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Abstract—We investigate the problem of secure communi-
cation over parallel relay channel in the presence of a passive
eavesdropper. We consider a four-terminal relay-eavesdropper
channel which consists of multiple relay-eavesdropper channels
as subchannels. For the discrete memoryless model, we establish
outer and inner bounds on the rate-equivocation region. The inner
bound allows mode selection at the relay. For each subchannel,
secure transmission is obtained through one of two coding schemes
at the relay: decoding-and-forwarding the source message or con-
fusing the eavesdropper through noise injection. For the Gaussian
memoryless channel, we establish lower and upper bounds on
the perfect secrecy rate. Furthermore, we study a special case in
which the relay does not hear the source and show that under
certain conditions the lower and upper bounds coincide. The
results established for the parallel Gaussian relay-eavesdropper
channel are then applied to study the fading relay-eavesdropper
channel. Analytical results are illustrated through some numerical
examples.

Index Terms—Eavesdropping, fading channels, parallel relay
channels, secrecy, wire-tap channel.

I. INTRODUCTION

I N conventional point-to-point wired networks, security is
facilitated by secret key sharing between relevant parties

based on some common cryptographic algorithm. The premise
is that only legitimate users have access to the encrypted mes-
sages and extraneous users (adversaries) are unable to access
any useful information. The wireless channel is characterized
by its inherit randomness and broadcast nature. Physical layer
security exploits the basic attributes of the wireless channel for
instance, difference of the fading gains between the legitimate
channel (source to the legitimate receiver) and the channel to
the adversary, to transmit information securely to the legitimate
receiver. Thus, it eradicates the need of secret key sharing.
The wiretap channel introduced by Wyner is a basic in-

formation-theoretic model which incorporates physical layer
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attributes of the channel to transmit information securely [1].
Wyner’s basic model consists of a source, a legitimate receiver
and an eavesdropper (wiretapper) under noisy channel condi-
tions. Secrecy capacity is established when the eavesdropper
channel (the channel from the source to the eavesdropper) is
a degraded version of the main channel (the channel from the
source to the legitimate receiver). The discrete memoryless
(DM) channel studied by Wyner is further extended to study
some other channels for which secrecy capacity is established,
i.e., broadcast channels (BC) [2], [3], multi-antenna channels
[4]–[6], multiple access channels [7]–[9], fading channels
[10], [11], etc. The idea of cooperation between users in con-
text of security was introduced by [12]. The intuition is that,
when the main channel is more noisy than the channel to the
eavesdropper, cooperation between users is utilized to achieve
positive secrecy capacity. Secrecy is achieved by using the
relay as a trusted node that facilitates the information decoding
at the destination while concealing the information from the
eavesdropper. A special case in which there is a physically
degraded relay-eavesdropper channel was studied in [13]. The
case in which the relay does not acts as a trusted node is studied
in [14] and [15].
In this paper, we study a parallel relay-eavesdropper channel.

A parallel relay-eavesdropper channel is a generalization of
the setup in [12], in which each of the source-to-relay (S-R),
source-to-destination (S-D), source-to-eavesdropper (S-E),
relay-to-destination (R-D), and relay-to-eavesdropper (R-E)
link is composed of several parallel channels as subchannels.
The eavesdropper is passive in the sense that it just listens to the
transmitted information without modifying it. We only focus
on the perfect secrecy rate, i.e., the maximum achievable rate
at which information is reliably sent to the legitimate receiver,
and the eavesdropper is unable to decode it.
The parallel relay-eavesdropper channel considered in this

paper relates to some of the channels studied previously. Com-
pared to the parallel relay channel studied in [16], the parallel
relay-eavesdropper channel requires an additional secrecy con-
straint. The parallel relay-eavesdropper channel without relay
simplifies to a number of channels discussed previously, e.g.,
the parallel wiretap channel studied in [17], the parallel broad-
cast channel with confidential messages (BCC) and no common
message studied in [3].
Contributions: The main contributions of this paper are sum-

marized as follows. For the discrete memoryless case, we es-
tablish inner and outer bounds on the rate-equivocation region
for the parallel relay-eavesdropper channel. The inner bound
is obtained through a coding scheme in which, for each sub-
channel, the relay operates either in decode-and-forward (DF)
or in noise forwarding (NF) mode. We note that establishing our
outer bound for DM case is not straightforward and it does not
follow directly from the single-letter outer bound for the relay-
eavesdropper channel developed in [12, Theorem 1]. Therefore
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a converse is needed. The converse includes a re-definition of
the involved auxiliary random variables, a technique much sim-
ilar to the one used before in the context of secure transmission
over broadcast channels [3].
For the Gaussian memoryless model, we establish lower and

