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Abstract—In this paper, we consider a three-terminal state-de-
pendent relay channel (RC) with the channel state noncausally
available at only the relay. Such a model may be useful for
designing cooperative wireless networks with some terminals
equipped with cognition capabilities, i.e., the relay in our setup. In
the discrete memoryless (DM) case, we establish lower and upper
bounds on channel capacity. The lower bound is obtained by a
coding scheme at the relay that uses a combination of codeword
splitting, Gel’fand–Pinsker binning, and decode-and-forward
(DF) relaying. The upper bound improves upon that obtained by
assuming that the channel state is available at the source, the relay,
and the destination. For the Gaussian case, we also derive lower
and upper bounds on the capacity. The lower bound is obtained by
a coding scheme at the relay that uses a combination of codeword
splitting, generalized dirty paper coding (DPC), and DF relaying;
the upper bound is also better than that obtained by assuming
that the channel state is available at the source, the relay, and the
destination. In the case of degraded Gaussian channels, the lower
bound meets with the upper bound for some special cases, and,
so, the capacity is obtained for these cases. Furthermore, in the
Gaussian case, we also extend the results to the case in which the
relay operates in a half-duplex mode.

Index Terms—Channel state information, cognitive radio, (gen-
eralized) dirty paper coding (DPC), relay channel (RC), user coop-
eration.

I. INTRODUCTION

W E consider a three-terminal state-dependent relay
channel (RC) in which, as shown in Fig. 1, the source

wants to communicate a message to the destination through
the state-dependent RC in uses of the channel, with the help
of the relay. The channel outputs and for the relay and
the destination, respectively, are controlled by the channel input
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, the relay input , and the channel state , through a given
memoryless probability law . The channel state

is generated according to a given memoryless probability law
. It is assumed that the channel state is known, noncausally,

to only the relay. The destination estimates the message sent
by the source from the received channel output. In this paper,
we study the capacity of this communication system. We refer
to the model under investigation as state-dependent RC with
informed relay.

A. Background

Channels with random parameters or states have received
considerable attention due to a wide range of possible applica-
tions. Shannon initiated the study of single-user models with
state available causally at the encoder [1]. For the single-user
discrete memoryless (DM) state-dependent models, Gel’fand
and Pinsker derive the capacity for the setup in which the
channel state is available noncausally at the encoder [2]. In
this case, a random coding scheme based on binning, known
as Gel’fand–Pinsker coding, achieves the capacity [2]. Costa
considers an additive Gaussian channel with additive Gaussian
state known at the encoder and shows that Gel’fand–Pinsker
coding with a specific auxiliary random variable, widely known
as dirty paper coding (DPC), achieves the trivial upper bound
obtained by assuming the channel state available also at the
decoder [3]. Interestingly, DPC eliminates the effect of the ad-
ditive channel state on the capacity, as if there were no channel
state present in the model or the channel state were known to
the decoder as well. It is worth noting that since DPC achieves
the trivial upper bound for this model there is no need to derive
tighter upper bounds in this case. In [4], models with channel
state available noncausally at the encoder are studied from the
perspective of memories with defects. Practical coding realiza-
tions using concepts of lattices for the models with noncausal
encoder state information are studied, e.g., in [5] and [6]. For a
review on the subject of state-dependent channels and related
work, the reader may refer to [7].

A growing body of work studies multiuser state-dependent
models with noncausal encoder state information [8]–[21]. In
the multiuser models, the channel state can be known to all,
only some, or none of the users in the communication system.
In the case of state-dependent DM models, the multiple access
channel (MAC) with partial channel state at all the encoders and
full channel state at the decoder is considered in [11], and the
broadcast channel (BC) with state available at the encoder but
not at the decoders is considered in [12], [22].

In the Gaussian case, the MAC with all encoders being in-
formed, the BC with informed encoder, the physically degraded
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Fig. 1. RC with state information � available noncausally at only the relay.

Fig. 2. Example wireless network with cognition capabilities. If the relay �
is cognizant of the competing source � , it can help the source � cancel the
effect of the interference from � .

RC with informed source and informed relay, and the physically
degraded relay broadcast channel (RBC) with informed source
and informed relay are studied in [8], [9], and [18]. In all these
cases, it is shown that some variants of DPC achieve the respec-
tive capacity or capacity region. Also, since for all these models
DPC achieves the trivial upper or outer bound obtained by as-
suming that the channel state is also available at the decoders,
it is not necessary to derive nontrivial upper or outer bounds,
i.e., bounds that are tighter than the cut-set bound. For all these
models, the key assumption that makes the problem relatively
easy is the availability of the channel state at all the encoders in
the communication model, which allows these encoders to re-
move the effect of the channel state on their respective commu-
nication using variants of DPC. It is interesting to study state-de-
pendent multiuser models in which some, but not all, encoders
are informed of the channel state, because the uninformed en-
coders cannot apply DPC.

The state-dependent MAC with some, but not all, encoders in-
formed of the channel state is considered in [10], [13]–[16], and
[21] and the state-dependent RC with informed source is consid-
ered in [18] and [19]. For the Gaussian cases of these models, the
informed encoder applies a slightly generalized DPC (GDPC)
in which the channel input and the channel state are negatively
correlated. It is interesting to note that in these models the un-
informed encoders benefit from the GDPC applied by the in-
formed encoders because the negative correlation can be viewed
as partial state cancellation. The capacity region of the DM
state-dependent MAC with one informed encoder is character-
ized in [14] and [16] for the case in which the messages sets are
degraded and the informed encoder knows the message of the
uninformed encoder. In [16], the authors also study the Gaussian
case and they characterize the capacity region by deriving a non-
trivial outer bound that is strictly tighter than the cut-set outer
bound.

For the study of communication models in which only some
of the involved encoders are informed about the channel state, it
is important to establish nontrivial upper or outer bounds. These
bounds help characterize the rate loss due to not knowing the
state at the uninformed encoders, and help assess the effective-
ness of the coding schemes that are employed for the achiev-
ability results. In this paper, we study a state-dependent RC with
the channel state known to only the relay. This model is con-
ceptually different from the model considered previously in [18]
and [19] in which the channel state is noncausally known to only
the source.

B. Motivation

Channels whose probabilistic input–output relationship de-
pends on random parameters, or channel states, can model a
large variety of scenarios. The assumption of noncausal channel
state can hold naturally or approximately. Examples where the
assumption of noncausal state holds naturally include informa-
tion embedding [23]–[28], certain storage applications such as
computer memories with defective cells [29], and certain broad-
cast scenarios such as multiple-input–multiple-output (MIMO)
BCs [30]–[32] where DPC is a central ingredient in achieving
the capacity region [33]. Examples where the assumption of
noncausal state holds approximately include dispersive (ISI)
channels [5], block fading in wireless environments [34], net-
work [35], and cooperative networks [36].

Yet, another example application is cooperation in the realm
of cognition. Driven by the growing demand for frequency spec-
trum, cognitive radios, usually defined as smart radio devices
that are capable of acquiring some knowledge about the channel
state, are introduced into communication systems in order to
help noncognitive radios in terms of spectral efficiency [37]. In a
wireless interference network in which some terminals compete
and some others cooperate, equipping some specific terminals
with cognition capabilities that allow them to learn the interfer-
ence to high accuracy would help other noncognitive terminals.
These cognitive radios can exploit the knowledge of the interfer-
ence or channel state to remove its effect on the transmission of
their own messages and also that of the messages of the noncog-
nitive terminals as well. The study of fundamental performance
limits of models with only a subset of the encoders being in-
formed is relevant for a better understanding of communication
systems that involve cognitive radios. For example, to increase
system spectral efficiency, collaboration is investigated in the

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 22,2010 at 14:29:12 UTC from IEEE Xplore.  Restrictions apply. 



2274 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 5, MAY 2010

realm of cognition in [38]–[40]. Also, the problem of collabo-
rative signal transmission in the presence of some cognizant ter-
minals is investigated for a MAC scenario in [13] and [16] and
for an interference channel scenario in [41]–[44]. The setup we
consider in this paper also models the building block for collab-
orative wireless networks in which only the relays, but neither
sources nor destinations, are cognizant of the channel state. An
example of such a scenario is shown in Fig. 2.

