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On Cooperative Multiple Access Channels
With Delayed CSI at Transmitters

Abdellatif Zaidi and Shlomo Shamai (Shitz), Fellow, IEEE

Abstract— We consider a cooperative two-user multiaccess
channel in which the transmission is controlled by a random
state. Both encoders transmit a common message and, one of
the encoders also transmits an individual message. We study
the capacity region of this communication model for different
degrees of availability of the states at the encoders, causally or
strictly causally. In the case in which the states are revealed
causally to both encoders but not to the decoder we find an
explicit characterization of the capacity region in the discrete
memoryless case. In the case in which the states are revealed only
strictly causally to both encoders, we establish inner and outer
bounds on the capacity region. The outer bound is nontrivial,
and has a relatively simple form. It has the advantage of
incorporating only one auxiliary random variable. In particular,
it suggests that there is none, or at best only little, to gain from
having the encoder that transmits both messages also sending an
individual description of the state to the receiver, in addition to
the compressed version that is sent cooperatively with the other
encoder. We then introduce a class of cooperative multiaccess
channels with states known strictly causally at both encoders for
which the inner and outer bounds agree, and so we characterize
the capacity region for this class. In this class of channels, the
state can be obtained as a deterministic function of the channel
inputs and output. We also study the model in which the states
are revealed, strictly causally, in an asymmetric manner, to only
one encoder. Throughout this paper, we discuss a number of
examples, and compute the capacity region of some of these
examples. The results shed more light on the utility of delayed
channel state information for increasing the capacity region of
state-dependent cooperative multiaccess channels, and tie with
recent progress in this framework.

Index Terms— Capacity, multiaccess channels, channel state
information, state compression, block Markov coding, feedback.

I. INTRODUCTION

IN THIS paper, we study a two-user state-dependent
multiple access channel with the channel states

revealed – depending on the scenario, only strictly-causally
or causally, to both or only one of the encoders. Both
encoders transmit a common message and, in addition, one
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of the encoders also transmits an individual message. More
precisely, let Wc and W1 denote the common message and
the individual message to be transmitted in, say, n uses
of the channel; and Sn = (S1, . . . , Sn) denote the state
sequence affecting the channel during the transmission.
In the causal setting, at time i both encoders know the
channel states up to and including time i , i.e., the sequence
Si = (S1, . . . , Si−1, Si ). In the strictly causal setting, at
time i the encoders know the channel states only up to time
i − 1, i.e., the sequence Si−1 = (S1, . . . , Si−1). We study the
capacity region of this state-dependent MAC model under
both causal and strictly causal settings.

For the model with causal states, we characterize the capac-
ity region in the discrete memoryless case. We show that a
cooperative scheme that is based on Shannon strategies [1]
is optimal. This is to be opposed to the case of MAC with
independent inputs in which it has been shown in [2, Sec. III]
that Shannon strategies are suboptimal in general.

For the model with strictly causal states at both
encoders, while building on the recent related work [2] (see
also [3]–[5]), it can be shown that the knowledge of the
states strictly causally at the encoders is generally helpful,
characterizing the capacity region of this model does not seem
to be easy to obtain, even though one of the encoders knows
both messages. In particular, while it can be expected that
gains can be obtained by having the encoders cooperate in
sending a description of the state to the receiver through
a block Markov coding scheme, it is not easy to see how
the compression of the state should be performed optimally.
For instance, it is not clear whether sending an individual
layer of state compression by the encoder that transmits both
messages increases the transmission rates beyond what is
possible with only the cooperative layer. Note that for the
non-cooperative MAC of [2] it is beneficial that each encoder
sends also an individual description of the state to the receiver,
in addition to the description of the state that is sent cooper-
atively by both encoders; and this is reflected therein through
that the inner bound of [2, Th. 2] strictly outperforms that
of [2, Th. 1] – the improvement comes precisely from the fact
that, for both encoders, in each block a part of the input is
composed of an individual compression of the state and the
input in the previous block.

In this paper, for the model with states known strictly
causally at both encoders we establish inner and outer bounds
on the capacity region. The outer bound is non trivial, and has
the advantage of having a relatively simple form that incorpo-
rates directly the channel inputs X1 and X2 from the encoders
and only one auxiliary random variable. To establish this outer
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bound, we first derive another outer bound on the capacity
region whose expression involves two auxiliary random vari-
ables. We then show that this outer bound can be recast into
a simpler form which is more insightful, and whose expres-
sion depends on only one auxiliary random variable. This is
obtained by showing that the second auxiliary random variable
can be chosen optimally to be a constant. In addition to its
simplicity, the resulting expression of the outer bound has the
advantage of suggesting that, by opposition to the MAC with
independent inputs of [2], for the model that we study there is
no gain, or at best only little, to expect from having the encoder
that transmits both messages also sending an individual com-
pression of the state to the receiver, in addition to the cooper-
ative compression. Note, however, that optimal forms of com-
pressions are still to be found, since the tightness of the outer
bound is still to be shown in general. Next, using the insights
that we gain from the obtained outer bound, we establish an
inner bound on the capacity region. This inner bound is based
on a Block-Markov coding scheme in which the two encoders
collaborate in both transmitting the common message and also
conveying a lossy version of the state to the decoder. In this
coding scheme, the encoder that transmits both messages does
not send any individual compression of the state beyond what
is performed cooperatively with the other encoder.

The inner and outer bounds differ only through the associ-
ated joint measures; and, for instance, a Markov-chain relation
that holds for the inner bound and not for the outer bound.
Next, by investigating a class of channels for which the state
can be obtained as a deterministic function of the channel
inputs and output, we show that the inner and outer bounds
agree; and, so, we characterize the capacity region in this case.

Furthermore, we also study the case in which the state is
revealed (strictly causally) to only one encoder. In this case, we
show that revealing the state to the encoder that sends only the
common message can increase the capacity region, whereas
revealing it to the encoder that sends both messages does not
increase the capacity region. In the former case, we show that
there is dilemma at the informed encoder among exploiting
the available state and creating message-cooperation with the
other encoder. We develop a coding scheme that resolves this
tension by splitting the codeword of the informed encoder into
two parts, one that is meant to carry only the description of
the state and is independent of the other encoder’s input and
one which is sent cooperatively with the other encoder and
is generated independently of the state. We also show that
this scheme is optimal in some special cases. Throughout the
paper, we also discuss a number of examples; and compute
the capacity for some of these examples.

A. Related Work

There is a connection between the role of states that are
known strictly causally at an encoder and that of output
feedback given to that encoder. In single-user channels, it
is now well known that strictly causal feedback does not
increase the capacity [6]. In multiuser channels or networks,
however, the situation changes drastically, and output feedback
can be beneficial — but its role is still highly missunderstood.

One has a similar picture with strictly causal states at the
encoder. In single-user channels, independent and identically
distributed states available only in a strictly causal manner
at the encoder have no effect on the capacity. In multiuser
channels or networks, however, like feedback, strictly causal
states in general increase the capacity.

The study of networks with strictly causal, or delayed,
channel state information (CSI) has spurred much interest
over the few recent years, due to its importance from
both information-theoretic and communications aspects.
Non-cooperative multiaccess channels with delayed state
information are studied in [2] in the case in which the
transmission is governed by a common state that is revealed
with delay to both transmitters, and in [3] and [4] in the
case in which the transmission is governed by independent
states each revealed with delay to a different transmitter. The
capacity region of a multiaccess channel with states known
strictly causally at the encoder that sends only the common
message and noncausally at the other encoder is established
in [5] (see also [7], [8]).

A related line of research, initiated with the work of
Maddah-Ali and Tse [9], investigates the usefulness of stale
or outdated channel state information - typically outdated
values of fading coefficients, in wireless networks. In such
communication problems, the CSI is learned at the transmitters
typically through output CSI feedback; and the utility of the
outdated CSI at the transmitters is demonstrated typically by
investigating gains in terms of the degrees of freedom or
multiplexing [10] offered by the network. In this regard, the
availability of outdated CSI at the transmitters is generally
exploited through coding schemes that rely on some sorts
of interferences alignment [11]. Examples include multiple-
input multiple-output (MIMO) broadcast channels [12]–[14],
MIMO interference channels [15], [16] and MIMO X channels
with [17] and without [18], [19] security constraints.

A growing body of work studies multi-user state-dependent
models. The problem of joint communication and state estima-
tion, initiated in [20], has been studied recently in [21] for the
causal state case and in [22] in the presence of a helper node.
Relay channels with states are studied in [23]–[31]. Recent
advances in the study of broadcast channels with states can
be found in [32] and [33] (see also the references therein);
and other related contributions on multiaccess channels with
noncausal states at the encoders can be found in [34]–[38],
among other works. Finally, for related works on the connected
area of multiuser information embedding the reader may refer
to [39] and [40] and the references therein.

B. Outline and Notation

An outline of the remainder of this paper is as follows.
Section II describes in more details the problem setup.
In Section III we study the setting in which the states are
revealed (strictly causally) to both encoders; and in Section IV
we study the setting in which the states are revealed (strictly
causally) to only one encoder. Section V characterizes the
capacity region of the cooperative multiaccess channel with
states revealed causally to both encoders. Section VI provides
some concluding remarks.
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Throughout the paper we use the following notations. Upper
case letters are used to denote random variables, e.g., X ;
lower case letters are used to denote realizations of random
variables, e.g., x ; and calligraphic letters designate alphabets,
i.e., X . The probability distribution of a random variable X
is denoted by PX (x). Sometimes, for convenience, we write
it as PX . We use the notation EX [·] to denote the expectation
of random variable X . A probability distribution of a random
variable Y given X is denoted by PY |X . The set of probability
distributions defined on an alphabet X is denoted by P(X ).
The cardinality of a set X is denoted by |X |. For convenience,
the length n vector xn will occasionally be denoted in boldface
notation x. For integers i ≤ j , we define [i : j ] := {i, i +
1, . . . , j}. Throughout this paper, we use h2(α) to denote the
entropy of a Bernoulli (α) source, i.e., h2(α) = −α log(α)−
(1 −α) log(1 −α) and p ∗ q to denote the binary convolution,
i.e., p ∗ q = p(1 − q) + q(1 − p). Finally, throughout the
paper, logarithms are taken to base 2, and the complement to
unity of a scalar u ∈ [0, 1] is sometimes denoted by ū, i.e.,
ū = 1 − u.

II. PROBLEM SETUP

We consider a stationary memoryless two-user state-
dependent MAC WY |X1,X2,S whose output Y ∈ Y is controlled
by the channel inputs X1 ∈ X1 and X2 ∈ X2 from the encoders
and the channel state S ∈ S which is drawn according to
a memoryless probability law QS . The state is revealed –
depending on the scenario – strictly causally or causally, to
only one or both encoders. If the state is revealed causally
to Encoder k, k = 1, 2, at time i this encoder knows the
values of the state sequence up to and including time i , i.e.,
Si = (S1, . . . , Si−1, Si ). If the state is revealed only strictly
causally to Encoder k, k = 1, 2, at time i this encoder
knows the values of the state sequence up to time i − 1, i.e.,
Si−1 = (S1, . . . , Si−1).

Encoder 2 wants to send a common message Wc and
Encoder 1 wants to send an independent individual message
W1 along with the common message Wc. We assume that
the common message Wc and the individual message W1 are
independent random variables drawn uniformly from the sets
Wc = {1, · · · ,Mc} and W1 = {1, · · · ,M1}, respectively. The
sequences Xn

1 and Xn
2 from the encoders are sent across a state-

dependent multiple access channel modeled as a memoryless
conditional probability distribution WY |X1,X2,S . The laws gov-
erning the state sequence and the output letters are given by

W n
Y |X1,X2,S(y

n|xn
1 , xn

2 , sn) =
n∏

i=1

WY |X1,X2,S(yi |x1i , x2i , si ) (1)

Qn
S(s

n) =
n∏

i=1

QS(si ). (2)

The receiver guesses the pair (Ŵc, Ŵ1) from the channel
output Y n .

