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Abstract—We consider a three-terminal state-dependent relay
channel with the channel state available noncausally at only the
source. Such amodel may be of interest for node cooperation in the
framework of cognition, i.e., collaborative signal transmission in-
volving cognitive and noncognitive radios.We study the capacity of
this communication model. One principal problem is caused by the
relay’s not knowing the channel state. For the discrete memoryless
(DM) model, we establish two lower bounds and an upper bound
on channel capacity. The first lower bound is obtained by a coding
scheme in which the source describes the state of the channel to
the relay and destination, which then exploit the gained descrip-
tion for a better communication of the source’s information mes-
sage. The coding scheme for the second lower bound remedies the
relay’s not knowing the states of the channel by first computing, at
the source, the appropriate input that the relay would send had the
relay known the states of the channel, and then transmitting this
appropriate input to the relay. The relay simply guesses the sent
input and sends it in the next block. The upper bound accounts for
not knowing the state at the relay and destination. For the general
Gaussian model, we derive lower bounds on the channel capacity
by exploiting ideas in the spirit of those we use for the DM model;
and we show that these bounds are optimal for small and large
noise at the relay irrespective to the strength of the interference.
Furthermore, we also consider a relaymodel with orthogonal chan-
nels from the source to the relay and from the source and relay to
the destination in which the source input component that is heard
by the relay does not depend on the channel states. We establish a
better upper bound for both DM and Gaussian cases and we also
characterize the capacity in a number of special cases.

Index Terms—Channel state information (CSI), cognitive radio,
dirty paper coding (DPC), relay channel (RC), user cooperation.

I. INTRODUCTION

W E consider a three-terminal state-dependent relay
channel (RC) in which, as shown in Fig. 1, the source

wants to communicate a message to the destination through
the state-dependent RC in uses of the channel, with the
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help of the relay. The channel outputs and for the
relay and the destination, respectively, are controlled by the
channel input from the source, the relay input and the
channel state , through a given memoryless probability law

. The channel state is generated according
to the -product of a given memoryless probability law .
It is assumed that the channel state is known, noncausally, to
only the source. The destination estimates the message sent
by the source from the received channel output. In this paper,
we study the capacity of this communication system. We will
refer to the model in Fig. 1 as general state-dependent RC with
informed source.
We shall also study an important class of state-dependent

RCs with orthogonal channels from the source to the relay
and from the source and relay to the destination, shown in
Fig. 2. In this model, the source alphabet ,

, and only the component knows
the states . Furthermore, the memoryless conditional law

factorizes as

(1)

Note that this definition differs from the original defi-
nition of RCs with orthogonal components in the classic
setup of channels without states by El Gamal and Zahedi
[1] through the presence of the state parameter and the fact
that forms a Markov chain. Perhaps
somehow misleadingly, throughout this paper, we will continue
to refer to this class of state-dependent RCs as state-dependent
RC with orthogonal components, omitting explicitly men-
tioning the aforementioned Markov chain restriction and the
fact that only one component of the source encoder components
knows the channel states.
One can think of the two source encoder components in

Fig. 2 as being two noncolocated base stations transmitting
a common message to some destination with the help of a
relay—the common message may be obtained by means of
message cognition at the encoder whose input is heard at the
relay.

A. Background and Related Work

Channels whose probabilistic input–output relation depends
on random parameters, or channel states, have spurred much
interest and can model a large variety of problems, each related
to some physical situation of interest. Examples of applications
include information embedding [2]–[4], interference imposed
by adjacent users, certain storage applications such as computer
memories [5], coding for certain broadcast channels [6]–[8],
dispersive (ISI) channels [9], block fading in wireless envi-
ronments [10], cooperation in the realm of cognition [11], and
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Fig. 1. General state-dependent RC with state information available noncausally at only the source.

Fig. 2. State-dependent RC with the source input , and only the component knowing the states of the channel noncausally.

others. The random state sequence may be known in a causal
or noncausal manner. For single-user models, the concept of
channel state available at only the transmitter dates back to
Shannon [12] for the causal channel state case, and to Gel’fand
and Pinsker [13] for the noncausal channel state case. In [14],
Heegard and El Gamal study a model in which the state se-
quence is known noncausally to only the encoder or to only the
decoder. They also derive achievable rates for the case in which
partial channel state information (CSI) is given at varying rates
to both the encoder and the decoder. In [15], Costa studies an
additive Gaussian channel with additive Gaussian state known
at only the encoder, and shows that Gel’fand–Pinsker coding
with a specific auxiliary random variable, known as dirty paper
coding (DPC), achieves the channel capacity. Interestingly, in
this case, the DPC removes the effect of the additive channel
state on the capacity as if there were no channel state present
in the model or the channel state were known to the decoder as
well. For a comprehensive review of state-dependent channels
and related work, the reader may refer to [16].
A growing body of work studies multiuser state-depen-

dent models. Recent advances in this regard can be found in
[16]–[39], and many other works. Key to the investigation of
a state-dependent model is whether the parameters controlling
the channel are known to all or only some of the users in the
communication model. If the parameters of the channel are
known to only some of the users, the problem exhibits some
asymmetry which makes its investigation more difficult in
general. Also, in this case, one has to expect some rate penalty
due to the lack of knowledge of the state at the uninformed
encoders, relative to the case in which all encoders would be
informed.
The state-dependent multiaccess channel (MAC) with only

one informed encoder and degraded message sets is considered
in [17], [18], and [40]–[43]; and the state-dependent RC with
only informed relay is considered in [22] and [23]. For all these
models, the authors develop nontrivial outer or upper bounds
that permit to characterize the rate loss due to not knowing the
state at the uninformed encoders. Key feature to the develop-

ment of these outer or upper bounding techniques is that, in all
these models, the uninformed encoder not only does not know
the channel state but can learn no information about it.
The model for the RC with informed source that we study

in this paper seemingly exhibits some similarities with the
RC with informed relay considered in [22] and [23], and it
also connects with the MAC with asymmetric channel state
and degraded message sets considered in [17]–[19]. However,
establishing a nontrivial upper bound for the present model
is more involved, comparatively. Partly, this is because, here,
one uninformed encoder (the relay) is also a receiver; and,
so, it can potentially get some information about the channel
states from directly observing the past received sequence from
the source. That is, at time , the input of the relay can
potentially depend on the channel states through its past output

. For the general model in Fig. 1,
the relay can even know the states noncausally, potentially.
This is because may depend on future values of the state
through past source inputs , . For
the model of Fig. 2, the relay can know the states only strictly
causally, but upper bounding the capacity seems still not easy.
In our recent work [44]–[46], we have shown that, in an MAC,
strictly causal knowledge of the state at one encoder can be
beneficial in general for the other encoder even if the latter is
informed noncausally. In [45] and [46], we characterize the
capacity region fully. Studying networks in which a subset
of the nodes know the states noncausally and another subset
know these states only strictly causally, i.e., networks with
mixed—noncausal and strictly causal, states appears to be
more challenging in general, and is likely to capture additional
interest, especially after recent results on the utility of strictly
causally known states in MACs [28], [29].

B. Main Contributions

For the general state-dependent RC with informed source
shown in Fig. 1, we derive two lower bounds and an upper
bound on the channel capacity. In the discretememoryless (DM)
case, the first lower bound is obtained by a blockMarkov coding
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scheme in which the source describes the channel state to the
relay and destination ahead of time. The source sends a two-
layer description of the state consisting of two (possibly cor-
related) individual descriptions intended to be recovered at the
relay and destination, respectively. The relay recovers the in-
dividual description intended to it and then utilizes the esti-
mated state as noncausal state information at the transmitter
to implement collaborative source–relay binning in subsequent
blocks, through a combined decode-and-forward [47, Th. 5]
and Gel’fand–Pinsker binning [13]. The destination guesses the
source’s message sent cooperatively by the source and relay and
the individual description which is intended to it from its output
and the previously recovered state. The rationale for the coding
scheme which we use for the first lower bound is that had the
relay known the state with negligible distortion, then efficient
cooperative source–relay binning in the spirit of [48] can be re-
alized (recall that the model in [48] assumes availability of the
state at both source and relay).
We obtain the second lower bound by a block Markov coding

scheme in which, rather than the channel state itself, the source
describes to the relay the appropriate input that the relay would
send had the relay known the channel states, assuming a de-
code-and-forward relaying strategy. The source sends this de-
scription to the relay ahead of time. The relay recovers the sent
input and retransmits it in the appropriate subsequent block. The
rationale for the coding scheme which we use for the second
lower bound is that if the input is produced at the source using
binning against the known state and if the relay recovers it with
negligible error, then all would appear as if the relay were in-
formed of the channel state. This is because, from an operational
point of view, the relay actually need not know the channel state,
but, rather, the appropriate input that it would send had it known
this state.
For the state-dependent general model, we also establish an

upper bound on the capacity. This upper bound accounts for
not knowing the state at the relay and the destination. Then,
considering the relay model of Fig. 2, we derive a better upper
bound that accounts also for the loss incurred by not knowing
the state at one of the source encoder components. We show that
this upper bound is strictly tighter than the max-flow min cut or
cut-set upper bound obtained by assuming that the state is avail-
able at all nodes. We note that upper bounding techniques for re-
lated models with asymmetric channel states, i.e., models with
states known only at some of the encoders have been developed
recently in our previous work [23] for an RC with states known
only at the relay, and in [17]–[19] for an MAC with degraded
message sets and states known only at one encoder. However,
as we mentioned previously, the model that we study in this
paper is more involved comparatively, essentially because as a
receiver the relay can get information about the unknown state.
From this angle, our upper bounding techniques here are more
linked to our recent works [44]–[46].
Next, we also consider a memoryless Gaussian model in

which the noise and the state are additive and Gaussian. The
state represents an external interference and is known non-
causally to only the source. We derive lower bounds on the
capacity of the general Gaussian RC with informed source by
applying the concepts that we develop for the DM case. Similar

to the discrete case, one lower bound is based on the idea of
describing the state to the relay beforehand; the relay recovers
it and then utilizes it for collaborative binning in subsequent
blocks. The other lower bound consists in transmitting to the
relay a quantized version of the appropriate input that the relay
would send had the relay known the channel state. We show
that these lower bounds perform well in general and are optimal
for large and small noise at the relay, respectively, irrespective
of the strength of the interference.
Furthermore, considering a Gaussian version of the model

shown in Fig. 2, we also develop an upper bound on the capacity
that is strictly better than the max-flow min cut or cut-set upper
bound. We point out the rate loss in the upper bound incurred
by the availability of the channel state at only the one source
encoder component. Using this upper bound, we characterize
the channel capacity in a number of cases, including when the
interference corrupts transmission to the destination but not to
the relay.