C. Main Contributions

For the DM case, we derive lower and upper bounds on the ca-
pacity of the general state-dependent RC with informed relay.
The lower bound is obtained by a coding scheme at the relay
that uses a combination of codeword splitting, Gel’fand–Pinsker
coding, and decode-and-forward (DF) relaying. For this model,
designing a codebook at the relay is challenging since such a
codebook should allow the source to generate codewords that
are correlated with the channel input of the relay which exploits
the available channel state. In this work, this is accomplished
by codeword splitting at the relay. With codeword splitting, the
channel input of the relay is generated from two codewords:
the first of which is a function of the cooperative information
(i.e., the information that is sent cooperatively by the source and
the relay using a joint codebook) and the channel state, and the
second of which is a function of only the cooperative informa-
tion. Since the source knows the cooperative information, it can
generate its channel input in a way such that it is correlated with
the latter codeword at the relay, which is a function of only the
cooperative information.

Our upper bound on the capacity is tighter than that obtained
by assuming that the channel state is also available at the source
and the destination. This upper bound is nontrivial and relates
to the bounding technique developed in the context of MACs
with asymmetric channel state in [16, Th. 2]; however, we note
that the present upper bound is proved using techniques that are
different from those in [16]. On a related note, we mention that
at a high level there is a connection between the multiple access
transmission part in the RC with informed relay in this work
and the models in [13] and [16]. However, there are also nu-
merous conceptual differences that will be discussed whenever
relevant. In particular, in contrast to [13] and [16], here the unin-
formed encoder (the source) knows the message of the informed
encoder (the relay). From this angle, the model in this paper con-
nects more with the state-dependent MAC studied in [21].

Furthermore, we specialize the results to the case in which the
channel is degraded. Also, we extend the lower bound for the DF
relaying scheme to the case in which the source implements rate
splitting and the relay DFs only one part of the source message.

We apply the concepts developed in the DM case to the
Gaussian case in which both the noise and the state are additive
Gaussian random variables. In our analysis for the Gaussian
RC, we first allow the relay to operate in a full-duplex mode
in which it can transmit and receive simultaneously, and then
we constrain it to operate in a half-duplex mode in which it can
either only transmit or only receive.

In the case of full-duplex transmission, we derive lower and
upper bounds on the capacity of the Gaussian RC with informed
relay. We obtain two lower bounds by using the concepts of

codeword splitting, GDPC [10], [45], and DF relaying. Through
codeword splitting, the channel input of the source is partially
coherent with the channel input of the relay. The first lower
bound uses full DF at the relay and the second further enlarges
it by allowing rate splitting at the source.

We also point out the loss incurred by the availability of the
channel state at only the relay in the upper bound. We show that
the lower bound obtained with rate splitting at the source is in
general close to the upper bound for general Gaussian channels.
In the case of the degraded Gaussian channel, the two lower
bounds meet and they meet with the upper bound for some spe-
cial cases.

In the case of half-duplex transmission, we derive lower and
upper bounds for the capacity of the Gaussian RC with informed
relay. In this case, we focus on relaying protocols in which the
relay either fully or partially decodes the source message, re-en-
codes and sends it to the destination.

D. Outline and Notation

An outline of the remainder of this paper is as follows.
Section II describes in more detail the communication model
that we consider in this work. Section III provides lower and
upper bounds on the capacity of the general DM RC with
informed relay. Section IV provides lower and upper bounds
on the capacity of the Gaussian RC with informed relay, and
also contains some numerical results and discussions. Finally,
Section V concludes the paper.

We use the following notations throughout the paper. Upper
case letters are used to denote random variables, e.g., ; lower
case letters are used to denote realizations of random variables,
e.g., ; and calligraphic letters designate alphabets, i.e., . The
probability distribution of a random variable is denoted by

. Sometimes, for convenience, we write it as . We use
the notation to denote the expectation of random variable

. A probability distribution of a random variable given is
denoted by . The set of probability distributions defined on
an alphabet is denoted by . The cardinality of a set is
denoted by . The shorthand notation indicates a sequence
of random variables and denotes a par-
ticular realization of a random sequence . For convenience,
the length vector will occasionally be denoted in boldface
notation . Given random variables , , , we denote the en-
tropy of by , the mutual information between and
by , and the conditional mutual information between
and , conditioned on , by [46]. The Gaussian dis-
tribution with mean and variance is denoted by .
Finally, throughout the paper, logarithms are taken to base ,
and the complement to unity of a scalar is denoted by

, i.e., .

II. SYSTEM MODEL AND DEFINITIONS

In this section, we formally present our communication
model and the definitions related to it. As shown in Fig. 1,
we consider a state-dependent RC denoted by
whose outputs and for the relay and the
destination, respectively, are controlled by the channel inputs

from the source and from the relay, along
with a channel state . It is assumed that the channel state
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at instant is independently drawn from a given distribution
and the channel state is noncausally known at the relay.

Also, each transmitted input block from the source and each
transmitted input block from the relay are subject to additive
normalized input constraints

(1)

where and are single-letter input
cost functions for the source and the relay, respectively.

The source wants to transmit a message to the destina-
tion with the help of the relay, in channel uses. The message

is assumed to be uniformly distributed over the set
. The information rate is defined as bits

per transmission.
An code for the state-dependent RC with in-

formed relay consists of an encoding function at the source

a sequence of encoding functions at the relay

for and a decoding function at the destination

such that

and

for .
From an code, the sequences and

from the source and the relay, respectively, are transmitted
across a state-dependent RC modeled as a memoryless con-
ditional probability distribution . The joint
probability mass function on is
given by

(2)

The channel is said to be physically degraded if the conditional
distribution factorizes as

(3)

The destination estimates the message sent by the source from
the channel output . The average probability of error is de-
fined as .

An code for the state-dependent RC with
informed relay is an code
having average probability of error not exceeding .

Given a pair , a rate is said to be -achiev-
able if there exists a sequence of -codes with

. The capacity of the state-dependent RC
with informed relay is the supremum of the set of -achievable
rates.

III. THE DM RC WITH INFORMED RELAY

In this section, we assume that all the alphabets in the model,
, , , and , are discrete and finite.

A. Lower Bound on Capacity

The following theorem provides a lower bound on the ca-
pacity of the state-dependent DM RC with informed relay.

Theorem 1: Let be given. The capacity
of the state-dependent DM RC with informed relay satisfies

, where

(4)

with the maximization over all probability distributions of the
form

(5)

and satisfying , , and ,
are auxiliary random variables with

(6a)

(6b)

respectively.

Remark 1: The lower bound (4) is based upon a technique
at the relay we call codeword splitting, combining DF relaying
[47, Th. 1] with Gel’fand–Pinsker coding [2]. In conventional
DF strategies, the source knows the relay input, allowing the
source and relay to utilize a joint codebook to transmit coop-
erative information. However, in our model there is a tension
between the utility of a joint codebook for relaying and the
utility of the relay’s making use of the channel state, which
is unknown to the source. To resolve this tension, we generate
two codebooks at the relay. In one codebook, the codewords
are generated using a random variable that is independent
of the channel state . The relay chooses the appropriate code-
word from this codebook using only the cooperative informa-
tion. In the other codebook, the codewords are generated using
a random variable that is correlated with the channel state
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Fig. 3. Dependence diagram of the random variables for the lower bound in
Theorem 1.

and the variable through . The relay chooses the
appropriate codeword from this codebook using both the coop-
erative information and the channel state, in order to combat the
effect of the channel state on the communication. Finally, the
relay generates the channel input from using the
conditional probability law . The source knows
as this is a function of only the cooperative information, and,
given , it generates the random codeword according to
the conditional probability law . Thus, the channel inputs
of the source and the relay are correlated through . A depen-
dence diagram of the random variables that are involved in the
coding scheme is shown in Fig. 3.

Remark 2: The term in (4)
can be interpreted as an achievable sum rate over a state-depen-
dent MAC with one informed encoder and degraded messages,
i.e., one common and one individual message. In our model,
the informed encoder sends only the common message, i.e., the
cooperative information of DF relaying, and the uninformed en-
coder sends both the common and individual messages. By con-
trast, [13] and [16] derive the capacity region for the reverse situ-
ation in which the informed encoder sends both the common and
individual messages, and the uninformed encoder sends only the
common message. This swapping of roles makes coding at the
relay more involved than in [13] and [16] for the state-dependent
MAC and the [18] and [19] for the related state-dependent RC
with informed source. As we mentioned earlier, a MAC model
that has closer connection with the model in this paper is inves-
tigated in [21]. This model is obtained by swapping the roles of
the encoders in [13] and [16].

