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Abstract—We study a special case of Willems’s two-user multi-
access channel with partially cooperating encoders from a security
perspective. This model differs from Willems’s setup in that only
one encoder, Encoder 1, is allowed to conference; Encoder 2 does
not transmit any message, and there is an additional passive eaves-
dropper from whom the communication should be kept secret. For
the discrete memoryless (DM) case, we establish inner and outer
bounds on the capacity-equivocation region. The inner bound is
based on a combination of Willems’s coding scheme, noise injec-
tion, and additional binning that provides randomization for secu-
rity. For the memoryless Gaussian model, we establish lower and
upper bounds on the secrecy capacity. We also show that, under
certain conditions, these bounds agree in some extreme cases of co-
operation between the encoders. We illustrate our results through
some numerical examples.

Index Terms—Conferencing, eavesdropping, multiaccess
channel, security, wire-tap channel.

I. INTRODUCTION

T RADITIONALLY security in communication networks is
achieved through encryption algorithms, implemented in

the upper layers of the protocol stack. Wyner introduced a basic
information-theoretic model to study security by exploiting the
physical layer attributes of the channel [1]. The wiretap channel
studied by Wyner consists of a source, a destination (legitimate
receiver) and an eavesdropper. The source communicates with
the destination, and wishes to conceal the messages that it sends
from the eavesdropper. Wyner establishes the secrecy capacity
of this model, i.e., the maximum amount of information that can
be sent from the source to the destination while leaking abso-
lutely no information to the eavesdropper, in the discrete mem-
oryless (DM) case when the source-to-eavesdropper channel is
a degraded version of the source-to-destination channel. The se-
crecy capacity of the memoryless Gaussian version of Wyner’s
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wiretap model is obtained in [2]. In [3], Csiszár and Körner gen-
eralize Wyner’s wiretap model to a broadcast model with con-
fidential messages (BCC). In this model, the source communi-
cates with two destinations; it sends two messages, a common
message that is intended to be decoded by both destinations as
well as an individual message that is intended to be decoded by
only one destination and be kept secret from the other destina-
tion. For the transmission of the individual message, the des-
tination that recovers only the common message then plays the
role of an eavesdropper. Csiszár and Körner characterize the ca-
pacity-equivocation region and the secrecy capacity region of
the studied broadcast model with confidential messages.
The seminal work byWyner has been extended to a variety of

models, including the parallel broadcast channel with confiden-
tial messages [4], the multiantenna wiretap channel [5]–[7], the
multiaccess wiretap channel [8]–[10], the relay-eavesdropper
channel [11]–[15], the parallel relay-eavesdropper channel [16],
the interference channel with confidential messages [17]–[20]
and the fading wiretap channel [21], [22]. The reader may refer
to [23] for recent advances on aspects related to information-
theoretic security.
In this work, we investigate the problem of secure communi-

cation over a multiaccess channel (MAC) with partially coop-
erating encoders. The MACwith partially cooperating encoders
andno security constraintswas studiedbyWillems in [24]. In this
model, prior to transmitting their respective messages, the two
encoders are allowed to communicatewith eachother over noise-
less bit-pipes offinite-capacities.Willemscharacterizes the com-
plete capacity regionof thismodel for theDMcase. In [25],Bross
et al. establish the capacity region of the memoryless Gaussian
version of Willems’s model. In both [24] and [25], among other
observations, it is shown in particular that holding a conference
prior to the transmission, enlarges the capacity region relative to
the standard MAC with independent inputs.
We study a special case of Willems’s setup with an additional

security constraint on the communication. More specifically, as
shown in Fig. 1, we consider a two-user multiaccess channel in
which the two users can cooperate partially through a unidirec-
tional noiseless bit-pipe of finite capacity . Also, we restrict
the role of Encoder 2 to only helping Encoder 1, i.e., Encoder 2
has no message of its own to transmit. Furthermore, we assume
that there is a passive eavesdropper who overhears the transmis-
sion and from whom the communication should be kept secret.
The eavesdropper is passive in the sense that it only listens to
the transmitted information without modifying it. The role of
Encoder 2 is then to only help Encoder 1 communicate with
the legitimate receiver while keeping the transmitted informa-
tion secret from the eavesdropper. From a practical viewpoint,
this model may be appropriate for example for the study of the
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Fig. 1. Multiaccess channel with partially cooperating encoders and security
constraints.

