluating

[C1]-(6) for Q = ∅, XL ∼ CN (0,KL), and p(Uk|Yk) ∼ CN (Yk,Qk), where Bk = (Σk+Qk)
−1

for some 0 � Bk � Σ−1k .

VI. PROOF OF LEMMA 4

From B � A, we have the following chain of implications

B � A⇒ B−A � 0 (126)

⇒ C1/2(B−A)C1/2 � 0 (127)

⇒ C1/2BC1/2 � C1/2AC1/2 (128)

⇒ I + C1/2BC1/2 � I + C1/2AC1/2, (129)

where 127 follows since for any two positive-definite matrices M � 0,N � 0 of size N ×N ,

we have N1/2MN1/2 � 0, i.e., it is positive-definite; (128) and (129) follow due to linearity.
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Due to Weyl’s inequality [13], (129) implies

λi(I + C1/2BC1/2) ≥ λi(I + C1/2AC1/2), i = 1, . . . , N (130)

where λi(M) denotes the i-th eigenvector of the positive-definite matrix M � 0. Then, we have

|I + BC| = |I + C1/2BC1/2| (131)

=
N∏
i=1

λi(I + C1/2BC1/2) (132)

≥
N∏
i=1

λi(I + C1/2AC1/2) (133)

= |I + C1/2AC1/2| (134)

= |I + AC|, (135)

where (131) follows since |I+NM| = |I+MN|; (133) follows since we have λi(I+C1/2BC1/2) ≥

1 for i = 1, . . . , N , since λi(I + C1/2BC1/2) = 1 + λi(C
1/2BC1/2) and λi(C

1/2BC1/2) ≥ 0,

since C1/2BC1/2 is positive-definite. Similarly, λi(I + C1/2AC1/2) ≥ 1 for i = 1, . . . , N .

VII. PROOF OF THE INNER BOUND IN THEOREM 3

The proof of Theorem 3 is based on the proof of Theorem 3 from [3] and we provide an

outline of it. The transmission is as follows. Transmitter l, l = 1, . . . , L sends xnl (ml), where

ml ∈ [1, 2nRl ]. Relay k, k = 1, . . . , K compresses the channel output Y n
k into Un

k , indexed by zk,

where ik ∈ [1, 2nR̂k ] and sends a Wyner-Ziv bin index jt ∈ [1, 2nCk ] to the CP over the error-free

link. The destination receives j1, . . . , jK and decodes jointly the compression codewords and the

transmitted codewords, i.e., it jointly recovers the indices (m1, . . . ,mL, i1, . . . , iK). The detailed

proof is given next. For simplicity of notation, we consider the case Q = ∅. Achievability for an

arbitrary time-sharing random variable Q can be proved using the coded time-sharing technique.

Fix δ > 0, non-negative rates R1, . . . , RK and a joint pmf that factorizes as

p(q, xL, yK, uK) = p(q)
L∏
l=1

p(xl|q) p(yK|xL)
K∏
k=1

p(uk|yk, q). (136)
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Code Generation: For transmitter l, l = 1, . . . , L and every codebook realization Fl, generate a

codebook Cl(Fl) consisting of a collection of 2nRl independent codewords {xl(ml, Fl)} indexed

with ml ∈ [1, 2nRl ], where xl(ml, Fl) has its elements generates i.i.d. according to
∏n

i=1 p(xi).

Let non-negative rates R̂1, . . . , R̂K . For relay k, k = 1, . . . , K, we generate a codebook Crk
consisting of a collection of 2nR̂l independent codewords {unk(ik)} indexed with ik ∈ [1, 2nR̂k ],

where codeword unk(ik) has its elements generated i.i.d. according to
∏n

i=1 p(ui). Randomly and

independently assign these codewords into 2nCk bins {Bjk} indexed with jl = [1, 2nCk ] containing

2n(R̂k−Ck) codewords.

In the following, we drop the index Fl.

Encoding: Let (m1, . . . ,mL) be the messages to be sent. Each node k, k = 1, . . . , K transmits

the codeword xnk(ml).

Oblivious processing at relay k: Relay k finds an index ik such that unk(ik) ∈ Crk is strongly

ε-jointly typical with ynk . Using standard arguments, this can be accomplished with vanishing

probability of error as long as n is large and

R̂l ≥ I(Yl;Ul). (137)

Let jk be such that uk(ik) ∈ Bjk . Relay k then forwards the bin index jk to the CP through the

error-free link.