In Figure 1, the state may model some common infor-
mation which is received, with delay, only by authorized
(or connected) entities. Also, in a wireless context, while
fading state variations are often measured at the receivers and

Fig. 1. State-dependent MAC with degraded messages sets and states known,
strictly causally, to both the encoders.

then possibly fed back to the transmitters, certain interfering
signals occurring at the vicinity of the transmitters may be
measured or estimated more effectively directly by these, due
to proximity, rather than at the end nodes.

Definition 1: For positive integers n, Mc and M1, an
(Mc,M1, n, ε) code for the cooperative multiple access chan-
nel with states known strictly causally to both encoders
consists of a sequence of mappings

φ1,i : Wc×W1×S i−1 −→ X1, i = 1, . . . , n (3)

at Encoder 1, a sequence of mappings

φ2,i : Wc×S i−1 −→ X2, i = 1, . . . , n (4)

at Encoder 2, and a decoder map

ψ : Yn −→ Wc×W1 (5)

such that the average probability of error is bounded by ε,

Pn
e = ES

[
Pr

(
ψ(Y n) �= (Wc,W1)|Sn = sn)] ≤ ε. (6)

The rate of the common message and the rate of the individual
message are defined as

Rc = 1

n
log Mc and R1 = 1

n
log M1,

respectively. A rate pair (Rc, R1) is said to be achievable if
for every ε > 0 there exists an (2nRc , 2nR1 , n, ε) code for
the channel WY |X1,X2,S . The capacity region Cs-c of the state-
dependent MAC with strictly causal states is defined as the
closure of the set of achievable rate pairs.

Definition 2: For positive integers n, Mc and M1, an
(Mc,M1, n, ε) code for the cooperative multiple access chan-
nel with states known causally to both encoders consists of a
sequence of mappings

φ1,i : Wc×W1×S i −→ X1, i = 1, . . . , n (7)

at Encoder 1, a sequence of mappings

φ2,i : Wc×S i −→ X2, i = 1, . . . , n (8)

at Encoder 2, and a decoder map (5) such that the probability
of error is bounded as in (6).
The definitions of a rate pair (Rc, R1) to be achievable as
well as the capacity region, which we denote by Cc in this
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case, are similar to those in the strictly-causal states setting in
Definition 1.

Similarly, in the case in which the states are revealed strictly
causally to only one encoder, the definitions of a rate pair
(Rc, R1) to be achievable as well as the capacity region can
be obtained in a way that is similar to that in Definition 1.

III. STRICTLY CAUSAL STATES AT BOTH ENCODERS

In this section, it is assumed that the alphabets S,X1,X2
are finite.

A. Outer Bound on the Capacity Region

Let P̃out
s-c stand for the collection of all random variables

(S,U, V , X1, X2,Y ) such that U , V , X1 and X2 take values
in finite alphabets U , V , X1 and X2, respectively, and satisfy

PS,U,V ,X1,X2,Y (s, u, v, x1, x2, y)

= PS,U,V ,X1 X2(s, u, v, x1, x2)·WY |X1,X2,S(y|x1, x2, s) (9a)

PS,U,V ,X1,X2(s, u, v, x1, x2)

= QS(s)PX2(x2)PX1|X2(x1|x2)·PV |S,X1,X2(v|s, x1, x2)

× PU |S,V ,X1,X2(u|s, v, x1, x2) (9b)

and

0 ≤ I (V , X2; Y )− I (V , X2; S). (10)

The relations in (9) imply that (U, V ) ↔ (S, X1, X2) ↔ Y
is a Markov chain, and X1 and X2 are independent of S.

Define R̃out
s-c to be the set of all rate pairs (Rc, R1) such that

R1 ≤ I (U, X1; Y |V , X2)− I (U, X1; S|V , X2)

Rc + R1 ≤ I (U, V , X1, X2; Y )− I (U, V , X1, X2; S)

for some (S,U, V , X1, X2,Y ) ∈ P̃out
s-c . (11)

As stated in the following theorem, the set R̃out
s-c is an outer

bound on the capacity region of the state-dependent discrete
memoryless MAC with strictly-causal states.

Theorem 1: The capacity region of the multiple access
channel with degraded messages sets and strictly causal states
known only at the encoders satisfies

Cs-c ⊆ R̃out
s-c . (12)

Proof: The proof of Theorem 1 is given in Appendix A.
We now recast the outer bound R̃out into a form that will

be shown to be more convenient (see Remark 1 and Remark 2
below). This is done by showing that the maximizing auxiliary
random variable U in R̃out is a constant, i.e., U = ∅; and can
be formalized as follows. Let Pout

s-c be the collection of all
random variables (S, V , X1, X2,Y ) such that V , X1 and X2
take values in finite alphabets V , X1 and X2, respectively, and
satisfy

PS,V ,X1,X2,Y = QS PX2 PX1|X2 PV |S,X1,X2 WY |X1,X2,S (13)

and the constraint (10). Also, define Rout
s-c to be the set of all

rate pairs (Rc, R1) such that

R1 ≤ I (X1; Y |V , X2) (14a)

Rc + R1 ≤ I (V , X1, X2; Y )− I (V , X1, X2; S) (14b)

for some (S, V , X1, X2,Y ) ∈ Pout
s-c .

It is easy to see that Rout
s-c ⊆ R̃out

s-c , as Rout
s-c can be obtained

from R̃out
s-c by setting U = ∅. As shown in the proof of the

theorem that will follow, R̃out
s-c ⊆ Rout

s-c ; and so Rout
s-c = R̃out

s-c .
Thus, by Theorem 1, Rout is an outer bound on the capacity
region of the state-dependent discrete memoryless MAC model
with strictly-causal states.

Theorem 2: The capacity region of the multiple access
channel with degraded messages sets and strictly causal states
known only at the encoders satisfies

Cs-c ⊆ Rout
s-c . (15)

Proof: The proof of Theorem 2 is given in Appendix B.
The outer bound can be expressed equivalently using R̃out

s-c
or Rout

s-c , since the two sets coincide. However, the form Rout
s-c

of the outer bound is more convenient and insightful. The
following remarks aim at reflecting this.

Remark 1: As we already mentioned, some recent works
have shown the utility of strictly causal states at the encoders
in increasing the capacity region of multiaccess channels in
certain settings. For example, this has been demonstrated for
a MAC with independent inputs and states known strictly
causally at the encoders [2]–[4], and for a MAC with degraded
messages sets with the states known strictly causally to the
encoder that sends only the common-message and noncausally
at the encoder that sends both messages [5], [7], [8]. Also, in
these settings, the increase in the capacity region is created
by having the encoders cooperate in each block to convey a
lossy version of the state of the previous block to the receiver.
Furthermore, in the case of the MAC with independent inputs
of [2], it is shown that additional improvement can be obtained
by having each encoder also sending a compressed version
of the pair (input, state) of the previous block, in addition
to the cooperative transmission with the other encoder of the
common compression of the state. (This is reflected in [2]
through the improvement of the inner bound of Theorem 2
therein over that of Theorem 1). In our case, since one encoder
knows the other encoder’s message, it is not evident à-priori
whether a similar additional improvement could be expected
from having the encoder that transmits both messages also
sending another compression of the state, in addition to that
sent cooperatively. �

Remark 2: A direct proof of the outer bound in its form
Rout

s-c does not seem to be easy to obtain because of the
necessity of introducing two auxiliary random variables in
typical outer bounding approaches that are similar to that of
Theorem 1. In addition to that it is simpler comparatively,
the form Rout

s-c of the outer bound is more convenient and
insightful. It involves only one auxiliary random variable, V ,
(which, in a corresponding coding scheme, would represent
intuitively the lossy version of the state that is to be sent
by the two encoders cooperatively). Because the auxiliary
random variable U (which, in a corresponding coding scheme,
would represent intuitively the additional compression of the
state that is performed by the encoder that transmits both
messages) can be set optimally to be a constant, the outer
bound Rout

s-c suggests implicitly that there is no gain to be
expected from additional compression at Encoder 1. That is,
by opposition to the case of the non-cooperative MAC of [2],
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for our model, for an efficient exploitation of the knowledge
of the states strictly causally at the encoders it seems1 enough
to compress the state only cooperatively. We should mention
that, although somewhat intuitive given known results on the
role of feedback and strictly causal states at the encoder in
point-to-point channels, a formal proof of the aforementioned
fact for the model that we study does not follow directly from
these existing results. �

We now state a proposition that provides an alternative outer
bound on the capacity region of the multiaccess channel with
degraded messages sets and states known only strictly causally
at both encoders that we study. This proposition will turn out
to be useful in Section III-D.
Let R̆out

s-c be the set of all rate pairs (Rc, R1) satisfying

R1 ≤ I (X1; Y |X2, S)

Rc + R1 ≤ I (X1, X2; Y ) (16)

for some measure

PS,X1,X2,Y = QS PX1,X2 WY |S,X1,X2 . (17)

Proposition 1: The capacity region Cs-c of the multiple
access channel with degraded messages sets and strictly causal
states known only at the encoders satisfies

Cs-c ⊆ R̆out
s-c . (18)

Proof: The proof of Proposition 1 is given in Appendix C.
The bound on the sum rate of Theorem 2 is at least as

tight as that of Proposition 1. This can be seen through the
following inequalities.

I (V , X1, X2; Y )− I (V , X1, X2; S)

= I (X1, X2; Y )+ I (V ; Y |X1, X2)− I (V ; S|X1, X2) (19)

= I (X1, X2; Y )+ I (V ; Y |S, X1, X2)− I (V ; S|X1, X2,Y ) (20)

= I (X1, X2; Y )− I (V ; S|X1, X2,Y )+ H (Y |S, X1, X2)

− H (Y |V , S, X1, X2) (21)

= I (X1, X2; Y )− I (V ; S|X1, X2,Y )+ H (Y |S, X1, X2)

− H (Y |S, X1, X2) (22)

= I (X1, X2; Y )− I (V ; S|X1, X2,Y ) (23)

≤ I (X1, X2; Y ) (24)

where: (19) follows since X1 and X2 are independent of the
state S; (20) follows since for all random variables A, B and C ,
we have I (A; B) − I (A; C) = I (A; B|C) − I (A; C|B);
and (22) follows since V ↔ (S, X1, X2) ↔ Y is a Markov
chain.

For some channels, the sum-rate constraint of outer bound
of Theorem 2 is strictly tighter than that of the outer bound
of Proposition 1. The following example, illustrates this.

Example 1: Consider the following discrete memoryless
channel, considered initially in [2],

Y = X S (25)

1Note, however, that since the tightness of the outer bound of Theorem 2
is still to be shown in general, optimal state compressions for this model are
still to be found.

where X1 = X2 = Y = {0, 1}, and the state S is uniformly
distributed over the set S = {1, 2} and acts as a random switch
that connects a randomly chosen transmitter to the output.
For this channel, the rate-pair (Rc, R1) = (1/2, 1/2) is in the
outer bound of Proposition 1, but not in that of Theorem 2,
i.e., (1/2, 1/2) ∈ R̆out

s-c and (1/2, 1/2) /∈ Rout
s-c .

Proof: The analysis of Example 1 appears in Appendix D.

B. Inner Bound on the Capacity Region

Let P in
s-c stand for the collection of all random variables

(S, V , X1, X2,Y ) such that V , X1 and X2 take values in finite
alphabets V , X1 and X2, respectively, and satisfy

PS,V ,X1,X2,Y (s, v, x1, x2, y)

= PS,V ,X1,X2(s, v, x1, x2)WY |X1,X2,S(y|x1, x2, s) (26a)

PS,V ,X1,X2(s, v, x1, x2)

= QS(s)PX2(x2)PX1|X2(x1|x2)PV |S,X2(v|s, x2) (26b)

and

0 ≤ I (V , X2; Y )− I (V , X2; S). (27)

The relations in (26) imply that V ↔ (S, X1, X2) ↔ Y and
X1 ↔ X2 ↔ V are Markov chains; and X1 and X2 are
independent of S.