upper bounds on the perfect secrecy rate. The lower bound es-
tablished for the Gaussian model follows directly from the DM
case. However, we note that establishing a computable upper
bound on the secrecy rate for the Gaussian model is non-trivial,
and it does not follow directly from the DM case. In part, this is
because the upper bound established for the DM case involves
auxiliary random variables, the optimal choice of which is dif-
ficult to obtain. In this work, we develop a new upper bound
on the secrecy rate for the parallel Gaussian relay-eavesdropper
channel. Our converse proof uses elements from converse tech-
niques developed in [5] and [6] in context of multi-antenna
wiretap channel; and in a sense, can be viewed as an extension
of these results to the parallel relay-eavesdropper channel. This
upper bound is especially useful when the multiple access part
of the channel is the bottleneck. We show that, in contrast to
upper bounding techniques for our model that can be obtained
straightforwardly by applying recent results on multi-antenna
wiretap channels [4]–[6], our upper bound shows some degree
of separability for the different subchannels.
We also study a special case in which the relay does not

hear the source, for example due to very noisy source-to-relay
links. In this case we show that under some specific conditions
noise-forwarding on all links achieves the secrecy capacity. The
converse proof follows from a new genie-aided upper bound
that assumes full cooperation between the relay and the destina-
tion, and a constrained eavesdropper. The eavesdropper is con-
strained in the sense that it has to treat the relay’s transmission as
unknown noise for all subchannels, an idea used previously in
context of a class of classic relay-eavesdropper channel with or-
thogonal components [18]. These assumptions turn the parallel
Gaussian relay-eavesdropper channel into a parallel Gaussian
wiretap channel, the secrecy capacity of which is established in
[3] and [17].
Furthermore, we study an application of the results estab-

lished for the parallel Gaussian relay-eavesdropper channel to
the fading relay-eavesdropper channel. We assume that perfect
non-causal channel state information (CSI) is available at all
nodes. The fading relay-eavesdropper channel is a special case
of the parallel Gaussian relay-eavesdropper channel in which
each realization of a fading state corresponds to one subchannel.
We illustrate our results through some numerical examples.
The rest of the paper is organized as follows. In Section II,

we establish outer and inner bounds on the rate-equivocation
region for the DM channel. In Section III, we establish lower
and upper bounds on the perfect secrecy rate for the Gaussian
model, and consider a special case in which under some spe-
cific conditions secrecy capacity is achieved. In Section IV, we
present an application of the results established in Section III to
the fading model. We illustrate these results with some numer-
ical examples in Section V. Section VI concludes the paper by
summarizing its contribution.
Notations: In this paper, the notation is used as a

shorthand for , the notation is used as
a shorthand for where for

Fig. 1. Parallel relay-eavesdropper channel.

, the notation is used as
a shorthand for , the notation is
used as a shorthand for denotes the
expectation operator, denotes the cardinality of set
denotes the number of subchannels, the boldface letter de-
notes the covariance matrix. We denote the entropy of a discrete
and continuous random variable by and , respec-
tively. We define the functions and

. Throughout the paper the logarithm func-
tion is taken to the base 2.

II. DISCRETE MEMORYLESS CHANNEL

In this section, we establish outer and inner bounds on the
rate-equivocation region for the discrete memoryless parallel
relay-eavesdropper channel.

A. Channel Model

Definition 1: The parallel relay-eavesdropper channel con-
sists of four nodes, a source, a relay, a destination (legitimate
receiver) and a passive eavesdropper. The communication takes
place over subchannels. Fig. 1 represents the studied model.
The source wishes to send confidential messages to the desti-
nation, with the help of the relay to conceal them from pas-
sive eavesdropper. The source encodes the confidential mes-
sage to codewords and broadcasts it
over subchannels to the relay and the destination. The relay
helps to reduce the uncertainty about the confidential message
at the destination by re-encoding whatever it has received from
the source and transmits codewords to
the destination. The outputs at the relay and destination are
given by and , respec-
tively. The passive eavesdropper overhears to the source and
the relay transmission over the multiple-access link, which is
denoted by .
More precisely, the parallel relay-eavesdropper channel

consists of as finite input alphabets and
as finite output alphabets. Since the

channel is memoryless, the transition probability distribution is
given by

(1)

where and
, for and . The symbols

and are the source and relay inputs on subchannel , and
are the channel outputs at the relay, destination and

eavesdropper for the th subchannel, respectively.
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Definition 2: The source sends a message
using a code consisting of