Decoding: The CP collects all the bin indices jK = (j1, . . . , jK) from the error-free link and

finds the set of indices îK = (̂i1, . . . , îK) of the compressed vectors unK and the transmitted

messages m̂L = (m̂1, . . . , m̂L), such that

(xn1 (m1), . . . , xL(mL), u1(i1), . . . , uK(iK)) jointly typical (138)

unk (̂ik) ∈ Bjk for k = 1, . . . , K. (139)

An error event is declared if m̂L 6= mL. Assume that for some T ⊆ L and S ⊆ K, we

have m̂T 6= mT and îS 6= iS and m̂T c = mT c and îSc = iSc . So, with high probability,
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(xnT (m̂T ), xnT c(m̂T c), unS(iS), unS(icS)) belongs to a typical set with distribution

n∏
i=1

(
PUSc ,XT c (uSc,i, xT c,i)

∏
s∈S

PUs(us,i)
∏
t∈T

PXt(xt,i)

)
. (140)

According to [3, Lemma 3], the probability that (xnT (m̂T ), xnT c(m̂T c), unS(iS), unS(icS)) is jointly

typical is upper bounded by

2−n[H(USc ,XT c )−H(UK,XL)+
∑

s∈S H(Us)+
∑

t∈T H(Xt)]. (141)

Overall, there are

2n(
∑

j∈T Rj+
∑

s∈S [R̂s−Cs]) − 1, (142)

such sequences (xnT (m̂T ), xnT c(m̂T c), unS(iS), unS(icS)) in the set Bj1 × · · · ×BjK . This means that

the CP is able to reliably decode mL and iK as long as (R1, . . . , RL) satisfy, for all T ⊆ L and

for all S ⊆ K∑
t∈T

Rt ≤
∑
s∈S

[Cs − R̂t] +H(USc , XT c)−H(UK, XL) +
∑
s∈S

H(Us) +
∑
t∈T

H(Xt) (143)

=
∑
s∈S

[Cs −H(Us|Ys)] +H(USc , XT c)−H(UK, XL) +
∑
t∈T

H(Xt) (144)

=
∑
s∈S

[Cs −H(Us|Ys)] +H(USc , XT c)−H(UK, XL) +H(XT ) (145)

=
∑
s∈S

[Cs −H(Us|Ys)] +H(USc , XT c)−H(UK, XT c|XT ) (146)

=
∑
s∈S

[Cs −H(Us|Ys)] +H(XT c) +H(USc |XT c)−H(XT c|XT )−H(UK|XL) (147)

=
∑
s∈S

[Cs −H(Us|Ys)] +H(USc |XT c)−H(UK|XL) (148)

=
∑
s∈S

[Cs −H(Us|Ys)] + I(USc ;XT |XT c)−H(US |XL, USc) (149)

=
∑
s∈S

Cs −H(US |YS , XL, USc) + I(USc ;XT |XT c)−H(US |XL, USc) (150)
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=
∑
s∈S

Cs − I(US ;YS |XL, USc) + I(USc ;XT |XT c), (151)

where (144) follows from (137); (145) follows due to the independence of XT ; (148) follows

due to the independence of XT c and XT ; (150) follows due to the Markov chain

Uk −
− Yk − (XL, UK/k) (152)

This completes the proof of Theorem 3 .

VIII. PROOF OF THE OUTER BOUND IN THEOREM 4

Suppose the point (R1, . . . , RL) is achievable. Let T be a set of L, S be a non-empty set of

K, and Jk , φrk(Y
n
k , q

n) be the message sent by relay k ∈ K, and let Q̃ = qn be the time-sharing

variable. For notation simplicity we define Xn
L , (Xn

1 , . . . , X
n
L). Define

Ui,k , (Jk, Y
i−1
K ) and Q̄i , (X i−1

L , Xn
L,i+1, Q̃). (153)

From Fano’s inequality, we have with εn → 0 for n→∞ (for vanishing probability of error),

H(mT |JK, FL, Q̃) ≤ H(mL|JK, FL, Q̃) ≤ nεn. (154)

First, we show the following inequality, which will be used in the proof.