C. Outline and Notation

An outline of the remainder of this paper is as follows.
Section II describes in more detail the communication models
that we consider in this work. Sections III and IV are devoted
to studying the DM models, providing lower and upper bounds
on channel capacity for the state-dependent general RC in
Section III and for the state-dependent RC with orthogonal
components in Section IV. Sections V and VI contain the
corresponding Gaussian models, providing lower and upper
bound on the capacity; and characterizing the channel capacity
in some cases. Section VII contains some numerical results and
discussions. Finally, Section VIII concludes this paper.
We use the following notations throughout this paper. Upper

case letters are used to denote random variables, e.g., ; lower
case letters are used to denote realizations of random variables,
e.g., ; and calligraphic letters designate alphabets, i.e., . The
probability distribution of a random variable is denoted by

. Sometimes, for convenience, we write it as . We use
the notation to denote the expectation of random variable
. A probability distribution of a random variable given is

denoted by . The set of probability distributions defined on
an alphabet is denoted by . The cardinality of a set is
denoted by . For convenience, the length vector will oc-
casionally be denoted in boldface notation . The Gaussian dis-
tribution with mean and variance is denoted by .
Finally, throughout this paper, logarithms are taken to base 2,
and the complement to unity of a scalar is denoted by
, i.e., .

II. SYSTEM MODEL AND DEFINITIONS

In this section, we formally present our communication
model and the related definitions. As shown in Fig. 1, we
consider a state-dependent RC denoted by
whose outputs and for the relay and the
destination, respectively, are controlled by the channel inputs

from the source and from the relay, along
with random states . It is assumed that the channel
state at time instant is independently drawn from a given
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distribution and the channel states are noncausally
known only at the source.
The source wants to transmit a message to the destina-

tion with the help of the relay, in channel uses. The message
is assumed to be uniformly distributed over the set

. The information rate is defined as
bits per transmission.
An code for the state-dependent RC with informed

source consists of an encoding function at the source

(2)

a sequence of encoding functions at the relay

(3)

for and a decoding function at the destination

(4)

Let a code be given. The sequences and from
the source and the relay, respectively, are transmitted across a
state-dependent RCmodeled as a memoryless conditional prob-
ability distribution . The joint probability mass
function on is given by

(5)

The destination estimates themessage sent by the source from
the channel output . The average probability of error is de-
fined as
An code for the state-dependent RC with informed

source is an -code having average proba-
bility of error not exceeding .
A rate is said to be achievable if there exists a sequence

of -codes with . The capacity of
the state-dependent RC with informed source is defined as the
supremum of the set of achievable rates.
We shall also study the relay model shown in Fig. 2, in which

the source alphabet ,
with the input component function of only the message
, and the input component function of , i.e.,

and — and
are the source encoding functions, and the conditional distribu-
tion factorizing as (1). The encoding at
the relay and the decoding at the destination remain as in the
model of Fig. 1, i.e., given by (3) and (4), respectively.

III. DM RC WITH INFORMED SOURCE

In this section, we consider the general state-dependent RC
model of Fig. 1. We assume that the alphabets , , , ,
and in the model are all discrete and finite.

A. Lower Bounds on Channel Capacity: State Description

The following theorem provides a lower bound on the ca-
pacity of the state-dependent general DM RC with informed
source.
Theorem 1: The capacity of the state-dependent DMRCwith

informed source is lower bounded by

(6)

subject to the constraints

(7a)

(7b)

(7c)

where , and the maximization is over all joint
measures on
of the form (8) shown at the bottom of the page and satisfying

(9)

Proof: An outline of the proof of Theorem 1 will follow,
and complete error analysis appears in Appendix A.
In Theorem 1, the random variables and represent two

descriptions and of the state that are sent by the source
ahead of time and meant to be recovered at the relay and desti-
nation, respectively. The random variables and are as-
sociated with the codewords and that are used by the
source to carry these state descriptions to the relay and destina-
tion, respectively. The random variables and represent, re-
spectively, the Gel’fand–Pinsker auxiliary vector used to pre-
code the information message at the source against the known
state and the Gel’fand–Pinsker auxiliary vector
used to precode the information message at the relay against

(8)
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the state . The allowed measure (8) implies the following
Markov chains:

(10)
The first Markov chain reflects the fact that the input at the relay
depends on the state only through the description that is recov-
ered at the relay. The second Markov chain reflects the memo-
ryless nature of the channel, and the fact the outputs at the relay
and destination depend on all other codewords only through the
inputs of the source and relay and the channel state.
The following remarks are useful for a better understanding

of the coding scheme which we use to achieve the lower bound
in Theorem 1.
Remark 1: The intuition for the coding scheme which we use

to establish the lower bound in Theorem 1 is as follows. Had the
relay known the state, the source and the relay could implement
collaborative binning against that state for transmission to the
destination [48]. Since the source knows the state of the channel
noncausally, it can transmit a description of it to the relay ahead
of time. The relay recovers the state (with a certain distortion),
and then utilizes it in the relevant subsequent block through a
collaborative binning scheme. The hope is that the benefit that
the source can get from being assisted by a more capable relay
will compensate the loss caused by the source’s spending some
of its resources to make the relay learn the state.
In general, it may also turn out to be useful to send a ded-

icated description of the state to the destination. The destina-
tion utilizes the recovered state as side information at the re-
ceiver. In the coding scheme that we employ to establish the
lower bound in Theorem 1, in addition to its message, the source
also sends a two-layer description of the state to the relay and
destination; one layer description dedicated for each. The two
layers are possibly correlated. The relay guesses the source’s
message and the individual state description which is dedicated
to it from the source transmission and the previously recovered
state description. It then utilizes the new state estimate as non-
causal state at the encoder for collaborative source–relay bin-
ning over the next block, through a combined decode-and-for-
ward andGel’fand–Pinsker binning. The destination guesses the
source’s message sent cooperatively by the source and relay and
the individual state description which is dedicated to it from its
output and the previously recovered state description.
Remark 2: As can be seen from the proof in Appendix A,

the source sends the descriptions intended to the relay and des-
tination two blocks ahead of time. That is, at the beginning of
block , the source describes the state vector to the relay
and destination. While one block delay is sufficient to describe
the state to the relay, a minimum of two blocks is necessary for
the state reconstruction at the destination because of the used
window decoding technique.

Outline of Proof of Theorem 1:
A formal proof of Theorem 1 with complete error analysis is

given in Appendix A. We now give a description of a random
coding scheme which we use to obtain the lower bound given
in Theorem 1. This scheme is based on an appropriate combi-
nation of block Markov encoding [47], Gel’fand–Pinsker bin-
ning [13], multiple descriptions [49], and Marton’s coding for

general broadcast channels [50]–[52]. Next, we outline the en-
coding and decoding procedures.
We transmit in blocks, each of length . Let de-

note the state sequence controlling the channel in block , with
. During each of the first blocks, the source

encodes a message and sends it over the channel.
In addition, during each of the first blocks, the source
also sends two individual descriptions of intended to
be recovered at the relay and destination, respectively. We de-
note by , , the description of
intended to be recovered at the relay in block , at rate ,
and by , , the description of in-
tended to be recovered at the destination in block , at rate .
For the last two blocks, for convenience, we set ,

and . For fixed
, the average (channel coding) rate of the infor-
mationmessage over blocks approaches as ,
and the average (source coding) rates and

approach and , respectively, as
.

Codebook generation: Fix a measure

of the form (8). Calculate the marginals and induced
by this measure. Fix , and let

(11)

with

(12)

where denotes .
We may assume that first term in (6) is nonnegative, i.e.,

.
We generate two statistically independent codebooks (code-

books 1 and 2) by following the steps outlined below twice. We
shall use these codebooks for blocks with odd and even indices,
respectively.
1) Generate -vectors indepen-
dently according to a uniform distribution over the set

of -typical -vectors.

2) Generate -vectors indepen-
dently according to a uniform distribution over the set

of -typical -vectors.
3) Generate independent and identically distributed
(i.i.d.) codewords indexed by
and . Each codeword is with
i.i.d. components drawn according to .

4) For each codeword , generate a collection
of codewords indexed by

and . Each codeword
is with i.i.d. components drawn ac-

cording to .
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5) For each codeword , for each codeword
, generate a collection of

codewords indexed by
and . Each codeword

is with i.i.d. components drawn
according to .

6) For each codeword , for each codeword
, generate a collection of

codewords indexed by
and . Each codeword

is with i.i.d. components drawn
according to .

7) (Binning à-la Marton [50], [51]): For , de-
fine the cells

Similarly, for , define the cells

where without loss of generality and
are considered to be integer valued.

Encoding: The encoders at the source and the relay encode
messages using codebook 1 for blocks with odd indices, and
codebook 2 for blocks with even indices. This is done because
some of the decoding steps are performed jointly over two ad-
jacent blocks, and so having independent codebooks makes the
error events corresponding to these blocks independent and their
probabilities easier to evaluate.
We pick up the story in block . Let be the new message

to be sent from the source node at the beginning of block , and
the message sent in the previous block . The encoding

at the beginning of block is as follows.
The source finds, if possible, a pair

such that
are jointly typical. If such does not exist, simply set

. We shall show that a successful encoding
of at the source is accomplished with high probability
provided that is sufficiently large and

(13)

The source will send the quadruple over the
channel. First, let us assume that the relay has decoded correctly
message and the indices , and the destina-
tion has decoded correctly message and the index .
We shall show that our code construction allows the relay to de-
code correctly message and the index and the destination
to decode correctly message and the index at the end

of block (with a probability of error ). Thus, the informa-
tion state propagates forward and a
recursive calculation of the probability of error can be made,
yielding a probability of error .
We continue with the strategy at the beginning of block .
1) The relay knows and and finds an index

such that is jointly typical
with . If there is more than one such index,
it chooses the smallest. If there is no such index, it
chooses an arbitrary index from . Denote the
chosen by . (Note that
since forms a Markov chain
and is jointly typical with ,
chosen as such, is jointly typical with

, by the Markov Lemma [53,
Lemma 12.1].) Then, the relay sends a vector with
i.i.d. components given and ,
drawn1 according to the marginal induced by the
distribution (8). (For , the relay does not know an
estimate of the channel state and so it sends some default
codeword.)