role of backbone connections among base stations for securing
transmission in cellular environments. In this paper, we study
the capacity-equivocation region of this model.
TheMACmodel that we study in this paper has some connec-

tions with a number of related works studied previously. Com-
pared with the orthogonal relay-eavesdropper channel studied in
[15], the orthogonal link between the source and the relay is re-
placed here by a noiseless bit-pipe of finite capacity . Com-
pared with the wiretap channel with a helper interferer (WT-HI)
studied in [17], our model permits cooperation among the en-
coders. Finally, compared with the primitive relay channel of
[26], our model imposes security constraints on the transmitted
message.

Contributions: Our main contributions in this paper can be
summarized as follows. For the DM case, we establish outer and
inner bounds on the capacity-equivocation region. The coding
scheme that we use for the inner bound is based on an appro-
priate combination of Willems coding scheme [24], noise injec-
tion [14, Theorem 3] and binning for randomization. We obtain
our converse proof by extending the converse proof of [24] to
account for the security constraint and that of [3] to account for
the unidirectional noiseless bit-pipe cooperation among the en-
coders. In doing so, we show that one needs to redefine the in-
volved auxiliary random variables appropriately. We note that
characterizing the capacity-equivocation region of our model in
the general setting is not easy; and, in fact, the capacity-equivo-
cation region or secrecy-capacity of closely related models that
are reported in the literature, such as [17], [27], [28], are still to
be found—the model of [17] can be seen as a special case of our
model obtained by taking a noiseless bit-pipe of zero capacity.
From this perspective, the inner and outer bounds that we de-
velop here can be seen as one step ahead towards a better under-
standing of the full capacity-equivocation region of the model
that we study in this paper.
Next, we study the Gaussian memoryless model. In this case,

we focus only on perfect secure transmission. For this model,
we establish lower and upper bounds on the secrecy capacity.
The coding scheme that we use to establish the lower bound
uses ideas that are essentially similar to those for the DM case.
The upper bound on the secrecy capacity does not involve aux-
iliary random variables and, so, is computable. Furthermore, it
has the same expression as the secrecy capacity of the Gaussian
wiretap channel with a two-antenna transmitter, single-antenna
legitimate receiver and single-antenna eavesdropper [5]–[7].

We show that our lower bound performs well in general and
is optimal in some extreme cases of cooperation among the en-
coders, including when the two encoders fully cooperate, i.e.,

. For the case in which the two encoders do not con-
ference, i.e., , the model that we study reduces to a
wiretap channel with a helper interferer [17], [27]. In this case,
our coding scheme reduces to merely injecting statistically in-
dependent noise [14, Theorem 3]; and, by comparing it to the
upper bound that we develop, we show that it is optimal under
certain conditions. For the case of full cooperation among the
encoders, i.e., , our coding scheme reduces to full
two-antenna cooperation for providing secrecy in the context of
multiantenna wiretap channels [5]–[7].
The rest of the paper is organized as follows. Section II pro-

vides a formaldescriptionof the channelmodel. InSection III,we
study theDMsetting, and establish inner and outer bounds on the
capacity-equivocation region. In Section IV, we establish lower
and upper bounds on the secrecy-capacity for the memoryless
Gaussian model, and study some extreme cases of cooperation
among the encoders.We illustrate these results through some nu-
merical examples in Section V. Section VI concludes the paper.

Notations: In thispaper, thenotation isusedasa shorthand
for , the notation is used as a shorthand
for , the notation is used as a shorthand
for , the notation denotes the cardinality
of set , denotes the expectation operator,
denotes the Gaussian distribution with -mean and -variance,
the boldface letter denotes the covariance matrix; ,
denote the entropy of the discrete and continuous random vari-
ables respectively and defines the mutual information
between random variable and . We define the functions

and . Throughout the
paper the logarithm function is taken to the base 2.