Outline of Proof of Theorem 1: First we generate a random
codebook that we use to obtain the lower bound in Theorem 1.
Next, we outline the encoding and decoding procedures at the
source and the relay. The coding scheme is based on a com-
bination of codeword splitting, regular-encoding backward de-
coding for DF [48], and a variation of Gel’fand–Pinsker bin-
ning. A formal proof with complete error analysis is given in
Appendix A. In the formal proof we also show that the input
constraints are satisfied.

Codebook generation: Fix a measure
satisfying (5) and , . Fix and
denote

(7a)

(7b)

1) We generate independent and identically distributed
(i.i.d.) codewords indexed by ,
each with i.i.d. components drawn according to .

2) For each codeword , we generate i.i.d.
codewords at the source indexed by

, and auxiliary codewords
at the relay indexed by . The codewords

and are with i.i.d. components given
drawn according to and , respec-

tively.
Outline of the coding scheme: We outline the coding scheme

in the following. The message to be sent from the source
node is divided into blocks of bits each.
For convenience, we let . The transmission is per-
formed in blocks. We denote by the channel state in
block , .

Continuing with the strategy, in the first block, the source
transmits . The relay searches for the smallest

such that , , and are jointly typ-
ical (the properties of strongly typical sequences guarantee that
there exists one such ). Denote this by .
Then, the relay transmits a vector with i.i.d. components
given drawn according to the marginal

induced by the distribution (5).
The decoder at the relay uses joint typicality. It declares that

message is sent if there is a unique such that
is jointly typical with given , and

, where denotes the information received at the relay
in block 1. One can show that the relay can decode reliably as
long as is large and

(8)

So, suppose the relay correctly obtains . In the second
block, the source transmits and the relay trans-
mits a vector with i.i.d. components given ,

, drawn according to the marginal
; the sequence is chosen such

that is the smallest satisfying
, and are jointly typical. Upon observa-

tion of , the decoder at the relay declares that is sent if
there is a unique such that is jointly typical with

given , , and .
Again, it can decode reliably as long as is large and (8) is
true. At the relay, one continues in this way until block .

Consider now the destination, and let be the received
information at the destination in block . Suppose these infor-
mation are collected until the last block of transmission is com-
pleted. The destination can then perform Willem’s backward
decoding [48], by first decoding from . Note that

depends on , , and
, which in turn depends only on . The decoder at the

destination uses joint typicality. It declares that is sent if
there is a unique such that , , ,

are jointly typical, for some index .
One can show that the destination can decode reliably as long
as is large and

(9)

So, suppose the destination correctly obtains . Next, the
destination decodes from , which depends on
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, , and .
Since the destination knows , it can again decode reliably
as long as is large and (9) is true. At the destination, one
continues in this fashion until all message blocks have been
decoded. The average rate over the blocks is
bits per use, and by making large one can get the rate as
close to as desired.

Remark 3: In the case of classic RC without state, one
can consider three different DF strategies: irregular encoding
successive decoding [47], regular encoding sliding-window
decoding [49], and regular encoding backward decoding [48].
It is well known that these three strategies achieve the same
rate in this case [50]. In the state-dependent case with informed
relay, one can show that backward decoding achieves rates
higher than those of sliding-window decoding. More precisely,
sliding window decoding at the destination at the end of block

is as follows (we use the notation in the proof of Theorem
1). The destination knows and also the correct index

, and decodes based on the information
received in the two adjacent blocks and . It declares that
the message is sent if there is a unique pair
such that the vectors , ,

, are jointly typical, and the vectors
, , are jointly typical. Thus, the

destination obtains the message if

(10)

(11)

Hence, with window decoding also, the achievable rate is ob-
tained by maximizing the right-hand side of (4). However, un-
like the above backward decoding scheme, the maximization
is over a set of distributions of the form (5) that satisfy the
constraint (11). Because of the additional constraint, this set is
smaller than the one used in Theorem 1. Informally speaking,
the additional constraint (11) guarantees that, in the decoding
of the vectors and , the destination can actually decode
the vector fully, i.e., it can determine not only the bin index
(i.e., the message ) but also the correct sequence in the bin
(i.e., the index ).

The achievable rate in (4) requires the relay to fully decode
the message sent by the source, and this can be rather a severe
constraint. We can generalize Theorem 1 by allowing the relay
to decode the source message only partially [51]. This can be
done by implementing rate splitting at the source [52] and in-
troducing a new random variable that represents the infor-
mation decoded by the relay. The following corollary gives the
resulting rate.

Corollary 1: The capacity of the state-dependent DM
RC with informed relay satisfies , where

(12)

with the maximization over all probability distributions of the
form

(13)

and satisfying , , and ,
, are auxiliary random variables with

(14a)

(14b)

(14c)

respectively.

The proof of Corollary 1 is similar to that of Theorem 1 and,
hence, only an outline of it is given in Appendix B. For instance,
the particular choice in Corollary 1 gives the lower
bound in Theorem 1.

An informal interpretation of the rate (12) for the case in
which is as follows. Since

for the distribution considered in (13),
the second term of the minimization in (12) can be written as

The rate (12) can then be interpreted as the rate achievable if
the message transmitted by the source is split into two in-
dependent parts, one of which is transmitted through the relay,
say at rate , and the other is transmitted directly to the des-
tination without the help of the relay, say at rate . The total
rate is . In (12), the auxiliary variable stands
for the information decoded by the relay and plays the role of

in Theorem 1. Thus, it follows from (4) that the message
transmitted through the relay can be decoded correctly at the
destination if rate satisfies

(15)

It can also be easily argued (see Appendix B) that the additional
information, which is sent on top of the information transmitted
through the relay, can be decoded correctly at the destination if
rate satisfies

(16)

This shows that message can be sent at the rate (12).

Remark 4: The relay can employ other relaying schemes
to assist the source, such as estimate-and-forward [47], am-
plify-and-forward [53]–[55], or combinations of these schemes.
However, none of these schemes achieves capacity even if the
channel is state-independent. Hence, though some of these
schemes may perform well in terms of achievable rates for
some particular channels, we do not focus on these schemes in
this paper.
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B. Upper Bound on Capacity

The following theorem provides an upper bound on the ca-
pacity of the state-dependent DM RC with informed relay.

Theorem 2: Let be given. The capacity
of the state-dependent DM RC with informed relay satisfies

, where

(17)

with the maximization over all probability distributions of the
form

(18)

and satisfying , .

The proof of Theorem 2 appears in Appendix C.
In the second term of the minimum in (17), can

be interpreted as the rate penalty caused by the source’s not
knowing the channel state. This rate loss makes the above upper
bound tighter than the trivial upper bound obtained by assuming
that the channel state is also available at the source and the des-
tination, i.e., the cut set upper bound

(19)
with the maximization over all distributions of the form

(20)

and satisfying , .
If the channel is physically degraded, the upper bound in The-

orem 2 reduces to the one in the following corollary.

Corollary 2: The capacity of the state-dependent physically
degraded RC with informed relay satisfies ,
where

(21)

with the maximization over all probability distributions of the
form

(22)
and satisfying , .

Similar to the general case in Theorem 2, the upper bound in
Corollary 2 is tighter than the trivial upper bound in (19) for the
degraded case.

IV. THE GAUSSIAN RC WITH INFORMED RELAY

In this section, we consider a state-dependent Gaussian RC
in which both the channel state and the noise are additive and

Gaussian. We also assume that the additive channel state is non-
causally known to only the relay. First, we consider full-duplex
transmission at the relay, i.e., the relay transmits and receives
at the same time, and we derive lower and upper bounds on
channel capacity for this case. Then we extend these results to
the half-duplex mode in which the relay is constrained to op-
erate in a time-division (TD) manner.

A. Full-Duplex Channel Model

For the full-duplex state-dependent Gaussian RC, the channel
outputs and at instant for the relay and the destina-
tion, respectively, are related to the channel input from the
source and from the relay, and the channel state by

(23a)

(23b)

where is a zero mean Gaussian random variable with vari-
ance , is zero mean Gaussian with variance , and
is zero mean Gaussian with variance . The random variables

, and at instant are mutually in-
dependent, and are independent of for .
The random variables and are also independent of the
channel inputs .