Define Rin
s-c to be the set of all rate pairs (Rc, R1) such that

R1 ≤ I (X1; Y |V , X2) (28a)

Rc + R1 ≤ I (V , X1, X2; Y )− I (V , X1, X2; S) (28b)

for some (S, V , X1, X2,Y ) ∈ P in
s-c.

As stated in the following theorem, the set Rin
s-c is an inner

bound on the capacity region of the state-dependent discrete
memoryless MAC with strictly-causal states.

Theorem 3: The capacity region of the multiple access
channel with degraded messages sets and strictly causal states
known only at the encoders satisfies

Rin
s-c ⊆ Cs-c. (29)

Proof: An outline proof of the coding scheme that we use
for the proof of Theorem 3 will follow. The associated error
analysis is provided in Appendix VI-E.

The following proposition states some properties of Rin
s-c

and Rout
s-c .

Proposition 2 (Properties of Inner and Outer Bounds):

1. The sets Rin
s-c and Rout

s-c are convex.
2. To exhaust Rin

s-c and Rout
s-c , it is enough to restrict V to

satisfy

|V| ≤ |S||X1||X2| + 2. (30)
Proof: The proof of Proposition 2 appears in Appendix F.
Remark 3: The inner bound Rin

s-c differs from the outer
bound Rout

s-c only through the Markov chain X1 ↔ X2 ↔ V .
The outer bound requires arbitrary dependence of the auxiliary
random variable V on the inputs X1 and X2 by the encoders.
For achievability results, while in block i the dependence
of V on the input X2 by the encoder that sends only the
common message can be obtained by generating the covering
codeword v on top of the input codeword x2 from the previous



ZAIDI AND SHAMAI: ON COOPERATIVE MULTIPLE ACCESS CHANNELS WITH DELAYED CSI 6209

Fig. 2. Block Markov coding scheme employed for the inner bound of
Theorem 3, for B = 4.

block i−1 and performing conditional compression of the state
sequence from block i − 1, i.e., conditionally on the input x2
by Encoder 2 in the previous block i −1, the dependence of V
on the input X1 by the encoder that transmits both messages
is not easy to obtain. Partly, this is because i) the codeword v
can not be generated on top of x1 (since Encoder 2 does
not know the individual message of Encoder 1), and ii) the
input x1 by Encoder 1 has to be independent of the state
sequence s. �

Remark 4: The proof of Theorem 3 is based on a Block-
Markov coding scheme in which the encoders collaborate to
convey a lossy version of the state to the receiver, in addition
to the information messages. The lossy version of the state
is obtained through Wyner-Ziv compression. Also, in each
block, Encoder 1 also transmits an individual information.
However, in accordance with the aforementioned insights that
we gain from the outer bound of Theorem 2, the state is sent
to the receiver only cooperatively. That is, by opposition to the
coding scheme of [2, Th. 2] for the MAC with independent
inputs, Encoder 1 does not compress or convey the state to the
receiver beyond what is done cooperatively with Encoder 2.
More specifically, the encoding and transmission scheme is as
follows. Let s[i ] denote the channel state in block i , and si the
index of the cell Csi containing the compression index zi of the
state s[i ], obtained through Wyner-Ziv compression. In block
i , Encoder 2, which has learned the state sequence s[i − 1],
knows si−2 and looks for a compression index zi−1 such that
v(wc,i−1, si−2, zi−1) is strongly jointly typical with s[i−1] and
x2(wc,i−1, si−2). It then transmits a codeword x2(wc,i , si−1)
(drawn according to the appropriate marginal using (26)),
where the cell index si−1 is the index of the cell contain-
ing zi−1, i.e., zi−1 ∈ Csi−1 . Encoder 1 finds x2(wc,i , si−1)
similarly. It then transmits a vector x1(wc,i , si−1, w1i ) (drawn
according to the appropriate marginal using (26)). For conve-
nience, we list the codewords that are used for transmission
in the first four blocks in Figure 2. �

The scheme of Theorem 3 utilizes Wyner-Ziv binning for
the joint compression of the state by the two encoders. As it
can be seen from the proof, the constraint

0 ≤ I (V , X2; Y )− I (V , X2; S) (31)

or, equivalently,

I (V ; S|X2)− I (V ; Y |X2) ≤ I (X2; Y ), (32)

is caused by having the receiver decode the compression
index uniquely. One can devise an alternate coding scheme
that achieves the region of Theorem 3 but without the con-
straint (27). More specifically, let P̃ in

s-c stand for the collection

of all random variables (S, V , X1, X2,Y ) such that V , X1
and X2 take values in finite sets V , X1 and X2, respectively,
and satisfy (26). Also, define R̃in

s-c to be the set of all rate
pairs (Rc, R1) satisfying the inequalities in (28c) for some
(S, V , X1, X2,Y ) ∈ P̃ in

s-c. Because the constraint (27) is
relaxed, the set R̃in

s-c satisfies

Rin
s-c ⊆ R̃in

s-c ⊆ Cs-c. (33)

The coding scheme that achieves the inner bound R̃in
s-c is

similar to that of Theorem 3, but with the state compression
performed à-la noisy network coding by Lim, Kim, El Gamal
and Chung [41] or the quantize-map-and-forward by Aves-
timeher, Diggavi and Tse [42], i.e., with no binning. We omit
it here for brevity.2

As the next example shows, the inner bound of Theorem 3
is strictly contained in the outer bound of Theorem 2, i.e.,

Rin
s-c � Rout

s-c . (34)

Example 2: Consider a two-user cooperative MAC with
binary inputs X1 = X2 = {0, 1} and output Y = (Y1,Y2) ∈
{0, 1}2 with

Y1 = X1 + SX1+X2 (35a)

Y2 = X2. (35b)

The transmission is controlled by a random state S =
(S0, S1) ∈ {0, 1}2, where the state components S0 and S1
are i.i.d. Bernoulli (p), where p is the unique constant in the
interval [0, 1/2] whose binary entropy is 1/2, i.e.,

H (S0) = H (S1) = h2(p) = 1

2
. (36)

In (35), the addition is modulo two. Thus, if X1 = X2
then Y1 is the mod-2 sum of X1 and S0; otherwise, it is
the mod-2 sum of X1 and S1. For this example the rate-pair
(Rc, R1) = (1/2, 1) is in the outer bound of Theorem 2, but
not in the inner bound of Theorem 3, i.e., (1/2, 1) ∈ Rout

s-c and
(1/2, 1) /∈ Rin

s-c.
Proof: The analysis of Example 2 appears in Appendix G.

In what follows, we provide some intuition onto why the rate-
pair (Rc, R1) = (1/2, 1) is not in the inner bound Rin

s-c. In
order for the rate R1 to be equal 1, the receiver needs to learn
SX1+X2 . In the coding scheme that yields the inner bound Rin

s-c,
the encoder that sends only the common message knows the
values of the state S = (S0, S1) as well as those of X2 from
the previous blocks, but not that of X1; and, so, can not know
the values of SX1+X2 from the previous blocks.

C. On the Utility of the Strictly Causal States

The following example shows that revealing the states only
strictly causally to both encoders increases the capacity region.

Example 3: Consider the memoryless binary MAC shown
in Figure 3. Here, all the random variables are binary {0, 1}.
The channel has two output components, i.e., Y n = (Y n

1 ,Y n
2 ).

2The reader may refer to [5] (see also [7], [8]) where a setup with
mixed – strictly causal and noncausal states, is analyzed and the state com-
pression is performed à-la noisy network coding.
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Fig. 3. Binary state-dependent MAC example with two output components,
Y n = (Y n

1 ,Y n
2 ), with Y n

1 = Xn
1 + Sn + Zn

1 and Y n
2 = Xn

2 .

The component Y n
2 is deterministic, Y n

2 = Xn
2 , and the com-

ponent Y n
1 = Xn

1 + Sn + Zn
1 , where the addition is modulo 2.

Encoder 2 has no message to transmit, and Encoder 1 transmits
an individual message W1. The encoders know the states only
strictly causally. The state and noise vectors are independent
and memoryless, with the state process Si , i ≥ 1, and the
noise process Z1,i , i ≥ 1, assumed to be Bernoulli ( 1

2 ) and
Bernoulli (p) processes, respectively. The vectors Xn

1 and Xn
2

are the channel inputs, subjected to the constraints

n∑

i=1

X1,i ≤ nq1 and
n∑

i=1

X2,i ≤ nq2, q2 ≥ 1/2. (37)

For this example, the strictly causal knowledge of the states
at Encoder 2 increases the capacity, and in fact Encoder 1 can
transmit at rates that are larger than the maximum rate that
would be achievable had Encoder 2 been of no help.

Claim 1: The capacity of the memoryless binary MAC
with states known strictly causally at the encoders shown in
Figure 3 is given by

Cs-c = max
p(x1)

I (X1; Y1|S) (38)

where the maximization is over measures p(x1) satisfying the
input constraint (37).

Proof: The proof of achievability is as follows. Set Rc = 0,
V = S and Y2 = X2, with X2 independent of (S, X1) in the
inner bound of Theorem 3. Evaluating the first inequality, we
obtain

R1 + ε ≥ I (X1; Y |V , X2) (39)

= I (X1; Y1, X2|S, X2) (40)

= I (X1; Y1|S, X2) (41)

= I (X1, X2; Y1|S)− I (X2; Y1|S) (42)

= I (X1; Y1|S)+ I (X2; Y1|X1, S)

−I (X2; Y1|S) (43)

= I (X1; Y1|S)− I (X2; Y1|S) (44)

= I (X1; Y1|S), (45)

where (44) follows since X2 = Y2 and Y2 ↔ (X1, S) ↔ Y1 is
a Markov chain, and the last equality follows by the Markov
relation X2 ↔ S ↔ Y1 for this example.

Evaluating the second inequality, we obtain

R1 + ε ≥ I (V , X1, X2; Y )− I (V , X1, X2; S) (46)

= I (X1, S; Y1, X2)+ H (X2|X1, S) − H (S) (47)

= I (X1, S; Y1)+ I (X1, S; X2|Y1)

+H (X2|X1, S) − H (S) (48)

= I (X1, S; Y1)+ H (X2|Y1)− H (X2|X1, S,Y1)

+H (X2|X1, S) − H (S) (49)

= I (X1; Y1|S)+ I (S; Y1)+H (X2|Y1)−H (S) (50)

= I (X1; Y1|S)+ H (X2|Y1)− H (S|Y1) (51)

= I (X1; Y1|S)+ H (Y1|X2)− H (Y1|S)
+H (X2)− H (S) (52)

= I (X1; Y1|S)+ I (S; Y1)+ H (X2)− H (S) (53)

where (50) follows since X2 is independent of (X1, S,Y1).
Similarly, evaluating the constraint, we obtain

I (V , X2; Y )− I (V , X2; S)

= I (S; Y1|X2)+ H (X2)− H (S). (54)

Now, observe that with the choice X2 ∼ Bernoulli ( 1
2 )

independent of (S, X1), we have H (X2) = H (S) = 1 and,
so, the RHS of (53) is larger than the RHS of (45); and the
RHS of (54) is nonnegative. This shows the achievability of
the rate R1 = I (X1; Y1|S).