H(Xn
T |Xn

T c , JK, Q̃) ≤ nΓT ,
n∑
i=1

H(XT ,i|XT c,i, Q̄i)− n
∑
t∈T

Rt. (155)

Inequality (155) can be shown as follows. From the destination side, we have

n
∑
t∈T

Rt =H(mT ) (156)

=I(mT ; JK, FL, Q̃) +H(mT |JK, FL, Q̃) (157)

=I(mT ; JK, FT |FT c , Q̃) +H(mT |JK, FL, Q̃) (158)

≤I(mT ; JK, FT |FT c , Q̃) + nεn (159)

=H(JK, FT |FT c , Q̃)−H(JK, FT |FT c ,mT , Q̃) + nεn (160)
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=H(JK|FT c , Q̃) +H(FT |FT c , JK, Q̃)−H(FT |FT c ,mT , Q̃)−H(JK|FT c ,mT , FT , Q̃) + nεn

(161)

=I(mT , FT ; JK|FT c , Q̃)− I(FT ; JK|FT c , Q̃) + nεn (162)

≤I(mT , FT ; JK|FT c , Q̃) + nεn (163)

≤I(Xn
T ; JK|FT c , Q̃) + nεn (164)

=H(Xn
T |FT c , Q̃)−H(Xn

T |FT c , JK, Q̃) + nεn (165)

≤H(Xn
T |Xn

T c , Q̃)−H(Xn
T |Xn

T c , FT c , JK, Q̃) + nεn (166)

=H(Xn
T |Xn

T c , Q̃)−H(Xn
T |Xn

T c , JK, Q̃) + nεn, (167)

where (156) follows since mT are independent; (158) follows since mT is independent of Q̃

and FT c; (159) follows from (154); (162) follows since mT is independent of FL; (164) follows

from the data processing inequality;(166) follows since Xn
T c , FT c are independent from Xn

T and

since conditioning reduces entropy and (167) follows due to the Markov chain

Xn
T −
− (Xn

T c , JK, Q̃)−
− FT c . (168)

Then, from (167) we have (155) as follows:

H(Xn
T |Xn

T c , JK, Q̃) ≤ H(Xn
T |Xn

T c , Q̃)− n
∑
t∈T

Rt − nεn (169)

≤
n∑
i=1

H(XT ,i|Xn
T c , X i−1

T , Q̃)− n
∑
t∈T

Rt (170)

=
n∑
i=1

H(XT ,i|XT c,i, X
i−1
L , Xn

L,i+1, Q̃)− n
∑
t∈T

Rt (171)

=
n∑
i=1

H(XT ,i|XT c,i, Q̄i)− n
∑
t∈T

Rt = nΓT . (172)

where (171) is due to Lemma 1 .
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Continuing from (167), we have

n
∑
t∈T

Rt ≤H(Xn
T |Xn

T c , Q̃)−H(Xn
T |Xn

T c , JK, Q̃) + nεn (173)

=
n∑
i=1

H(XT ,i|Xn
T c , Q̃,X i−1

T )−H(Xn
T ,i|Xn

T c , JK, X
i−1
T , Q̃) + nεn (174)

=
n∑
i=1

H(XT ,i|Xn
T c , Q̃,X i−1

T , Xn
T ,i+1)−H(XT ,i|Xn

T c , JK, X
i−1
T , Q̃) + nεn (175)

≤
n∑
i=1

H(XT ,i|XT c,i, Q̄i)−H(XT ,i|XT c,i, JK, Y
i−1
K , X i−1

L , Xn
L,i+1, Q̃) + nεn (176)

=
n∑
i=1

H(XT ,i|XT c,i, Q̄i)−H(XT ,i|XT c,i, UK,i, Q̄i) + nεn (177)

=
n∑
i=1

I(XT ,i;UK,i|XT c,i, Q̄i) + nεn, (178)

where (175) follows due to Lemma 1 and (176) follows since conditioning reduces entropy.