2) The source first finds an index such that
is jointly typical with the vector

given . If there
is more than one such index, it chooses one of them
at random. If there is no such index, it chooses an ar-
bitrary index from . Denote the chosen by

.
3) Next, the source searches for one pair

where the set is defined by (14) at the bottom of
the next page.
We shall show that, with high probability, the source will
find one such pair provided that is sufficiently large and

(15)

Denote the found pair as

.

4) The source then sends a vector with i.i.d.
components given the vectors ,

, ,
, and

, drawn according to
the marginal induced by the
distribution (8).

Decoding: Decoding and state reconstruction at the relay are
based on classical joint typicality. Decoding and state recon-
struction at the destination are based on joint typicality and

1Note that, strictly speaking, the encoder is not allowed to randomize at this
stage. A more rigorous analysis consists in generating the desired input distri-
bution at the codebook generation stage.
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window decoding. The decoding and reconstruction procedures
at the end of block are as follows.
1) The relay knows and (in fact, the relay
knows also but does not use it for decoding in this
step). It declares that are sent if there exists
a unique triple , , ,

, such that and
are jointly typical with

given , for some ,
where . One can show that,
with the choice (12), the decoding error in this step is
small for sufficiently large if

(16)

If (16) is satisfied, the estimate of at the relay is the
index of containing the found , i.e., .

2) The destination knows the pair and the
index and decodes the
pair based on the information received in
block and block . It declares that
is sent if there is a unique triple ,

, , , and a unique
, such that and

are jointly
typical with given
and is jointly typical with .
One can show that, with the choice (12), the decoding
error in this step is small for sufficiently large if

(17)

If (17) is satisfied, the estimate of at the desti-
nation is the index of the containing the found ,
i.e., . Also, the destination obtains the correct
index .

The achievable rate in Theorem 1 requires the relay to decode
the message sent by the source fully, and this can be rather a
severe constraint. We can generalize Theorem 1 by allowing the
relay to decode the message sent by the source only partially
[54]. This can be done by splitting the information sent by the
source into two independent parts: one part is sent through the

relay and the other part is sent directly to the destination. In the
following theorem, the random variables , , , and
play the same roles as in Theorem 1 and is a new random
variable that represents the information sent directly to the
destination.
Theorem 2: The capacity of the state-dependent DMRCwith

informed source is lower bounded by

(18)

subject to the constraints

(19a)

(19b)

(19c)

where , and the maximization is over all joint
measures on

of the form (20) shown at the bottom of the next page
and satisfying is a Markov
chain and

(21)

The proof of Theorem 2 follows by a fair extension of that of
Theorem 1, and so, we omit it here for brevity.

(14)
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Remark 3: In the coding scheme of Theorem 2, if the source
sends no descriptions of the state to the relay and destination,
i.e., , the coding scheme reduces to a generalized
Gel’fand–Pinsker binning scheme at the source that is combined
with partial DF. In this case, the relay sends codewords that
carry part of the information message and are independent of
the channel states. The following achievable rate2 is obtained
from Theorem 2 by setting , , and

independent of , as

(22)

with the maximization over joint measures of the form

(23)

and satisfying

(24)

B. Lower Bound on Channel Capacity: Analog Input
Description

The following theorem provides a lower bound on the ca-
pacity of the state-dependent general DM RC with informed
source.
Theorem 3: The capacity of the state-dependent DMRCwith

informed source is lower bounded by

(25)

subject to the constraint

(26)

where maximization is over all joint measures on
of the form

(27)

2We note that the achievable rate (22) subsumes that of [25, Th. 1] which
contains one more term in the minimization.

Proof: The proof of Theorem 3 appears in Appendix B.
In Theorem 3, the random variable represents an auxiliary

vector that is obtained by binning the information message at
the source against the state . The random variable represents
a description of that is sent by the source ahead of time and
meant to be recovered only at the relay. The random variable
represents the information that carries the description of to
the relay, on top of the information message. The codeword
is binned against . The allowed measure (27) implies the
following Markov chains:

(28)

Remark 4: The rationale for the coding scheme which we use
to obtain the lower bound in Theorem 3 is as follows. Had the
relay known the message to be sent in each block and the state
that corrupts the transmission in that block, then the relay gen-
erates its input using a collaborative Gel’fand–Pinsker scheme
as in [48].
For our model, the source knows the message that the relay

should optimally send in each block (if the relay gets the mes-
sage correctly). It also knows the state sequence that corrupts the
transmission in that block. It can then generate the appropriate
relay input vector that the relay would send had the relay known
the message and the state. The source can send this vector to
the relay ahead of time, and if the relay can estimate it to high
accuracy, then collaborative source–relay binning in the sense
of [48] is readily realized for transmission from the source and
relay to the destination.
More precisely, a block Markov encoding is used to establish

Theorem 3. Let us consider transmission in two adjacent blocks
and . In the beginning of block , the source sends the
information of the current block, and, in addition, describes
to the relay the input that the relay should send in the next
block had the relay known the message and the state

. Let be a description of . The message
and the index which the source sends in block are precoded
using binning against the state that controls transmission in the
current block . The vector , however, is the input that
the relay would send in the next block had the relay known
the state , and so is generated at the source using binning
against the state . The vector and its description
which is sent to the relay during block are intended to combine
coherently with the source transmission in block .
Remark 5: In the scheme we described briefly in Remark 4,

the relay needs only estimate the code vector sent by the
source in block , and transmit the obtained estimate in the next

(20)
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block . For instance, the relay does not need to know the in-
formation message that the estimated vector actually car-
ries, let alone the state sequence that controls the channel
in block . Thus, from a practical viewpoint, this may be par-
ticularly convenient for communication with an oblivious relay.
Transmission from the source terminal to the relay terminal can
be regarded as that of an analog source which, in block , pro-
duces a sequence . This source has to be transmitted
by the source terminal over a state-dependent channel and re-
constructed at the relay terminal. The reconstruction error at the
relay terminal influences the rate at which information can be
decoded reliably at the destination by acting as an additional
noise term.

C. Upper Bound on Channel Capacity

As we mentioned in Section I, the relay does not know the
states of the channel directly in our model, but it can poten-
tially get some information about from the past received se-
quence from the informed source. More precisely, the input of
the relay at time depends on the channel states through

which in turn depends on these
states through and the past source inputs ,

. Further, because the source knows the states
noncausally, this dependence may even be noncausal. This as-
pect makes establishing nontrivial upper bounds on the capacity,
i.e., bounds that are strictly better than the cut-set upper bound

(29)
not easy.
The following theorem provides an upper bound on the ca-

pacity of the state-dependent general DM RC with informed
source.
Theorem 4: The capacity of the state-dependent DMRCwith

informed source is upper bounded by

(30)

where the maximization is over measures of the form

(31)

and , are auxiliary random variables with

(32a)

(32b)

respectively.
Proof: The proof of Theorem 4 appears in Appendix C.

Note that the relay input depends on the state in the
measure (31), and this reflects our previous discussion.
Remark 6: In the case in which , the relay in themodel

of Fig. 1 has no message of its own to transmit and only acts as
a helper who knows the state strictly causally. The capacity of

this model can be obtained as a special case of that of the mul-
tiaccess model solved in [46]. In particular, in [46], it is shown
that even though it only knows the states strictly causally, the
relay can still be of some utility for the source, which knows the
states fully. This special case model also has connections with
the model studied in [55].

IV. DM MODEL WITH ORTHOGONAL COMPONENTS

In this section, we consider the state-dependent RC with or-
thogonal components of Fig. 2. This model has the source en-
coder component , which is the only encoder component
heard by the relay, restricted to be independent of the channel
states. For this reason, the coding schemes of Section III do not
apply directly. Also, since in this model the relay input can de-
pend on the states only strictly causally, a better upper bound
can be established.

A. Bounds on Channel Capacity

The following proposition provides a lower bound on the ca-
pacity of the state-dependent DM RC with orthogonal compo-
nents of Fig. 2.
Proposition 1: The capacity of the state-dependent DM RC

with orthogonal components of Fig. 2 is lower bounded by

(33)

where and the maximization is over all mea-
sures of the form

(34)

The proof of Proposition 1 follows by an easy extension of
the generalized block Markov scheme of [1] by allowing the
source encoder component that is sent directly to the destination
to be generated through a generalized Gel’fand–Pinsker binning
scheme. For this reason, we only outline its proof.
In the rate (33), the variable represents the

Gel’fand–Pinsker auxiliary random variable associated
with the information sent directly to the destination. More
specifically, the message from the source is split into two
independent parts: one of which is transmitted through the
relay at rate and the other is transmitted directly to the
destination without the help of the relay at rate . The total
rate is . The message that is transmitted through
the relay can be decoded correctly if the rate satisfies [47,
Th. 1]

(35)

The additional information that is transmitted through binning,
on top of the information transmitted through the relay, can be
decoded correctly at the destination if rate satisfies

(36)
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This shows that message can be sent reliably at the rate (33).
We now turn to establish an upper bound on the capacity of

the model of Fig. 2. We note although the output at the
relay at time can convey information only about the strictly
causal part of the state, upper bounding the channel ca-
pacity is nontrivial even in this case. By better exploiting the
fact that the input component that is heard at the relay does
not know the state at all in this model, we derive an upper
bound which does not depend on auxiliary random variables.
The result is stated in the following theorem.
Theorem 5: The capacity of the state-dependent DMRCwith

orthogonal components of Fig. 2 is upper bounded by

(37)

where the maximization is over all joint measures of the form

(38)

Proof: The proof of Theorem 5 appears in Appendix D.
Observe that the second term of the minimization in (37) upper
bounds the information that the source and the relay can send to
the destination by

(39)
which is strictly better than the corresponding term in the cut-set
upper bound (29).