For the full-duplex degraded additive Gaussian RC, the
channel outputs and for the relay and the destination,
respectively, are related to the channel inputs and and
the state by

(24a)

(24b)

where is a sequence of i.i.d. zero mean
Gaussian random variables with variance
which is independent of .

The channel inputs from the source and the relay should sat-
isfy the following average power constraints:

(25)

As we indicated previously, we assume that the channel state
is noncausally known at only the relay. The definition of a code
for this channel is the same as that given in Section II, with the
additional constraint that the channel inputs should satisfy the
power constraints (25).

B. Lower Bounds on Capacity

In this section, we derive lower bounds on the capacity of the
state-dependent full-duplex Gaussian RC with informed relay.
The results obtained in Section III for the DM case can be ex-
tended to memoryless channels with discrete time and contin-
uous alphabets using standard techniques [56, Ch. 7].

The following theorem provides a lower bound on the ca-
pacity of the state-dependent full-duplex Gaussian RC with in-
formed relay.
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Theorem 3: The capacity of the state-dependent Gaussian
RC with informed relay satisfies , where

(26)

with the maximization over parameters , ,
and .

Proof: A formal proof of Theorem 3 is given in
Appendix D.

Outline of Proof:
• We compute the lower bound (4) for an appropriate choice

of the input distribution that will be specified in the se-
quel. By extension, Remark 1 also applies for the Gaussian
case. More specifically, we should consider two impor-
tant features in the design of an efficient coding scheme
at the relay: obtaining correlation or coherence between
the channel inputs from the source and the relay, and ex-
ploiting the channel state to remove the effect of the state
on the communication. As we already mentioned, it is not
obvious to accomplish these features because the channel
state is not available at the source. Proceeding like for the
code construction in the DM case, we split the relay input

into two parts, namely and . Furthermore, here
we set and to be independent. The first part, ,
is a function of only the cooperative information, and is
generated using standard coding. Since the source knows
the cooperative information at the relay, it can generate its
codeword in such a way that it is coherent with , by
allowing correlation between and . The second part,

, which is independent of the source input , is a func-
tion of both the cooperative information and the channel
state at the relay, and is generated using a GDPC sim-
ilar to that in [14], [16], [18].

• More formally, we decompose the relay input random vari-
able as

(27)

where is zero mean Gaussian with variance , is
independent of both and , and is correlated with

with , for some ,
; and is zero mean Gaussian with

variance , is independent of , and is correlated
with the channel state with ,
for some . Expressed in terms of
the covariances and

, the parameters , are
given by

(28)

For the GDPC, we choose the auxiliary random variable
as

(29)

with

(30)

Similarly to in the DM case, we can generalize Theorem 3
by allowing the relay to decode the source message only par-
tially, through rate splitting at the source. The following corol-
lary gives the resulting rate.

Corollary 3: The capacity of the state-dependent
Gaussian RC with informed relay satisfies , where

(31)

with

(32)

(33)

(34)

, ,
; and the maximization is over

parameters , , , ,
and such that the second logarithm terms in and
are defined.

Outline of Proof: An informal proof of Corollary 3 is as
follows. We decompose the message to be sent from the
source into two independent parts and . The message

will be sent through the relay, at rate ; and the message
will be sent directly to the destination, at rate . The total

rate is . The input from the source is divided
accordingly into two independent parts, i.e., ,
where carries message and has power constraint
and carries message and has power constraint ,
for some . The relay decodes and forwards only the
part , and its input sequence is obtained in a manner which
is similar to that in the coding scheme for Theorem 3 (with
playing the role of therein).

The rest of the proof follows by computing the lower bound
in Corollary 1 using an input distribution and techniques that
are essentially similar to those in the proof of Theorem 3. An
outline of the important steps is given in Appendix E.
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C. Upper Bound on Capacity

The following theorem provides an upper bound on the ca-
pacity of the state-dependent full-duplex general Gaussian RC
with informed relay.

Theorem 4: The capacity of the state-dependent general
Gaussian RC with informed relay satisfies , where

is given by (35), shown at the bottom of the page, and the
maximization is over parameters and
such that

(36)

Proof: The proof of Theorem 4 is given in Appendix F. In
the proof, we evaluate 1 the upper bound (17) using an appro-
priate joint distribution of , , , , and .

Following straightforwardly the proof of Theorem 4 in
Appendix F, it can be easily shown that the capacity of the
state-dependent degraded Gaussian RC is upper-bounded as in
the following corollary.

Corollary 4: The capacity of the state-dependent de-
graded Gaussian RC with informed relay satisfies ,
where is given by (37), shown at the bottom of the page,
and the maximization is over parameters and

such that

(38)

1In Theorem 4, if the maximizing � in (35) has absolute value equal to unity
then (36) implies that � is zero. In this case, and also in the rest of this paper,
we use the convention that � �.

D. Analysis of Some Special Cases

We note that comparing the above lower and upper bounds
analytically can be tedious in the general case. In what follows,
we identify a few cases in which the lower bound in Theorem 3
and the upper bound in Corollary 4 meet for degraded Gaussian
channels, and some extreme cases for which the lower bound in
Corollary 3 and the upper bound in Theorem 4 meet for general,
i.e., not necessarily degraded, Gaussian channels; and so we ob-
tain the capacity expression for these cases.

In the following corollary, we recast the lower bound (26)
into an equivalent form by substituting and

. Also, we recast the upper bound given in Corollary 4
into an equivalent form by substituting and

.

Corollary 5: For the Gaussian RC, the lower bound (26) in
Theorem 3 can be written as (39) shown at the bottom of the
page, where the maximization is over parameters ,

, such that

(40)

For the physically degraded case, the upper bound in Corollary
4 can be written as (41) shown at the bottom of the page, where
the maximization is over parameters and .

By investigating the bounds in Theorem 3 and Corollary 4
and the equivalent expressions of these bounds in Corollary 5,
it can be shown that the lower bound for the degraded case is
tight for certain values of , , , , and . The following
observation states some cases for which the lower bound is tight.

Observation 1: For the physically degraded Gaussian RC, we
have the following.

(35)

(37)

(39)
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1) If , , , , satisfy

(42)

then channel capacity is given by

(43)

which is the same as the interference-free capacity, i.e., the
capacity if the channel state were not present in the model,
or were also known to the source.

2) If the maximizing and in the upper bound in Corol-
lary 4 are such that condition (36) is met with equality, i.e.,

, then the lower bound (39) is tight and gives
the capacity.

Proof: The proof of Observation 1 appears in Appendix G.

Remark 5: The condition in (42) specifies a range of values
for which the lower bound for the degraded

Gaussian case is tight. In this case, the capacity is the same as
that of the degraded Gaussian RC with informed relay and in-
formed source or interference-free capacity. Thus, the first state-
ment in Observation 1 also provides a sufficient condition for the
rate loss incurred by not knowing the interference at the source
as well to be zero. At a high level, condition (42) means that
there is no rate loss due to the asymmetry when capacity is con-
strained by the broadcast part in the model, i.e., transmission
from the source to the relay and the destination. By investigating
the upper bound (41) and comparing it with the interference-free
capacity, it can be shown that this condition is also necessary.
That is, the interference-free capacity is attained only if (42) is
fulfilled. If the capacity of our model is constrained by the sum
rate of the cooperative MAC part, i.e., the cooperative transmis-
sion from the source and the relay to the destination, the asym-
metry resulting from not knowing the interference at the source
as well causes an inevitable rate loss, i.e., the term
in Corollary 2.

Extreme Cases. We now summarize the behavior of the
above bounds in some extreme cases.