On the other hand, we have the following inequality

I(Y n
K ; JS |Xn

L, JSc , Q̃) =
n∑
i=1

I(YK,i; JS |Xn
L, JSc , Q̃, Y

i−1
K ) (179)

=
n∑
i=1

I(YK,i; JS , Y
i−1
K |X

n
L, JSc , Q̃, Y

i−1
K ) (180)

=
n∑
i=1

I(YK,i;US,i|XL,i, USc,i, Q̄i) (181)

≥
n∑
i=1

I(YS,i;US,i|XL,i, USc,i, Q̄i). (182)

Then, from the relay side we have,

n
∑
k∈S

Ck ≥
∑
k∈S

H(Jk) (183)

≥H(JS) (184)

≥H(JS |Xn
T c , JSc , Q̃) (185)
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≥I(Y n
K ; JS |Xn

T c , JSc , Q̃) (186)

=I(Xn
T , Y

n
K ; JS |Xn

T c , JSc , Q̃) (187)

=I(Xn
T ; JS |Xn

T c , JSc , Q̃) + I(Y n
K ; JS |Xn

L, JSc , Q̃) (188)

=H(Xn
T |Xn

T c , JSc , Q̃)−H(Xn
T |Xn

T c , JK, Q̃) + I(Y n
K ; JS |Xn

L, JSc , Q̃) (189)

≥H(Xn
T |Xn

T c , JSc , Q̃)− nΓT + I(Y n
K ; JS |Xn

L, JSc , Q̃) (190)

=
n∑
i=1

H(XT ,i|Xn
T c , JSc , X

i−1
T , Q̃)− nΓT + I(Y n

K ; JS |Xn
L, JSc , Q̃) (191)

≥
n∑
i=1

H(XT ,i|XT c,i, USc,i, Q̄i)− nΓT + I(Y n
K ; JS |Xn

L, JSc , Q̃) (192)

=
n∑
i=1

H(XT ,i|XT c,i, USc,i, Q̄i)−H(XT ,i|XT c,i, Q̄i) (193)

+ n
∑
t∈T

Rt +
n∑
i=1

I(YS,i;US,i|XL,i, USc,i, Q̄i) (194)

=
n∑
i=1

I(YS,i;US,i|XL,i, USc,i, Q̄i) + n
∑
t∈T

Rt −
n∑
i=1

I(XT ,i;USc,i|XT c,i, Q̄i) (195)

where: (187) follows since JS is a function of Y n
S ; (190) follows from (155); (192) follows since

conditioning reduces entropy; and (194) follows from (155) and (182).

We define the standard time-sharing variable Q′ uniformly distributed over {1, . . . , n}, XL ,

XL,Q′ , Yk , Yk,Q′ , Uk , Uk,Q′ and Q , [Q̄Q′ , Q′] and we have from (178)

n
∑
t∈T

Rt ≤
n∑
i=1

I(XT ,i;UK,i|XT ,i, Q̄i) + nεn (196)

= nI(XT ,Q′ ;UK,Q′ |XT c,Q′ , Q̄Q′ , Q′) + nεn (197)

= nI(XT ;UK|XT c , Q) + nεn (198)

and similarly, from (195), we have∑
t∈T

Rt ≤
∑
k∈S

Ck − I(YS ;US |XL, USc , Q) + I(XL;USc|XT c , Q). (199)
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Define WQ′ , (Y Q′−1
K , Y n

K,Q′+1), so that from Lemma 1 , XL,Q′ and YK,Q′ are independent

with W , WQ′ when not conditioned on FL. Note that in general, Q̄Q′ is not independent of

XL,Q′ , YK,Q′ . Then, conditioned on Q, the auxiliary variables Uk,Q′ can be represented as

Uk,Q′ = (Jk, Y
Q′−1
K ) (200)

= f ′k(WQ′ , Yk,Q′) (201)

= fk(W,Yk, Q) (202)

where f ′k(WQ′ , Yk,Q′) = (Jk, Y
Q′−1
K ). Note that this implies that, conditioned on Q̄i, we have the

Markov chain

Uk −
− Yk −
− (XL, YK\k). (203)

and the Markov chain

Uk −
− (Yk,W )−
− (XL, YK\k, UK\k). (204)

This completes the proof of Theorem 4 .
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[10] B. Mond and J. Pečarić, “A mixed arithmetic-mean-harmonic-mean matrix inequality,” Linear Algebra and its Applications,

vol. 237, pp. 449 – 454, 1996.

[11] A. E. Gamal and Y.-H. Kim, Network Information Theory. Cambridge University Press, 2011.

[12] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge Univ Pr, 2004.

[13] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University Press, 1985.


	Notation
	Proof of Theorem 1 
	Direct Part
	Converse Part

	On the optimality of Separate Decompression and Decoding in Remark 1
	 Proof of Theorem 1
	Proof of Theorem 2 
	Proof of Lemma 4
	Proof of the Inner Bound in Theorem 3 
	Proof of the Outer Bound in Theorem 4 
	References