II. CHANNEL MODEL AND DEFINITIONS

Consider the model depicted in Fig. 1. Encoder 1 wishes to
send a confidential message to the legitimate receiver, in the
presence of a passive eavesdropper that overhears the trans-
mitted information and cannot modify it. In doing so, Encoder
1 can get help from a second encoder, Encoder 2, to whom it
is connected through a noiseless bit pipe of finite capacity .
Encoder 2 has no message of its own to transmit, and is dedi-
cated entirely to help Encoder 1 conceal its message from the
eavesdropper. The eavesdropper is assumed to be of unlimited
computational complexity and is fully informed about the code-
books used at the encoders.
More formally, let denote the message to be transmitted,

taken uniformly from the set . Encoder 1 is
allowed to conference the message to Encoder 2 using
communicating functions , over the noise-
less bit-pipe. Let , defined as the output of the
communication process for the k-th communication, where
ranges over the finite alphabet , . The infor-
mation conferenced is bounded due to the finiteness of noise-
less bit-pipe capacity between the two encoders. A conference
is permissible if communication functions are such that

(1)



AWAN et al.: MULTIACCESS CHANNEL WITH PARTIALLY COOPERATING ENCODERS 1245

To transmit the message , Encoder 1 sends a codeword
, where designates the input alphabet at Encoder 1. En-

coder 2 transmits a codeword where designates
the input alphabet at Encoder 2. Let and designate the
output alphabets at the legitimate receiver and eavesdropper,
respectively. The legitimate receiver gets the channel output

, and tries to estimate the transmitted message from it.
The eavesdropper overhears the channel output . The
transmission over the channel is characterized by the memory-
less conditional probability . The channel is mem-
oryless in the sense that

(2)

Definition 1: A code for the multiaccess model with
partially cooperating encoders shown in Fig. 1 consists of en-
coding functions1

(3)

and a decoding function at the legitimate receiver

(4)

Definition 2: The average error probability for the
code is defined as

(5)

The eavesdropper overhears to what the encoders transmit and
tries to guess the information from it. The equivocation rate per
channel use is defined as .

Definition 3: A rate-equivocation pair is said to be
achievable if for any there exists a sequence of codes

such that for any

(6)

Definition 4: The secrecy capacity is defined as themaximum
achievable rate at which the communication rate is equal to the
equivocation rate, i.e., .

III. DISCRETE MEMORYLESS CASE

In this section we establish outer and inner bounds on the ca-
pacity-equivocation region for the MAC with partially cooper-
ating encoders shown in Fig. 1.

A. Outer Bound

The following theorem provides an outer bound on the ca-
pacity-equivocation region of the MAC with partially cooper-
ating encoders and security constraints shown in Fig. 1.

1The source encoder, , and helper encoder, , are stochastic encoders that
introduce additional randomization to increase secrecy.

Theorem 1: For theMACwith partially cooperating encoders
and security constraints shown in Fig. 1, and for any achievable
rate-equivocation pair , there exist some random vari-
ables , such that
satisfies

(7)

Proof: The proof of Theorem 1 is given in Appendix I.

Remark 1: The proof of Theorem 1 extends the converse
proof of [3] to the case of two encoders, and extends the con-
verse proof of [24] so as to account for the imposed security
constraint. Furthermore, the outer bound of Theorem 1 reduces
to the secrecy capacity of Wyner’s wiretap channel [1] by re-
moving the helping encoder, Encoder 2.

Remark 2: In the special case in which , the model
in Fig. 1 reduces to a transmitter (Encoder 1) sending a confiden-
tial message to its intended receiver in the presence of a passive
eavesdropper and with the help of an external independent in-
terferer (Encoder 2). This model is referred to as being a wiretap
channel with a helping interferer (WT-HI), and is studied in
[17], [27]. The capacity-equivocation region of the WT-HI is
still unknown. In [17], and also [27], the authors derive achiev-
able secrecy rates as well as computable upper bounds on the
secrecy capacity of the WT-HI. The outer bounds of [17], [27]
are of Sato-type. By specializing the outer bound of Theorem
1 to the case , one readily obtains an alternative outer
bound on the capacity equivocation region of the WT-HI. It is
not easy to compare the obtained outer bound with the outer
bounds of [17], [27], since the former involves auxiliary random
variables.

