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Abstract—We consider a two-user state-dependent multiaccess
channel in which the states of the channel are known noncausally
to one of the encoders and only strictly causally to the other en-
coder. Both encoders transmit a commonmessage and, in addition,
the encoder that knows the states noncausally transmits an indi-
vidual message. We find explicit characterizations of the capacity
region of this communication model in both discrete memoryless
and memoryless Gaussian cases. In particular, the capacity region
analysis demonstrates the utility of the knowledge of the states only
strictly causally at the encoder that sends only the common mes-
sage in general. More specifically, in the discrete memoryless set-
ting, we show that such a knowledge is beneficial and increases the
capacity region in general. In the Gaussian setting, we show that
such a knowledge does not help, and the capacity is same as if the
states were completely unknown at the encoder that sends only the
common message. Furthermore, we also study the special case in
which the two encoders transmit only the common message and
show that the knowledge of the states only strictly causally at the
encoder that sends only the common message is not beneficial in
this case, in both discrete memoryless and memoryless Gaussian
settings. The analysis also reveals optimal ways of exploiting the
knowledge of the state only strictly causally at the encoder that
sends only the common message when such a knowledge is ben-
eficial. The encoders collaborate to convey to the decoder a lossy
version of the state, in addition to transmitting the information
messages through a generalized Gel’fand–Pinsker binning. Partic-
ularly important in this problem are the questions of 1) optimal
ways of performing the state compression and 2) whether or not the
compression indices should be decoded uniquely. By developing
two optimal coding schemes that perform this state compression
differently, we show that when used as parts of appropriately tuned
encoding and decoding processes, both compression à-la noisy net-
work coding by Lim et al. or the quantize-map-and-forward by
Avestimeher et al., i.e., with no binning, and compression using
Wyner–Ziv binning are optimal. The scheme that uses Wyner–Ziv
binning shares elements with Cover and El Gamal original com-
press-and-forward, but differs from it mainly in that backward
decoding is employed instead of forward decoding and the com-
pression indices are not decoded uniquely. Finally, by exploring the
properties of our outer bound, we show that, although not required
in general, the compression indices can in fact be decoded uniquely
essentially without altering the capacity region, but at the expense
of larger alphabets sizes for the auxiliary random variables.

Index Terms—Capacity, channel state information, multiaccess
channels, noisy network coding, Wyner-Ziv binning.
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I. INTRODUCTION

T HE study of channels that are controlled by random
states has spurred much interest, due to its importance

from both information-theoretic and communications aspects.
For example, state-dependent channels may model communi-
cation in random fading environments [1] or in the presence
of interference imposed by users in broadcast scenarios. The
channel states may be known in a strictly causal, causal, or
noncausal manner, to all or only a subset of the encoders. For a
transmission of length , let denote the
state sequence, with representing the channel state affecting
the channel at time or block . For the transmission in block ,
the state sequence is known noncausally if it is known entirely
before the beginning of the transmission. It is known causally
if it is known up to and including time , and it is known strictly
causally if it is known only up to time . The way the channel
state information is utilized and influences capacity depends
also on which of the encoders(s) and decoder(s) are aware of it.
In single-user channels, the concept of channel state available
at only the transmitter dates back to Shannon [2] for the causal
channel state case, and to Gel’fand and Pinsker [3] for the non-
causal channel state case. In multiuser environments, a growing
body of work studies multiuser state-dependent models. Recent
advances in this regard can be found in [4]–[27], and many
other works. For a comprehensive review of state-dependent
channels and related work, the reader may refer to [4].
There is a connection between the role of states known strictly

causally at an encoder and that of output feedback given to
that encoder. In single-user channels, it is now well known that
strictly causal feedback does not increase the capacity [28]. In
multiuser channels or networks, however, the situation changes
drastically, and output feedback can be beneficial—but its role
is still highly misunderstood. One has a similar picture with
strictly causal states at the encoder. In single-user channels,
independent and identically distributed (i.i.d.) states available
only in a strictly causal manner at the encoder have no effect on
the capacity. In multiuser channels or networks, however, like
feedback, strictly causal states in general increase the capacity.
Advances in the study of the effect of strictly causal states

in multiuser channels are rather very recent and concern mainly
multiple-access scenarios. In [15], Lapidoth and Steinberg study
a two-encoder multiple-access channel (MAC) with indepen-
dent messages and states known causally or strictly causally at
the encoders. They show that the strictly causal state sequence
can be beneficial, in the sense that it increases the capacity for
this model. This result is reminiscent of Dueck’s proof [29] that
feedback can increase the capacity region of some broadcast
channels. In accordance with [29], the main idea of the achiev-
ability result in [15] is a block Markov coding scheme in which
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the two users collaborate to describe the state to the decoder by
sending cooperatively a compressed version of it. As noticed in
[15], although some nonzero rate that otherwise could be used
to transmit pure information is spent in describing the state to
the decoder, the net effect can be an increase in the capacity. In
[16], they show that strictly causal state information is benefi-
cial even if the channel is controlled by two independent states
each known to one encoder strictly causally. In this case, each
encoder can help the other encoder transmit at a higher rate by
sending a compressed version of its state to the decoder. In [18],
Li et al. improve the results of [15] and [16] and extend them to
the case of multiple encoders. The achievability results in [18]
are inspired by the noisy network coding scheme by Lim et al.
[30] and, unlike [15], [16], do not use Wyner–Ziv binning [31]
for the compression of the state. In a very recent contribution
[32], Lapidoth and Steinberg derive a new inner bound on the
capacity region for the case of a single state governing theMAC.
They also prove that the inner bound of [18] for the case of two
independent states each known strictly causally to one encoder
can indeed be strictly better than the lower bound of [15] and
[16]—a result which is conjectured previously by Li et al. in
[18].
The noisy network coding scheme by Lim et al. [30] extends

the results on coding for deterministic networks and wireless
Gaussian relay networks by Avestimeher et al. [33]. In partic-
ular, it extends the insights of 1) quantization only, 2) joint de-
coding of the message and quantization bits, and 3) repetitive
encoding of messages at the source, that were developed origi-
nally by Avestimeher et al. in [33] for Gaussian relay networks
in a scheme that they called “quantize-map and forward,” to dis-
crete memoryless networks. In [30], the authors also simplify
the proofs and generalize the results to multiple multicast ses-
sions. For Gaussian relay networks, the coding scheme of [33]
has also been extended to lattice vector quantizers in [34].

A. Studied Model

In this paper, which generalizes former conference versions
[35], [36], we study a two-user state-dependent MAC with
the channel states known noncausally at one encoder and only
strictly causally at the other encoder. The decoder is not aware
of the channel states. As shown in Fig. 1, both encoders transmit
a common message and, in addition, the encoder that knows
the states noncausally transmits an individual message. This
model generalizes one whose capacity region is established
in [5] and in which the encoder that sends only the common
message does not know the states at all. More precisely, let

and denote the common message and the individual
message to be transmitted in, say, uses of the channel; and

denote the state sequence affecting the
channel during this time. At time , Encoder 1 knows the
complete sequence and
sends , and Encoder 2 knows only

and sends —the
functions and are some encoding functions. In this
paper, we study the capacity region of this state-dependent
MAC model. As our analysis will show, this requires, among
others, understanding the role of the strictly causal part of the
state that is revealed to Encoder 2.