2) The converse follows straightforwardly by specializing
Theorem 2 (or the cut-set upper bound) to this example,

R ≤ I (X1; Y |X2, S) (55)

= I (X1; Y1|X2, S) (56)

= H (Y1|X2, S)− H (Y1|X1, X2, S) (57)

≤ H (Y1|S)− H (Y1|X1, X2, S) (58)

≤ H (Y1|S)− H (Y1|X1, S) (59)

= I (X1; Y1|S), (60)

where (58) holds since conditioning reduces entropy, and (60)
holds by the Markov relation X2 ↔ (X1, S) ↔ Y1. �

Claim 2: The capacity of the memoryless binary MAC
with states known strictly causally at the encoders shown in
Figure 3 satisfies

Cs-c =
{

h2(p ∗ q1)− h2(p) if 0 ≤ q1 ≤ 1
2

1 − h2(p) if q1 ≥ 1
2

}
(61)

≥ Cno-s = max
p(x1)

I (X1; Y1). (62)

Proof: The explicit expression of Cs-c, i.e., Cs-c = h2(p ∗
q1) − h2(p) if 0 ≤ q1 ≤ 1/2 and Cs-c = 1 − h2(p) if
q1 ≥ 1/2, follows straightforwardly from Claim 1 by simple
algebra, where h2(α) denotes the entropy of a Bernoulli (α)
source and p ∗ q denotes the binary convolution, i.e., p ∗ q =
p(1 − q) + q(1 − p), as defined in Section I-B. Let now
Cno-s denote the capacity of the same model had the states
been known (strictly causally) only at Encoder 1. Since in
this case the knowledge of the states only at Encoder 1 would
not increase the capacity (see also Proposition 4 below), Cno-s
is also the capacity of the same model had the states been
not known at all. Thus, Cno-s is given by the RHS of (62).
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For this example, it is easy to see that Cno-s = 0. This holds
since h2(q1 ∗ 1/2 ∗ p) − h2(1/2 ∗ p) = 1 − h2(1/2 ∗ p) =
0 ∀ (p, q1, q2) ∈ [0, 1]2×[1/2, 1] – recall that the state is
Bernoulli ( 1

2 ) and is independent of the inputs X1, X2 and the
noise Z . Thus, the inequality in (62) holds irrespective to the
values of the tuple (p, q1, q2 ≥ 1/2). �

Observe that the inequality in (62) holds strictly if p �= 1/2
and q1 �= 0; and, so, revealing the states strictly causally to
Encoder 2 strictly increases the capacity in this case.

D. Capacity Results

Example 3 in Section III-C shows that the knowledge
of the states strictly causally at the encoders increases the
capacity region of the cooperative MAC that we study. This
fact has also been shown for other related models, such as
a multiaccess channel with independent inputs and strictly
causal or causal states at the encoders in [2]–[4], and a multi-
access channel with degraded messages sets and states known
noncausally to the encoder that sends both messages and only
strictly causally at the encoder that sends only the common
message in [5], [7], and [8]. Proposition 4 in Section IV will
show that, for the model with cooperative encoders that we
study, the increase in the capacity holds precisely because the
encoder that sends only the common message, i.e., Encoder 2,
also knows the states. That is, if the states were known strictly
causally to only Encoder 1, its availability would not increase
the capacity of the corresponding model. Proposition 3 shows
that, like for the model with independent inputs in [2], the
knowledge of the states strictly causally at the encoders does
not increase the sum rate capacity, however.

Proposition 3: The knowledge of the states only strictly
causally at the encoders does not increase the sum capacity of
the multiple access channel with degraded messages sets, i.e.,

max
(Rc,R1) ∈ Cs-c

Rc + R1 = max
p(x1,x2)

I (X1, X2; Y ). (63)

The converse proof of Proposition 3 follows immediately
from Proposition 1. The achievability proof of Proposition 3
follows simply by ignoring the state information at the
encoders, since the RHS of (63) is the sum-rate capacity of
the same MAC without states.

Proposition 3 shows that revealing the state that governs
a MAC with degraded messages sets strictly causally to both
encoders does not increase the sum-rate capacity. This is to be
opposed to the case in which the encoders send only indepen-
dent messages for which revealing the state strictly causally
to both encoders can increase the sum-rate capacity [2].

In what follows, we extend the capacity result derived for
a memoryless Gaussian example in [2, Example 2] to the
case of cooperative encoders and then generalize it to a larger
class of channels. Consider a class of discrete memoryless
two-user cooperative MACs, denoted by Dsym

MAC, in which the
channel state S, assumed to be revealed strictly causally to
both encoders, can be obtained as a deterministic function of
the channel inputs X1 and X2 and the channel output Y , as

S = f (X1, X2,Y ). (64)

Theorem 4: For any MAC in the class Dsym
MAC defined above,

the capacity region Cs-c is given by the set of all rate pairs
(Rc, R1) satisfying

R1 ≤ I (X1; Y |X2, S)

Rc + R1 ≤ I (X1, X2; Y ) (65)

for some measure

PS,X1,X2,Y = QS PX1,X2 WY |S,X1,X2 . (66)

Proof: The proof of the converse part of Theorem 4 follows
by Proposition 1. The proof of the direct part of Theorem 4
follows by setting V = S in the region R̃in

s-c. (see (33) and the
discussion after Remark 4).

Remark 5: The class Dsym
MAC includes the following mem-

oryless Gaussian example, which is similar to that
in [2, Example 2] but with the encoders being such that both
of them send a common message and one of the two also
sends an individual message,

Y = X1 + X2 + S (67)

where the inputs Xn and Xn
2 are subjected to individual power

constraints (1/n)
∑n

i=1 E[X2
k,i ] ≤ Pk , k = 1, 2, and the state

Sn is memoryless Gaussian, S ∼ N (0, Q), and known strictly
causally to both encoders. The capacity region of this model
is given by the set of all rate pairs (Rc, R1) satisfying

Rc + R1 ≤ 1

2
log

(
1 + (

√
P1 + √

P2)
2

Q

)
. (68)

The region (68) can be obtained by first extending the result
of Theorem 4 for the DM case to memoryless channels with
discrete time and continuous alphabets using standard tech-
niques [43, Ch. 7], and then maximizing each bound utilizing
the Maximum Differential Entropy Lemma [44, Sec. 2.2]. Note
that, by doing so, the first condition on the individual rate in
(65) appears to be redundant for this Gaussian model. �

The class Dsym
MAC contains more channels along with the

memoryless Gaussian model (67).
Example 4: Consider the Gaussian MAC with Y =

(Y1,Y2), and

Y1 = X1 + X2 + S (69a)

Y2 = X2 + Z (69b)

where the state process is memoryless Gaussian, with S ∼
N (0, Q), and the noise process is memoryless Gaussian
independent of all other processes, Z ∼ N (0, N). Encoder 1
knows the state strictly causally, and transmits both common
message Wc ∈ [1, 2nRc ] and private message W1 ∈ [1, 2nR1 ].
Encoder 2 knows the state strictly causally, and transmits only
the common message. We consider the input power constraints∑n

i=1 E[X2
1,i ] ≤ n P1 and

∑n
i=1 E[X2

2,i ] ≤ n P2. The capacity
region of this model can be computed using Theorem 4. It is
characterized as

CG
s-c

=

⎧
⎪⎨

⎪⎩

(Rc, R1) ∈ R
2+ :

Rc + R1 ≤ max0≤ρ12≤1
1
2 log

(
1 + P2

N

)

+ 1
2 log

(
1+ (1−ρ2

12)P1 P2+N((
√

P1+ρ12
√

P2)
2+(1−ρ2

12)P2)

Q(P2+N)

)

⎫
⎪⎬

⎪⎭

(70)
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Proof: The analysis of Example 4 is given in Appendix I.

IV. STRICTLY CAUSAL STATES AT ONLY ONE ENCODER

In this section we consider asymmetric state settings in
which the state is revealed (strictly causally) to only one
encoder.

Proposition 4: The knowledge of the states strictly causally
at only the encoder that sends both messages does not increase
the capacity region of the cooperative MAC.

The proof of Proposition 4 appears in Appendix H.
In the case in which the state is revealed strictly causally

to only the encoder that sends only the common message,
this increases the capacity region. In what follows, first we
derive an inner bound on the capacity of this model. Next,
we generalize the capacity result derived in [4, Th. 4] for
discrete memoryless channels in which 1) the channel output
is a deterministic function of the inputs and the state and
2) the state is a deterministic function of the channel output
and inputs from the encoders, to a larger class of channels.
For instance, in addition to that the model is different since
the transmitters send a common message, the capacity result
that will follow does not require that the channel output be a
deterministic functions of the inputs and the state, which then
is arbitrary.

Let P in
asym,s-c stand for the collection of all random variables

(S,U, V , X1, X2,Y ) such that U , V , X1 and X2 take values
in finite alphabets U , V , X1 and X2, respectively, and satisfy

PS,U,V ,X1,X2,Y (s, u, v, x1, x2, y)

= PS,U,V ,X1,X2(s, u, v, x1, x2)WY |X1,X2,S(y|x1, x2, s) (71a)

PS,U,V ,X1,X2(s, u, v, x1, x2)

= QS(s)PU (u)PX2|U (x2|u)PX1|U (x1|u)
× PV |S,U,X2(v|s, u, x2). (71b)

The relations in (71) imply that (U, V )↔ (S, X1, X2)↔Y ,
X1 ↔ U ↔ X2 and X1 ↔ (U, V , X2) ↔ S are Markov
chains; and X1 and X2 are independent of S.

Define Rin
asym,s-c to be the set of all rate pairs (Rc, R1) such

that

R1 ≤ I (X1; Y |U, V , X2)

R1 ≤ I (V , X1, X2; Y |U)− I (V ; S|U, X2)

Rc + R1 ≤ I (U, V , X1, X2; Y )− I (V ; S|U, X2)

for some (S,U, V , X1, X2,Y ) ∈ P in
asym,s-c. (72)

As stated in the following theorem, the set Rin
asym,s-c is an inner

bound on the capacity region of the state-dependent discrete
memoryless MAC with strictly-causal states known only at the
encoder that sends only the common message.

Theorem 5: The capacity region of the cooperative multiple
access channel with states revealed strictly causally to only the
encoder that sends the common message satisfies

Rin
asym,s-c ⊆ Casym,s-c. (73)

Proof: A description of the coding scheme that we use for
the proof of Theorem 5, as well a complete error analysis, are
given in Appendix J.

The following remark helps better understanding the coding
scheme that we use for the proof of Theorem 5.

Remark 6: For the model of Theorem 5, a good codebook
at the encoder that sends only the common message should
resolve a dilemma among 1) exploiting the knowledge of the
state that is available at this encoder and 2) sending informa-
tion cooperatively with the other encoder (i.e., the common
message). The coding scheme of Theorem 5 resolves this
tension by splitting the common rate Rc into two parts. More
specifically, the common message Wc is divided into two parts,
W = (Wc1,Wc2). The part Wc1 is sent cooperatively by the
two encoders, at rate Rc1; and the part Wc2 is sent only by the
encoder that exploits the available state, at rate Rc2. The total
rate for the common message is Rc = Rc1+Rc2. In Theorem 5,
the random variable U stands for the information that is sent
cooperatively by the two encoders, and the random variable
V stands for the compression of the state by the encoder that
sends only the common message, in a manner that is similar
to that of Theorem 3. �

Consider the following class of discrete memoryless chan-
nels, which we denote as DIH. Encoder 1 does not know
the state sequence at all, and transmits an individual message
W1 ∈ [1, 2nR1 ]. Encoder 2 knows the state sequence strictly
causally, and does not transmits any message. In this model,
Encoder 2 plays the role of a helper that is informed of
the channel state sequence only strictly causally. This net-
work may model one in which there is an external node
that interferes with the transmission from Encoder 1 to the
destination, and that is overheard only by Encoder 2 which
then assists the destination by providing some information
about the interference. Furthermore, we assume that the state
S can be obtained as a deterministic function of the inputs X1,
X2 and the channel output Y , as

S = f (X1, X2,Y ). (74)

For channels with a helper that knows the states strictly
causally, the class of channels DIH is larger than that consid-
ered in [4], as the channel output needs not be a deterministic
function of the channel inputs and the state. The following
theorem characterizes the capacity region for the class of
channels DIH.

The capacity of the class of channels DIH can be character-
ized as follows.