• a stochastic encoder at the source that maps ;

• a relay encoder that maps for
;

• a decoding function , that maps the received code-
words from the source and relay node to get an estimate
of the confidential message, .

Definition 3: The average error probability of a code
is defined as

(2)

Due to the openness of the wireless medium, the eavesdropper
listens for free to what the source and relay transmit. It then tries
to guess the information being transmitted. The equivocation
rate per channel use is defined as . Per-
fect secrecy for the channel is obtained when the eavesdropper
gets no information about the confidential message from

. That is, the equivocation rate is equal to the uncondi-
tional source entropy.

Definition 4 [1]: A rate-equivocation pair is achiev-
able for the parallel relay-eavesdropper channel, if for any
there exists a sequence of codes such that for any

(3)

B. Outer Bound

The following theorem provides an outer bound on the rate-
equivocation region for the parallel relay-eavesdropper channel.

Theorem 1: For a parallel relay-eavesdropper channel
with subchannels, and for any achievable rate-equivo-
cation pair , there exists a set of random variables

,
such that satisfies

(4)

Proof: The proof of Theorem 1 is given in Appendix A.

Remark 1: The outer bound in Theorem 1 does not follow
directly from the single-letter outer bound on the rate-equivoca-
tion region established for the relay-eavesdropper channel [12,

Theorem 1]. Therefore a converse is required, in which we need
to re-define the involved auxiliary random variables. The tech-
nique used to re-define the auxiliary random variables has some
connection with the one used before in the context of secure
transmission over broadcast channels [3].

Remark 2: The region (4) reduces to the rate-equivocation
region developed for the relay-eavesdropper channel [12, The-
orem 1] by setting in (4).

Remark 3: The equivocation rate in Theorem 1 reduces
to the secrecy capacity of the parallel wiretap channel es-
tablished in [3, Corollary 1], by removing the relay, i.e.,
by setting . The resulting term

is maximized by
, for .

C. Achievable Rate-Equivocation Region

In this subsection we establish an achievable rate-equivo-
cation region for the parallel relay-eavesdropper channel. The
achievable region is established by the combination of two dif-
ferent coding schemes, namely decode-and-forward and noise
forwarding. In DF scheme, for each message source associates
a number of confusion codewords, the relay after receiving the
source codewords, decodes it and re-transmits it towards the
legitimate receiver and eavesdropper (see [12, Theorem 2] for
details). In the NF scheme the relay does not decode the source
codewords, but transmits confusion codewords independent
from the source codewords, towards the legitimate receiver and
the eavesdropper (see [12, Theorem 3] for details).

Theorem 2: For a parallel relay-eavesdropper channel with
subchannels, the rate pairs in the closure of the convex hull

of all satisfying

(5)

for some distribution

for and

for , are achievable.
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Outline of Proof: The region in Theorem 2 is ob-
tained through a coding scheme which combines appropri-
ately DF and NF schemes. In the statement of Theorem
2, sets and represent the subchannels for which
relay operates in DF and NF mode, respectively. The
rates for the DF scheme can be obtained readily by setting

and , for in [12, Theorem
2]. Similarly the rates for the NF scheme can be readily obtained
by setting

and , for in [12,
Theorem 3].

Remark 4: For a parallel relay-eavesdropper channel in
which all subchannels are degraded,1 i.e.,

, the perfect secrecy capacity is given by

(6)

where the maximization is over
, for .

Proof: The achievability follows from Theorem 2 by set-
ting . The converse follows along the lines of Theorem
1 and is omitted for brevity.

III. GAUSSIAN CHANNEL

In this section we study a parallel Gaussian relay-eaves-
dropper channel. Fig. 2 depicts the studiedmodel.We only focus
on the perfectly secure achievable rates, i.e., .