B. Comments and Digression

There is a connection between the state-dependent relay
model of Fig. 2 and a state-dependent two-user multiaccess
model with degraded message sets that we treated recently in
[44]–[46]. In particular, setting in the multiaccess model of
[44]–[46], the channel states are known noncausally to one of
the encoders and only strictly causally to the other encoder.
Also, both encoders transmit a common message and, in addi-
tion, the encoder that knows the states noncausally transmits an
individual message. In [44], we derive bounds on the capacity
region; and in [45] and [46], we characterize the full capacity
region of this multiaccess model. In [44]–[46], we show that
the knowledge of the states only strictly causally at the encoder
that sends only the common message can increase the capacity
region in general. We also observe that the capacity region
is increased even in the extreme case in which the encoder
that knows the states only strictly causally has no message
to transmit (i.e., common-message rate equal to zero). This
suggests that in the relay model of Fig. 2, although it can only
know the states strictly causally, the relay can potentially help
the source combat the effect of the state (in addition to its classic
role of relaying the information message). Although it is not
clear yet how the relay could exploit optimally the information
about the strictly causal part of the state sequence that it can get
by observing its output, the upper bound in Theorem 5 makes
one step ahead toward this end; by bounding the information
that the source and relay can transmit cooperatively; and so, in

a sense, the capacity increase that the source can get through
the relay’s help.

V. MEMORYLESS GAUSSIAN RC WITH INFORMED SOURCE

A. System Model

In this section, we consider a full-duplex state-dependent RC
informed source in which the channel state and the noise are ad-
ditive and Gaussian. In this model, the channel state can model
an additive Gaussian interference which is assumed to be known
(noncausally) to only the source. The channel outputs and

at time instant for the relay and the destination, respec-
tively, are related to the channel input from the source and

from the relay, and the channel state , by

(40a)

(40b)

The channel state is zero-mean Gaussian random variable
with variance ; and only the source knows the state sequence

(noncausally). The noises and are zero-mean
Gaussian random variables with variances and , respec-
tively; and are mutually independent and independent from
the state sequence and the channel inputs . Also,
we consider the following individual power constraints on the
average transmitted power at the source and the relay

(41)

The definition of a code for this Gaussian model is the same as
that given in the discrete case of Section III, with the additional
constraint that the channel inputs should satisfy the power con-
straint (41).

B. Bounds on Channel Capacity

The following theorem provides a lower bound on the
capacity of the state-dependent general Gaussian RC with
informed source.
Theorem 6: The capacity of the state-dependent Gaussian RC

with informed source is lower bounded by

(42)

where
(43)

and the maximization is over .
Remark 7: It is insightful to observe that the rate in Theorem

6 does not depend on the strength of the state . This makes
the coding scheme appreciable, particularly for the case of ar-
bitrary strong interference in which classical coding schemes
suffer greatly from the strong interference unknown at the relay.
Outline of Proof of Theorem 6: The result in Theorem 3 for

the DM case can be extended to memoryless channels with dis-
crete time and continuous alphabets using standard techniques
[56, Ch. 7]. The proof of Theorem 6 follows through evaluation
of the lower bound of Theorem 3 using the following jointly
Gaussian input distribution. For , we let
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and , with jointly Gaussian with
with ; and jointly Gaussian with ,

with . Also, for
given, we consider the test channel , where

and is a Gaussian random variable with zero
mean and variance , independent from
and . Using this test channel, we calculate
and .
We use the following choices of the auxiliary random vari-

ables in Theorem 3:

(44)

(45)

where

(46)
Through straightforward algebra, which we omit here for

brevity, it can be shown that the evaluation of the lower bound
of Theorem 3 using the aforementioned choice gives the lower
bound in Theorem 6.
Alternative Proof of Theorem 6: The encoding and transmis-

sion scheme is as follows. For , let
and , with jointly Gaussian with
with ; and jointly Gaussian with ,
with . Also, let be
given, and consider the test channel , where

and is a Gaussian random variable with zero
mean and variance , independent from
and . Using this test channel, we calculate
and . We use the two random variables and

given by (45) to generate the auxiliary codewords and
, which we will use in the sequel.

As in the discrete case, a block Markov encoding is used. For
each block , let be a Gaussian signal that carries message

and is obtained via a DPC considering as
noncausal CSI, as

(47)

where the components of are generated i.i.d. using the aux-
iliary random variable .
For every block , the source quantizes into ,

where . Using the aforementioned test channel,
the source can encode successfully at the quantization rate

(48)

Let be the index associated with . In the beginning
of block , the source sends a superposition of two Gaussian
vectors

(49)

In (49), the signal carries message and is obtained
via a DPC considering as noncausal CSI, as

(50)

where the components of are generated i.i.d. using the
auxiliary random variable .
In the beginning of block , the relay has decoded message
correctly (this will be justified below) and sends

(51)

For the decoding arguments at the source and the relay, we
give simple arguments based on intuition (the rigorous decoding
uses joint typicality). Also, since all the random variables are
i.i.d., we sometimes omit the time index. The relay decodes the
index from the received at the end of block . Since
signal is precoded at the source against the interference
caused by the information message , decoding at the relay can
be done reliably as long as is large and

(52)

The destination decodes message from the received
at the end of block , considering signal as unknown
noise, with

(53)

Let now be the optimal linear estimator of

given under minimum mean square

error (MMSE) criterion, and the resulting estimation error.
The estimator and the estimation error are given by

(54)

(55)

We can alternatively write the output in (53) as

(56)

where

(57)

and is Gaussian with variance and is independent of
and .
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Now, considering the equivalent form (56) of the output ,
it is easy to see that the destination can decode message cor-
rectly at the end of block as long as is large and

(58)

Furthermore, combining (48) and (52), we get

(59)

Finally, observing that the right-hand side (RHS) of (58) de-
creases with , we obtain (42) by taking the equality in (59)
and maximizing the RHS of (58) over . This com-
pletes the proof.
We now turn to establish a lower bound on the capacity of

the state-dependent Gaussian RC using the idea of state trans-
mission. In this section, the source describes the channel state
to only the relay. The relay guesses the information message
and the transmitted state description then transmits the message
cooperatively with the source using binning against the state es-
timate, in a manner similar to that we described for the coding
scheme for Theorem 1.
For convenience, we define the following quantities

and which we will use throughout the remaining sections.
Definition 1: Let

for nonnegative , and .
The following theorem provides a lower bound on the

capacity of the state-dependent general Gaussian RC with
informed source.
Theorem 7: The capacity of the state-dependent Gaussian RC

with informed source is lower bounded by

(60)

where

(61)

(62)

(63)

and the maximization is over , such that
, , and

such that and such that
and

.
Proof: A formal proof of Theorem 7 appears in

Appendix E. An outline of proof of Theorem 7 is as fol-
lows. The result in Theorem 1 for the DM case can be extended
to memoryless channels with discrete time and continuous
alphabets using standard techniques [56, Ch. 7]. For the
state-dependent Gaussian RC (40), we evaluate the rate (6)
with the following choice of input distribution. We choose

and . Furthermore, we consider the test
channel , where and
is a Gaussian random variable with zero mean and variance

, independent from . The random
variable is Gaussian with zero mean and variance ,
independent of and of . The random variable is
composed of three parts: ,
where is Gaussian with zero mean and variance ,
for some , is independent of , , ; and

, where
is Gaussian with zero mean and variance ,

for some and and is independent
of , , and ; and is a Gaussian with zero
mean and variance , chosen independently from all the
other variables. The auxiliary random variables are chosen as

(64a)

(64b)

(64c)

(64d)

with

(65)

and is given by (66) shown at the bottom of the next page.
Through straightforward algebra, which is omitted for

brevity, it can be shown that the evaluation of (6) with the
aforementioned input distribution gives (60).
Remark 8: The parameter in Theorem 7 stands for DPC’s

scale factor in precoding the information message against the
interference on its way to the relay and to the destination. Be-
cause the model (40) has the links to the relay and to the des-
tination corrupted by noise terms with distinct variances, one
cannot remove the effect of the interference on the two links si-
multaneously via one single DPC as in [20]. This explains why
the parameter is left to be optimized over in (60). However,
in the spirit of [20], one can improve the rate of Theorem 7 by
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time-sharing coding schemes that are similar to the one we em-
ployed for Theorem 7 but with different inflation parameters
tailored, respectively, for the link to the relay and the link to the
destination, as in [25].
Similar to the general DMmodel of Section III, in the general

Gaussian model (40), the relay does not know the states of the
channel directly but can potentially get information about
from the observed output sequence . Also, may even
contain information about future values of the state, and this
makes establishing upper bounds on the capacity that are strictly
better than the cut-set upper bound

(67)
more difficult. Note that the cut-set upper bound is in general
nontight essentially because both and know the state
in (67).

C. Analysis of Some Extreme Cases

We now summarize the behavior of some of the developed
lower and upper bounds in some extreme cases.
1) If , e.g., the relay is located spatially very close to
the source, the lower bound of Theorem 6 and the cut-set
upper bound (67) tend asymptotically to the same value

(68)

where as .
Equation (68) reflects the rationale for our coding scheme
for the lower bound in Theorem 6 which is tailored to be
asymptotically optimal whenever the relay can learn with
negligible distortion the input that it should send. In this
case, the rate (68) can be interpreted as the information be-
tween two transmit antennas which both know the channel
state and one receive antenna. (For comparison, note that
the coding scheme of Theorem 7 achieves rate smaller than
that of Theorem 6 if , because even though with
the coding scheme of Theorem 7 as well the relay obtains
the state estimate at almost no expense if is arbitrarily
small, it also needs to know the information message to
perform binning, however.)

2) Arbitrarily strong channel state: In the asymptotic case
, the lower bound of Theorem 7 tends to

(69)

The lower bound of Theorem 6 does not depend on the
strength of the channel state, as we indicated previously.