B. Inner Bound

We now turn to establish an inner bound on the capacity-
equivocation region of the MAC with partially cooperating en-
coders and security constraints shown in Fig. 1. The following
theorem states the result.

Theorem 2: For theMACwith partially cooperating encoders
and security constraints shown in Fig. 1, the rate pairs in the
closure of the convex hull of all satisfying

(8)

for some measure
,

are achievable.

Outline of proof: We briefly outline the coding scheme that
we use to prove the achievability of the inner bound of Theorem
2, and relegate the details of the proof to Appendix II. The inner
bound of Theorem 2 is based on a coding scheme that consists
in appropriate careful combination of Willems’s coding scheme
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[24], noise injection [14, Theorem 3] and binning for random-
ization to provide security. Let denote the message to be
transmitted. Using the noiseless bit-pipe of finite capacity, En-
coder 1 conferences a part of the information message to En-
coder 2. After completion of the conferencing process, this part
can be regarded as a common information to be transmitted by
both encoders. The random variable in Theorem 2 represents
this common information. The part of the information message
that is sent only by Encoder 1 can be regarded as an individual
message. The random variable in Theorem 2 represents this
individual information. The input of Encoder 2 is composed of
the common information, which it has received through noise-
less finite capacity link from Encoder 1, and a statistically in-
dependent artificial noise component. The random variable
in Theorem 2 represents the input from Encoder 2. The trans-
mission of both common information and artificial noise com-
ponents at Encoder 2 in Theorem 2 is adjusted by appropriate
selection of random variable . Additional random binning is
employed to secure both individual and common information
from the passive eavesdropper [1]. Finally, the random variable
in Theorem 2 stands for a channel prefix.

Remark 3: The region established in Theorem 2 reduces to
the special case of the capacity region of the MAC
with cooperating encoders and no security constraints in [24,
Theorem 1] by setting , , and

in (8).

Remark 4: As we indicated previously, in the special case
in which , the model of Fig. 1 reduces to a wiretap
channel with a helping interferer (WT-HI). By setting
(i.e., restricting to the case of perfect secrecy) and
in (8), we obtain the following lower bound on the secrecy

capacity of the WT-HI,

(9)

where the maximization is over joint measures of the form
. In [17], the authors establish

several achievable secrecy rates for the WT-HI for different
regimes of the relative strength of the interference. The lower
bound (9) has an expression that is essentially similar to one
that is developed for the case of a strong interference regime
in [17, Section III-C]; but is potentially larger since it involves
auxiliary random variables and in place of the inputs
and in [17, Section III-C]. The specific choice
and gives the lower bound of [17, Section III-C] in
the case of strong interference.

IV. MEMORYLESS GAUSSIAN MODEL

In this section, we study the Gaussian version of the MAC
with partially cooperating encoders and security constraints
shown in Fig. 1. We only focus on the case of perfect secrecy.

A. Channel Model

For the Gaussian model, the outputs of the MAC at the legiti-
mate receiver and eavesdropper for each symbol time are given
by

(10)

where , , , and are the channel gain coefficients
associated with Encoder 1-to-destination (1-D), Encoder 2-to-
destination (2-D), Encoder 1-to-eavesdropper (1-E), and En-
coder 2-to-eavesdropper (2-E) links respectively. The noise pro-
cesses and are independent and identically dis-
tributed (i.i.d) with the components being zero mean Gaussian
random variables with variances and , respectively; and

and are the channel inputs from Encoder 1 and En-
coder 2 respectively. The channel inputs are bounded by average
block power constraints

(11)

B. Upper Bound on the Secrecy Capacity

In this section, we establish an upper bound on the secrecy ca-
pacity on GaussianMAC (10). We establish a computable upper
bound using the techniques developed earlier to establish the
secrecy capacity of a multiple-input multiple-output (MIMO)
wiretap channel [5]–[7]—taking a setup with two antennas at
the transmitter, one antenna at the legitimate receiver and one
antenna at the eavesdropper in our case.

Corollary 1: For the Gaussian MAC with partially cooper-
ating encoders and security constraints (10), an upper bound on
the secrecy capacity is given by

(12)

where with

, , with ,

satisfying (11).