Theorem 6: For any channel in the class DIH defined above,
the capacity Cs-c is given by

Cs-c = min
{

I (X1; Y |S, X2), I (X1, X2; Y )
}

(75)

where the maximization is over measures of the form

PS,X1,X2,Y = QS PX1 PX2 WY |S,X1,X2 . (76)
Proof: The proof of Theorem 6 is given in Appendix K.
Remark 7: The class DIH includes the Gaussian model

Y = X1 + X2 + S where the state S ∼ N (0, Q) comprises the
channel noise, and the inputs are subjected to the input power
constraints (1/n)

∑n
i=1 E[X2

k,i ] ≤ Pk , k = 1, 2. Encoder 1
does not know the state sequence and transmits message W1.
Encoder 2 knows the state sequence strictly causally, and
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Fig. 4. Capacity of the models (67) and (69), with different degrees of
knowledge of the state sequence at the encoders. Numerical values are: P1 =
P2 = N = 1/2 and Q = 1.

does not transmit any message. The capacity of this model
is given by

CG
s-c = 1

2
log(1 + P1 + P2

Q
). (77)

The capacity (77) can be obtained from Theorem 6 by
maximizing the two terms of the minimization utilizing the
Maximum Differential Entropy Lemma [44, Sec. 2.2]. Observe
that the first term of the minimization in (75) is redundant in
this case. Also, we note that the capacity (77) of this example
can also be obtained as a special case of that of the Gaussian
example considered in [4, Remark 4]. �

In the following example the channel output can not be
obtained as a deterministic function of the channel inputs and
the channel state, and yet, its capacity can be characterized
using Theorem 6.

Example 5: Consider the following Gaussian example with
Y = (Y1,Y2), and

Y1 = X1 + X2 + S (78a)

Y2 = X2 + Z (78b)

where the state process is memoryless Gaussian, with S ∼
N (0, Q), and the noise process is memoryless Gaussian
independent of all other processes, Z ∼ N (0, N). Encoder 1
does not know the state sequence, and transmits message
W1 ∈ [1, 2nR1 ]. Encoder 2 knows the state strictly causally,
and does not transmit any message. The inputs are subjected
to the input power constraints

∑n
i=1 E[X2

1,i ] ≤ n P1 and∑n
i=1 E[X2

2,i ] ≤ n P2. The capacity of this model can be
computed easily using Theorem 6, as

CG
s-c = 1

2
log

(
1+ P1

Q
+ P2

Q

N

P2+N

)+ 1

2
log

(
1 + P2

N

)
. (79)

Note that the knowledge of the states strictly causally at
Encoder 2 makes it possible to send at positive rates by
Encoder 1 even if the allowed average power P1 is zero.
The diamond on the y-axis of Figure 4 shows the capacity
of the model (78) for the choice P1 = P2 = N = 1/2 and
Q = 1. The figure also shows the capacity region (70) of

the same model had the state sequence been known (strictly
causally) to both encoders. The gap on the y-axis is precisely
the gain in capacity enabled by also revealing the state to
the encoder that sends both messages. A similar improvement
can be observed for the Gaussian model Y = X1 + X2 + S of
Remark 7. The dot-dashed curve depicts the capacity region
of this model had the state sequence been not known at all,
neither to encoders nor to the decoder [45], [46] – which is
the same capacity region has the state sequence been known
(strictly causally) only to the encoder that transmits both
messages (see Proposition 4). Note that for both models, of
Remark 7 and (78), if the state sequence is known non-
causally to the encoder that sends only the common message,
a standard dirty paper coding scheme [47] at this encoder
cancels completely the effect of the state. The reader may
refer to [24], [48], and [23] where a related model is referred
to as the deaf helper problem. A related Gaussian Z-channel
with mismatched side information, revealed non-causally to
one encoder, and interference is studied in [49]. Other related
multiaccess models with states revealed non-causally to one
encoder can be found in [50]–[52].

Example 6: Consider the following binary example in
which the state models fading. The channel output has two
components, i.e., Y = (Y1,Y2), with

Y1 = S·X1 (80a)

Y2 = X2 + Z (80b)

where X1 = X2 = S = Z = {+1,−1}, and the noise
Z is independent of (S, X1, X2) with Pr{Z = 1} = p and
Pr{Z = −1} = 1 − p, 0 ≤ p ≤ 1, and the state S, known
strictly causally to only Encoder 2, is such that Pr{S = 1} =
Pr{S = −1} = 1/2. Using Theorem 6, it is easy to compute
the capacity of this example, as

CB
s-c = max

0≤q1,q2≤1
min

{
h2(q1), g(p, q2)− h2(p)

}
(81)

where

g(p, q2) = −pq2 log(pq2)− p ∗ q2 log(p ∗ q2)

−(1 − p)(1 − q2) log((1 − p)(1 − q2)). (82)

Observe that CB
s-c ≥ 1 − 1

2 h2(p) ≥ 0.5.

Proof: Using (80), we have S = Y1/X1, and, so, S is a deter-
ministic function of (X1, X2,Y ). Thus, the capacity of this
channel can be computed using Theorem 6. Let 0 ≤ q1 ≤ 1
such that Pr{X1 = 1} = q1 and Pr{X1 = −1} = 1 − q1.
Also, let 0 ≤ q2 ≤ 1 such that Pr{X2 = 1} = q2 and
Pr{X2 = −1} = 1 − q2. Then, considering the first term on
the RHS of (75), we get

I (X1; Y |S, X2) = H (Y |S, X2)− H (Y |S, X1, X2) (83)

= H (SX1, X2 + Z |S, X2)

−H (Z |S, X1, X2) (84)

= H (X1, Z |S, X2)− H (Z) (85)

= H (X1, Z)− H (Z) (86)

= H (X1) (87)

= h2(q1) (88)
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where (85) holds since Z is independent of (S, X1, X2), (86)
holds since (X1, Z) is independent of (S, X2), and (87) holds
since X1 and Z are independent.

Similarly, considering the second term on the RHS of (75),
we get

I (X1, X2; Y ) = H (Y )− H (Y |X1, X2) (89)

= H (Y )− (SX1, Z |X1, X2) (90)

= H (Y )− H (Z)− H (S) (91)

= H (SX1)+ H (X2 + Z)

−H (Z)− H (S) (92)

= H (X2 + Z)− H (Z) (93)

= g(p, q2)− h2(p) (94)

where (91) holds since S and Z are independent of (X1, X2)
and independent of each other, (92) holds since Y1 = SX1 and
Y2 = X2 + Z are independent, (93) follows because

Pr{SX1 = 1} = Pr{SX1 = −1} = 1

2
(95)

and, so, H (SX1) = 1 = H (S), and (94) follows because

Pr{X2 + Z = 0} = p ∗ q2 (96a)

Pr{X2 + Z = 2} = pq2 (96b)

Pr{X2 + Z = −2} = (1 − p)(1 − q2) (96c)

and, so, H (X2 + Z) = g(p, q2) as given by (82). �
Remark 8: The result of Theorem 6 can be extended to the

case in which the encoders send separate messages and each
observes (strictly causally) an independent state. In this case,
denoting by S1 the state that is observed by Encoder 1 and by
S2 the state that is observed by Encoder 2, it can be shown that,
if both S1 and S2 can be obtained as deterministic functions
of the inputs X1 and X2 and the channel output Y , then the
capacity region is given by the convex hull of the set of all
rates satisfying

R1 ≤ I (X1; Y |X2, S2) (97a)

R2 ≤ I (X2; Y |X1, S1) (97b)

R1 + R2 ≤ I (X1, X2; Y ) (97c)

for some measure of the form QS1,S2,X1,X2 = QS1 QS2 PX1 PX2 .
This result can also be obtained by noticing that, if both S1
and S2 are deterministic functions of (X1, X2,Y ), then the
inner bound of [4, Th. 2] reduces to (97), which is also an
outer bound as stated in [3, Proposition 3].

V. CAUSAL STATES

Let Pc stand for the collection of all random variables
(S,U, V , X1, X2,Y ) such that U , V , X1 and X2 take values
in finite alphabets U , V , X1 and X2, respectively, and

PS,U,V ,X1,X2,Y (s, u, v, x1, x2, y)

= PS,U,V ,X1 X2(s, u, v, x1, x2)WY |X1,X2,S(y|x1, x2, s) (98a)

PS,U,V ,X1,X2(s, u, v, x1, x2)

= QS(s)PV (v)PU |V (u|v)PX2|V ,S(x2|v, s)

× PX1|S,V ,U (x1|s, v, u). (98b)

The relations in (98) imply that (U, V ) ↔ (S, X1, X2) ↔
Y is a Markov chain; and that (V ,U) is independent of S.

Define Cc to be the set of all rate pairs (Rc, R1) such that

R1 ≤ I (U ; Y |V )
Rc + R1 ≤ I (U, V ; Y )

for some (S,U, V , X1, X2,Y ) ∈ Pc. (99)

As stated in the following theorem, the set Cc is the capacity
region of the state-dependent discrete memoryless MAC model
with causal states.

Theorem 7: The capacity region of the multiple access
channel with degraded messages sets and states known
causally at both encoders is given by Cc.

Proof: The proof of Theorem 7 is given in Appendix L.
Remark 9: For the proof of Theorem 7, the converse part

can be shown in a way very that is essentially very similar
to [53]. The coding scheme that we use to prove the achiev-
ability part is based on Shannon strategies [1]. By opposition
to the case of MAC with independent inputs in [53] or that
with one common message and two individual messages [54],
in our case one of the two encoders knows the other encoder’s
message, and this permits to create the desired correlation
among the auxiliary codewords that is required by the outer
bound. Also, we should mention that the fact that Shannon
strategies are optimal for the MAC with degraded messages
sets that we study is in opposition with the case of the MAC
with independent inputs, for which it has been shown in
[2, Sec. III] that Shannon strategies are suboptimal in general.�

VI. CONCLUDING REMARKS

In this paper we study the transmission over a state-
controlled two-user cooperative multiaccess channel with the
states known – depending on the scenario, strictly causally
or causally to only one or both transmitters. While, like the
MAC with non-degraded messages sets of [2] (and also the
related models of [3]–[5]), it can be expected that conveying
a description of the state by the encoders to the decoder
can be beneficial in general, it is not clear how the state
compression should be performed optimally, especially at the
encoder that sends both messages in the model in which the
state is revealed strictly causally to both transmitters. The role
of this encoder is seemingly similar to that of each of the
two encoders in the model of [2]. However, because in our
case the other encoder only sends a common message, the
outer bound of Theorem 2 suggests that, by opposition to the
setting of [2], in each block the private information of the
encoder that sends both messages needs not carry an individual
description of the state. Intuitively, this holds because, in
our model in order to help the other encoder transmit at a
larger rate, the encoder that transmits both messages better
exploits any fraction of its individual message’s rate by directly
transmitting the common message, rather than compressing
the state any longer so that the decoder obtains an estimate
of the state that is better than what is possible using only
the cooperative compression. Although a formal proof of this,
as well as exact characterizations of the capacity regions of
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some of the models studied in this paper, are still to be found,
this work enlightens different aspects relative to the utility
of delayed CSI at transmitters in a cooperative multiaccess
channel.

APPENDIX

Throughout this section we denote the set of strongly
jointly ε-typical sequences [55, Ch. 14.2] with respect to the
distribution PX,Y as T n

ε (PX,Y ).

A. Proof of Theorem 1

We prove that for any (Mc,M1, n, ε) code consisting of
a sequence of mappings φ1,i : Wc×W1×S i−1 −→ X1 at
Encoder 1, a sequence of mappings φ2,i : Wc×S i−1 −→ X2,
i = 1, . . . , n, at Encoder 2, and a mapping ψ : Yn −→
Wc×W1 at the decoder with average error probability Pn

e → 0
as n → 0 and rates Rc = n−1 log2 Mc and R1 = n−1 log2 M1,
there exists random variables (V ,U, X1, X2) ∈ V×U×X1×X2
such that the joint distribution PS,V ,U,X1,X2 is of the form

PS,V ,U,X1,X2 = QS PX2 PV |S,X2 PX1|V ,X2 PU |V ,S,X1,X2, (A-1)

the marginal distribution of S is QS(s), i.e.,
∑

v,u,x1,x2

PS,V ,U,X1,X2(s, v, u, x1, x2) = QS(s) (A-2)

and the rate pair (Rc, R1) must satisfy (9).
Fix n and consider a given code of block length n. The joint

probability mass function on Wc×W1×Sn×X n
1 ×X n

2 ×Yn is
given by

p(wc, w1, sn, xn
1 , xn

2 , yn)

= p(wc, w1)·
n∏

i=1

p(si )p(x1i |wc, w1, si−1)

p(x2i |wc, si−1)p(yi |x1i , x2i , si ), (A-3)

where, p(x1i |wc, w1, si−1) is equal 1 if x1i =
f1(wc, w1, si−1) and 0 otherwise; and p(x2i |wc, si−1)
is equal 1 if x2i = f2(wc, si−1) and 0 otherwise.