1) Arbitrarily strong channel state: In the asymptotic case
, the lower bound in Theorem 3 and the upper

bound in Corollary 5 meet, thus yielding the capacity for
degraded Gaussian RC

(44)

Equation (44) suggests that traditional multihop transmis-
sion achieves the capacity in this case. A two-hop scheme
allows to completely cancel the effect of the channel state
by subtracting it out upon reception at the relay, and by ap-
plying standard DPC for transmission from the relay to the
destination.
For arbitrarily strong channel state and general, i.e., not
necessarily degraded, Gaussian RC, the lower bound in
Corollary 3 and the upper bound in Theorem 4 meet if

or , and capacity in these
cases is given by

(45)

It is interesting to note that if the lower
bound in Corollary 3 is maximized for

and , meaning that direct transmission from the
source to the relay is, not only possible, but also optimal
in this case. The relay transmits independent information
and decoding this information and subtracting it out at the
destination, in a sense, clears the channel for the direct
transmission.

2) Deaf helper problem: In case the relay is unable to hear the
source (e.g., due to a very noisy or broken link source-to-
relay) and , the lower bound in Corollary 3 and the
upper bound in Theorem 4 meet if , giving

(46)
If and the bounds do
not meet. However, the lower bound is “within one bit”
from the upper bound if , and it reaches it
asymptotically in the power at the relay if
and , i.e.,

(47)

where as .
3) For , the lower bound in Corollary 3 reduces to the

rate achievable using a partial DF scheme in an interfer-
ence-free RC, i.e.,

(41)
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(48)

and the upper bound in Theorem 4 reduces to the cut-set
upper bound. Furthermore, if the channel is degraded these
bounds meet and give the capacity of standard degraded
Gaussian RC [47, Th. 5].

4) If , capacity for general Gaussian RC is given by

(49)

E. Numerical Examples and Discussion

In this section, we discuss some numerical examples, for both
the degraded Gaussian case and the general Gaussian case. We
consider two numerical examples, a) 10 dB,

20 dB; and b) 10 dB.
Fig. 4 illustrates the lower bound (39) and the upper bound

(41) as functions of the signal-to-noise-ratio (SNR) at the relay,
i.e., SNR (in decibels), for a degraded channel.2 Also
shown for comparison are the cut-set upper bound (19) com-
puted for the degraded Gaussian case and the trivial lower bound
obtained by considering the channel state as an unknown noise
and implementing full-DF at the relay [47, Th. 5].

The curves show that the lower bound and the upper bound do
not meet for all SNR regimes. However, as it is visible from the
depicted numerical examples, the gap between the two bounds
is small for the degraded case. Furthermore, the curves in Fig. 4
also illustrate the results in observation 1, by showing that the
lower bound and the upper bound meet for the cases identified
in Observation 1. We note that the pentagram marker visible in
Fig. 4 indicates capacity when the noise at the relay is equal to
the right-hand side of (42); and this illustrates the first case for
which the lower bound and the upper bound meet in Proposition
1. Also, Fig. 5 depicts the variation of , where and

are the maximizing for the upper bound, as a function of the
SNR for the two numerical examples considered in Fig. 4; and
this illustrates the second case for which the lower and upper
bounds meet in Proposition 1.

Fig. 6 shows similar curves for the general Gaussian channel.
The curves show that the lower bound (31) is close to the upper
bound (35) at large SNR, i.e., when capacity of the channel is
determined by the sum rate of the MAC formed by transmission
from the uninformed source and the informed relay to the des-
tination. At small SNR, the lower bound given in Corollary 3
improves upon that in Theorem 3 due to rate splitting.

Furthermore, Fig. 6 also shows the variation of the maxi-
mizing , , in (26) as function of the SNR at the relay.
This shows how the informed relay allocates its power among
combating the interference for the source (related to the value of

2Note that for the full-duplex degraded Gaussian RC, the rate in Corollary 3
reduces to that in Theorem 3.

) and sending signals that are coherent with the transmission
from the source (related to the values of and ).

Remark 6: In standard, i.e., state-independent, Gaussian
RCs, partial DF simply reduces to direct transmission if the
link source-to-relay is too noisy, i.e., at low SNR. For the
studied model, however, it is insightful to observe that the
relay can still help the source even at very small SNR. This
can be seen by observing that the lower bound (31) is better
than the trivial lower bound even at this range of SNR (the
trivial lower bound in Fig. 6 is obtained by treating the channel
state as additional noise and implementing partial DF). This
observation has some connection with the aforementioned deaf
helper problem (see Case 2, section “Extreme Cases”), and
it can be interpreted as follows. The relay does not hear the
source and generates its input using a dummy DPC as

, where is independent of
and is Costa’s auxiliary random variable. Upon reception
of at the destination, the
decoder first decodes the codeword fully, i.e., not only the
bin index but also the correct sequence in the bin. This can be
done reliably as long as . Then, the
decoder at the destination subtracts out from to obtain

from which it decodes the source’s message
using standard decoding, at full rate . A
related scenario for a helper over a state-dependent Gaussian
MAC is studied in [17].

Remark 7: The gap between the lower bound and the upper
bound which is visible at low SNR is due to that DF relaying
(even partial) is not effective at small SNR and also to that our
upper bounding technique is efficient on the MAC side but not
on the BC side of the RC.

In Fig. 7, the lower and upper bounds are plotted as function
of the interference power , for fixed value of the power at the
relay and several choices of the power at the source. The curves
are depicted for two examples of noise configuration:
( 10 dB and 20 dB), and ( 20
dB and 10 dB). The curves illustrate the discussion in
the above extreme cases analysis. For instance, for both noise
configurations, that the rate achievable for very large values of

is strictly positive illustrates that transmission from the un-
informed source to the uninformed destination is possible even
in presence of an infinitely strong interference. Furthermore, the
lower and upper bounds meet for the cases identified in the “Ex-
treme Cases” section, for both degraded Gaussian and General
Gaussian channels.

F. Half-Duplex Channel Model

In this section, we extend the results of Section IV-A to the
case of half-duplex relaying, i.e., the relay can either transmit
only or receive only. We consider a state-dependent Gaussian
RC with informed relay, and we assume that the relay oper-
ates in a TD relaying mode. In the TD mode, for a given time
window, the relay is in the receive mode for a fraction of the
given time and in the transmit mode for the remaining fraction
of this time. Since the message from the source is transmitted to
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Fig. 4. Lower and upper bounds on the capacity of the state-dependent degraded Gaussian RC with informed relay versus the SNR in the link source-to-relay, for
two examples of numerical values (a) � � � � � � 10 dB, � � 20 dB, and (b) � � � � � � � � 10 dB.

Fig. 5. The sum � � � in the constraint (36). Optimal � and � are the maximizing for the upper bound for the numerical examples considered in Fig. 4.
The upper figure is for the upper bound curve in Fig. 4(a), and the lower figure is for the upper bound curve in Fig. 4(b).
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Fig. 6. Lower and upper bounds on the capacity of the state-dependent general Gaussian RC with informed relay and the maximizing �� � � � in (26) as
functions of the SNR at the relay. Numerical values are � � � � � � � � 10 dB.

the destination in channel uses, in the remaining of this sec-
tion, we refer to the time indices from3 1 to as the relay-re-
ceive period and the time indices from to as the
relay-transmit period, for some . Furthermore, to gen-
eralize the model, we assume that the channel state is zero
mean Gaussian with variance during the relay-receive pe-
riod, and the channel state is zero mean Gaussian with vari-
ance during the relay-transmit period. The channel output

at instant at the relay is given by

during the relay-receive period, and is zero with probability one
during the relay-transmit period. The channel output at instant
at the destination is given by

during the relay-receive period

(50a)

during the relay-transmit period (50b)

Furthermore, the source has average power constraint
during the relay-receive period and average power constraint

during the relay-transmit period; the relay has average
power constraint .

For fixed values of , , , and , we have the fol-
lowing upper and lower bounds on the capacity of the state-de-
pendent half-duplex Gaussian RC with informed relay.

3For a scalar �, ��� stands for the largest integer small than or equal to �.

Proposition 1: The capacity of the state-dependent TD
Gaussian RC with informed relay is upper bounded by

(51)

with

(52a)

(52b)

where is defined as the second term of
the minimization in (35), and the maximization is over parame-
ters and such that .

Proposition 2: The capacity of the state-dependent TD
Gaussian RC with informed relay is lower bounded by

(53)

with
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Fig. 7. Bounds on channel capacity as function of the interference power �.
The curves correspond to different choices of power at the source: from bottom
to top � � 5, 10, 15, 20, 25 dB. (a) Degraded Gaussian RC. � � � � 10,
� � 20 dB. (b) General Gaussian RC. � � � � 10, � � 20 dB.