Alternatively, we can also establish the upper bound (12)
from the rate-equivocation region established for the DM case
in Theorem 1, as follows. Taking the first term of minimization
in the bound on the equivocation rate in Theorem 1, we get

(13)

where . The rest of
the proof closely follows the bounding technique established
in [16], in the context of a parallel relay-eavesdropper channel.
More specifically, continuing from (13) we get

(14)
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where follows from the fact that the difference of condi-
tional mutual information is
maximized by and holds since

is a Markov chain.
Now, the upper bound in (14) can be tightened by using an

argument previously used in [5], [6] in the context of multi-
antenna wiretap channel. Noticing that the upper bound (13) de-
pends on only through its marginals
and , the upper bound (14) can be further tightened
as

(15)

where the joint conditional has the same
marginals as , i.e.,
and .
Following [5], [6], it can be shown that the bound

in (15) is maximized with the jointly Gaussian inputs
, with and satisfying

(11).
Finally, evaluation of the upper bound (15) with these jointly

Gaussian inputs and then the minimization over all possible cor-
relations between and yield the desired result.

C. Lower Bound on the Secrecy Capacity

For the Gaussian MAC with partially cooperating encoders
and security constraints (10), we obtain a lower bound on the
secrecy capacity by using our result for the DM model in The-
orem 2. The results established for the DM case can be readily
extended to memoryless channels with discrete time and con-
tinuous alphabets using standard techniques [29, Chapter 7].

Corollary 2: For the Gaussian MAC with partially cooper-
ating encoders and security constraints (10), a lower bound on
the secrecy capacity is given by (16), shown at the bottom of the
page.

Proof: The achievability follows by computing the inner
bound in Theorem 2 with the choice ,

and , ,
, where , and be independent

random variables with , and , ,
, and . Straightforward algebra that is

omitted for brevity gives (16).

D. Analysis of Some Extreme Cases

In this section we study two special cases of the Gaussian
MAC (10) with partially cooperating encoders shown in Fig. 1,
where the capacity of the bit-pipe is either,
1) , or
2) .
The first case corresponds to the wiretap channel with a helping
interferer (WT-HI) studied in [17], [27]. The second case corre-
sponds to a two-antenna transmitter wiretap channel [6], [30].
1) Case : In this case the encoders do not coop-

erate. Since Encoder 2 does not know the common informa-
tion to transmit, it only injects statistically independent artificial
noise.

Corollary 3: For the Gaussian model (10) with :
1) An upper bound on the secrecy capacity is given by

(17)

2) A lower bound on the secrecy capacity is given by

(18)
where the maximization is over and
such that

(19)

Proof: Upper Bound. We bound the term in (17) as
follows. The proof follows by using elements from an upper
bounding technique developed in [15]. We assume that there is
a noiseless link between Encoder 2 and the legitimate receiver,
and the eavesdropper is constrained to treat Encoder 2’s signal
as unknown noise. The upper bound established for this model,
with full cooperation between Encoder 2 and the legitimate
receiver and a constrained eavesdropper, also applies to the
model of Corollary 3.

(16)



1248 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 8, NO. 7, JULY 2013

With full cooperation between Encoder 2—legitimate re-
ceiver link, the legitimate receiver can remove the effect of
Encoder 2 transmission from the output of the MAC (10)
(since the input from Encoder 2 is independent from Encoder 1
transmission because ). The equivalent channel model
at the legitimate receiver is then given by

(20)

The eavesdropper is constrained in the sense that it is restricted
not to decode Encoder 2 signals. For the constrained eaves-
dropper Encoder 2’s transmission acts as unknown noise, the
worst case is obtained with the being Gaussian distributed
[15]. The equivalent channel model at the eavesdropper is given
by

(21)

The equivalent channel model, with full cooperation between
Encoder 2-to-legitimate receiver link and worst case Encoder
2-to-constrained eavesdropper transmission, reduces to the
Gaussian wiretap channel, the secrecy capacity of which is
established in [2], i.e.,

(22)

where , and .
Straightforward algebra shows that the computation of (22)

gives (17).