The decoder map ψ recovers (Wc,W1) from Y n with the
vanishing average error probability Pe. By Fano’s inequality,
we have

H (Wc,W1|Y n) ≤ nεn, (A-4)

where εn → 0 as Pn
e → 0.

Define the random variables

V̄i = (Wc, Si−1,Y n
i+1)

Ūi = (W1, V̄i ). (A-5)

Observe that the random variables so defined satisfy

(Si , Ūi , V̄i , X1,i , X2,i ,Yi ) ∈ P̃out
s-c , ∀i ∈ {1, . . . , n}. (A-6)

i) We can bound the sum rate as follows.

n(Rc + R1) ≤ H (Wc,W1) (A-7)

= I (Wc,W1; Y n)+ H (Wc,W1|Y n)
(a)≤ I (Wc,W1; Y n)+ nεn

(b)= I (Wc,W1; Y n)− I (Wc,W1; Sn)+ nεn (A-8)

=
n∑

i=1

I (Wc,W1; Yi |Y n
i+1)− I (Wc,W1; Si |Si−1)+ nεn

(A-9)

=
n∑

i=1

I (Wc,W1, Si−1; Yi |Y n
i+1)− I (Si−1; Yi |Wc,W1,Y n

i+1)

− I (Wc,W1; Si |Si−1)+ nεn (A-10)

=
n∑

i=1

I (Wc,W1, Si−1; Yi |Y n
i+1)− I (Wc,W1; Si |Si−1)

−
n∑

i=1

I (Si−1; Yi |Wc,W1,Y n
i+1)+ nεn (A-11)

(c)=
n∑

i=1

I (Wc,W1, Si−1; Yi |Y n
i+1)− I (Wc,W1; Si |Si−1)

−
n∑

i=1

I (Y n
i+1; Si |Wc,W1, Si−1)+ nεn (A-12)

=
n∑

i=1

I (Wc,W1, Si−1; Yi |Y n
i+1)− H (Si |Si−1)

+ H (Si |Wc,W1, Si−1,Y n
i+1)+ nεn (A-13)

(d)=
n∑

i=1

I (Wc,W1, Si−1; Yi |Y n
i+1)− H (Si)

+ H (Si |Wc,W1, Si−1,Y n
i+1)+ nεn (A-14)

≤
n∑

i=1

I (Wc,W1, Si−1,Y n
i+1; Yi )

− I (Wc,W1, Si−1,Y n
i+1; Si )+ nεn (A-15)

(e)=
n∑

i=1

I (Ūi , V̄i ; Yi )− I (Ūi , V̄i ; Si )+ nεn (A-16)

( f )=
n∑

i=1

I (Ūi , V̄i , X1i , X2i ; Yi )

− I (Ūi , V̄i , X1i , X2i ; Si )+ nεn (A-17)

(g)=
n∑

i=1

I (Ūi , V̄i , X1i , X2i ; Yi )

− I (Ūi , V̄i ; Si |X1i , X2i )+ nεn (A-18)

where (a) follows by Fano’s inequality; (b) follows from the
fact that messages Wc and W1 are independent of the state
sequence Sn ; (c) follows from Csiszar and Korner’s Sum
Identity [56]

n∑

i=1

I (Y n
i+1; Si |Wc,W1, Si−1) =

n∑

i=1

I (Si−1; Yi |Wc,W1,Y n
i+1)

(A-19)

(d) follows from the fact that state Sn is i.i.d.; (e) follows
by the definition of the random variables Ūi and V̄i in (A-5);
( f ) follows from the fact that X1i is a deterministic function
of (Wc,W1, Si−1), and X2i is a deterministic function of
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(Wc, Si−1), and (g) follows from the fact that X1i and X2i

are independent of Si .
ii) Also, we can bound the individual rate as follows.

n R1 ≤ H (W1|Wc) (A-20)

= I (W1; Y n|Wc)+ H (W1|Y n,Wc)
(a)≤ I (W1; Y n|Wc)+ nεn
(b)= I (W1; Y n|Wc)− I (W1; Sn|Wc)+ nεn (A-21)

=
n∑

i=1

I (W1; Yi |Wc,Y n
i+1)− I (W1; Si |Wc, Si−1)+ nεn

(A-22)

=
n∑

i=1

I (W1, Si−1; Yi |Wc,Y n
i+1)− I (Si−1; Yi |Wc,W1,Y n

i+1)

− I (W1; Si |Wc, Si−1)+ nεn (A-23)

(c)=
n∑

i=1

I (W1, Si−1; Yi |Wc,Y n
i+1)

− I (Si ; W1,Y n
i+1|Wc, Si−1)+ nεn (A-24)

=
n∑

i=1

I (W1; Yi |Wc, Si−1,Y n
i+1)+ I (Si−1; Yi |Wc,Y n

i+1)

− I (Si ; Y n
i+1|Wc, Si−1)− I (Si ; W1|Wc, Si−1,Y n

i+1)

+ nεn (A-25)

(d)=
n∑

i=1

I (W1; Yi |Wc, Si−1,Y n
i+1)

− I (W1; Si |Wc, Si−1,Y n
i+1)+ nεn (A-26)

(e)=
n∑

i=1

I (W1; Yi |Wc, Si−1,Y n
i+1, X2,i )

− I (Si ; W1|Wc, Si−1,Y n
i+1, X2,i )+ nεn (A-27)

( f )=
n∑

i=1

I (Ūi ; Yi |V̄i , X2,i )− I (Ūi ; Si |V̄i , X2,i )+ nεn

(g)=
n∑

i=1

I (Ūi , X1i ; Yi |V̄i , X2,i )

− I (Ūi , X1i ; Si |V̄i , X2,i )+ nεn (A-28)

where (a) follows by Fano’s inequality; (b) follows from the
fact that messages Wc and W1 are independent of the state
sequence Sn ; (c) and (d) follow from Csiszar and Korner’s
Sum Identity (A-19); (e) follows since X2i is a deterministic
function of (Wc, Si−1); ( f ) follows by the definition of the
random variables Ūi and V̄i in (A-5); and (g) follows since
X1i is a deterministic function of (Wc,W1, Si−1).

From the above, we get that

R1 ≤ 1

n

n∑

i=1

I (Ūi ; Yi |V̄i , X2,i )− I (Ūi ; Si |V̄i , X2,i )+ εn

Rc+ R1 ≤ 1

n

n∑

i=1

I (Ūi , V̄i , X2,i ; Yi )− I (Ūi , V̄i , X2,i ; Si )+εn.

(A-29)

Also, observe that the auxiliary random variable V̄i satisfies

n∑

i=1

I (V̄i , X2,i ; Yi )− I (V̄i , X2,i ; Si ) ≥ 0. (A-30)

This can be seen by noticing that

I (W1; Y n|Wc) =
n∑

i=1

I (Ūi ; Yi |V̄i , X2,i )− I (Ūi ; Si |V̄i , X2,i )

(A-31)

I (Wc,W1; Y n) ≤
n∑

i=1

I (Ūi , V̄i , X2i ; Yi )− I (Ūi , V̄i , X2i ; Si ).

(A-32)

and then noticing that, since I (W1; Y n|Wc) ≤ I (Wc,W1; Y n),
the constraint (A-30) should hold.

The statement of the converse follows now by applying
to (A-29) and (A-30) the standard time-sharing argument
and taking the limits of large n. This is shown briefly here.
We introduce a random variable T which is independent
of S, and uniformly distributed over {1, · · · , n}. Set S = ST ,
Ū = ŪT , V̄ = V̄T , X1 = X1,T , X2 = X2,T , and Y = YT .
Then, considering the first bound in (A-29), we obtain

1

n

n∑

i=1

I (Ūi ; Yi |V̄i , X2,i )− I (Ūi ; Si |V̄i , X2,i )

= I (Ū ; Y |V̄ , X2, T )− I (Ū ; S|V̄ , X2, T )

= I (Ū , T ; Y |V̄ , X2, T )− I (Ū , T ; S|V̄ , X2, T ). (A-33)

Similarly, considering the second bound in (A-29), we obtain

1

n

n∑

i=1

I (Ūi , V̄i , X2,i ; Yi )− I (Ūi , V̄i , X2,i ; Si )

= I (Ū , V̄ , X2; Y |T )− I (Ū , V̄ , X2; S|T )
= I (T, Ū , V̄ , X2; Y )− I (T ; Y )

− I (T, Ū , V̄ , X2; S)+ I (T ; S)

≤ I (T, Ū , V̄ , X2; Y )− I (T, Ū , V̄ , X2; S). (A-34)

Also, considering the constraint (A-30), we obtain

0 ≤ 1

n

n∑

i=1

I (V̄i , X2,i ; Yi )− I (V̄i , X2,i ; Si )

= I (V̄ , X2; Y |T )− I (V̄ , X2; S|T )
= I (T, V̄ , X2; Y )− I (T ; Y )− I (T, V̄ , X2; S)+ I (T ; S)

≤ I (T, V̄ , X2; Y )− I (T, V̄ , X2; S). (A-35)

The distribution on (T, S, Ū , V̄ , X1, X2,Y ) from the given
code is of the form

PT ,S,Ū,V̄ ,X1,X2,Y = QS PT PX2|T PX1|X2,T PV̄ |X1,X2,S,T

·PŪ |V̄ ,S,X1,X2,T
WY |X1,X2,S . (A-36)

Let us now define U = (Ū , T ) and V = (V̄ , T ). Using (A-29),
(A-33) and (A-34), we then get

R1 ≤ I (U ; Y |V , X2)− I (U ; S|V , X2)+ εn

Rc + R1 ≤ I (U, V , X2; Y )− I (U, V , X2; S)+ εn, (A-37)
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where the distribution on (S,U, V , X1, X2,Y ), obtained by
marginalizing (A-36) over the time sharing random variable
T , satisfies (S,U, V , X1, X2,Y ) ∈ P̃out

s-c .
So far we have shown that, for a given sequence of

(εn, n, Rc, R1)−codes with εn going to zero as n goes to
infinity, there exist random variables (S,U, V , X1, X2,Y ) ∈
P̃out

s-c such that the rate pair (Rc, R1) essentially satisfies the
inequalities in (11), i.e., (Rc, R1) ∈ R̃out

s-c .

B. Proof of Theorem 2

Recall the set R̃out
s-c which is an outer bound on the capacity

region Cs-c as stated in Theorem 1. Let a rate-pair (Rc, R1) ∈
R̃out

s-c . Then we have

R1 ≤ I (U, X1; Y |V , X2)− I (U, X1; S|V , X2) (B-1a)

Rc + R1 ≤ I (U, V , X1, X2; Y )− I (U, V , X1, X2; S) (B-1b)

Consider the first inequality (B-1a). We have

R1 ≤ I (U, X1; Y |V , X2)− I (U, X1; S|V , X2)

= I (X1; Y |V , X2)− I (X1; S|V , X2)

+I (U ; Y |V , X1, X2)− I (U ; S|V , X1, X2)

≤ I (X1; Y |V , X2)+ I (U ; Y |V , X1, X2)

−I (U ; S|V , X1, X2)

≤ I (X1; Y |V , X2)+ I (U ; Y, S|V , X1, X2)

−I (U ; S|V , X1, X2)

= I (X1; Y |V , X2)+ I (U ; Y |S, V , X1, X2)

= I (X1; Y |V , X2)+ H (Y |S, V , X1, X2)

−H (Y |S,U, V , X1, X2)
(b)= I (X1; Y |V , X2)+ H (Y |S, X1, X2)− H (Y |S, X1, X2)

= I (X1; Y |V , X2) (B-2)

where (a) follows since (U, V ) ↔ (S, X1, X2) ↔ Y is a
Markov chain.