(54a)

(54b)

(54c)

where maximization is over parameters , ,
, and such that the last logarithm terms on

the right-hand side of (54b) and (54c) are defined

(55)

and , .

The proofs of Proposition 1 and Proposition 2 appear in
Appendix H.

Remark 8: The coding scheme employed for the proof of
Proposition 2 preassigns the time slots for the relay’s receiving
and transmitting modes. All the nodes then know ahead of time
when the relay receives and when it transmits. This is relevant
for nodes synchronization but suboptimal in general for infor-
mation rate. Instead, one can let the source and the relay choose
the relay’s mode and, so, in a sense, transmit additional infor-
mation to the destination through that choice. This idea is intro-
duced in [57] in the context of wireline and wireless networks
without state and is called mode coding therein; see also [58,
Sec. 4.3]. More specifically, let denote a random variable
that takes on values 1 (receive) and 2 (transmit) with probabil-
ities and , respectively. Also, let us redefine the channel so
as to include the relay’s operating mode as ;
set , , ,

, , and choose if and
if . Then, using in place

of in (12), it can be shown that this yields
a rate which is obtained by maximizing the minimum among

, , and , i.e., larger than (53). However,
as mentioned in [58, Sec. 4.3], the improvement is no larger than
1 bit per block and, also, harnessing it in practice requires some
challenges in general.

V. CONCLUSION

In this paper, we consider a state-dependent RC with the
channel state available noncausally at only the relay, i.e., neither
at the source nor at the destination. We refer to this communi-
cation model as state-dependent RC with informed relay. This
setup may model the basic building block for node cooperation
over wireless networks in which some of the terminals may be
equipped with cognition capabilities that enable estimating to
high accuracy the states of the channel.

We investigate this problem in the DM case and in the
Gaussian case, and we derive bounds on the channel capacity.
For both cases, the upper bounds are tighter than those obtained
by assuming that the channel state is also available at the source
and the destination, and they help characterizing the rate loss
due to the asymmetry, i.e., having the channel state available
at the relay but not the source. Key to the development of the
lower bounds is a coding scheme that splits the codeword at
the informed relay into two parts: one part depends only on the
cooperative information, not on the known channel state, and
is used to enable coherent transmission from the source and the
relay to the destination; another part is a function of both the co-
operative information and the known channel state, and is used
to combat the effects of the channel state on the communication
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Fig. 8. Regular encoding for DF for the state-dependent RC with informed relay. At the beginning of block �, the source transmits � �� �� � and the relay
transmits a codeword � �� � with i.i.d. components given �� �� ��� �� � ������� � ��� ����� drawn according to the marginal � .

through a generalized Gel’fand–Pinsker binning scheme. In the
Gaussian case, we consider average power constraints at the
source and the relay and power allocation at the relay among
the two parts of the code, allowing for a tradeoff between the
coherence gain obtained through the coherent transmission and
the mitigation of the channel state.

Specializing the results to the case in which the channel is
physically degraded, we show that the developed lower and
upper bounds meet in some cases, thus characterizing the
channel capacity. For the general Gaussian case, the bounds are
in general close, but they meet only in some extreme cases.

APPENDIX

Throughout this section, we denote the set of strongly jointly
-typical sequences [46, Ch. 14.2] with respect to the distribu-

tion as .

A. Proof of Theorem 1

Consider the random coding scheme that we outlined in
Section III. We now give a formal description of the coding
scheme and analyze the average probability of error.

As we outlined after Theorem 1 we transmit in blocks,
each of length . During each of the first blocks, the source
encodes a message and sends it over the channel,
where denotes the index of the block. For fixed

, the average rate over blocks approaches as
.

Encoding: Let be the new message to be sent from
the source node at the beginning of block , and be the
message sent in the previous block . At the beginning
of block , the relay has decoded the message correctly
and the source sends . The relay searches for the
smallest such that , and

are jointly typical. Denote this by .
If such is not found, or if the observed state is not typ-
ical, an error is declared and is set to . Then, the relay
transmits a vector with i.i.d. components given

drawn according to the mar-
ginal induced by the distribution (5).

The encoder at the source declares an error if the chosen code-
word exceeds the power constraint, that is,

for some . Similarly, the encoder at the
relay declares an error if , for some

.
For convenience, we list the codewords at the source and the

relay that are used for transmission in the first four blocks in
Fig. 8.

Decoding: The decoding procedure at the relay is based on
joint typicality. The decoding procedure at the destination is
based on a combination of joint typicality and backward-de-
coding.

1) At the end of block , the relay knows and de-
clares that is sent if there is a unique such that

and are jointly typical given
, and , where de-

notes the output of the channel at the relay in block and
as mentioned earlier. One can show

that the decoding error in this step is small for sufficiently
large if

(A-1)

2) At the end of the transmission, the destination has collected
all the blocks of channel outputs

, and can then perform Willem’s backward-decoding by
first decoding from .

First, the destination declares that is sent if there is a
unique such that , , ,

are jointly typical, for some . One can show
that the decoding error in this step is small for sufficiently large

if

(A-2)

Next, for ranging from to , the destination knows and
decodes based on the information received in block . It
declares that is sent if there is a unique such that

, , , are jointly typ-
ical, for some . One can show that the de-
coding error in this step is small for sufficiently large if (A-2)
is true.

Analysis of Probability of Error: Fix a probability distribu-
tion satisfying (5) and ,

. Let , , and be the state sequence in
block , the message sent from the source node in block

, and the message sent in block , respectively. As
we already mentioned above, at the beginning of block
the source transmits and the relay transmits a
vector with i.i.d. components conditionally given

, with ,
drawn according to the marginal .

The average probability of error is such that
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(A-3)

The first term, , on the right-hand
side of (A-3) goes to zero as , by the asymptotic equipar-
tition property (AEP) [46, p. 384]. Thus, it is sufficient to upper
bound the second term on the right-hand side of (A-3).

We now examine the probabilities of the error events asso-
ciated with the encoding and decoding procedures. The error
event is contained in the union of the error events given below,
where the events , and correspond to the encoding
step at block ; the events and correspond to decoding
at the relay at block ; the events and correspond to
decoding at the destination at block , and for ranging
from to , the events and correspond to de-
coding at the destination at block .

• Let be the event that there is no sequence
jointly typical with given , i.e.,

To bound the probability of the event , we use a stan-
dard argument [2]. More specifically, for
and generated independently given ,
with i.i.d. components drawn according to and

, respectively, the probability that is
jointly typical with given is greater than

for sufficiently large . There
is a total of such ’s in each bin. The probability of
the event , the probability that there is no such , is
therefore bounded as

(A-4)

Taking the logarithm on both sides of (A-4) and substi-
tuting using (7) we obtain .
Thus, .

• Let be the event that the chosen codeword at the source
exceeds the power constraint by

(A-5)

By the weak law of large numbers, we have

(A-6)

for large enough and .
• Let be the event that the chosen codeword at the relay

exceeds the power constraint by

(A-7)

Using arguments similar to those for the event , we get
for large enough and ,

where denotes the event complement of .
• Let be the event that , , are

not jointly typical given , and
, i.e.,

Conditioned on , , , we have that
is jointly typical with and

with the source input and the relay input
, i.e.,

(A-8)

For , , , ,
and jointly typical, we have

as , by the
Markov Lemma [46, p. 436].

• Let be the event that , , are
jointly typical given , ,
for some , i.e.,

Using the union bound and standard arguments on strongly
typical sequences, the probability of the event condi-
tioned on , , , can be easily bounded as

(A-9a)

(A-9b)

where in (A-9b) we used the fact that
under the joint distribu-

tion (5). Thus, as
if . This constraint can be
rewritten equivalently as
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(A-10)

where the second equality holds since the measure (5) sat-
isfies ; and and
are conditionally independent given .

• For the decoding of message at the destination, let
be the event that , ,

, are not jointly typical, i.e.,

For , , ,
, and jointly typical as shown by (A-8),

as , by the Markov
lemma.

• For the decoding of message at the destination, let
be the event that , , ,

are jointly typical for some and some
, i.e.,

Conditioned on the events , , , , , ,
the probability of the event can be bounded using the
union bound, as

(A-11a)

(A-11b)

Thus, as if
.