Fig. 1. State-dependent MAC with degraded message sets and states known
noncausally at the encoder that sends both messages and only strictly causally
at the other encoder.

From an application viewpoint, the state in themodel of Fig. 1
can, for example, represent another message, not related to the
system, and known beforehand to Encoder 1 (who, say, moni-
tors the backhaul). However, this message is only received (es-
sentially noiselessly, due to proximity), by Encoder 2, who does
not know the codebook, and hence cannot decode that message.

B. Main Contributions

In the discrete memoryless case, we characterize the capacity
region for the general finite-alphabet case with a single-letter
expression. The proof of the achievability part is based on a
block-Markov coding scheme in which the two encoders col-
laborate to convey a lossy version of the state to the decoder,
in the spirit of [15], [16], and [32], in addition to a general-
ized Gel’fand–Pinsker binning for the transmission of the in-
formation messages [3]. From the angle of the state compres-
sion, coding schemes that perform the state compression for
our model tie with very recent works on compressions in com-
press-and-forward-type relaying networks [30], [33], [37]–[39].
We first develop a coding scheme in which the state compression
is performed à-la Lim et al. noisy network coding [30] andAves-
timeher et al. quantize-map-and-forward [33], and show that it
is optimal, i.e., achieves an outer bound that we establish for
the studied model. In this coding scheme, unlike [15], [16], [32]
where every information message is divided into blocks and dif-
ferent submessages are sent over these blocks and then decoded
one at a time using the same codebook as in the original com-
press-and-forward scheme by Cover and El Gamal [40], here
the entire common message and the entire individual message
are transmitted over all blocks using codebooks that are gen-
erated independently, one for each block, and the decoding is
performed simultaneously using all blocks as in the noisy net-
work coding scheme of [30] or the quantize-map-and-forward
scheme of [33]. Also, like [30] and [33], at each block, the com-
pression index of the state of the previous block is sent using
standard rate distortion, not Wyner–Ziv binning. At the end of
the transmission, the receiver uses the outputs of all blocks to
perform simultaneous decoding of the information common and
individual messages, without uniquely decoding the compres-
sion indices. From this angle, our coding scheme connects more
with [18], than with [15], [16], and [32].
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Two of the most important features of our coding scheme
are 1) standard compression without Wyner–Ziv binning and
2) nonexplicit decoding of the compression indices. Inves-
tigating whether these features are pivotal for optimality in
our problem, as argued in [30] for some related models, we
also explore binning-based compressions. We show that the
capacity region of our model can also be achieved using an
alternate coding scheme in which the state compression is real-
ized using Wyner–Ziv binning. The employed optimal alternate
coding scheme shares elements with Cover and El Gamal com-
press-and-forward [40], but differs from it in two aspects: 1)
backward decoding is utilized instead of the forward decoding
of [40], and 2) unlike [40], the compression indices are not
decoded uniquely. Decoding backwardly instead of forwardly
seems essential for the optimality of this alternate coding
scheme here. At this level, we note that the fact that backward
decoding with nonunique decoding of the compression indices
is beneficial has also been observed independently in [41] in
the context of unicast relay networks and in [42] for a fading
relay network. Next, by exploring our outer bound further, we
show that, although not required, one can modify this coding
scheme in a manner to get the compression indices decoded at
the receiver essentially without altering the capacity region but
at the expense of larger alphabets sizes of the involved auxiliary
random variables. The decoding of the compression indices
introduces an additional rate constraint, but we show that this
constraint is satisfied by the auxiliary random variables of the
outer bound.
The single-letter characterization of the capacity region of our

model remains intact if one allows feedback to the encoder that
sends both messages. Also, the capacity region of our model
contains that of the model of [5] in which the encoder that sends
only the common message is unaware of the channel states, and
this shows that revealing the states even only strictly causally
to this encoder potentially increases the capacity region. Next,
by investigating a discrete memoryless example, we show that
this inclusion can be strict, thus demonstrating the utility of con-
veying a compressed version of the state to the decoder cooper-
atively by the encoders.
We also specialize our results to the case in which the two en-

coders send only the common message. We refer to the capacity
in this case as common-message capacity. We show that, when
one of the two encoders is informed noncausally, the knowledge
of the states only strictly causally at the other encoder does not
increase the common-message capacity. It should be noted that
this result is not a direct consequence of that feedback does not
increase the capacity in a MAC in which the encoders send only
a common message, and our converse proof is needed here.
Next, we consider the memoryless Gaussian setting in which

the channel state and the noise are additive and Gaussian. We
establish an operative outer bound on the achievable rate pairs.
Then, we show that this outer bound is achievable, yielding a
closed-form expression of the capacity region. The resulting ca-
pacity region coincides with that of themodel of [5] in which the
encoder that sends only the common message is completely un-
aware of the states, thus demonstrating that, by opposition to the
discrete memoryless case, revealing the states strictly causally

to this encoder is not beneficial in the Gaussian case, in the sense
that it does not increase the capacity region.
Finally, we note that in contrast to the related MAC models

in [5] and [7], our converse proofs in this paper do not follow
directly from the converse part proof of the capacity formula
for the standard Gel’fand–Pinsker channel [3]. This is because,
at time , the encoder that transmits only the common message
sends inputs which are function of not only that message, but
also the observed past state sequence.

C. Outline and Notation

An outline of the remainder of this paper is as follows.
Section II describes in more detail the communication model
that we consider in this study. Section III provides the capacity
region of the discrete memoryless model. In this section,
we also establish an alternative outer bound on the capacity
region that will turn to be useful in the Gaussian case, pro-
vide an example demonstrating the utility of revealing the
states only strictly causally to the encoder that sends only the
common message, and derive the common-message capacity.
Section IV characterizes the capacity region as well as the
common-message capacity of the Gaussian model. Finally,
Section V concludes this paper.
We use the following notations throughout the paper. Upper-

case letters are used to denote random variables, e.g., ; lower-
case letters are used to denote realizations of random variables,
e.g., ; and calligraphic letters designate alphabets, i.e., . The
probability distribution of a random variable is denoted by

. Sometimes, for convenience, we write it as . We use
the notation to denote the expectation of random variable
. A probability distribution of a random variable given is

denoted by . The set of probability distributions defined on
an alphabet is denoted by . The cardinality of a set is
denoted by . For convenience, the length vector will oc-
casionally be denoted in boldface notation . The Gaussian dis-
tribution with mean and variance is denoted by .
For integers , we define . Fi-
nally, throughout the paper, logarithms are taken to base 2, and
the complement to unity of a scalar is denoted by ,
i.e., .