3) If , i.e., the link to the relay is broken or too
noisy, the cut-set upper bound (67) and the lower of The-
orem 7 agree and give the channel capacity

(70)

Note that, for the Gaussian model (40), the lower of The-
orem 6 is suboptimal if , and tends to

(71)

This is because the distortion in Theorem 6 is equal to its
maximum value in this case. Equation (71) reflects a
limitation of our coding scheme for the lower bound in
Theorem 6 if the relay fails to reconstruct the input de-
scribed by the source. In this case, the input from the relay
acts as additional noise at the destination, thus causing the
cooperative transmission to perform worse than simple di-
rect transmission. The achievable rate (71) is, however,
still better than had the state been merely treated as un-
known noise if . (For comparison, note that the
lower bound of Theorem 7 vanishes if .)

VI. MEMORYLESS GAUSSIAN MODEL WITH
ORTHOGONAL COMPONENTS

In this section, we study an important class of state-dependent
Gaussian RCs with orthogonal components. In this model, the
source input with independent of
the channel state , and the channel outputs and at
time instant for the relay and the destination, respectively, are
related to the channel inputs from the source and relay and the
channel state by

(72a)

(72b)

We consider separate power constraints on the average trans-
mitted power at the encoder components

(73)
The definition of a code for this Gaussian model follows that for
the discrete case of Section IV, with the additional constraint
that the channel inputs should satisfy the power constraint (73).

A. Bounds on Channel Capacity

The following proposition provides a lower bound on the ca-
pacity of the state-dependent Gaussian relay model (72).

(66)
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Proposition 2: The capacity of the state-dependent Gaussian
relay model (72) is lower bounded by

(74)

where the maximization is over parameters and
such that

(75)

Proof: The proof of Proposition 2 appears in Appendix F.
We now turn to establish an upper bound on the capacity of

the Gaussian model (72). It is easy to show that the cut-set-upper
bound (67) can be written as

(76)

in this case. In what follows, we establish an upper bound that is
strictly better than (76) by accounting for that the source input
component at time does not know the state at all and
that the relay output is function of only the strictly causal
part of the state in this case. The following theorem states the
corresponding result.
Theorem 8: The capacity of the state-dependent Gaussian

relay model (72) is upper bounded by

(77)

where the maximization is over parameters ,
such that

(78)

Proof: The proof of Theorem 8 appears in Appendix G.
Remark 9: Similar to the DM case, the upper bound in

Theorem 8 improves upon the cut-set upper bound through
the second term of the minimization. The second term of the
minimization is strictly tighter than that of the cut-set upper
bound because it accounts for the rate loss incurred by not
knowing the state at all at the source encoder component

that is heard at the relay and that the relay output
can depend on the state only strictly causally in this case.
Further, investigating closely the proof in Appendix G, it can

be seen that, by opposition to the corresponding DM case, the
relay ignores completely any information about the state in the
multiaccess part of (77).

B. Capacity for Some Special Cases

In this section, we characterize the capacity for some special
Gaussian models. The achievable rate of Proposition 2 differs
from the upper bound of Theorem 8 only through the first loga-
rithm term in (74) in which the state is taken as unknown noise
in the lower bound. Substituting and
in (77) and (74), it is easy to see that if , , , , ,
and satisfy

(79)
then the two bounds meet; and, so give the channel capacity

(80)

Let us now consider an important special case of (72) in
which the interference affects only the channel to the destina-
tion, i.e.,

(81a)

(81b)

In this case, the upper bound in Theorem 8 is tight. The fol-
lowing theorem characterizes the channel capacity in this case.
Theorem 9: The capacity of the state-dependent Gaussian

relay model (81) is given by

(82)

where the maximization is over parameters and
such that

(83)

Proof: The proof of Theorem 9 appears in Appendix H.
Another important special case of the state-depen-

dent Gaussian relay model of Fig. 2 is one such that
and the conditional distribution

factorizes as

(84a)

(84b)

(84c)
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where the noises and are zero-mean Gaussian random
variables with variances , and are mutually independent
and independent from the state sequence , the source input

, and the relay input . Considering
average power constraint on and

on , the following corollary states the
capacity of this model.
Corollary 1: The capacity of the state-dependent Gaussian

relay model (84) is given by

(85)

where the maximization is over .
The proof of Corollary 1 follows by specializing the cut-set

upper bound to the model (84) and then observing that this
upper bound can actually be attained using a combination of
binning and generalized block Markov scheme where we let

and to be zero-mean Gaussian with variances
and , respectively, for some , independent
of and ; is zero-mean Gaussian with variance inde-
pendent of ; and and obtained with standard DPCs
for the links to the relay and to the receiver component , re-
spectively. The source sends information to the receiver via the
relay through the dirty paper coded , and independent in-
formation via the direct link through the dirty paper coded .
Extreme cases:
1) Arbitrarily strong channel state: In the asymptotic case

, the capacity of the model (72) is given by

(86)

This can be easily seen since both the upper bound of The-
orem 9 and the lower bound (74) tend to the RHS of (86)
in this case. The RHS of (86) is also clearly achievable by
turning the relay OFF and applying standard DPC at the
source.

2) If , i.e., the link to the relay is broken or too
noisy, the lower and upper bounds on the capacity of the
model (72) agree and give the channel capacity as the RHS
of (86).

VII. NUMERICAL EXAMPLES AND DISCUSSION

In this section, we discuss some numerical examples, for the
general Gaussian RCwith informed source (40), the model (72),
and the special case (81). We illustrate the results of Theorems
5–8 and, for the model (40), we also include comparisons with
previously known achievable rates for this model such as that
obtained using compress-and-forward (CF) and binning in [34,
Th. 4] and that with partial decode-and-forward and binning in
[25, Th. 3].
Fig. 3 illustrates the lower bound of Theorem 6 and the lower

bound of Theorem 7 for the model (40), as functions of the
signal-to-noise ratio (SNR) at the relay, i.e.,
(in decibels). Also shown for comparison are the lower bound
obtained using CF and binning in [34, Th. 4]; the cut-set upper

Fig. 3. Illustration of the lower bound of Theorem 6 and lower bound of The-
orem 7 for the state-dependent general Gaussian RC with informed source (40)
versus the SNR in the link source to relay. Numerical values are

and .

bound had the state been known also at the relay and the desti-
nation, i.e., (67), and the trivial lower bound obtained by con-
sidering the channel state as unknown noise and implementing
full DF at the relay. In order to show the effect of describing
the state to the relay, the figure also shows a special case of the
lower bound of Theorem 7 obtained by setting in (60),
i.e., a Gaussian version of the achievable rate (22) that we men-
tioned in Remark 3, and is a (slightly) improved version of [25,
Th. 3].
The figure shows that the lower bound of Theorem 6 is

asymptotically optimal at large , and the lower bound of
Theorem 7 is asymptotically optimal at small . This shows
the relevance of transmitting to the relay only a description of
the appropriate input that it should send upon sending to it a
description of the state itself at large . At moderate ,
however, sending a description of the state to the relay may
improve upon sending to it a description of the appropriate
Gel’fand–Pinsker binned codeword that it should send. (How
the two bounds compare depends essentially on the strength of
the state. For example, at large , the stronger the state, the
larger the advantage of the lower bound of Theorem 6 upon
that of Theorem 7.) Furthermore, the figure also shows that the
lower bound of Theorem 7 is better than that of [25, Th. 3],
thereby reflecting the utility of describing the state to the relay
(recall that the coding scheme that we employed for the lower
bound of Theorem 7 involves also a partial cancellation of the
state by the source to the relay so that the relay benefits from
it and the source benefits in turn). Fig. 4 shows similar bounds
computed for an example degraded Gaussian RC.
Remark 10: The lower bound of Theorem 6 is asymptotically

close to optimal in as we mentioned in Section V-C and is
visible from Fig. 3. This is because the appropriate relay input,
which is precoded at the source against the state and is encoded
in a manner that it should combine coherently with the source
transmission in next block, can be sent by the source to the relay
at almost no expense in power and can be learned by the relay
with negligible distortion in this case. One can be tempted to



2654 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 5, MAY 2013

Fig. 4. Illustration of the lower bound of Theorem 6 and lower bound of The-
orem 7 for an example state-dependent degraded Gaussian RC with informed
source of (40), versus the SNR in the link source to relay. Numerical values are

, , , and .

expect a similar behavior for the lower bound of Theorem 7
since, for the latter as well, the relay can learn a “good” esti-
mate of the state at almost no expense in source’s power and
with negligible distortion. This should not be, however, since
our coding scheme for Theorem 7 requires the relay to also de-
code the source’s information message. Related to this aspect,
the effect of the limitation which we mentioned in Remark 8 is
visible at large for this lower bound.
Fig. 5 illustrates the upper bound (77) of Theorem 8 and

the lower bound (74) for the model (72). For comparison, the
figure shows also the cut-set upper bound had the state been
known also at the relay and the destination, i.e., (76), and the
trivial lower bound obtained by considering the channel state as
unknown noise and using a generalized block Markov coding
scheme as in [1]. The curves are plotted against the SNR at the
relay, i.e., (in decibels). Observe that the upper
bound (77) is strictly better than the cut-set upper bound. The
improvement is due to that the upper bound (77) accounts for
some inevitable rate loss which is caused by not knowing the
state at the relay, as we mentioned previously. Also, the im-
provement is visible mainly at small to relatively large values
of .
Fig. 6 illustrates the capacity result of (81) as given by The-

orem 9, as a function of the SNR in the link source to relay
of (in decibels). Also shown for comparison are the
cut-set upper bound and the trivial lower bound obtained by con-
sidering the channel state as unknown noise and using a gener-
alized block Markov coding scheme as in [1].

VIII. CONCLUSION AND DISCUSSION

In this paper, we consider a state-dependent RC with the
channel states available noncausally at only the source, i.e.,
neither at the relay nor at the destination. We refer to this com-
munication model as state-dependent RC with informed source.
This setup may model some scenarios of node cooperation over
wireless networks with some of the terminals equipped with

Fig. 5. Lower and upper bounds on the capacity of the state-dependent
Gaussian RC with informed source (72). (a) Bounds versus the SNR
in the link source to relay, for numerical values

, and (b) bounds versus the SNR in the link source to
destination and .