• For the decoding of message at the destination,
, let be the event that ,

, , are not
jointly typical, i.e.,

For , , ,
, and jointly typical as shown

by (A-8), as
, by the Markov lemma.

• For the decoding of message at the destination, let
be the event that , ,

, are jointly typical for some
and some , i.e.,

Proceeding like for the event , one can easily show
that can
be bounded similarly to in (A-11), and this shows that

as
if .

It remains to show that the rate (4) is not altered if
one restricts the random variables and to have
their alphabet sizes limited as indicated in (6). This
is done by invoking the support lemma [59, p. 310].
Fix a distribution of on

that has the form (5) and
satisfies , .

To prove the bound (6a) on , note that we have

(A-12a)

(A-12b)

where (A-12a) follows since under the
distribution . Also, we have

(A-13a)

(A-13b)

Hence, it suffices to show that the following functionals of
:

(A-14a)

(A-14b)

(A-14c)

can be preserved with another measure that has the form
(5). Observing that there is a total of func-
tionals in (A-14), this is ensured by a standard application of
the support lemma; and this shows that the cardinality of the
alphabet of the auxiliary random variable can be limited
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as indicated in (6a) without altering the rate (4). We note that
the inputs constraints for the source and the relay, which in-
volve only through its marginals
over and respec-
tively, are satisfied.

Once the alphabet of is fixed, we apply similar ar-
guments to bound the alphabet of , where this time

functionals must be sat-
isfied in order to preserve the joint distribution of , , ,

, and one more functional to preserve

(A-15)

yielding the bound indicated in (6b).

B. Proof of Corollary 1

The proof combines rate splitting [52] and the techniques
used in the proof of Theorem 1. As we already mentioned in the
discussion following Corollary 1, we split the message to be
transmitted from the source node into two independent parts
and ; the relay forwards only the part , at rate , and the
part is sent directly to the destination, at rate . The total
rate is . We transmit in blocks, each of length

. During each of the first blocks, the source sends a message
, with and

and denotes the index of the block. For conve-
nience, we let . For fixed , the average rate

over blocks approaches as .
Codebook Generation: Fix a measure

satisfying (13) and ,
. Fix and let

(B-16a)

(B-16b)

(B-16c)

1) We generate i.i.d. codewords indexed by
, each with i.i.d. components drawn ac-

cording to . For each , we generate i.i.d.
codewords at the source indexed by

, and auxiliary codewords at the
relay indexed by . The codewords
and are with i.i.d. components given
drawn according to and , respectively.

2) For each , for each , we generate
i.i.d. codewords indexed by

, each with i.i.d. components given
drawn according to .

Encoding: At the beginning of block , let
be the new message to be sent from the source and

be the message sent in the previous block .
At the beginning of block , the relay has decoded cor-

rectly, and the source transmits . The relay
searches for the smallest such that

and are jointly typical given . Since the vec-
tors and are generated independently given

according to the memoryless distributions defined
by the -product of and the -product of , respec-
tively; and there are sequences in the bin indexed by ,
the probability that there is no such sequence goes to zero
as . Denote the found by . The
relay then transmits a vector with i.i.d. components
conditionally given drawn
according to the marginal induced by (13). Using
arguments similar to those in the proof of Theorem 1, it can
be shown that the inputs and
satisfy the input constraints.

Decoding: The decoding procedures at the source and the
relay are as follows.

1) At the end of block , the relay knows and de-
clares that is sent if there is a unique such that

, and are jointly typical given
, and . One can

show that the decoding error in this step is small for
sufficiently large if

(B-17)

2) At the end of the transmission, the destination has collected
all the blocks of channel outputs

, and can then perform backward-decoding by first de-
coding from .
First, it declares that the pair is
sent if there is a unique pair , with

and , there
is , such that , ,

, , are jointly
typical. One can show that the decoding error in this step
is small for sufficiently large if

(B-18)

where in we used the fact that
under the distribution (13).
Next, for ranging from to , the destination
knows and decodes based on
the information received in block . It declares that
the pair is sent if there is a unique
pair , with and

, there is , such
that , , ,

, are jointly typical. One can
show that the decoding error in this step is small for
sufficiently large if (B-18) is true.

It remains to show that the rate (12) is not altered if the sizes
of the alphabets of the auxiliary random variables , and
are restricted as in (14). This can be easily done by following
the steps in the proof of Theorem 1.
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C. Proof of Theorem 2

Consider a sequence of -codes with as
. We show that must be less than or equal .

By Fano’s inequality, we have

(C-19)

Thus

(C-20)

We upper bound as in the following lemma, the
proof of which follows.

Lemma 1:

i)

(C-21a)

ii) (C-21b)

Proof: To simplify the notation, we use
, , ,

and , .
We obtain the bound on given in i) as follows:

where follows from
(a Markov chain); and the fact that is a deterministic

function of ; and follows from the fact that conditioning
reduces entropy.

We obtain the bound on given in ii) as follows:

where follows from the fact that and are independent;
and ; follows from
the fact that is a deterministic function of ;
follows from the fact that is a deterministic function of ;
and follows from the fact that the channel is DM.

Consider now the input constraints. By definition the code
satisfies

(C-22)

for .
We start with the input constraint of the source. Since each

codeword satisfies the input constraint, their average over
also satisfies the input constraint. Thus, we have

(C-23)
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Similarly, for the input constraint of the relay, we have

(C-24)

We introduce a random variable which is uniformly dis-
tributed over . Set , , ,

, and . We substitute into the above
bounds on the message rate and the input constraints. Consid-
ering the bounds given in Lemma 1, we obtain

(C-25)

and

(C-26)
where the distribution on from a given
code is of the form

(C-27)
Similarly, substituting into the input constraints, we obtain

(C-28)

We now eliminate the variable from (C-25) and (C-26) as
follows. The right-hand side of (C-25) can be bounded as

(C-29)

where holds since and
[by the Mar-

kovian relation ]; and holds since
is independent of and .
Similarly, the right-hand side of (C-26) can be bounded as

(C-30)

Finally, combining (C-20), (C-21a), (C-25), (C-29) on the one
hand, and (C-20), (C-21b), (C-26), (C-30) on the other hand, we
get

(C-31a)

(C-31b)

where the distribution on , obtained by
marginalizing (C-27) over the variable , has the form given in
(18) and satisfies for .

We conclude that, for a given sequence of codes
with going to zero as goes to infinity, there exists a proba-
bility distribution of the form (18) such that the rate satisfies
(C-31) and the input constraints , , are
satisfied. This completes the proof of Theorem 2.

D. Proof of Theorem 3

In this proof, we compute the lower bound in Theorem 1 using
an appropriate jointly Gaussian distribution on , , , ,

. The techniques used in this section rely strongly on those
used in [16, proof of Theorem 6].

We first evaluate the second term of the minimization in (4)
because this gives insights about the distribution that we should
use to compute the lower bound. The second term of the mini-
mization in (4) can be written as

(D-32)

which follows from the fact that
for the considered distribution.

We first focus on the evaluation of the term
. To evaluate it,

we assume that is zero mean Gaussian with variance ,
is zero mean Gaussian with variance , and and

are jointly Gaussian with , for some
, . The random variables and

are independent of as shown by the distribution given in
Theorem 1. We also consider

(D-33)

where is zero mean Gaussian with variance , is indepen-
dent of both and , and is jointly Gaussian with with

, for some . Then, from
(23) and (D-33), we can write as

(D-34)

Let be the optimal linear estimator of given
under minimum mean square error criterion, and be the
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resulting estimation error. The estimator and the estimation
error are given by

(D-35)

(D-36)

We can alternatively write in (D-34) as

(D-37)

where

We now consider the following new channel output given
by

(D-38)

This new channel output is similar to the channel output
considered in [3] because is independent of the state .
Hence, the capacity of this new channel is achieved if we use
an auxiliary random variable

(D-39)

where is Costa’s parameter given by

(D-40)

Then, we can easily show that

The term is maximized if is chosen
as in (D-39). Thus, we obtain

(D-41)

By substituting and in (D-39), we get

(D-42)

where

(D-43)

The term on the right-hand side of (D-32) can
be computed as

(D-44)

where follows from the fact that and are independent
of . Then, by adding (D-41) and (D-44), we get the
second term of the minimization in (26).