II. SYSTEM MODEL AND DEFINITIONS

We consider a stationary memoryless state-dependent MAC
whose output is controlled by the channel

inputs and from the encoders and the
channel state which is drawn according to a memory-
less probability law . We assume that the channel state
is known noncausally at Encoder 1, i.e., beforehand, at the be-
ginning of the transmission block. Encoder 2 knows the channel
states only strictly causally; that is, at time , it knows the states
only up to time , .
Encoder 2 wants to send a common message and En-

coder 1 wants to send an independent individual message
along with the common message . We assume that

the common message and the individual message are
independent random variables drawn uniformly from the sets

and , respectively.
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The sequences and from the encoders are sent across
a state-dependent MAC modeled as a memoryless conditional
probability distribution . The joint probability
mass function on is given by
(1). The receiver guesses the pair from the channel
output .
Definition 1: For positive integers , , and , an

code for the MAC with states known non-
causally at one encoder and only strictly causally at the other
encoder consists of a mapping

(2)

at Encoder 1, a sequence of mappings

(3)

at Encoder 2, and a decoder map

(4)

such that the average probability of error is bounded by ,

(5)

The rate of the common message and the rate of the individual
message are defined as

(6)

respectively.
A rate pair is said to be achievable if for every

, there exists an code for the channel
. The capacity region of the considered state-depen-

dent MAC is defined as the closure of the set of achievable rate
pairs.

III. DISCRETE MEMORYLESS CASE

In this section, it is assumed that the alphabets are
finite.

A. Capacity Region

Let stand for the collection of all random variables
such that , , , and take values

in finite alphabets , , , and , respectively, and

(7a)

(7b)

(7c)

The relations in (7) imply that
is a Markov chain, and is independent of .
Define to be the set of all rate pairs such that

(8)

The following proposition states some properties of .
Proposition 1:
1. The set is convex.
2. To exhaust , it is enough to restrict and to satisfy

(9a)

(9b)

Proof: The proof of Proposition 1 appears in Appendix A.
As stated in the following theorem, the set characterizes

the capacity region of the state-dependent discrete memoryless
MAC model that we study.
Theorem 1: The capacity region of the MAC with states

known only strictly causally at the encoder that sends the
common message and noncausally at the encoder that sends
both messages is given by .

Proof: An outline proof of the coding scheme that we use
for the direct part will follow. The associated error analysis and
the proof of the converse appear in Appendix B.
Theorem 1 continues to hold if in (7) we replace

by . Also, it should be noted that setting in

(1)
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(8), the capacity region reduces to the union of all rate pairs
satisfying

(10)

for some measure on of the form

(11)

Let denote the region defined by (10) and (11) in the re-
maining of this paper. It has been shown in [5] that the region
is the capacity region of the MAC model of Fig. 1 but with

the states completely unknown at Encoder 2, i.e., while the en-
coding at Encoder 1 is given by (2), the encoding at Encoder 2
is defined by the mapping

(12)

Observing that shows that the knowledge of the states
only strictly causally at Encoder 2 in our model in general in-
creases the capacity region. In Section III-B, we will show that
the inclusion can be strict, i.e., .
Furthermore, one can easily check that in the case

of a channel that does not depend on the states, i.e.,
, the capacity region reduces

to the closure of the union of all rate pairs satisfying

(13)

for some

(14)

Also, it is noted that Theorem 1 remains intact if we allow feed-
back to Encoder 1, i.e., before producing the th channel input
symbol, Encoder 1 also observes the past channel output se-
quence . That is, the encoding at Encoder 2 is still given by
(3) and that at Encoder 1 is replaced by a sequence of mappings

, with

(15)

We now turn to the proof of achievability of Theorem 1. The
following remark is useful for a better understanding of the
coding scheme that we use to establish the achievability of The-
orem 1.
Remark 1: The proof of achievability of Theorem 1 is based

on a block-Markov coding scheme in which a lossy version of
the state is conveyed to the decoder, in the spirit of [15], [16],
and [32], in addition to a generalized Gel’fand–Pinsker binning
for the transmission of the information messages [3]. However,
unlike [15], [16], and [32] where Wyner–Ziv compression [31]
is utilized for the transmission of the lossy version of the state,
here, inspired by the noisy network coding scheme of [30] and
the quantize-map-and-forward scheme of [33], at each block,
the compression index of the state of the previous block is sent

using standard rate distortion, notWyner–Ziv binning. Also, un-
like [15], [16], and [32] where every information message is di-
vided into blocks and different submessages are sent over these
blocks and then decoded one at a time using the same codebook
as in the original compress-and-forward scheme by Cover and
El Gamal [40], here the entire common message and the entire
individual message are transmitted over all blocks using code-
books that are generated independently, one for each block, and
the decoding is performed simultaneously using all blocks as
in [30] and [33]. At the end of the transmission, the receiver
uses the outputs of all blocks to perform simultaneous decoding
of the information common and individual messages, without
uniquely decoding the compression indices.

Proof of Achievability: The transmission takes place in
blocks. The common message and the individual message

are sent over all blocks. We thus have ,
, , , and

, where is the number of common
message bits, is the number of individual message bits,
is the number of channel uses, and and are the overall
rates of the common and individual messages, respectively.

Codebook Generation: Fix a measure
. Fix , , , , and denote

, , and
.

We randomly and independently generate a codebook for
each block.
1) For each block , , we generate i.i.d.
codewords indexed by ,

, each with i.i.d. components drawn according to
.

2) For each block , for each codeword , we gen-
erate i.i.d. codewords indexed by

, each with i.i.d. components drawn according to
.

3) For each block , for each pair of codewords
, we generate a collection of

i.i.d. codewords indexed
by , , each with i.i.d.
components draw according to .
Encoding: Suppose that a common message

and an individual message are to be transmitted.
As we mentioned previously, and will be sent over all
blocks.We denote by the state affecting the channel in block
, . For convenience, we let and

(a default value). The encoding at the beginning of block
, , is as follows.
Encoder 2, which has learned the state sequence ,

knows and looks for a compression index
such that is strongly jointly typical with

and . If there is no such index or the
observed state is not typical, is set to 1 and an error
is declared. If there is more than one such index , choose the
smallest. Encoder 2 then transmits the vector .
Encoder 1 obtains similarly. It then finds

the smallest compression index such that
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is strongly jointly typical with and
. Again, if there is no such index or the ob-

served state is not typical, is set to 1 and an error
is declared. Next, Encoder 1 looks for the smallest
such that is jointly typical with
given . Denote this by

. If such is not found, an error is
declared and is set to . Encoder
1 then transmits a vector which is drawn i.i.d. condi-
tionally given , , and

[using the conditional measure
induced by (7)].

Decoding: At the end of the transmission, the decoder has
collected all the blocks of channel outputs .