Fig. 6. Capacity of the state-dependent Gaussian RC model (81), versus the
SNR in the link source to relay. Numerical values are ,

, , and .

cognition capabilities that enable estimating to high accuracy
the states of the channel.
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We investigate this problem in the DM case and in the
Gaussian case. For both cases, we derive lower and upper
bounds on the channel capacity. A key feature of the model we
study is that, assuming decode-and-forward relaying, the input
of the relay should be generated using binning against the state
that controls the channel in order to combat its effect and, at the
same time, combine coherently with the source transmission.
We develop two lower bounds on the capacity by using coding
schemes which achieve this goal differently. In the first coding
scheme, the source describes the channel state to the relay and
to the destination, through a combined coding for multiple de-
scriptions, binning, and decode-and-forward scheme. The relay
guesses an estimate of the transmitted information message
and of the channel state and then utilizes the state estimate to
perform cooperative binning with the source for sending the
information message. The destination utilizes its output and the
already recovered state to guess an estimate of the currently
transmitted message and state description. In the second coding
scheme, the source describes to the relay the appropriate input
that the relay would send had the relay known the channel state.
The relay then simply guesses this input and sends it in the
appropriate subsequent block. The lower bound obtained with
this scheme achieves close to optimal for some special cases.
Furthermore, the upper bounds that we establish in the DM

and the memoryless Gaussian cases account for not knowing the
state at the relay and destination. Also, considering a class of
RCs with orthogonal channels from the source to the relay and
from the source and relay to the destination in which the source
input that is heard by the relay is independent of the channel
state, we show that our upper bound is strictly tighter than that
obtained by assuming that the channel state is also available
at the relay and the destination, i.e., the max-flow min-cut or
cut-set upper bound, and it helps characterizing the rate loss due
to the asymmetry caused by having the channel state available at
only one source encoder component. Also, we characterize the
channel capacity fully in some cases, including when the state
does not affect the channel to the relay.
We close this paper with a discussion on related aspects. Our

coding scheme of Theorem 1 is, in essence, of decode-and-for-
ward relaying type (though the relay also sends a compression
version of the state on top of the decoded information message).
Our coding scheme of Theorem 3 can be seen as being more of
a nonstandard CF relaying type, since the relay sends a com-
pressed version of the input produced at the source. Although
not optimal in general, these schemes are tailored specifically
to deal (at least partially) with the presence of the channel state
in our model. The relay can of course employ other relaying
schemes to assist the source, such as estimate-and-forward, am-
plify-and-forward, or combinations of theses. However, while
these schemes may outperform the schemes that we described
in this paper for certain channel parameters, in general they do
not really offer inherently better mechanisms of dealing with the
presence of the channel state and exploiting its full knowledge
at the source. In the case of states known causally or only strictly
causally, the new noisy network coding by Lim et al. [57] and
quantize-map-and-forward by Avestimeher et al. [58], which
implement standard compression without Wyner–Ziv binning,
have been proved to in general offer better rates for certain re-

lated relay [32] and multiaccess [32], [44]–[46] models. For the
model at hand, however, like for the standard state-indepen-
dent three-terminal RC, noisy network coding offers exactly the
same rate as classic CF at the relay, but no better, as observed
recently in [59].

APPENDIX A
PROOF OF THEOREM 1

Throughout this appendix, we denote the set of strongly
jointly -typical sequences [60, Ch. 14.2] with respect to the
distribution as . Sometimes, when the consid-
ered probability distribution is clear from the context, we shall
denote this simply as .
Consider the random coding scheme that we outlined in

Section III. We now analyze the average probability of error.
Analysis of Probability of Error: The average probability of

error is given by

(A-1)

The first term, , on the RHS of (A-1) goes
to zero as , by the strong asymptotic equipartition
property (AEP) [60, p. 384]. Thus, it is sufficient to upper bound
the second term on the RHS of (A-1).
We now examine the probabilities of the error events asso-

ciated with the encoding and decoding procedures. The error
event is contained in the union of the following error events,
where the events and correspond to encoding errors at
block ; the events , , correspond to decoding
errors at the relay at block ; and the events , ,
correspond to decoding errors at the destination at block .
We note that the indices and are random. The de-

coding procedure at the relay involves computing the index
and decoding explicitly the index ; and the decoding proce-
dure at the destination involves decoding explicitly both indices.
The analysis of error events that involve explicit decoding of
random binning indices in the context of state-dependent chan-
nels needs some care. This is addressed explicitly in [61, pp.
854–855] for an example network. The approach of [61] relies
essentially on the two lemmas, Lemma 1 and Lemma 2, therein
as well as their proofs. A particular key element in the proof
of [61, Lemma 1] is an upper bound on the probability that the
random index (which is a message in [61]) takes a specific value
given a specific state vector and a specific choice of the code-
book . In what follows, the analysis of the error events ,

, follows in a way that is essentially similar to
the analysis of the event in [61, pp. 854-855], with minor
modifications, as well as standard arguments on jointly typical
sequences. For the sake of brevity, in the analysis of each of
the error events that will follow, we will only outline the steps
that differ from [61] and refer to [61] each time the analysis is
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analogous. For convenience, let us denote, with a slight abuse

of notation, .
1) Let , with

(A-2)

From known results in rate distortion theory [60, p. 336],
it follows that exponentially with if

. Similarly, exponen-
tially with if . It remains to show that

exponentially with if
, and this can be proved by

following straightforwardly the arguments and algebra in
[49].

2) Let be the event that there is no pair

satisfying (14), i.e., the set is empty.
Using Chebyshev’s inequality, it is easy to see that

(A-3)

We obtain bounds on and by
proceeding in a way similar to [51]. We define the indicator
functions as given by (A-4), shown at the bottom of the
page.
The cardinality of the set is given by (A-5), shown
at the bottom of the page. Thus, can be bounded
as given by (A-6) at the bottom of the page.
Evaluating the variance, it can be shown (see Lemma 1
below) that

(A-7)

Therefore, for sufficiently large

(A-8)

provided that (15) is true.

Lemma 1:

(A-9)

Proof: For notational convenience, let us use tem-
porarily in the proof of this lemma the shorthand nota-
tion and

. Then,
can be expressed as given by (A-10), shown

at the bottom of the next page.
Taking the expectation and dividing by
in both sides of (A-10), we get (A-11) at the bottom of the

next page.

if

otherwise.
(A-4)

(A-5)

(A-6)
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Let
. It can be shown

easily that

i) For and

(A-12)
ii) For and

(A-13)

iii) For and

(A-14)

iv) For and

(A-15)

Finally, substituting i)–iv) in the RHS of (A-11) and using
(A-6), we obtain

(A-16)

This completes the proof of Lemma 1.

(A-10)

(A-11)
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1) Let be the event that and
are not jointly typical with

given . That is

(A-17)

For , ,
,

jointly typical
with , , and with the source
input and the relay input , we have

as by the Markov
Lemma [60, p. 436].

2) Let be the event that and
are jointly typical

with given , for some
, , , and , with

. That is

(A-18)

Conditioned on , , , the probability of the event
can be bounded as

(A-19)

Thus, as if
.

3) Let be the event that ,
are jointly typical with

given , for some ,
, with . That is

(A-20)

Conditioned on the events , , , and , the prob-
ability of the event can be bounded as

(A-21)

(Note the multiplicative term in the
RHS of (A-21).) The proof of (A-21) follows by pro-
ceeding in a way that is essentially similar to the anal-
ysis of the event in [61, pp. 854-855], with minor
modifications. More specifically, let, for given ,

. First,
following the lines of [61, eq. (5), p. 855], one can easily
show that

(A-22)

Then, using (A-22) and the approach in [61], it can be
shown easily (A-23) shown at the bottom of the page
holds, where follows since for given the event

is independent of conditionally given

; and follows using (A-22) and an approach
similar to [61, Lemma 1].

(A-23)
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Similarly

(A-24)

where follows since for given , the event
is independent of con-

ditionally given
; and follows using (A-22) and an approach sim-

ilar to [61, Lemma 2].
Finally, using (A-23) and (A-24), and following
straightforwardly the approach in [61, pp.
854-855], we obtain (A-21). Thus, summarizing,

as .
4) Let be the event that is
jointly typical with given ,

, for some ,
with . That is

(A-25)

Proceeding in a way similar to the event , it can be
shown easily that, conditioned on the events , ,
, , and , the probability of the event can be

bounded as

(A-26)

Thus, as .

5) For decoding the triple and the index
at the destination, let be the union of the following

two events:

For , ,
,

jointly
typical with , , and with the
source input and the relay input , we
have as by the
Markov Lemma. Similarly, as

. Thus, as .
6) For decoding the triple and the index

at the destination, let be the event

Proceeding in a way similar to for the events and
, and noticing that, for given , the two

subevents in are independent because the codebooks
used for blocks and are different, it can be shown
easily that, conditioned on , the probability of the
event can be bounded as given by (A-27) shown at the
bottom of this page Thus, as

if .

(A-27)
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7) For decoding the triple and the index
at the destination, let be the event

It is clear that

(A-28)

Now, proceeding in a way similar to [61, pp. 854-855],
with the rather minor modifications outlined in the fol-
lowing, we can analyze the error event in the RHS of
(A-28), and get the following bound on the probability of
the error event conditioned on

(A-29)

An outline of the proof of (A-29) is as follows. Let
. First, we show that for

sufficiently large

(A-30)

Let
. Then, if

, for sufficiently large

(A-31)

If , for sufficiently large

(A-32)

where the first inequality follows by the union of events
bound.
Next, using (A-30) and following the approach in [61,
Lemmas 1 and 2], it can be shown easily that for suffi-
ciently large

(A-33)

Finally, using (A-33) and following essentially straight-
forwardly the approach of [61, pp. 854-855], we obtain
(A-29). Thus, summarizing, as

if .
8) For decoding the triple and the index

at the destination, let be the event

Note that the first event in (i.e., the one relative to
block ) and the second event in (i.e., the one
relative to block ) are independent since the codebooks
used for successive blocks and are different. Then,
proceeding in a way similar to the event to analyze the
first event in and in a way similar to the event to
analyze the second event in , it can be shown easily
that, conditioned on the events , the probability
of the event can be bounded as (A-34), shown at the
bottom of the next page. Thus,
as .