Lower Bound. The proof of the lower bound follows by eval-
uating the equivocation rate in Theorem 2 with a specific choice
of the variables. More specifically, evaluating Theorem 2 with
the choice , , and ,
with independent of , and such
that (19) is satisfied, we obtain the rate expression in (18). The
RHS of (18) then follows by maximization over
and and satisfying (19).

Remark 5: The bounds on the secrecy capacity in (17) and
(18) have identical expressions but the maximization is over
different sets of inputs. The bounds coincide in the case in which
the inputs that maximize the RHS of (17) also
satisfy the condition (19). In this case, the perfect secrecy of the
studied model is given by

(23)
where the maximization is over and
satisfying

(24)

2) Case : As stated previously, in this case the
model (10) reduces to a wiretap channel in which the trans-
mitter equipped with two antenna and the legitimate receiver
and eavesdropper equipped with single antennas. As it will be

shown below, in this case the upper bound of Corollary 1 and
the lower bound of Corollary 2 coincide, thus providing a char-
acterization of the secrecy capacity, which can also be obtained
from [6], [7] in this specific case.

Corollary 4: For the Gaussian model (10) with fully cooper-
ating encoders, the secrecy capacity is given by

(25)

where with

, , with and

satisfying (11).

Proof: The upper bound follows by Corollary 1. The proof
of the lower bound follows by evaluating the equivocation rate
in Theorem 2 with a specific choice of the random variables.
More specifically, the rate expression (25) is obtained by setting

, , , , in
Theorem 2 where with

, and and

satisfying (11).
With straightforward algebra, it can be checked that this cor-

responds also to the special case in Corollary 2.

V. NUMERICAL RESULTS

In this section we provide some numerical examples to illus-
trate our results. We consider the Gaussian MAC (10) in which
the outputs at the legitimate receiver and eavesdropper are cor-
rupted by additive white Gaussian noise (AWGN) of zero mean
and unit variance each. We model channel gains between node

and as distance dependent path loss,
, where is the path loss exponent.We assume that

both users have an average power constraint of 1 watt each and
the path loss exponent . We consider a network geometry
in which Encoder 1 is located at the point (0,0), Encoder 2 is lo-
cated at the point ( ,0), the legitimate receiver is located at the
point (1,0) and the eavesdropper is located at the point (1.5,0),
where is the distance between Encoders 1 and 2. The upper
(12) and the lower (16) bounds are optimized numerically for
Gaussian inputs. Fig. 2 shows the upper and lower bounds on the
secrecy capacity for different values of finite capacity link. As a
reference we consider the case in which there is no helping En-
coder, i.e., a basic wiretap channel. If we set , Encoder
1 does not conference to Encoder 2, for this setup the MAC (10)
reduces to the classic WT-HI [17], [27]. In this case Encoder 2
can help Encoder 1 by injecting confusion codewords to con-
fuse the eavesdropper [14, Theorem 3].
Fig. 3 shows the power splitting at Encoder 2 to transmit con-

ferenced information and artificial noise in (16), for different
values of . The region between is of partic-
ular interest where Encoder 2 is near to the destination. It can be
easily seen that when helping encoder, Encoder 2, is near to the
destination no power is allocated to transmit the conferenced
information to the legitimate receiver and the lower bound is
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Fig. 2. Bounds on the secrecy capacity.

Fig. 3. Power splitting at Encoder 2 for different values of finite capacity link,
where Encoder 1 is located at (0,0), the destination is located at (1,0), and the
eavesdropper is located at (1.5,0).

maximized by independent inputs. Roughly speaking, this fol-
lows because when Encoder 2 is near to the destination noise
injection provides higher secrecy rates.
If we increase the capacity of noiseless bit-pipe, the achiev-

able secrecy rate increases, this follows because Encoder 2 is
more informed about the information message from Encoder 1
and can cooperate with each other. For instance, if we consider
a very large value of noiseless bit-pipe capacity, the upper and
lower bounds will eventually coincide. This is due to the fact
that a large value of results in full cooperation between the
encoders, due to which the channel at hand reduces to a two-an-
tenna transmitter wiretap channel for which secrecy capacity is
established (Corollary 4).
Next, we consider a network geometry in which the eaves-

dropper is geographically placed at a more favorable location
compared to the legitimate receiver. In this setting, compared
to the earlier example we reverse the location of the destination
and the eavesdropper, where the eavesdropper is located at the
point (1,0) and the legitimate receiver is located at the point
(1.5,0). Fig. 4 shows the optimized upper (12) and lower (16)
bounds for this case with different values of the finite capacity

Fig. 4. Bounds on the secrecy capacity.