A. Channel Model

For a parallel Gaussian relay-eavesdropper channel, the re-
ceived signals at the relay, destination and eavesdropper are
given by

(7)

where is the time index, and are noise
processes, independent and identically distributed (i.i.d) with
the components being zero mean Gaussian random variables
with variances and , respectively, for .

1In parallel relay-eavesdropper channel if all subchannels are degraded, the
entire relay-eavesdropper channel may not necessarily be degraded.

Fig. 2. Parallel Gaussian relay-eavesdropper channel.

We assume that the source and the relay know the noise vari-
ances present at the receivers. For the subchannel and

are inputs from the source and relay nodes, respectively.
The parameter indicates the ratio of the R-D link signal-to-
noise ratio (SNR) to the S-D link SNR and indicates the ratio
of the R-E link SNR to the S-E link SNR for subchannel , re-
spectively. The source and relay input sequences are subject to
separate power constraints and , i.e.,

(8)

(9)

B. Lower Bound on the Perfect Secrecy Rate

For the parallel Gaussian relay-eavesdropper channel (7), we
apply Theorem 2 to obtain a lower bound on the perfect secrecy
rate.2

Corollary 1: For the parallel Gaussian relay-eavesdropper
channel (7), a lower bound on the perfect secrecy rate is given
by (10) at the bottom of the next page.

Proof: The achievability follows by applying Theorem 2
with the choice constant,

independent of , where for ;
and independent of for

2The results established for the DM case can be readily extended to memory-
less channels with discrete time and continuous alphabets using standard tech-
niques [19, Chap. 7].
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Fig. 3. Example of a deterministic parallel relay-eavesdropper channel with two subchannels.

. Straightforward algebra which is omitted for brevity
gives (10).

The parameters and indicate the source and the relay
power allocated for transmission over the th subchannel. In
(10), after some straightforward algebra, the contribution to
the equivocation of information sent through NF (set in
Theorem 2) can be condensed by observing that we only need
to consider

, to get higher secrecy rate. A simplified
expression for is given by (11) at the bottom of the page.
In (11), for each subchannel appears because achievable
secrecy rate is always non-negative.

Remark 5: The achievable perfect secrecy rate established
in Corollary 1 can be larger than the one obtained by coding
separately over different parallel subchannels.

This remark is elucidated by the following example.

Example: We consider a deterministic parallel relay-eaves-
dropper channel with two subchannels, i.e., , as

shown in Fig. 3. For subchannel 1, the link capacities to
the relay, legitimate receiver and eavesdropper are given by

and , respectively. For sub-
channel 2, the link capacities to the relay, legitimate receiver
and eavesdropper are given by and

, respectively. For this channel, achievable rate ob-
tained by coding across subchannels is given by

(12)

Similarly achievable rate obtained by coding separately over
each subchannel is given by

(13)

which is clearly smaller than (12). This shows the usefulness of
coding across subchannels.

(10)

(11)
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C. Upper Bound on the Perfect Secrecy Rate

The following theorem provides an upper bound on the se-
crecy rate for the parallel Gaussian relay-eavesdropper channel.

Theorem 3: For the parallel Gaussian relay-eavesdropper
channel (7), an upper bound on the secrecy rate is given by

(14)

where the maximization is over with

, with the covariance matrices
satisfying (8) and (9),

respectively.

Proof: The proof follows from the rate-equivocation re-
gion established for the DM case in Theorem 1. Taking the first
term of minimization in the bound on the equivocation rate in
Theorem 1, we get

(15)

where , for
. The rest of the proof uses elements from related

works in [3] and [5]. Continuing from (15), we obtain

(16)

where follows by noticing that
is maximized by and

follows from the Markov chain condition
.

We now tighten the upper bound (16) by using an argument
previously used in [5] and [6] in the context of multi-antenna
wiretap channel. More specifically, observing that, the original
bound (15) depends on only through its

marginals and , the upper bound
(16) can be further tightened as

(17)

where the joint conditional has the
same marginals as , i.e.,

and .
It can be easily shown that the bound in (17) is

maximized when the inputs are jointly Gaussian,
i.e., with

with the covariance matrices
and satisfying (8) and (9),

respectively [5], [6].
Next, using the specified Gaussian inputs, and proceeding as

in [6] and [20], the evaluation of the upper bound (17) mini-
mized over all possible correlations between , for

yields

(18)

This concludes the proof.

The computation of the upper bound (14) is given in
Appendix B.