Step (a): The decoder estimates message using
all blocks , i.e., simultaneous de-
coding. It declares that is sent if there exist

, and
such that ,

, and are jointly
typical for all . One can show that the decoder
obtains the correct as long as and are large and

(16)

Step (b): Next, the decoder estimates message using
again all blocks , i.e., simultaneous decoding.
It declares that is sent if there exist

, such that
, ,

and are jointly typical for all . One can
show that the decoder obtains the correct as long as
and are large and

(17a)

(17b)

Remark 2: In the coding scheme of Theorem 1, the samemes-
sage is sent over all blocks, i.e., message repetitive encoding,
and the decoding is performed jointly using all blocks. One can
modify this coding scheme in such a way that every message
is divided into blocks and different submessages are sent over
these blocks, and the decoder utilizes step-by-step backward de-
coding. The modified scheme achieves the same rate region as
that of the coding scheme of Theorem 1. This is in accordance
with the observation made in the parallel and independent work
[39] that “short”-message encoding combined with backward
decoding performs the same rates as noisy network coding and
quantize-map-and-forward.
In the coding scheme of Theorem 1, the state compression

is standard, i.e., uses no Wyner–Ziv binning. Although of no
benefit in the case of one relay, together with repetitive en-
coding and joint nonunique decoding, this was shown to be es-
sential in achieving rates that are strictly larger than those of-
fered by schemes based on Cover and El Gamal classic com-
press-and-forward scheme [40] for certain networks with mul-
tiple relays in [30] and [33]. That is, the coding schemes of [30]
and [33] outperform Cover and El Gamal classic compress-and-

forward for somemultirelay networks. One can wonder whether
the same holds for our model, i.e., whether schemes based on
Cover and El Gamal classic compress-and-forward, i.e., block
Markov encoding combined with Wyner–Ziv binning, fall short
of achieving optimality for our model. In this paper, we show
that the capacity region as given by (8) can be achieved alter-
natively with a coding scheme that we obtain by building upon
and modifying Cover and El Gamal original compress-and-for-
ward scheme. The modification consists essentially in 1) de-
coding block-by-block backwardly instead of block-by-block
forwardly and 2) nonunique decoding of the compression in-
dices. (In fact, by investigating more closely the converse proof
of Theorem 1, we will show later that 2) can be relaxed essen-
tially without altering the capacity region). The following the-
orem states the result.
Theorem 2: For the state-dependent MAC model that

we study, there exists an optimal coding scheme that uses
Wyner–Ziv binning for the state compression. That is, the
capacity region given by (8) can also be achieved using a
coding scheme in which the state compression is performed
using Wyner–Ziv binning.

Proof: The achievability proof of Theorem 2 is based
on a block-Markovian coding scheme that combines carefully
Gel’fand–Pinsker binning and Wyner–Ziv binning, and utilizes
backward decoding with nonunique decoding of the compres-
sion indices. The complete proof of Theorem 2 is given in
Appendix C.
As we mentioned previously, the coding scheme of Theorem

2 shares elements with Cover and El Gamal original compress-
and-forward [40, Th. 7], but differs from it mainly in two as-
pects. First, it uses backward decoding instead of the forward
decoding of [40], and, second, unlike [40], it does not require
unique decoding of the compression indices. The second aspect
is essential for getting the same rate expression as in (8), with
no additional constraints. However, as we will see shortly in the
corollary that will follow, one can modify the coding scheme
of Theorem 2 in a way to get the compression indices decoded
uniquely and still get the capacity region, at the expense of
slightly larger and larger . The key element is the obser-
vation that the constraint introduced by getting the compression
index decoded, i.e., (see Appendix D)

(18)

or, equivalently,

(19)

is also implicit in the converse proof of Theorem 1. That is, the
auxiliary random variables and of the converse proof of
Theorem 1 in Appendix B satisfy (19).
Corollary 1: The coding scheme of Theorem 2 can be mod-

ified in a way to get the compression index decoded. The re-
sulting coding scheme is optimal and achieves an equivalent
characterization of the capacity region of the model that we
study given by the set of all rate pairs such that

(20)
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for some measure and satisfying

(21)

where the auxiliary random variables and have their alpha-
bets bounded as

(22a)

(22b)

Proof: The coding scheme that we use for the proof of
Corollary 1 is very similar to that of Theorem 2, but with unique
decoding of the compression indices. The details of the proof are
given in Appendix D.
We now establish an alternative outer bound on the capacity

region of the DM MAC model that we study. This outer bound
will turn out to be useful in the proof of the converse part of the
coding theorem for the Gaussian case in Section IV since, as it
will be shown, it is also achievable in that case.
Theorem 3: The capacity region of the MAC with states

known noncausally at the encoder that sends both messages
and only strictly causally at the other encoder is contained in
the closure of the set of all rate pairs satisfying

(23)

for some probability distribution of the form

(24)

Proof: The proof of Theorem 3 appears in Appendix E.
Remark 3: In [5], the authors use an extension of the converse

part of the proof of the standard Gel’fand–Pinsker capacity to
establish a converse proof for the model with states known
noncausally at Encoder 1 and no states at all at Encoder 2. Then,
they show that their outer bound, which involves an auxiliary
random variable, is itself contained in the region defined by (23).
In Appendix E, we provide a direct proof that the region defined
by (23) is an outer bound on the capacity region of the more
general model that we study here. Our converse proof accounts
also for the availability of the states at Encoder 2 in a strictly
causal manner.

B. Example

In Section III-A, we have shown that the capacity region of
the model of Fig. 1 is potentially larger than that, , of the same
model but with Encoder 2 being totally unaware of the states,
i.e., . In this section, we show that this inclusion can be
strict, i.e., .
We use to denote the entropy of a Bernoulli source,

i.e.,

(25)

and to denote the binary convolution, i.e.,

(26)

Fig. 2. Binary state-dependent MAC example with two output components,
, with and .

Consider the binary memoryless MAC shown in Fig. 2. Here,
all the random variables are binary . The channel has
two output components, i.e., . The component

is deterministic, , and the component
, where the addition is modulo 2. Encoder 2

knows the states only strictly causally and has no message to
transmit. Encoder 1 knows the states noncausally and transmits
an individual message . The state and noise vectors are inde-
pendent and memoryless, with the state process , , and
the noise process , , assumed to be Bernoulli and
Bernoulli processes, respectively. The vectors and
are the channel inputs, subjected to the constraints

(27)

For this example, as we will show shortly, the strictly causal
knowledge of the states at Encoder 2 does help, and in fact, En-
coder 1 can transmit at rates that are larger than the standard
Gel’fand–Pinsker which would be the ca-
pacity had Encoder 2 been of no help.
Claim 1: The capacity of the state-dependent binary memo-

ryless MAC shown in Fig. 2 is given by

(28)

Proof:
1) The achievability follows from Theorem 1, as follows. Set

and , , with in-
dependent of in Theorem 1. Evaluating the first
inequality, we obtain

(29)

(30)

(31)

(32)

(33)

(34)

(35)
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where (34) follows since and
is a Markov chain, and the last equality follows by the

Markov relation for this example.
Evaluating the second inequality, we obtain

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

where (40) follows since is independent of .
Now, observe that with the choice
independent of , we have
and, so, the right-hand side (RHS) of (43) is larger than
the RHS of (35). This shows the achievability of the rate

.
2) The converse follows straightforwardly by specializing
Theorem 2 (or the cut-set upper bound) to this example,

(44)

(45)

(46)

(47)

(48)

(49)

where (47) holds since conditioning reduces entropy, and
(48) holds by the Markov relation .