Similarly, considering the second inequality (B-1b), we have

Rc + R1 ≤ I (U, V , X1, X2; Y )− I (U, V , X1, X2; S)

= I (V , X1, X2; Y )− I (V , X1, X2; S)

+[I (U ; Y |V , X1, X2)− I (U ; S|V , X1, X2)]
(b)≤ I (V , X1, X2; Y )− I (V , X1, X2; S) (B-3)

where (b) follows by following straightforwardly the lines of
(B-2).

Finally, using (B-2) and (B-3) we obtain the desired simpler
outer bound form (14c). Summarizing, the above shows that
the region Rout

s-c is an outer bound on the capacity region of the
multiaccess channel with degraded messages sets and states
known strictly causally at only the encoders. This completes
the proof of Theorem 2.

C. Proof of Proposition 1

We prove that for any (Mc,M1, n, ε) code consisting of
sequences of mappings φ1,i : Wc×W1×S i−1 −→ X1 at
Encoder 1, and φ2,i : Wc×S i−1 −→ X2 at Encoder 2,
i = 1, . . . , n, and a mapping ψ : Yn −→ Wc×W1 at the

decoder with average error probability Pn
e → 0 as n → 0 and

rates Rc = n−1 log2 Mc and R1 = n−1 log2 M1, the rate pair
(Rc, R1) must satisfy (17).
Fix n and consider a given code of block length n. The joint
probability mass function on Wc×W1×Sn×X n

1 ×X n
2 ×Yn is

given by

p(wc, w1, sn, xn
1 , xn

2 , yn)

= p(wc, w1)·
n∏

i=1

p(si )p(x1i |wc, w1, si−1)

p(x2i |wc, si−1)p(yi |x1i , x2i , si ), (C-1)

where, p(x1i |wc, w1, si−1) is equal 1 if x1i =
f1(wc, w1, si−1) and 0 otherwise; and p(x2i |wc, si−1)
is equal 1 if x2i = f2(wc, si−1) and 0 otherwise.

The decoder map ψ recovers (Wc,W1) from Y n with the
vanishing average error probability Pe. By Fano’s inequality,
we have

H (Wc,W1|Y n) ≤ nεn , (C-2)

where εn → 0 as Pn
e → 0.

The proof of the bound on R1 follows trivially by revealing
the state Sn to the decoder.

The proof of the bound on the sum rate (Rc + R1) follows
as follows.

n(Rc + R1) ≤ H (Wc,W1)

= I (Wc,W1; Y n)+ H (Wc,W1|Y n)

≤ I (Wc,W1; Y n)+ nεn

=
n∑

i=1

I (Wc,W1; Yi |Y i−1)+ nεn

=
n∑

i=1

H (Yi |Y i−1)− H (Yi |Wc,W1,Y i−1)+ nεn

(a)≤
n∑

i=1

H (Yi)− H (Yi |Wc,W1,Y i−1)+ nεn

(b)≤
n∑

i=1

H (Yi)− H (Yi |Wc,W1,Y i−1, Si−1)+ nεn

(c)=
n∑

i=1

H (Yi)

−H (Yi |Wc,W1,Y i−1, Si−1, X1i , X2i )+nεn

(d)=
n∑

i=1

H (Yi)− H (Yi |X1i , X2i )+ nεn

=
n∑

i=1

I (X1i , X2i ; Yi )+ nεn (C-3)

where (a) and (b) follow from the fact that conditioning
reduces the entropy; (c) follows from the fact that X1i is
a deterministic function of (Wc,W1, Si−1), and X2i is a
deterministic function of (Wc, Si−1), and (d) follows from
the fact that (Wc,W1,Y i−1, Si−1) ↔ (X1i , X2i , Si ) ↔ Yi and
(Wc,W1,Y i−1, Si−1, X1i , X2i ) is independent of Si .

The rest of the proof of Proposition 1 follows by standard
single-letterization.
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D. Analysis of Example 1

Recall Example 1. For this example, it is easy to see that
R̆out

s-c = {(R1, R2) : 0 ≤ R1 ≤ 1/2, 0 ≤ R2 ≤ 1/2}. Thus,
(1/2, 1/2) ∈ R̆out

s-c . We now show that (1/2, 1/2) /∈ Rout
s-c .

Assume that the rate-pair (Rc, R1) = (1/2, 1/2) ∈ Rout
s-c

for some measure of the form (13) and that satisfies the
constraint (10). Since Rc + R1 = 1, the constraint on the
sum rate

I (V , X1, X2; Y )− I (V , X1, X2; S)

= H (Y )− H (Y |V , X1, X2)− I (V , X1, X2; S) (D-1)

leads to

1 ≤ H (Y )− H (Y |V , X1, X2)− I (V , X1, X2; S) ≤ H (Y ) ≤ 1

(D-2)

where the last inequality holds since |Y| = 2. Thus,

H (Y ) = 1 (D-3a)

S is independent of (V , X1, X2) (D-3b)

H (Y |V , X1, X2) = 0. (D-3c)

Observing that the constraint on the sum rate (D-1) can also
be written equivalently as

I (V , X1, X2; Y )− I (V , X1, X2; S)

= H (Y )− H (Y |X1, X2)− I (V ; S|X1, X2,Y ) (D-4)

we obtain that

H (Y |X1, X2) = 0. (D-5)

Using (D-3b) and (D-5), and the fact that Y = X S , it follows
that

Pr{X1 = X2} = 1. (D-6)

Now, using (D-6), the constraint on the individual rate R1
leads to

0 ≤ R1 ≤ I (X1; Y |V , X2) (D-7)

= H (X1|V , X2)− H (X1|V , X2,Y ) (D-8)

≤ H (X1|V , X2) (D-9)

≤ H (X1|X2) (D-10)

= 0 (D-11)

where (D-10) follows from the fact that conditioning reduces
entropy, and (D-11) follows by (D-6).
The above shows that R1 = 0. This contradicts the fact that the
rate-pair (Rc, R1) = (1/2, 1/2) ∈ Rout

s-c . We conclude that the
rate-pair (1/2, 1/2) /∈ Rout

s-c .

E. Proof of Theorem 3

The transmission takes place in B blocks. The common
message Wc is divided into B − 1 blocks wc,1, . . . , wc,B−1
of n Rc bits each, and the individual message W1 is divided
into B − 1 blocks w1,1, . . . , w1,B−1 of n R1 bits each. For
convenience, we let wc,B = w1,B = 1 (default values).
We thus have BWc = n(B − 1)Rc, BW1 = n(B − 1)R1,
N = nB , RWc = BWc/N = Rc·(B − 1)/B and RW1 =

BW1/N = R1·(B−1)/B , where BWc is the number of common
message bits, BW1 is the number of individual message bits, N
is the number of channel uses and RWc and RW1 are the overall
rates of the common and individual messages, respectively. For
fixed n, the average rate pair (RWc , RW1) over B blocks can
be made as close to (Rc, R1) as desired by making B large.
Codebook Generation: Fix a measure PS,V ,X1,X2,Y ∈ P in

s-c.
Fix ε > 0 and denote Mc = 2n[Rc−ηcε], M1 = 2n[R1−η1ε],
K = 2n[T +μcε] and K̂ = 2n[T̂ +μ̂cε].
1) We generate Mc K independent and identically distributed

(i.i.d.) codewords x2(wc, s) indexed by wc = 1, . . . ,Mc ,
s = 1, . . . , K , each with i.i.d. components drawn accord-
ing to PX2 .

2) For each codeword x2(wc, s), we generate K̂ independent
and identically distributed (i.i.d.) codewords v(wc, s, z)
indexed by z = 1, . . . , K̂ , each with i.i.d. components
drawn according to PV |X2 .

3) For each codeword x2(wc, s), we generate M1 inde-
pendent and identically distributed (i.i.d.) codewords
x1(wc, s, w1) indexed by w1 = 1, . . . ,M1, each with
i.i.d. components drawn according to PX1|X2 .

4) Randomly partition the set {1, . . . , K̂ } into K cells Cs ,
s ∈ [1, K ].

Encoding: Suppose that a common message Wc = wc

and an individual message W1 = w1 are to be transmitted.
As we mentioned previously, message wc is divided into B −1
blocks wc,1, . . . , wc,B−1 and message w1 is divided into B −1
blocks w1,1, . . . , w1,B−1, with (wc,i , w1,i ) the pair messages
sent in block i . We denote by s[i ] the channel state in block i ,
i = 1, . . . , B . For convenience, we let s[0] = ∅ and z0 = 1
(a default value), and s0 the index of the cell containing z0,
i.e., z0 ∈ Cs0 . The encoding at the beginning of the block i ,
i = 1, . . . , B − 1, is as follows.

Encoder 2, which has learned the state sequence s[i − 1],
knows si−2 and looks for a compression index zi−1 ∈ [1, K̂ ]
such that v(wc,i−1, si−2, zi−1) is strongly jointly typical with
s[i − 1] and x2(wc,i−1, si−2). If there is no such index or the
observed state s[i − 1] is not typical, zi−1 is set to 1 and an
error is declared. If there is more than one such index zi−1,
choose the smallest. One can show that the probability of error
of this event is arbitrarily small provided that n is large and

T̂ > I (V ; S|X2). (E-1)

Encoder 2 then transmits the vector x2(wc,i , si−1), where the
cell index si−1 is chosen such that zi−1 ∈ Csi−1.

Encoder 1 finds x2(wc,i , si−1) similarly. It then transmits
the vector x1(wc,i , si−1, w1i ).

(Note that, other than the information messages, Encoder 1
sends only the cooperative compression index si−1; no other
individual compression index is sent by this encoder).

Decoding: Let y[i ] denote the information received at the
receiver at block i , i = 1, . . . , B . The receiver collects these
information until the last block of transmission is completed.
The decoder then performs Willem’s backward decoding [57],
by first decoding the pair (wc,B−1, w1,B−1) from y[B − 1].

1) Decoding in Block B − 1:
The decoding of the pair (wc,B−1, w1,B−1) is performed in

five steps, as follows.
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Step (a): The decoder knows wc,B = 1 and looks for the
unique cell index ŝB−1 such that the vector x2(wc,B , ŝB−1) is
jointly typical with y[B]. The decoding operation in this step
incurs small probability of error as long as n is sufficiently
large and

T < I (X2; Y ). (E-2)

Step (b): The decoder now knows the cell index ŝB−1
(but not the exact compression index zB−1). It then
decodes message wc,B−1 by looking for the unique
ŵc,B−1 such that x2(ŵc,B−1, sB−2), v(ŵc,B−1, sB−2, zB−1),
x1(ŵc,B−1, sB−2, w1,B−1) and y[B − 1] are jointly typical for
some sB−2 ∈ [1, K ], zB−1 ∈ CŝB−1 and w1,B−1 ∈ [1,M1].
One can show that the decoder obtains the correct wc,B−1 as
long as n and B are large and

Rc + R1 + T + (T̂ − T ) ≤ I (V , X1, X2; Y ). (E-3)

Step (c): The decoder now knows message ŵc,B−1 and, by
proceeding as in the step a), finds the correct cell index ŝB−2
as long as n is sufficiently large and (E-2) is true.
Step (d): The decoder calculates a set L(y[B − 1]) of zB−1
such that zB−1 ∈ L(y[B − 1]) if v(ŵc,B−1, ŝB−2, zB−1),
x2(ŵc,B−1, ŝB−2), y[B −1] are jointly typical. It then declares
that zB−1 was sent in block B − 1 if

ẑ B−1 ∈ CŝB−1 ∩ L(y[B − 1]). (E-4)

One can show that, for large n, ẑ B−1 = zB−1 with arbitrarily
high probability provided that n is sufficiently large and

T̂ < I (V ; Y |X2)+ T . (E-5)