9) For decoding the triple and the index
at the destination, let be the event
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Proceeding similarly to the event , it can be shown
easily that, conditioned on , the probability of the
event can be bounded as (A-35), shown at the bottom
of the page. Thus, as .

10) For decoding the triple and the index
at the destination, let be the event

Proceeding similarly to the event , it can be shown
easily that, conditioned on , the probability of the
event can be bounded as (A-36), shown at the bottom
of the page. Thus, as .

11) For decoding the triple and the index
at the destination, let be the event

Proceeding similarly to the event , it can be shown
easily that, conditioned on , the probability of the
event can be bounded as

(A-37)

Thus, as .
This concludes the proof of Theorem 1.

APPENDIX B
PROOF OF THEOREM 3

First we generate a random codebook that we use to obtain the
lower bound in Theorem 3. This scheme is based on a combi-
nation of block Markov coding [47], Gel’fand–Pinsker binning
[13], and classic rate distortion theory [60, Ch. 13]. Next, we
outline the encoding and decoding procedures.
We transmit in blocks, each of length . During each of

the first blocks, the source encodes a message
and sends it over the channel, where denotes the
index of the block. For convenience, we let . For
fixed , the average rate over blocks approaches
as .
Codebook generation: Fix a measure

of the form (27). Calculate the marginal induced by this
measure. Fix and let

(B-1a)

(B-1b)

1) We generate independent and identically distributed
(i.i.d.) codewords indexed by ,

, each with i.i.d. components drawn according
to .

(A-34)

(A-35)

(A-36)
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2) We generate i.i.d. codewords in-
dexed by , , each with
i.i.d. components drawn according to .

3) Independently, we randomly generate a rate distortion
codebook consisting of sequences drawn i.i.d.
according to the -product of the marginal . We index
these sequences as .

Encoding: We pick up the story in block . Let
be the new message to be sent from the source

node at the beginning of block , and the
message to be sent in the next block (note that we can
assume that , as the indices are assumed i.i.d.
on , and so as

). The encoding at the beginning of block is as
follows.
i) The source searches for the smallest such
that is jointly typical with . (The properties
of strongly typical sequences guarantee that there exists
one such .) Denote this by

ii) Similarly, the source finds such
that is jointly typical with and then
generates a vector with i.i.d. components given

and , drawn according to the mar-
ginal .

iii) Then, the source indices by if there exists
an such that and are
jointly strongly typical. If there is more than one such
, the source selects the first in lexicographic order. If

there is no such , let . Shannon’s rate-distortion
theory [60, Ch. 13] ensures that the encoding of
is accomplished successfully with high probability pro-
vided that is sufficiently large and

(B-2)

iv) Next, the source looks for the smallest
such that is jointly typical

with . (Again, the properties of strongly
typical sequences guarantee that there exists one such
.) Denote this by

Continuing with the strategy, let . The encoding at the
beginning of block is as follows.
1) The relay knows (this will be justified below), and
sends .

2) The source transmits the pair . It sends a vector
with i.i.d. components given the vectors ,

, and , drawn according to the marginal
induced by the distribution (27).

Decoding: The reconstruction of the vector at the
relay and the decoding procedure at destination at the end of
block are as follows.
1) The relay knows and estimates from the received

. It declares that is sent if there is a unique
such that and are jointly

typical for some . One can show that the
decoding error in this step is small for sufficiently large
if

(B-3)

2) The destination estimates from the received . It de-
clares that is sent if there is a unique
such that and are jointly typical for some

. One can show that the decoding error in
this step is small for sufficiently large if

(B-4)

Analysis of Probability of Error: Fix a probability distribution
satisfying (27). Let and

be the state sequence in block and the message pair sent from
the source node in block , respectively. As we already men-
tioned previously, at the beginning of block , the source trans-
mits and the relay transmits .
The average probability of error is such that

(B-5)
The first term on the RHS of (B-5) goes to
zero as , by the AEP [60, p. 384]. Thus, it is sufficient
to upper bound the second term on the RHS of (B-5).
We now examine the probabilities of the error events asso-

ciated with the encoding and decoding procedures. The error
event is contained in the union of the following error events,
where the events , , and correspond to encoding er-
rors at block ; the events and correspond to decoding
errors at the relay at block , and the events and corre-
spond to decoding errors at the destination at block .
1) Let be the event that there is no sequence
jointly typical with , i.e.,

To bound the probability of the event , we use a stan-
dard argument [13]. More specifically, for and
generated independently with i.i.d. components drawn ac-
cording to and , respectively, the probability that

is jointly typical with is greater than
for sufficiently large . There is a total of

such ’s in each bin. The probability of the event ,
the probability that there is no such , is therefore bounded
as

(B-6)

Taking the logarithm on both sides of (B-6) and substi-
tuting using (B-1), we obtain

. Thus, .
2) Let be the event that there is no sequence
jointly typical with , and the event that
there is no sequence jointly typical with

. Proceeding similarly to for the event
, it can be easily shown that, conditioned on and

, respectively, these two events have vanishing
probabilities as .

3) For the decoding at the relay, let be the event that
is not jointly typical with . That is

(B-7)
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For , jointly typical with , and
with the source input and the relay input , we
have as by the
Markov Lemma [60, p. 436].

4) For the decoding at the relay, let be the event that
is jointly typical with for some

and , with . That is

(B-8)

Conditioned on the events , , , and , the prob-
ability of the event can be bounded using the union
bound, as

(B-9)

Thus, as if
.

5) For the decoding at the destination, let be the event that
is not jointly typical with . That is

(B-10)

For , jointly typical with , and
with the source input and the relay input , we
have as
by the Markov Lemma [60, p. 436].

6) For the decoding at the destination, let be the event that
is jointly typical with for some

and , with . That is

(B-11)

Conditioned on the events , , , , , and
, the probability of the event can be bounded using

the union bound, as

(B-12)

Thus, as
if .

This concludes the proof of Theorem 3.

APPENDIX C
PROOFS OF THEOREM 4

Let an code be given. By Fano’s inequality, we
have

(C-1)

Let us define and
.

We have

(C-2)

(C-3)

where: follows since message is independent of the
state ; follows from Csiszar and Korner’s “summation
by parts” lemma [62]

(C-4)

follows similarly, from Csiszar and Korner’s “summation by
parts”

(C-5)
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and follows from the fact that is a deterministic function
of .
Similarly

(C-6)

where follows exactly as in the converse part of the proof of
the capacity of Gel’fand–Pinsker channel [13] by replacing
with .
From the above, we have

(C-7)

We introduce a random variable which is uniformly dis-
tributed over . Set , , ,

, , , and . We sub-
stitute into the aforementioned bounds. Considering the first
bound in (C-7), we have

(C-8)

where in the last equality we used the fact that is independent
of all the other variables.
Similarly, considering the second bound in (C-7), we obtain

(C-9)

Let us now define and . Using (C-7)–(C-9),
we then get

(C-10)

So far, we have shown that, for a given sequence of
-codes with going to zero as goes to infinity,

there exists a probability distribution of the form (31) such that
the rate essentially satisfies (30). This completes the proof
of Theorem 4.
It remains to show that the rate (30) is not altered if one

restricts the random variables and to have their al-

phabet sizes limited as indicated in (32). This is done by
invoking the support lemma [63, p. 310]. Fix a distribution of

on
that has the form (31).
To prove the bound (32a) on , note that we have

(C-11)

Hence, it suffices to show that the following functionals of

(C-12a)

(C-12b)

can be preserved with another measure that has the form
(31). Observing that there is a total of functionals
in (C-12), this is ensured by a standard application of the sup-
port lemma; and this shows that the cardinality of the alphabet
of the auxiliary random variable can be limited as indicated
in (32a) without altering the rate (30).
Once the alphabet of is fixed, we apply similar arguments

to bound the alphabet of , where this time
functionals must be satisfied in order to preserve the joint distri-
bution of , and one more functional to preserve

(C-13)

yielding the bound indicated in (32b). This completes the proof
of Theorem 4.

APPENDIX D
PROOF OF THEOREM 5

We prove that for any code consisting of a mapping
at the hypersource with

and , a sequence of mappings
, at the relay, and a mapping

at the decoder with average error probability
as , the rate must satisfy (37).
By Fano’s inequality, we have

(D-1)

Thus

(D-2)

We now upper bound as in the following lemma,
the proof of which follows.
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Lemma 2:

(D-3a)

(D-3b)

Proof: To simplify the notation, we use
, , ,

and , .
1) The proof of the bound on given in i) follows
straightforwardly by revealing the state to the destination
and using the channel structure given by (1)

(D-4)

(D-5)

(D-6)

(D-7)

(D-8)

(D-9)

(D-10)

(D-11)

where
follows trivially by revealing the state to the destina-

tion; follows since ;
follows since
; and follows since conditioning reduces entropy.

2) The proof of the bound on given in ii) follows
as follows:

(D-12)

where follows from the fact that the state is i.i.d.
and is independent of the message ; follows from

is a Markov
chain; follows from
is a Markov chain; follows from the fact that is
a deterministic function of ; follows from the fact
that conditioning reduces entropy; and holds since
is independent of .

We introduce a random variable which is uniformly dis-
tributed over . Set , ,

, , , and . We substi-
tute into the aforementioned bounds. Considering the bound
(D-12), we obtain

(D-13)
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and similarly

(D-14)

where the distribution on from a
given code is of the form

(D-15)

We now eliminate the variable from (D-13) and (D-14) as
follows. The RHS of (D-13) can be bounded as

(D-16)

where
holds since and

(by the
Markovian relation ); and

holds since is independent of and
.

Similarly, the RHS of (D-13) can be bounded as

(D-17)

Finally, combining (D-2), (D-12), (D-16) at one hand, and
(D-2), (D-11), (D-17) at the other hand, we get

(D-18a)

(D-18b)

where the distribution on , obtained
by marginalizing (D-15) over the variable , has the form given
in (38).
We conclude that, for a given sequence of -codes

with going to zero as goes to infinity, there exists a proba-
bility distribution of the form (38) such that the rate satisfies
(D-18). This completes the proof of Theorem 5.