Claim 2: The capacity of the state-dependent binary memo-
ryless MAC shown in Fig. 2 satisfies

(50)

Proof: Claim 2 is a simple consequence of Claim 1 and
known results on the capacity of the binary dirty paper channel
(see, for example, [43] and references therein). More specifi-
cally, the capacity in Claim 1 is that of a point-to-point
state-dependent additive binary channel with a Bernoulli
state known at both transmitter and receiver ends, a Bernoulli

noise representing the binary symmetric channel and av-
erage input constraint at the transmitter. Thus, an explicit
characterization of is given by [43]

(51)

Let now be themaximum achievable rate had the strictly
causal part of the state been of no utility, or equivalently,

had Encoder 2 been of no help. is the capacity of a binary
dirty paper channel given by [43]

(52)

where and the function , defined for
, is given by

if
if

(53)

Observing that for all , it is
easy to see that .
Remark 4: In this example, the encoder that knows the states

only strictly causally simply conveys these states to the receiver,
noiselessly. The receiver then becomes aware of the channel
states fully (since the delay in learning these states at the de-
coder has no impact on the capacity). This explains why En-
coder 1 can transmit at rates that can be strictly larger than the
standard Gel’fand–Pinker rate (52); and in fact achieves the ca-
pacity (50) of a state-dependent additive binary channel with the
states known at both transmitter and receiver ends.

C. Common-Message Capacity

In this section, we study the important case in which the two
encoders transmit only the common message, i.e., . The
following corollary characterizes the capacity in this case, to
which we refer as common-message capacity.
Corollary 2: The common message capacity, , of the MAC

with common message and states known noncausally at one en-
coder and strictly causally at the other encoder is given by

(54)

where the maximization is over joint measures of
the form

(55)

Proof: The proof of Corollary 2 appears in Appendix F.
Remark 5: The common-message capacity of our model in

Corollary 2 coincides with the common-message of the model
with the state sequence known noncausally at Encoder 1 and
not at all at Encoder 2 [5]. That is, can also be obtained by
relaxing the constraint on in the region defined by (10)
and (11). This shows that the knowledge of the states at Encoder
2 only strictly causally does not increase the common-message
capacity. We should, however, note that this result is not a direct
consequence of that in a MAC a state that is known only strictly
causally at all encoders does not increase the capacity; and, so,
the converse proof is needed here.

IV. MEMORYLESS GAUSSIAN CASE

In this section, we consider a two-user state-dependent
Gaussian MAC in which the channel states and the noise are
additive and Gaussian.
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A. Channel Model

As in Section II, we assume that Encoder 1 knows the
channel states noncausally and Encoder 2 knows the channel
states strictly causally. The two encoders send some common
message , and, in addition, Encoder 1 sends an individual
message . At time instant , the channel output is related
to channel inputs and from the two encoders, the
channel state and the noise by

(56)

where and are zero-mean Gaussian random variables with
variance and , respectively. The random variables and
at time instant are mutually independent, and

independent from for . Also, at time , the input
is independent from the state .

We consider the individual power constraints on the trans-
mitted power

(57)

The definition of a code for this channel is the same as given in
Section II, with the additional power constraints (57).

B. Capacity Region

The following theorem characterizes the capacity region of
the studied Gaussian model.
Theorem 4: The capacity region of the Gaussian model (56)

is given by the set of all the rate pairs satisfying

(58)

where the maximization is over , such
that

(59)

Proof: An outline proof of Theorem 4 is given in
Appendix G.
Remark 6: The capacity region of our model in Theorem 4

coincides with that of the model (56) but with the state sequence
known noncausally at Encoder 1 and not all at Encoder 2 [5,

Th. 7]. Then, an implication of Theorem 4 is that it is optimal for
our model to just ignore the states that are known at En-
coder 2 and use the coding scheme of [5]. That is, the availability
of the states only strictly causally at the encoder that sends only
the common message in our model does not increase the ca-
pacity region any further. While one could expect some utility
of the collaborative transmission of a lossy version of the state to
the decoder as in the memoryless discrete setup (and also in the
Gaussian setups of [15], [16], and [18]), a direct consequence of
our converse proof is that this would be of no help, in the sense

that it would not result in better transmission rates. This can be
interpreted as follows. As can be seen from the proof of The-
orem 1, the joint transmission of the state to the decoder aims
at equipping it with an estimate of this state. This state estimate
is then utilized as decoder side information for the decoding of
the information messages. In the discrete memoryless case, this
can be beneficial, in general, for the transmission of the private
message, not the commonmessage, as we already mentioned. In
the Gaussian case, however, for the transmission of the private
message, Encoder 1 knows the state noncausally, and therefore,
it can cancel its effect completely using a variation of the stan-
dard dirty paper scheme [44], with no need to diminishing its
effect via the joint transmission of the compressed version of
the state.
The following corollary follows straightforwardly from The-

orem 4.
Corollary 3: The common message capacity, , of the

Gaussian model (56) is given by

(60)

where the maximization is over , such
that

(61)

V. CONCLUSION

In this paper, we consider a state-dependent MAC with the
channel state available noncausally at one of the encoders and
only strictly causally at the other encoder. The decoder is not
aware of the channel state. Both encoders transmit a common
message and, in addition, Encoder 1, the encoder that knows the
state noncausally, transmits an individual message.We study the
capacity region of this communication model. The analysis also
helps understanding the utility of revealing the state only strictly
causally to the encoder that sends only the common message as
well as optimal compressions to perform it.
In the discrete memoryless case, we characterize the ca-

pacity region of this model with a single-letter expression. In
particular, the analysis reveals optimal ways of exploiting the
knowledge of the state only strictly causally at the encoder that
sends only the common message. The encoders collaborate to
convey to the decoder a lossy version of the state, in addition
to transmitting the information messages through a general-
ized Gel’fand–Pinsker binning. Particularly important in this
problem are the questions of 1) optimal ways of performing
the state compression, and 2) whether or not the compression
indices should be decoded uniquely. We develop two optimal
coding schemes that perform the state compression differently.
The first coding scheme is à-la noisy network coding by Lim
et al. or the quantize-map-and-forward by Avestimeher et al.,
i.e., with no binning and nonunique decoding of the compres-
sion indices. The second coding scheme employs Wyner–Ziv
binning with backward decoding and nonunique decoding of
the compression indices. We note that backward decoding and
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nonunique decoding seem to be key elements for the optimality
of the Wyner–Ziv-based coding scheme. Next, by exploiting
our outer bound and the involved auxiliary variables specifi-
cally, we show that, although not required in general, for our
specific model, the compression indices can in fact be decoded
uniquely essentially without altering the capacity region but at
the expense of larger alphabets sizes for the auxiliary random
variables.
The capacity region contains that of the model of [5], and this

shows that revealing the state even only strictly causally to the
encoder that sends only the common message is beneficial and
enlarges the capacity region in general. Furthermore, by investi-
gating a discrete memoryless example, we show that this inclu-
sion can be strict, thus demonstrating the utility of conveying a
compressed version of the state to the decoder cooperatively by
the encoders.
We also specialize our results to the case in which the two

encoders send only the common message. We characterize the
common-message capacity and show that knowing the states
only strictly causally at one of the encoders is not beneficial in
this case.
Furthermore, we also study the memoryless Gaussian set-

ting in which the channel state and the noise are additive and
Gaussian. In this case, we establish an operative outer bound on
the achievable rate pairs and then show that this outer bound
is achievable, thus yielding a closed-form expression of the ca-
pacity region. Unlike the discrete memoryless case, we show
that the knowledge of the states only strictly causally at the en-
coder that sends only the common message does not increase
the capacity region in this case.