Remark 6: Viewing our Gaussian model (7) as a specific
MIMO relay-eavesdropper channel (i.e., one without interfer-
ence), one can establish a genie-aided upper bound on the se-
crecy capacity of the model (7) by using recent results onMIMO
wiretap channels [4]–[6], by upper bounding the secrecy rate
that can be conveyed by the source and relay to the legitimate
receiver on the multi-access part of the channel with that of an
interference-free MIMO wiretap channel with -transmit an-
tenna at the sender, -receive antenna at the legitimate receiver
and -receive antenna at the eavesdropper. However, in con-
trast to (14), the upper bound obtained this way does not show
any degree of separability. More specifically, using [4]–[6], one
can argue that the following is an upper-bound on the secrecy
capacity of the model (7):

(19)

for some , and
has diagonal entries

that satisfies (8) and (9), respectively.
Because the equivalent MIMO channel is interference-free,

the upper bound (19) can be written equivalently as

(20)

Now, observe that (20) does not show any degree of separability
as in (14), basically because of the additional conditioning on

, for .
Also, investigating our proof in the Gaussian case, one can

see that the RHS of (15) and its proof are fundamental. As
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mentioned in the proof, we could obtain the final form (18)
essentially because the upper bound (15) that we established
depends on the conditional joint distribution
only through its marginals.

Example Application: We consider a parallel relay channel
with interference at the eavesdropper. The received signals at
the relay, destination and eavesdropper are given by

(21)

This model can represent the equivalent channel model of a
MIMO relay-eavesdropper channel with the interference at the
relay and legitimate receiver avoided through singular-value de-
composition; as the source can always get some feedback from
both the relay and legitimate receiver, and the relay from the
legitimate receiver, which then transforms the MIMO transmis-
sion into one on parallel channels among the source, relay and
legitimate receiver. The eavesdropper however does not feed-
back information on his channel, and so is subjected to cross-an-
tenna interference. Constraining the eavesdropper to treat the
cross-antenna interference as independent noise, one can obtain
an upper bound on the secrecy capacity of the model with con-
strained eavesdropper by direct application of (14). Straightfor-
ward algebra gives (22) at the bottom of the page.
Then, it is clear that the upper bound (22) holds also for the

model (21) with a non-constrained eavesdropper.

D. Secrecy Capacity in Some Special Cases

We now study the case in which the S-R links are very noisy,
i.e., the relay does not hear the source.

Theorem 4: For the model (7), if the relay does not hear the
source:
1) An upper bound on the perfect secrecy rate is given by

(23)

where the maximization is over ,
such that and .

2) A lower bound on the perfect secrecy rate is given by

(24)

where the maximization is over ,
such that and

(25)

Proof: Upper Bound. The bound in (23) is established
as follows. Our approach borrows elements from an upper
bounding technique that is used in [18], and can be seen as
an extension of it to the case of parallel relay-eavesdropper
channels. Assume that all links between the relay and the
destination are noiseless, and the eavesdropper is constrained
to treat the relay’s signal as unknown noise. As mentioned in
[18], any upper bound for this model with full relay-destination
cooperation and constrained eavesdropper also applies to the
model of Theorem 4.
Now, for the model with full relay-destination cooperation

and constrained eavesdropper, we develop an upper bound on
the secrecy rate as follows. In this case, the destination can re-
move the effect of the relay transmission (which is indepen-
dent from the source transmission as the relay does not hear
the source), and the equivalent channel to the destination can
be written as

(26)

The eavesdropper is constrained in the sense that it is restricted
not to decode the relay’s signals. Mathematically, this can be
stated as follows. Let be a random variable that has the same
distribution as and , and represents un-
known noise at the eavesdropper. The channel output at the con-
strained eavesdropper is given by

(27)

For the constrained eavesdropper the relay’s transmission acts
as unknown noise, with the worst case obtained with being
Gaussian, for . The rest of the proof follows by
simply observing that the resulting model (with the worst case
relay transmission to the eavesdropper and full relay-destination

(22)



366 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 7, NO. 2, APRIL 2012

cooperation) is, in fact, a parallel Gaussian wiretap channel, the
secrecy capacity of which is established in [3], i.e.,

(28)

where the maximization is over and
, with and

.
Finally, straightforward algebra which is omitted for brevity

shows that the computation of (28) gives (23).