APPENDIX E
PROOF OF THEOREM 7

The encoding and transmission scheme is as follows. Let
, , and be given such that

and . Also, consider the test channel

, where and is a Gaussian random
variable with zero mean and variance , in-
dependent from . Using this test channel, we calculate

and . Let be jointly
Gaussian with with and independent from ,
and jointly Gaussian with with

and , where . Also, let
be jointly Gaussian with and in-

dependent of , with and
; and jointly Gaussian with and inde-

pendent of . In what follows, we use
the random variables , , , and given by (64) to gen-
erate the auxiliary codewords , , , and which we
will use in the sequel. Also, recall the definition of , , and
in (62) and (63), respectively, which we will use in the rest of
this proof.
We decompose the message to be sent from the source into

two parts and . The input from the source is divided
into three independent parts, i.e., ,
where carries a description of the state that is in-
tended to be recovered only at the relay and has power con-
straint , carries message and has power con-
straint , and carries message and has power con-
straint , with . The message is sent
through the relay at rate and the message is sent directly
to the destination at rate . The total rate is .
As in the discrete case, a block Markov encoding is used.

Let denote the mes-
sage to be transmitted in block and denote the state con-
trolling the channel in block . The source quantizes into

, where . Using the aforementioned
test channel, the source can encode successfully at the quan-
tization rate

(E-1)

In the beginning of block , the relay has decoded correctly
message and the index of the description
sent by the source in the previous block (this will be justi-
fied below) and sends a Gaussian signal which carries
message and is obtained via a DPC considering
as noncausal CSI at the transmitter, as

(E-2)

where the components of are generated i.i.d. using the aux-
iliary random variable .
Let be the index associated with the state of the

next block . In the beginning of block , the source sends a
superposition of three Gaussian vectors

(E-3)
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In (E-3), the vectors and are generated i.i.d.
using the auxiliary random variables and , respec-
tively, and the vector has power
and is independent of , , , and .
Furthermore, the vector carries a description
of the state that affects transmission in the next block

, intended to be recovered only at the relay; the vector
carries cooperative information , and the

vector carries new information . The vectors
, , and are obtained via DPCs con-

sidering as noncausal CSI at the transmitter, as

(E-4a)

(E-4b)

(E-4c)

where the components of , , and are generated
i.i.d. using the auxiliary random variables , , and ,
respectively.
We now describe the decoding operations (we give simple

arguments; the rigorous decoding uses joint typicality testing).
Consider first the decoding at the relay. In block , the relay
receives

(E-5)

The relay knows and and decodes the pair
from . The relay decodes and succes-

sively, starting by . To decode , the relay subtracts out
the quantity from

to make the channel equivalent to

(E-6)

The relay decodes message from treating signals
and as unknown independent noises. This

can be done reliably as long as is large and

(E-7)

where the equality follows through straightforward algebra
which we omit here for brevity (note that the variance of the
additive state in (E-6) is

). Next, for
the decoding of , the relay subtracts out the quantity

from to make the channel
equivalent to

(E-8)

The relay decodes the index from correctly as long as
is large and

(E-9)

We now turn to the decoding at the destination at the end of
block . In block , the destination receives

(E-10)

At the end of block , the destination knows message
and decodes the pair successively, treating the
signal that carries the state description as unknown indepen-
dent noise. It starts by decoding message , using

. Note that is carried by both auxiliary vectors
and . If is large, it can do so reliably at rate

(E-11)

where the equality follows since the choice of in (64)
satisfying is a Markov chain.
We first compute the term . Let be

the estimation error of given under MMSE cri-
terion. Since and are jointly Gaussian, is i.i.d.
Gaussian with variance per element and
is independent from . Thus, we can alternatively write
the output as

(E-12)

With the choice of the auxiliary random variable as in (64)
and that of the associated Costa’s scale factor set to its op-
timal value as in (63), the destination decodes the vector
correctly from at rate

(E-13)
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where the equality follows through straightforward algebra. Let
us now compute the term . Ob-
serving that the destination can peel off from
to make the channel equivalent to

(E-14)

it is easy to see that, if is large and with the choice of the
auxiliary random variable as in (64), the destination obtains
the vector correctly from at rate

(E-15)

where the last equality follows through straightforward algebra.
Finally, the destination can peel off from

to make the channel equivalent to

(E-16)

From (E-16), it is easy to see that if is large, and with the
choice of the auxiliary random variable as in (64), the des-
tination obtains the vector (which carries message

) correctly at rate

(E-17)

Finally, for given , adding (E-7) and (E-17), we obtain the first
term of the minimization in (60); and adding (E-13), (E-15), and
(E-17), we obtain the second term of the minimization in (60).
Also, similar to in the proof of Theorem 6, observing that the
rate terms in (60) decrease with , we obtain the lower bound
in Theorem 7 by taking the equality in (E-9) and maximizing
the minimization in (60) over , such that

, , , and
such that and such that the RHS of
(E-7) is nonnegative and the sum of the RHS of (E-15) and the
RHS of (E-17) is nonnegative. This completes the proof.

APPENDIX F
PROOF OF PROPOSITION 2

In the proof, we compute the rate (33) of Proposition
1 using an appropriate jointly Gaussian distribution on

. The algebra in this section is sim-
ilar to that in the proof of [23, Th. 3] and [17, Th. 6]. We first
compute the term
in the RHS of (33) because this gives insights about the dis-
tribution that we should use to compute the lower bound. We
assume that , , and are jointly Gaussian random
variables with zero mean and variance , , and , re-
spectively. The random variables and are independent
and independent of the state . The random variable is
independent of and jointly Gaussian with , with

and , for
some correlation coefficients and .
Let be the optimal linear

estimator of given under MMSE crite-
rion, and be the resulting estimation error (note that

). The estimator
and the estimation error are given by

(F-1)

(F-2)

We can then write in (81) alternatively as

(F-3)
Let now

(F-4)
Noticing now that is independent of the state in (F-4), it
is clear that an optimal choice of the associated auxiliary random
variable is

(F-5)

where is Costa’s parameter given by

(F-6)

Then, we can easily show that

(F-7)
By substituting in (F-5), we get

(F-8)

with

(F-9)
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Now, it is easy to see that, with the choice (F-8), we have

(F-10)

We now compute the terms and .
It is easy to see that with the aforementioned jointly Gaussian
input distribution

(F-11)

Also, we have

(F-12)

where holds since is independent of ,
holds since and are independent of , and follows
through straightforward algebra.
Adding (F-10) and (F-11), we obtain the first term of the min-

imization in (82); and adding (F-10) and (F-12), we obtain the
second term of the minimization in (82).
Finally, we obtain the capacity in Theorem 9 by maximizing

the RHS of (82) over all possible values of and
. Investigating the two terms of the minimization,

we can easily see that it suffices to consider and
. This concludes the proof of Theorem 9.

APPENDIX G
PROOF OF THEOREM 8

In this section, we first use the upper bound for the DM case
in Theorem 5 to obtain a new upper bound on the capacity of the
state-dependent additive Gaussian model (72). Then, we show
that this new upper bound is maximized by jointly Gaussian

.
From Theorem 5, we have that, given any sequence

of codes with average error probability as
, the transmission rate satisfies

(G-1)

for some joint measure of the form

(G-2)

Since the channel structure (72) satisfies
, it follows that

(G-3)

An upper bound on the capacity of the channel (72) is then
given by

(G-4)
for some joint measure of the form

(G-5)

(Note that, in contrast to in Theorem 5 and (G-2), the inputs
and are independent in (G-5).)

Fix a joint distribution on of the
form (G-5) satisfying

(G-6)

We shall also use the correlation coefficients ,
defined as

(G-7)

We first compute the first term in the minimization on the
RHS of (G-4). We have

(G-8)

(G-9)

(G-10)

(G-11)

where holds since conditioning reduces entropy; and
holds since the conditional differential entropy is
maximized if are jointly Gaussian and, by the Max-
imum Conditional Differential Entropy Lemma [53, Part I], the
conditional differential entropy is maxi-
mized if are jointly Gaussian.
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We now compute the term .
We have

(G-12)

where follows since and are independent.
For fixed second moments (G-6), we have

(G-13)

where equality is attained if is Gaussian. Similarly, the term
is maximized if are jointly Gaussian.

Let be the MMSE estimator of
given , i.e.,

(G-14)

with

(G-15)

(G-16)

where the inequality is attained with equality if
are jointly Gaussian. Then, from (G-12), (G-13), and (G-16) and
straightforward algebra, we obtain

(G-17)

For convenience, let us now define the function
as the RHS of (G-11) and the function
as the RHS of (G-17). From the

aforementioned analysis, the capacity of the channel is upper
bounded as

(G-18)

where the maximization is over all covariance matrices of
of the form

(G-19)

that satisfy

(G-20)

and have nonnegative discriminant

(G-21)

i.e., for

(G-22)

Investigating and
, it can be seen that it suffices to

consider and for the maximization in
(G-18).
Also, it is easy to see that, for fixed , the functions

and increase
monotonically with and . So, for fixed , they
are maximized at and . To complete
the proof, we should show that and

are also maximized at .
It is clear that the function increases

with . The term can be seen as the
sum rate of a two-user state-dependentMACwith state informa-
tion known to one encoder, both encoders sending a common
message, and the informed encoder sending, in addition, an in-
dividual message [17]. As argued in [17], this sum rate increases
with the power of the informed encoder [17, Appendix E], i.e.,

here. This concludes the proof of Theorem 5.

APPENDIX H
PROOF OF THEOREM 9

1) Converse Part: the proof of the converse part of Theorem
9 follows by noticing that the computation of the upper
bound (G-4) in the proof of Theorem 8 for the special case
(81), and using the same jointly Gaussian distribution as in
Appendix G, gives the RHS of (82).

2) Achievability Part: the proof of the direct part of Theorem
9 follows by computing the rate (33) using an appropriate
jointly Gaussian distribution on .
The algebra is similar to that in the proof of Proposition
2 and is therefore omitted for brevity.
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