APPENDIX A
PROOF OF PROPOSITION 1

Part 1: To prove the convexity of the region, we use a stan-
dard argument. We introduce a time-sharing random variable
and define the joint distribution

(A-1)

(A-2)

Let now be the common and individual rates re-
sulting from time sharing. Then,

(A-3)

(A-4)

(A-5)

(A-6)

(A-7)

(A-8)

where . That is, the time sharing random variable
is incorporated into the auxiliary random variable . This shows
that time sharing cannot yield rate pairs that are not included in
and, hence, is convex.

Part 2: To prove that the region is not altered if one
restricts the random variables and to have their alphabets
restricted as indicated in (9), we invoke the support lemma [46,
p. 310]. Fix a distribution of and,
without loss of generality, let us denote the product set

, .
To prove the bound (9a) on , note that we have

(A-9)

and

(A-10)

Hence, it suffices to show that the following functionals of
:

(A-11a)

(A-11b)

(A-11c)

can be preserved with another measure . Observing that

there is a total of functionals in (A-11), this
is ensured by a standard application of the support lemma, and
this shows that the alphabet of the auxiliary random variable
can be restricted as indicated in (9a) without altering the region
.
Once the alphabet of is fixed, we apply similar ar-

guments to bound the alphabet of , where this time
functionals must be satisfied

in order to preserve the joint distribution of , and
one more functional to preserve

(A-12a)

(A-12b)

This shows that the alphabet of the auxiliary random variable
can be restricted as indicated in (9b) without altering the region
, and completes the proof of Proposition 1.



ZAIDI et al.: CAPACITY REGION OF COOPERATIVE MULTIPLE-ACCESS CHANNEL WITH STATES 6163

APPENDIX B
PROOF OF THEORM 1

Throughout this section, we denote the set of strongly jointly
-typical sequences [45, Ch. 14.2] with respect to the distribu-
tion as .

A. Direct Part of Theorem 1

To bound the probability of error, we assume without loss of
generality that the compression indices are all equal to unity,
i.e., .
We examine the probability of error associated with each of

the encoding and decoding procedures. The events , , and
correspond to encoding errors, and the events , , ,

and correspond to decoding errors.
• Let where is the event that, for
the encoding in block , there is no covering codeword

strongly jointly typical with
given , i.e.,

(B-1)

For , the probability that
is not jointly typical goes to zero as

, by the asymptotic equipartition property [45, p.
384]. Then, for jointly typical,
the covering lemma [47, Lecture Note 3] ensures that
the probability that there is no such that

is strongly jointly typical
given is exponentially small for large
provided that the number of covering codewords is
greater than , i.e.,

(B-2)

Thus, if (B-2) holds, and,
so, by the union of bound over the blocks,

.
• Let where is the event that, for the
encoding in block , Encoder 1 can find no covering
codeword strongly jointly typical with
given . Similarly to the event , it is easy
to see that if (B-2) is true.

• Let where is the event that,
for the encoding in block , there is no sequence

jointly typical with given
and , i.e.,

(B-3)

To bound the probability of the event , we use a
standard argument [3]. More specifically, conditioned
on and , the complement events of and
, respectively, we have that the state is jointly

typical with . Then, for
generated independently of

given and , with i.i.d. com-
ponents drawn according to , the probability
that is jointly typical with
given and is greater than

for sufficiently large . There
is a total of such ’s in each bin. Conditioned on
and , the probability of the event , the probability
that there is no such , is therefore bounded as

(B-4)

Taking the logarithm on both sides of (B-4) and sub-
stituting , we obtain that

. Thus,
and, so, by the union bound,

.
• For the decoding of the common message at the re-
ceiver, let where is the event that

, , ,

is not jointly typical, i.e.,

(B-5)

Conditioned on , , and , the vectors ,
, and

are jointly typical and with . Then, conditioned on
, , and , the vectors , ,

, and are
jointly typical by the Markov lemma [45, p. 436], i.e.,

. Thus, by the
union bound over the blocks,

.
• For the decoding of the common message at the
receiver, let be the event that ,

, , and are
jointly typical for all and some

, , and
such that , i.e.,

(B-6)

To bound the probability of the event , define the fol-
lowing event for given , ,

and such that :
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Note that for the vectors ,
and are generated

independently of . Hence, by the joint typicality lemma
[47, Lecture Note 2], we get

(B-7)

Then, conditioned on the events , , , and , the
probability of the event can be bounded as given by
(B-8) at the bottom of the page.
The RHS of (B-8) tends to zero as if

(B-9)

Finally, using (B-2) to eliminate from (B-9) and taking
, we get as long as

(B-10)

where the last equality follows since and are inde-
pendent.

• For the decoding of the individual message at the
receiver, let , where is the event that

, , ,
and are not jointly typical, i.e.,

(B-11)

From our analysis of the probability of the error event ,
it is easy to see that, conditioned on , and , the
event has exponentially small probability. Thus, by the
union bound over the blocks,
as , where .

• For the decoding of the individual message at
the receiver, let be the event that ,

, , and
are jointly typical for all and some

, and
such that , i.e., as

given by Eq.(B-12) at the bottom of the next page.
To bound the probability of the event , define the fol-
lowing event for given ,

and ,

(B-8)
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Then, the probability of the event given by (B-12) can
be bounded as given by (B-13) at the bottom of this page.
For , the probability of the
event conditioned on

can be bounded as fol-
lows, depending on the values of and :

i) if then

is generated independently of the

output vector irrespective to the value of , and
so, by the joint typicality lemma [47, Lecture Note 2]

(B-14)
ii) if and , then

is

generated independently of the output vector
conditionally on , and hence

(B-15)
iii) if and , then

is generated independently of the output vector
conditionally on and ,
and hence

(B-16)

Now, note that since , if
and the following holds irrespective to

the value of :

(B-17)
Let and . If the
sequence has ones, we have

(B-18)

Continuing from (B-13), we then bound the probability of
the event as given by (B-19) at the bottom of the next
page.
The RHS of (B-19) tends to zero as if

(B-20)

Finally, using (B-2) to eliminate from (B-20) and taking
, we get as long as

(B-21)
and

(B-22)

(B-12)

(B-13)
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Finally, noting that the condition (B-22) is redundant as
in (B-10), we obtain that the probability of error tends to zero
as and if

(B-23a)

(B-23b)

This completes the proof of achievability.