Lower Bound: The proof of the lower bound follows by eval-
uating the equivocation in Theorem 2 with a specific choice of
the variables. More specifically, evaluating (5) with the choice

, with in-
dependent of and such that (25)
is satisfied, we get the rate expression in the RHS of (24). The
RHS of (24) then follows by maximization over all

, satisfying (25) and the total power constraints
and .

Remark 7: The upper (23) and lower (24) bounds on the per-
fect secrecy rate of Theorem 4 have same expressions but are
maximized over different input sets. These bounds coincide only
when the inputs that maximize the upper bound
(23) also satisfy (25). For this specific case, perfect secrecy is
established and is given by

(29)

where the maximization is over , such
that and

(30)

IV. EXAMPLE APPLICATION

In this section we apply the results which we established for
the Gaussian memoryless model in Section III to study a fading
relay-eavesdropper channel.
For a fading relay-eavesdropper channel, the received signals

at the relay, legitimate receiver and eavesdropper are given by

(31)

where is the time index, and
are the fading gain coefficients associated with S-D,

R-D, S-E, R-E, and S-R links, given by complex Gaussian
random variables with zero mean and unit variance, respec-
tively. The noise processes are zero
mean i.i.d complex Gaussian random variables with variances

and , respectively. The source and relay input
sequences are subject to an average power constraint, i.e.,

. We
define and assume that per-
fect non-causal CSI is available at all nodes. For a given fading
state realization , the fading relay-eavesdropper channel is a
Gaussian relay-eavesdropper channel. Therefore, for a given
channel state with fading state realizations, i.e., ,
the fading relay-eavesdropper channel can be seen as a parallel
Gaussian relay-eavesdropper channel with subchannels. The
power allocation vectors at the source and relay are denoted
by and , respectively. The ergodic achievable
secrecy rate of the fading relay-eavesdropper channel (31),
which follows from (11) is given by (32). The upper bound
for the fading relay-eavesdropper channel (31) follows directly
from the upper bound established for the parallel Gaussian
relay-eavesdropper channel (14). Straightforward algebra
which is omitted for brevity gives (33). See (32) and (33) at the
bottom of the page.

(32)

(33)
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Fig. 4. Achievable perfect secrecy rate of a parallel relay-eavesdropper
channel.

V. NUMERICAL RESULTS

In this section we provide numerical examples to illustrate
the performance of fading relay-eavesdropper channel. We con-
sider a fading relay-eavesdropper channel with L realizations of
fading state. It is assumed that perfect channel state informa-
tion is available at all nodes. We can consider this channel as a
Gaussian relay-eavesdropper channel with L subchannels. Al-
ternatively, this model can be seen as an OFDM system with
sub-carriers. We model channel gain between node
and as distance dependent Rayleigh fading, that
is, , where is the path loss exponent, is
the distance between the node and , and is a complex
Gaussian random variable with zero mean and variance one.
Each subchannel is corrupted by additive white Gaussian noise
with zero mean and variance one. Furthermore, for each symbol
transmission same subchannel is used on S-R and R-D links to
make the optimization tractable. The objective function for both
lower and upper bounds are optimized numerically using AMPL
with a commercially available solver, for instance SNOPT.
To illustrate the system performance, we set the source and

relay power to 64 Watt each. We consider a network geometry
in which the source is located at the point (0,0), the relay is lo-
cated at the point , the destination is located at the point
(1,0) and the eavesdropper is located at the point (0,1), where
is the distance between the source and the relay. In all numerical
results we set path loss exponent and . For all
numerical examples, secrecy rate is given by bits per channel
use. For each subchannel the selection of the coding scheme at
the relay is based on the relative strength of the S-D link w.r.t the
S-R link, i.e., we use NF scheme (set ) when
and DF scheme (set ) when . Fig. 4 shows
the power allocation for a fading channel with 64 subchannels
where the relay is located at (0.5,0), and marker “ ” denotes NF
on a particular subchannel while marker “ ” denotes DF on a
particular subchannel. It can be seen from Fig. 4 that achiev-
able perfect secrecy rate is zero for some subchannels. Roughly
speaking, this happens when the condition is
violated.
Fig. 5 compares the average perfect secrecy rate of the lower

bound, with optimized power allocation and with uniform

Fig. 5. Comparison of achievable perfect secrecy rate of the lower bound
with optimized power allocation and with uniform power allocation over all
subchannels.