Fig. 5. Power splitting at Encoder 2 for different values of finite capacity link,
where Encoder 1 is located at (0,0), the destination is located at (1.5,0), and the
eavesdropper is located at (1,0).

link. As a benchmark, similar to the previous example, we
also plot the case in which there is no helper encoder (wiretap
channel). From Fig. 4 it can be seen that in the absence of the
helper encoder, it is not possible to obtain positive secrecy
rates. This follows due to the fact that since the eavesdropper is
located at a better position compared to the legitimate receiver,
it can easily decode all the transmitted information. Roughly
speaking, in this case degradedness condition is violated.
With the presence of the helper Encoder, even though the
eavesdropper is at a more favorable position compared to the
legitimate receiver, one can still obtain positive secrecy rates.
This follows because, in this setting Encoder 2 can help the
legitimate receiver by injecting statistically independent artifi-
cial noise to confuse the eavesdropper which in turns provides
higher secrecy rates [14, Theorem 3]. From Fig. 4, one can
also see that for large values of , the secrecy rate increases.
This follows, since Encoder 2 is more informed about the
confidential messages at the Encoder 1, cooperation between
Encoders can provides higher secrecy rates (Corollary 4). Fig. 5
shows the power splitting at Encoder 2 to transmit conferenced
information and artificial noise for the new setup. In this setting,
when the Encoder 2 is located between the eavesdropper and
the legitimate receiver, it uses full power to inject artificial
noise to confuse the eavesdropper which provides higher rates.



1250 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 8, NO. 7, JULY 2013

VI. CONCLUSION

We studied a special case of Willems’s multiaccess channel
with partially cooperating encoders [24] in the presence of a
passive eavesdropper, from a security viewpoint. For the gen-
eral DM case, we established outer and inner bounds on the
capacity-equivocation region. The inner bound is obtained by
a combination of Willems’s coding scheme, injection of sta-
tistically independent artificial noise [14, Theorem 3] and bin-
ning for security. The outer bound is obtained by extending
outer bounding techniques that are developed previously in the
context of broadcast channels with confidential messages and
Willems’s model to the studied model. The developed outer and
inner bounds do not agree in general, but can be seen as a step
ahead towards characterizing the capacity-equivocation region.
For the Gaussian setup, we focus on the case of perfectly se-
cure transmission, and establish lower and upper bounds on the
secrecy capacity. We also study some extreme cases of coop-
eration between the encoders. For the case in which the en-
coders do not cooperate the considered setup reduces to wiretap-
channel with an external helper interferer, a setup whose se-
crecy capacity is still unknown [17], [27], [28]. For this par-
ticular setup, we show that under certain conditions our lower
and upper bounds coincide, and so we characterize the secrecy
capacity fully. For the case of full cooperation between the en-
coders, the studied setup reduces to a wiretap channel in which
the transmitter is equipped with two-antenna, and the legitimate
receiver and eavesdropper are equipped with single antennas.
In this case, the developed bounds agree, and so we obtain the
secrecy capacity expression.

APPENDIX I
PROOF OF THEOREM 1

The converse uses elements from the proof given in the con-
text of broadcast channels with confidential messages [3] and
the proof established in the context of multiple access channel
with partially cooperating encoders [24]. We begin the proof by
first setting .
Bounds on the equivocation rate.
a)We first bound the equivocation rate as follows.