B. Converse Part of Theorem 1

We prove that for any code consisting of a
mapping at Encoder 1, a sequence
of mappings , , at En-
coder 2, and a mapping at the decoder
with average error probability as and rates

and , there exist random
variables with and satis-
fying (9) such that the joint distribution is of the
form

(B-24)

the marginal distribution of is , i.e.,

(B-25)

and the rate pair satisfies (8).
Define the random variables

(B-26)

Observe that the random variables so defined satisfy

(B-27)

We first prove the following auxiliary result.
Lemma 1: The following inequalities hold:

(B-28)

(B-29)

(B-19)
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Proof:
i) We show the first inequality in the lemma as follows:

(B-30)

(B-31)

(B-32)

(B-33)

(B-34)

(B-35)

(B-36)

(B-37)

(B-38)

(B-39)

(B-40)

where and follow from Csiszár and Körner’s Sum
Identities[48]

(B-41)

(B-42)

follows from the fact that is a deterministic func-
tion of , and follows by the definition of
the random variables and in (B-26).

ii) Similarly, we show the second inequality in the lemma as
follows:

(B-43)

(B-44)

(B-45)

(B-46)

(B-47)

(B-48)

(B-49)

(B-50)

(B-51)

(B-52)

(B-53)

(B-54)

where follows from Csiszár and Körner’s Sum Iden-
tity (B-41), follows from the fact that the state is
i.i.d., follows from the fact that is a deterministic
function of , and follows by the definition
of the random variables and in (B-26).
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We continue the proof of the converse. The decoder map
recovers from with vanishing average error prob-
ability . By Fano’s inequality, we have

(B-55)

where as .
We can bound the individual rate as

(B-56)

(B-57)

(B-58)

(B-59)

(B-60)

where follows by using (B-55) and the fact that
, follows from the

fact that the messages are independent of each other and of the
state sequence, and follows by Lemma 1.
Similarly, we can bound the sum rate as

(B-61)

(B-62)

(B-63)

(B-64)

(B-65)

where follows by (B-55), follows from the fact that the
messages are independent of the state sequence, and follows
by Lemma 1.
From the above, we get that

(B-66)

The statement of the converse follows now by applying to
(B-66) the standard time-sharing argument and taking the
limits of large . This is shown briefly here. We introduce a
random variable which is independent of , and uniformly
distributed over . Set , , ,

, , and . Then, considering the
first bound in (B-66), we obtain

(B-67)

Similarly, considering the second bound in (B-66), we obtain

(B-68)

The distribution on from the given
code is of the form

(B-69)

Let us now define and . Using
(B-66)–(B-68), we then get

(B-70)

where the distribution on , obtained by
marginalizing (B-69) over the time sharing random variable ,
satisfies .
So far we have shown that, for a given sequence of

, codes with going to zero as goes to
infinity, there exist random variables
such that the rate pair essentially satisfies the inequal-
ities in (8), i.e., .
This completes the proof of the converse part and of Theorem

1.

APPENDIX C
PROOF OF THEOREM 2

The transmission takes place in blocks. The common mes-
sage is divided into blocks of
bits each, and the individual message is divided into
blocks of bits each. For convenience, we
let (a default value). We thus have

, , ,
, and , where

is the number of commonmessage bits, is the number
of individual message bits, is the number of channel uses, and

and are the overall rates of the common and indi-
vidual messages, respectively. For fixed , the average rate pair

over blocks can be made as close to
as desired by making large.

Codebook Generation: Fix a measure
. Fix and denote , ,

, , .
1) We generate i.i.d. codewords indexed by

, , each with i.i.d. compo-
nents drawn according to .

2) For each codeword , we generate i.i.d. code-
words indexed by , each with
i.i.d. components drawn according to .

3) For each pair of codewords ,
we generate a collection of i.i.d. codewords
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indexed by ,
, each with i.i.d. components draw ac-

cording to .
4) Randomly partition the set into cells ,

.
Encoding: Suppose that a common message

and an individual message are to be transmitted. As
we mentioned previously, message is divided into
blocks and message is divided into
blocks , with the pair messages
sent in block . We denote by the channel state in block ,

. For convenience, we let and
(a default value), and the index of the cell containing ,
i.e., . The encoding at the beginning of the block ,

, is as follows.
Encoder 2, which has learned the state sequence ,

knows and looks for a compression index
such that is strongly jointly typical with

and . If there is no such index or the
observed state is not typical, is set to 1 and an error
is declared. If there is more than one such index , choose
the smallest. One can show that the probability of error of this
event is arbitrarily small provided that is large and

(C-1)

Encoder 2 then transmits the vector , where
is such that .

Encoder 1 obtains similarly. It then finds
the smallest compression index such that

is strongly jointly typical with and
. Again, if there is no such index or the observed

state is not typical, is set to 1 and an error is declared.
Let such that . Next, Encoder 1 looks
for the smallest such that is jointly
typical with , and . Denote
this by . If such is not
found, an error is declared and is set
to . Encoder 1 then transmits a vector which is
drawn i.i.d. conditionally given , ,

and (using the conditional
measure induced by ).

Decoding: Let denote the information received at the
receiver at block , . The receiver collects these
information until the last block of transmission is completed.
The decoder then performs Willem’s backward decoding [49],
by first decoding the pair from .

1) Decoding in Block : The decoding of the pair
is performed in four steps, as follows.

Step (a): The decoder knows and looks
for the unique cell index such that the vector

is jointly typical with . The decoding
operation in this step incurs small probability of error as
long as is sufficiently large and

(C-2)

Step (b): The decoder now knows (i.e., the index of
the cell in which the compression index lies). It then

decodesmessage by looking for the unique
such that , ,

, and
are jointly typical for some ,

, , and . One can show
that the decoder obtains the correct as long as
and are large and

(C-3)
Step (c): The decoder knows and can again obtain
the correct if is large and (C-2) is true. This is
accomplished by looking for the unique such that the
vector is jointly typical with .
Step (d): Finally, the decoder, which now knows message

and the cell index (but not the exact compres-
sion index ), estimates using . It de-
clares that was sent if there exists a unique
such that , ,

, and are
jointly typical for some and .
• If , the decoder finds the correct
for sufficiently large if

(C-4)

• If , the decoder finds the correct
for sufficiently large if

(C-5)

2) Decoding in Block , :
Next, for ranging from to 2, the decoding of the pair

is performed similarly, in five steps, by using
the information received in block and the information

received in block . More specifically, this is done
as follows.

Step (a): The decoder knows and looks for the unique
cell index such that the vector is
jointly typical with . The decoding error in this step is
small for sufficiently large if (C-2) is true.
Step (b): The decoder knows and decodes mes-
sage from . It looks for the unique
such that , ,

and are
jointly typical for some , ,

and . One can show that the
decoding error in this step is small for sufficiently large
if (C-3) is true.
Step (c): The decoder knows and obtains
by looking for the unique such that the vector

is jointly typical with . For
sufficiently large , the decoder obtains the correct
with high probability if (C-2) is true.
Step (d): Finally, the decoder, which now knows message

and the cell index (but not the exact compres-
sion index ), estimates message using .
It declares that was sent if there exists a unique
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such that , ,
, and are

jointly typical for some and .
• If , the decoder finds the correct for
sufficiently large if (C-4) is true.