Fig. 6. Comparison of achievable perfect secrecy rate of some schemes with
the lower bound.

power allocation, i.e., allocating same power at the source and
relay for all subchannels in and in . It can
be seen that for separate source and relay powers, optimized
power allocation scheme outperforms uniform power allocation
scheme. This fact follows because optimized power allocation
scheme maximizes the achievable perfect secrecy rate and
hence enhances the system performance.
Mode selection at the relay by only considering the relative

strength of the S-D and the S-R link in the lower bound is sub-
optimal because the achievable secrecy rate (32) also depends
on the gain of other link. We now consider the case in which the
relay selects the scheme which maximizes the rate for each sub-
channel. We plot the lower bound with this criteria and compare
it with the case in which same scheme is used on all subchan-
nels. As a reference we consider the case in which there is no
relay, i.e., a parallel wiretap channel. Fig. 6 shows the achiev-
able average perfect secrecy rate of different schemes. It can be
seen that when the relay is close to the source, DF scheme on all
subchannels gives higher secrecy rate. Similarly when the relay
is close to the destination, NF scheme on all subchannels offers
better rate. The region when the relay is between
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Fig. 7. Bounds on perfect secrecy rate.

is of particular interest. In this region the relay selects between
DF scheme and NF scheme for each subchannel and utilizes the
gain from both schemes. It is interesting to note that when the
relay is close to the destination, use of DF scheme on all sub-
channels does not offer any gain because in this case the relay
is unable to decode the source codewords and hence the av-
erage secrecy rate decreases. The lower bound always perform
better than the wiretap channel which shows the usefulness of
the relay.
In Fig. 7 we compare the lower bound obtained in Fig. 6,

with the upper bound on the secrecy capacity for the fading
relay-eavesdropper channel. It can be seen that when the relay is
close to the source, the lower and upper bounds coincide. This
is achieved by using DF scheme on all subchannels.

VI. CONCLUSION

We studied the problem of secure communication over par-
allel relay channel. Outer and inner bounds on the rate-equiv-
ocation are established for the DM case. Developing an outer
bound on the parallel relay-eavesdropper channel is non-trivial
and it does not follow directly from the one established in [12].
For the Gaussian memoryless case, lower and upper bounds on
the perfect secrecy rate are established. The computable upper
bound for the Gaussian model shows some separability over
subchannels. In the case in which the relay does not hear the
source, under some specific conditions the lower and upper
bounds coincide and secrecy capacity is established. We apply
the results established for the Gaussian memoryless model to
a more practical fading relay-eavesdropper channel. Numer-
ical examples showed that power adjustment among parallel
channels results in higher secrecy rate.

APPENDIX A
PROOF OF THEOREM 1

The proof generalizes the results of [12, Theorem 1] and uses
elements from a similar proof in the context of parallel BCC in
[3].

1) We first bound the equivocation rate as follows:

(34)

where as follows from Fano’s in-
equality; and and follows from [2, Lemma 7].
We introduce a random variable uni-
formly distributed over and
set,

and .
We define

, for . Note that
satisfies the following

Markov chain condition:
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Thus, we have

(35)

(36)

where and follow by using the above definition.
We can also bound the equivocation rate as follows. We
continue from (34) to get

(37)

(38)

where and follow from the above definition.

2) We now bound the rate as follows:

(39)

Hence, we have

(40)

where follows from Fano’s inequality; and fol-
lows from the fact that conditioning reduces entropy.

We can also bound the rate as follows:
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(50)

(41)

Hence, we have

(42)

where follows from Fano’s inequality; and follows from
the fact that conditioning reduces the entropy.
Therefore an outer bound on the achievable rate equivocation

region is given by the following set:

(43)

where the union is over all probability distributions
.

Finally we note that the terms in (36), (38), (40),
and (42) depend on the probability distribution

only through . Hence, there is
no loss of optimality to consider only those distributions that
have the form

(44)

This completes the proof of Theorem 1.

APPENDIX B

We compute the upper bound on secrecy rate for the parallel
Gaussian relay-eavesdropper channel as follows:

(45)

The first term in (45) is computed as follows:

(46)

Similarly the second, third, and fourth term in (45) are computed
as follows:

(47)

(48)

(49)

Using (46)–(49) in (45) gives (50) at the top of the page.
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