The first term of the minimization in (4) can be written as

(D-45)

where follows from the fact that and are inde-
pendent conditionally on .

Finally, we obtain the rate on the right-hand side of (26) by
maximization over all possible values of ,

, and . Investigating the two terms of the
minimization, we can easily see that it suffices to consider

and .

E. Proof of Corollary 3

Recall the outline after Corollary 3. We decompose the source
input and the relay input as

(E-1)

(E-2)

where and are independent zero mean Gaussian random
variables with variances and , respectively, for
some ; and and are independent zero mean
Gaussian random variables with variances and ,
respectively, for some . Furthermore, is inde-
pendent of all other variables; and are correlated, with

for some , and are both
independent of ; is independent of , is correlated with

with for some , and is
obtained using a GDPC the auxiliary random variable of which
is given by
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(E-3)

for some .
Let

(E-4)

(E-5)

(E-6)

(E-7)

Also, define the following function and substitutions which we
will use throughout the proof:

(E-8)

(E-9)

(E-10)

and let .
i) The computation of the quantities and can be done

along the lines of those for the corresponding quantities
in the proof of Theorem 3. We obtain

(E-11)

and as given by (34).
ii) Now, we compute

(E-12)

where holds since and are independent of ,
and ; holds since is independent of and
; holds since , and are jointly Gaussian,

and follows by straightforward algebra using the fact
that , with

(E-13)

Then, by adding (E-11) and (E-12), we get as given by
(32).

iii) Finally, we compute . It can be shown easily that

(E-14)

Also, we have

(E-15)

where holds since and are independent of ,
and ; holds since , and are jointly

Gaussian, and is independent of and ; and
follows through straightforward algebra similar to in
(E-12).

Adding [given by (32)] and (E-15) and subtracting (E-14),
we get as given by (33).

F. Proof of Theorem 4

In this section, we use the upper bound for the DM case in
Theorem 2 to compute the upper bound on the capacity of the
state-dependent full-duplex Gaussian RC with informed relay.

Fix a joint distribution of , , , , of the form (18)
satisfying

(E-16)

We will also use the correlation coefficients and defined
as

(E-17)

We first compute the first term in the minimization on the
right-hand side of (17). Let . We
have

(E-18)

where denotes the determinant operator; follows
from the fact that the conditional differential entropy

is maximized if
are jointly Gaussian; and follows from the fact the vector
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is a jointly Gaussian vector and the MMSE
estimator of given is

(E-19)
We now compute the term .

We have

(E-20)

For fixed second moments (E-16), we have

(E-21)

where equality is attained if is Gaussian. Similarly, the term
is maximized if are jointly Gaussian.

Let be the minimum mean square
error (MMSE) estimator of given , i.e.,

(E-22)

with

(E-23)

Then, we have

(E-24)

where the inequality is attained with equality if , , ,
are jointly Gaussian. From (E-20), (E-21), and (E-24), we obtain

(E-25)

For convenience, let us define the function
as the right-hand side of (E-18) and the function

as the right-hand side of (E-25). From the
above analysis, the capacity of the channel is upper-bounded as

(E-26)
where the maximization is over all covariance matrices

of

(E-27)

that satisfy

(E-28)

and have nonnegative discriminant

(E-29)

i.e., for

(E-30)

Furthermore, investigating and
, it can be seen that it suffices to consider

and for the maximization in (E-26).
To complete the proof, we should show that

and are maximized at and
It is easy to show that and

increase monotonically with for
fixed , , . Then, we can replace with in both

and . To show that
can be replaced by , we use the following intuitive argu-
ment. Since the term does not depend on

for given and , it remains to show that can be
replaced with in only the term . The
term is the sum rate of a two-user MAC
with asymmetric CSI in which the informed encoder knows the
message of the uninformed encoder [16, Th. 6]. Then, consid-
ering this MAC, it can be argued [16] that for the sum-rate to be
maximized the informed encoder should use the entire power
available, i.e., . This concludes the proof of Theorem 4.

G. Proof of Observation 1

We first prove the first statement in Observation 1. Let us
denote as the right-hand side of (42). We have
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(F-31)

where follows by putting and in (26), and
follows if .

Then, it is easy to observe that

(F-32)

From (F-31) and (F-32), we get that

(F-33)

Then, we can conclude that the lower bound and upper bound
meet if .

Let us now prove the second statement in Observation 1. If
the pair that maximizes the upper bound in Corollary
4 satisfies the condition in (36) with equality, i.e., ,
then we choose , , and (i.e.,

) in the lower bound (39) to achieve the upper bound,
and thus obtain channel capacity in this case.

H. Proofs for Time Division Relaying

Proof of Proposition 1: Let

and be the transmitted
sequences from the source during the relay-receive period
and the relay-transmit period, respectively. The relay receives

during the relay-receive period and
transmits a sequence during
the relay-transmit period. From Fano’s inequality (C-20) and
Lemma 1, we have the following:

(G-34)

We now specialize this bound to the TD mode for which we have
for (as the relay does not transmit during the

relay-receive period) and for (as the relay
does not receive during the relay-transmit period). This gives

(G-35)

By letting and using standard arguments [46], we get
the single letter upper bound on capacity

(G-36)

where the maximization is over all joint distributions of the form

(G-37)

The bound in (G-36) is the counterpart, to the TD mode, of the
upper bound (17) for the full-duplex case. By closely following
the arguments and the algebra used in the proof of Theorem 4,
it can be shown that this bound is maximized by choosing ,

, , , , , , that are jointly Gaussian,
with with power is independent of , and and

with power and , respectively, are such that

Using this distribution, the evaluation of the right-hand side of
(G-36) gives the right-hand side of (51).

Proof of Proposition 2: The proof follows by combining
the technique of rate splitting [52] and the GDPC described in
Section IV-A for the full-duplex mode. Rate splitting has the
message to be transmitted from the source node split into two
independent parts: transmitted directly to the destination at
rate , and transmitted through the relay at rate , with
a total rate .

The encoding and transmission scheme is as follows. During
the relay-receive period, the source sends a Gaussian signal
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which carries only and is independently drawn with

a random variable which is independent
of the channel state . During the relay-transmit period, the
source transmits a Gaussian signal which carries both

and and is independently drawn with .
During the relay-transmit period, the relay sends a Gaussian
signal which carries only and is given by

(G-38)

where is drawn with and is obtained
via a GDPC considering as noncausal channel state infor-
mation during this period.

The random variables and are jointly Gaussian with

, and are both inde-
pendent of the state . For the GDPC, we use the following
auxiliary random variable to generate the auxiliary codewords

:

(G-39)
where is jointly Gaussian with , with

; and is a scale
parameter. Thus, using the GDPC given by (G-39), is gen-
erated as

(G-40)
where is independently drawn with .

Furthermore, we let

, where is independently drawn with

, is independent of , , , and
carries only.

For the decoding procedures at the source and the relay, we
give simple arguments based on intuition (the rigorous decoding
uses joint typicality arguments). Also, since all the random vari-
ables are i.i.d., we sometimes omit the time index. The relay
subtracts out from the received and then decodes .
Message can be decoded correctly at the relay as long as

(G-41)

The destination jointly decodes and from
. One can show that this can be done reliable

as long as

(G-42)

(G-43)

(G-44)

Adding (G-41) and (G-42) on the one hand, and (G-41) and
(G-43) on the other hand, and using (G-44), we obtain

(G-45)

(G-46)

(G-47)

The computation of the mutual information terms in
(G-45)–(G-47) involves straightforward algebra which is very
similar to that in the proofs of Theorem 3 in Appendix D and
of Corollary 1 in Appendix E; and, so, we omit the details for
brevity. More specifically, define

also, recall as defined in (55). Then, we have the
following.

The mutual information on the right-hand side of (G-45) can
be computed as in (E-12) to obtain

(G-48)
The conditional mutual information difference on the right-

hand side of (G-46) is similar to in Appendix E and it gives

(G-49)

The evaluation of the term
is similar to that of (D-32) in Appendix D, and

we obtain

(G-50)

Also, it is easy to show that

(G-51)
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Finally, we obtain (54a) using (G-45) and (G-48); we ob-
tain (54b) using (G-46) and (G-49); and we obtain (54c) using
(G-47), (G-50) and (G-51). This completes the proof.
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