• If , the decoder finds the correct for
sufficiently large if (C-5) is true.

Fourier–Motzkin Elimination: From the above, we get that
the error probability is small provided that is large and

(C-6a)

(C-6b)

(C-6c)

(C-6d)

(C-6e)

We now apply Fourier–Motzkin Elimination (FME) to project
out and from (C-6). Projecting out from (C-6), we get

(C-7a)

(C-7b)

(C-7c)

(C-7d)

Note that the inequality (C-7c) can be implied by (C-7d) since
, and, so, is redundant in (C-7). Finally, projecting out

from the remaining system, we obtain

(C-8)

(C-9)

This completes the proof of Theorem 2.

APPENDIX D
PROOF OF COROLLARY 1

A. Converse Part

Investigating the proof of Theorem 1 in Appendix B, it can be
seen that the auxiliary random variables and satisfy tacitly
the condition

(D-1)

This can be seen by noticing that (with the notation of
Appendix B)

(D-2)

(D-3)

and then observing that ,
which together yield

(D-4)

and, so, after standard single letterization, the condition (D-1).

B. Direct Part

The codebook generation and the encoding process remain
exactly as in the proof of Theorem 2 in Appendix C. The de-
coding at the receiver is modified in a way to get the compres-
sion indices decoded uniquely, as follows (with the notation of
Appendix C).

Decoding: Let denote the information received at the
receiver at block , . The receiver collects these
information until the last block of transmission is completed.
The decoder then performs Willem’s backward decoding [49],
by first decoding the pair from .

1) Decoding in Block : The decoding of the pair
is performed in five steps, as follows.

Step (a): The decoder knows and looks
for the unique cell index such that the vector

is jointly typical with . This de-
coding operation incurs small probability of error as long
as is sufficiently large and

(D-5)

Step (b): The decoder now knows (i.e., the index of
the cell in which the compression index lies). It then
decodesmessage by looking for the unique
such that , ,

, and
are jointly typical for some ,

, and . One can show
that the decoder obtains the correct as long as
and are large and

(D-6)
Step (c): The decoder knows and can again obtain
the correct if is large and (D-5) is true. This is
accomplished by looking for the unique such that the
vector is jointly typical with .
Step (d): The decoder calculates a set of
such that if ,

, are jointly typical. It then
declares that was sent in block if

(D-7)

One can show that with arbitrarily high
probability provided that is sufficiently large and

(D-8)

Step (e): Finally, the decoder, which now knows message
, the cell index and the compression index

, estimates using . It de-
clares that was sent if there exists a unique
such that , ,

, and are
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jointly typical for some . One can show that
the decoder obtains the correct as long as is
large and

(D-9)

2) Decoding in Block , :
Next, for ranging from to 2, the decoding of the pair

is performed similarly, in five steps, by using
the information received in block and the information

received in block . More specifically, this is done
as follows.

Step (a): The decoder knows and looks for the unique
cell index such that the vector is
jointly typical with . The decoding error in this step is
small for sufficiently large if (D-5) is true.
Step (b): The decoder knows and decodes mes-
sage from . It looks for the unique
such that , ,

, and are
jointly typical for some , ,

and . One can show that the
decoding error in this step is small for sufficiently large
if (D-6) is true.
Step (c): The decoder knows and obtains
by looking for the unique such that the vector

is jointly typical with . For
sufficiently large , the decoder obtains the correct
with high probability if (D-5) is true.
Step (d): The decoder calculates a set of
such that if ,

, are jointly typical. It then de-
clares that was sent in block if

(D-10)

One can show that, for large , with arbi-
trarily high probability provided that (D-8) is true.
Step (e): Finally, the decoder knows message , the
cell index , and the compression index ,
and estimates using . It declares
that was sent if there exists a unique
such that , ,

, and are
jointly typical for some . One can show that
the decoding error in this step is small for sufficiently
large if (D-9) is true.

Fourier–Motzkin Elimination: From the above, we get that
the error probability is small provided that is large and

(D-11a)

(D-11b)

(D-11c)

(D-11d)

(D-11e)

Applying FME to project out and from (D-11), we get

(D-12a)

(D-12b)

(D-12c)

C. Bounds on and

It remains to show that the rate pair (20) is not altered if one
restricts the random variables and to have their alphabet
sizes limited as indicated in (22). This is done by a standard
application of the support lemma [46, p. 310], essentially by
following the lines in the proof of Theorem 1 in Appendix B
and noticing that, this time, because of the additional nonnega-
tivity constraint, one more functional needs to be preserved in
bounding the cardinality of ,

(D-13)

This concludes the proof of Corollary 1.

APPENDIX E
PROOF OF THEOREM 3

We prove that for any code consisting of a
mapping at Encoder 1, a sequence
of mappings , , at Encoder
2, and a mapping at the decoder with
average error probability as and rates

and , the rate pair
must satisfy (23).
Fix and consider a given code of block length . The joint

probability mass function on
is given by (E-1), shown at the bottom of the page, where

(E-1)
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is equal 1 if and 0
otherwise, and is equal 1 if
and 0 otherwise.
The proof of the bound on follows trivially by revealing

the state to the decoder.
The proof of the bound on the sum rate is as follows.

The decoder map recovers from with vanishing
average error probability. By Fano’s inequality, we have

(E-2)

where as

(E-3)

where follows from Fano’s inequality, follows from the
fact that the state is i.i.d. and is independent of the messages,

follows from
, and the fact that is a deterministic function of

, and follows from the fact that conditioning
reduces entropy.
Finally, we obtain the desired bound from (E-3) by standard

single letterization [46].

APPENDIX F
PROOF OF COROLLARY 2

Relaxing the constraint on in Theorem 1, we obtain

(F-1)

where the maximization is over joint measures
of the form

(F-2)

The corollary then follows by substituting , and
noticing that the distribution on is given by

(F-3)

(F-4)

(F-5)

(F-6)

APPENDIX G
PROOF OF THEOREM 4

A. Direct Part

The achievability follows by ignoring the strictly causal part
of the state at Encoder 2 and using the generalized dirty paper
coding scheme of [5, Th. 7].

B. Converse Part

For the converse part, we use the outer bound of Theorem 3
for the discreteMACwhich can be readily extended to memory-
less channels with discrete time and continuous alphabets using
standard techniques [50]. Then, we obtain an outer bound on the
capacity region of the Gaussian MAC in terms of the closure of
the convex hull of the set of rate pairs satisfying

(G-1)

for some probability distribution of the form
such that and

. The rest of the converse proof follows by rea-
soning and using algebra similar to in the proofs of [5, Th. 7]
and [11, Th. 4], and is omitted for brevity.
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