(26)

where as ; and follow because is a
function of , follows from Fano’s inequality; and and
follows from Lemma 7 in [3].
Let us define , , and

. We introduce a random variable uni-
formly distributed over and define ,

, , , ,
, . Also, we let , ,

.
Thus, we have

(27)

where follows from the definition of , and ; and
follows from the definition of , and .
We can also bound the equivocation rate as follows. We

continue from (26) to get
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(28)

where follows because
, follows because

,
follows from the definition of , and ; and

follows from the definition of , and .
Bounds on the transmission rate.
b)We now bound the transmission rate as follows.

(29)

where and follow because is a function of ,
follows from Fano’s inequality; and follow from the fact
that conditioning reduces entropy.
We continue from (29) to get

(30)

where follows from the definition of and ; and
follows from the definition of and .
We can also bound the transmission as follows

(31)

where follows because is a function of , follows
because

, and follow from the fact that conditioning re-
duces entropy; and follows from Fano’s inequality.
We continue from (31) to get

(32)

where follows from the definition of and ; and
follows from the definition of and .
This completes the proof of Theorem 1.

APPENDIX II
PROOF OF THEOREM 2

The proof is a combination of Willems’s coding scheme [24]
and noise forwarding scheme established by Lai et al. [14]
with additional binning for security [1]. We begin the proof by
first setting , in Theorem 2. After proving
Theorem 2 with , we prefix a memoryless channel

as reasoned in [3, Lemma
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Fig. 6. Relationship between auxiliary random variables.

4] to finish the proof. Fig. 6 shows the relationship between the
auxiliary random variables.

Random Coding.
1 Randomly generate a typical sequence with probability

. We assume that all terminals know
.

2 For each randomly generate independent and
identically distributed (i.i.d) codewords, each with
probability and index them as

, , where we set .
3 For each generate conditionally i.i.d
sequence, each with probability

, and index them as ,
.

4 For each generate condition-
ally i.i.d sequence, each with probability

, and
index them as , , where we set

.
We define

(33)

and , where ,
and . In the following we

assume that , otherwise this coding scheme does
not achieve any security level.

Encoding.
For a given rate-equivocation pair with and

, we propose the following random coding scheme. Let
be the total number of message. The

stochastic encoder performs the mapping as follows.
• If , then let where

. Let be the mapping that
partitions into subsets of nearly equal size. The
stochastic encoder then maps ,
where is uniformly chosen from . We define

, where is further partition into and of
rates , and respectively.

• If , the stochastic encodermaps , where
is uniformly chosen from . Next we define ,
where is further partition into and of rates , and

respectively.
After the mapping, Encoder 1 transmits and En-
coder 2 transmits , where Encoder 2 randomly se-
lects .

Decoding.
The legitimate receiver performs the decoding as follows.

• After the conferencing process, Encoder 2 knows , if
.

• The legitimate receiver declares that was sent,
by looking at jointly -typical .

• The legitimate receiver then declares that was
sent, by looking at jointly -typical .

• Afterwards the legitimate receiver declares that
, if is jointly -typ-

ical.

Probability of Error Analysis.
To transmit to the legitimate receiver, Encoder 1 and

Encoder 2 transmit and respectively.
Due to the symmetry of random code construction, the average
error probability does not depends on the particular message
index that was sent. Thus without loss of generality we consider
that was sent and define the error events

The error occurs if the transmitted and received codewords are
not jointly typical or when a wrong codeword is jointly
typical with the received codewords ( or . The
probability of decoding an error is given by

(34)

The first term, by AEP [31, Chapter 3]. Now we
consider the second term in (34) as follows

where follows from the joint AEP [31, chapter 14].
Thus if

(35)

the second term in (34) goes to zero as . From random
code construction it follows that
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Next, we consider the third term in (34) as follows

where follows from the joint AEP [31, chapter 14].
Thus if

(36)

the third term in (34) goes to zero as .
Therefore for a sufficiently large values of , the probability

of error goes to zero, if

Equivocation computation.
The computation of equivocation is given as follows.

(37)

We first consider . Given the
eavesdropper only needs to decode , and , which can be de-
coded because

Therefore, it can be easily shown that,

(38)

Since the channel is memoryless we can write

(39)

where , as [1]. If
then

, which
follows from codebook construction. The secrecy rate is then
given by

(40)

If ,

then

(41)

Therefore, perfect secrecy is obtained.
This completes the proof of Theorem 2.
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