Step (e): Finally, the decoder, which now knows message
ŵc,B−1, the cell indices (ŝB−2, ŝB−1) and the exact com-
pression index zB−1 ∈ CŝB−1 , estimates message w1,B−1
using y[B − 1]. It declares that ŵ1,B−1 was sent if
there exists a unique ŵ1,B−1 such that x2(ŵc,B−1, ŝB−2),
v(ŵc,B−1, ŝB−2, ẑ B−1), x1(ŵc,B−1, ŝB−2, ŵ1,B−1) and y[B −
1] are jointly typical. The decoding in this step incurs small
probability of error as long as n is sufficiently large and

R1 ≤ I (X1; Y |V , X2). (E-6)

2) Decoding in Block b, b = B − 1,B-2,…,2:
Next, for b ranging from B−1 to 2, the decoding of the pair

(wc,b−1, w1,b−1) is performed similarly, in four steps, by using
the information y[b] received in block b and the information
y[b−1] received in block b−1. More specifically, this is done
as follows.
Step (a): The decoder knows wc,b and looks for the unique
cell index ŝb−1 such that the vector x2(wc,b, ŝb−1) is jointly
typical with y[b]. The decoding error in this step is small for
sufficiently large n if (E-2) is true.
Step (b): The decoder now knows the cell index ŝb−1
(but not the exact compression indices zb−1). It then
decodes message wc,b−1 by looking for the unique
ŵc,b−1 such that x2(ŵc,b−1, sb−2), v(ŵc,b−1, sb−2, zb−1),
x1(ŵc,b−1, sb−2, w1,b−1) and y[b − 1] are jointly typical for
some sb−2 ∈ [1, K ], zb−1 ∈ Cŝb−1 and w1,b−1 ∈ [1,M1]. One
can show that the decoder obtains the correct wc,b−1 as long
as n and B are large and (E-3) is true.

Step (c): The decoder knows message ŵc,b−1 and, by proceed-
ing as in the step a), finds the correct cell index ŝb−2 as long
as n is sufficiently large and (E-2) is true.
Step (d): The decoder calculates a set L(y[b − 1]) of zb−1
such that zb−1 ∈ L(y[b − 1]) if v(ŵc,b−1, ŝb−2, zb−1),
x2(ŵc,b−1, ŝb−2), y[b − 1] are jointly typical. It then declares
that zb−1 was sent in block b − 1 if

ẑb−1 ∈ Cŝb−1 ∩ L(y[b − 1]). (E-7)

One can show that, for large n, ẑb−1 = zb−1 with arbitrarily
high probability provided that n is sufficiently large and (E-5)
is true.
Step (e): Finally, the decoder, which now knows mes-
sage ŵc,b−1, the cell indices (ŝb−2, ŝb−1) as well as the
exact compression index ẑb−1 ∈ Cŝb−1 , estimates message
w1,b−1 using y[b − 1]. It declares that ŵ1,b−1 was sent
if there exists a unique ŵ1,b−1 such that x2(ŵc,b−1, ŝb−2),
v(ŵc,b−1, ŝb−2, ẑb−1), x1(ŵc,b−1, ŝb−2, ŵ1,b−1) and y[b − 1]
are jointly typical. One can show that the decoder obtains
the correct wc,b−1 as long as n and B are large and (E-6) is
true.

Fourier-Motzkin Elimination: From the above, we get that
the error probability is small provided that n is large and

T̂ > I (V ; S|X2) (E-8a)

T < I (X2; Y ) (E-8b)

T̂ < I (V ; Y |X2)+ T (E-8c)

Rc + R1 + T̂ ≤ I (V , X1, X2; Y ) (E-8d)

R1 ≤ I (X1; Y |V , X2) (E-8e)

We now apply Fourier-Motzkin Elimination (FME) to suc-
cessively project out T and T̂ from (E-8e). Projecting out T
from (E-8e), we get

T̂ > I (V ; S|X2) (E-9a)

T̂ < I (V , X2; Y ) (E-9b)

Rc + R1 + T̂ < I (V , X1, X2; Y ) (E-9c)

R1 < I (X1; Y |V , X2) (E-9d)

Next, projecting out T̂ from (E-8e), we get

0 ≤ I (V , X2; Y )− I (V ; S|X2) (E-10a)

R1 ≤ I (X1; Y |V , X2) (E-10b)

Rc + R1 < I (V , X1, X2; Y )− I (V ; S|X2) (E-10c)

Finally, recalling that the measure PS,V ,X1,X2,Y ∈ P in
s-c

satisfies that X1 and X2 are independent of S and also implies
that X1 ↔ (V , X2) ↔ S is a Markov chain, it can be
seen easily that the inequalities in (E-10) can be rewritten
equivalently as

0 ≤ I (V , X2; Y )− I (V , X2; S) (E-11a)

R1 ≤ I (X1; Y |V , X2) (E-11b)

Rc + R1 ≤ I (V , X1, X2; Y )− I (V , X1, X2; S). (E-11c)

This completes the proof of Theorem 3.
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F. Proof of Proposition 2

In what follows we show that the outer bound Rout
s-c is

convex, and that it is enough to restrict V to satisfy (30). The
proof for the inner bound Rin

s-c follows similarly.
Part 1– Convexity: Consider the region Rout

s-c . To prove the
convexity of the region Rout

s-c , we use a standard argument. We
introduce a time-sharing random variable T and define the
joint distribution

PT ,S,V ,X1,X2,Y (t, s, v, x1, x2, y)

= PT ,S,V ,X1,X2(t, s, v, x1, x2)·WY |X1,X2,S(y|x1, x2, s) (F-1)∑

v,x1,x2

PT ,S,V ,X1,X2(t, s, v, x1, x2) = PT (t)QS(s). (F-2)

Let now (RT
c , RT

1 ) be the common and individual rates
resulting from time sharing. Then,

RT
1 ≤ I (X1; Y |V , X2, T ) (F-3)

= I (X1; Y |Ṽ , X2) (F-4)

RT
c + RT

1 ≤ I (V , X1, X2; Y |T )− I (V , X1, X2; S|T ) (F-5)

= I (V , X1, X2; Y |T )− I (V , X1, X2, T ; S) (F-6)

≤ I (V , X1, X2, T ; Y )− I (V , X1, X2, T ; S) (F-7)

= I (Ṽ , X1, X2; Y )− I (Ṽ , X1, X2; S) (F-8)

where Ṽ := (V , T ). Also, we have

I (Ṽ , X2; Y )− I (Ṽ , X2; S)

= I (V , X2, T ; Y )− I (V , X2, T ; S) (F-9)

= I (V , X2; Y |T )− I (V , X2; S|T )+ I (T ; Y ) (F-10)

≥ I (V , X2; Y |T )− I (V , X2; S|T ) (F-11)

where the second equality follows since T and S are
independent.

The above shows that the time sharing random variable T is
incorporated into the auxiliary random variable V . This shows
that time sharing cannot yield rate pairs that are not included
in Rout

s-c and, hence, Rout
s-c is convex.

Part 2– Bound on |V|: To prove that the region Rout
s-c is

not altered if one restricts the random variable V to have
its alphabet restricted as indicated in (30), we invoke the
support lemma [58, p. 310]. Fix a distribution μ ∈ Pout

s-c of
(S, V , X1, X2,Y ) and, without loss of generality, let us denote
the product set S ×X1 ×X2 = {1, . . . ,m}, m = |S×X1×X2|.
To prove the bound (30) on |V|, note that we have

Iμ(X1; Y |V , X2) = Iμ(X1, X2; Y |V )− Iμ(X2; Y |V )
= Hμ(X2,Y |V )− Hμ(X1, X2,Y |V )

+Hμ(X1, X2|V )− Hμ(X2|V ) (F-12)

and

Iμ(V , X1, X2; Y )− Iμ(V , X1, X2; S)

= Iμ(X1, X2; Y |V )− Iμ(X1, X2; S|V )
+ Iμ(V ; Y )− Iμ(V ; S)

= Hμ(X1, X2, S|V )− Hμ(X1, X2,Y |V )
+ Hμ(Y )− Hμ(S). (F-13)

Similarly, we have

Iμ(V , X2; Y )− Iμ(V , X2; S) = Hμ(X2, S|V )−Hμ(X2,Y |V )
+Hμ(Y )− Hμ(S). (F-14)

Hence, it suffices to show that the following functionals of
μ(S, V , X1, X2,Y )

ri (μ) = μ(s, x, x ′), i = 1, . . . ,m − 1 (F-15a)

rm(μ) =
∫

v
dμ(v)[Hμ(X2,Y |v)− Hμ(X1, X2,Y |v)

+Hμ(X1, X2|v)− Hμ(X2|v)] (F-15b)

rm+1(μ) =
∫

v
dμ(v)[Hμ(X1, X2, S|v) − Hμ(X1, X2,Y |v)

+Hμ(Y )− Hμ(S)] (F-15c)

rm+2(μ) =
∫

v
dμ(v)[Hμ(X2, S|v)− Hμ(X2,Y |v)

+Hμ(Y )− Hμ(S)] (F-15d)

can be preserved with another measure μ′ ∈ Pout
s-c . Observing

that there is a total of
(
|S||X1||X2|+2

)
functionals in (F-15),

this is ensured by a standard application of the support lemma;
and this shows that the alphabet of the auxiliary random
variable V can be restricted as indicated in (30) without
altering the region Rout

s-c .

G. Analysis of Example 2

First observe that for a given measure p(S,X1,X2)(s, x1, x2)
of the form p(S,X1,X2)(s, x1, x2) = pS(s)p(X1,X2)(x1, x2), i.e.,
with arbitrary joint p(X1,X2)(x1, x2), we have

H (SX1+X2 |X1, X2)

= E(X1,X2)

[
H (SX1+X2 |X1 = x1, X2 = x2)

]
(G-1a)

= pX1,X2(0, 0)H (S0|X1 = 0, X2 = 0)

+ pX1,X2(1, 1)H (S0|X1 = 1, X2 = 1)

+ pX1,X2(1, 0)H (S1|X1 = 1, X2 = 0)

+ pX1,X2(0, 1)H (S1|X1 = 0, X2 = 1) (G-1b)

= H (S0)[pX1,X2(0, 0)+ pX1,X2(1, 1)]
+ H (S1)[pX1,X2(1, 0)+ pX1,X2(0, 1)] (G-1c)

= Pr{X1 = X2}H (S0)+ Pr{X1 �= X2}H (S1) (G-1d)

= H (S0) (G-1e)

= 1

2
(G-1f)

where (G-1c) holds since S0 and S1 are independent of the
events {X1 = i, X2 = j}, (i, j) ∈ {1, 2}2, (G-1e) holds since
S = (S0, S1) is such that H (S0) = H (S1), and (G-1f) holds
since H (S0) = 1/2.
Similarly, we have

H (S|X1, X2, SX1+X2)

= E(X1,X2)

[
H (S0, S1|X1 = x1, X2 = x2, Sx1+x2)

]
(G-2a)

= pX1,X2(0, 0)H (S1|X1 = 0, X2 = 0, S0)

+ pX1,X2(1, 1)H (S1|X1 = 1, X2 = 1, S0)

+ pX1,X2(1, 0)H (S0|X1 = 1, X2 = 0, S1)

+ pX1,X2(0, 1)H (S0|X1 = 0, X2 = 1, S1) (G-2b)
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= pX1,X2(0, 0)H (S1)+ pX1,X2(1, 1)H (S1)

+ pX1,X2(1, 0)H (S0)+ pX1,X2(0, 1)H (S0) (G-2c)

= Pr{X1 �= X2}H (S0)+ Pr{X1 = X2}H (S1) (G-2d)

= H (S0) (G-2e)

= 1

2
. (G-2f)

We first prove that (Rc, R1) = (1/2, 1) ∈ Rout
s-c . This can be

seen by setting in (14c) V = SX1+X2 and the inputs X1 and X2
to be i.i.d with X1 ∼ Bernoulli(1/2) and X2 ∼ Bernoulli(1/2).
More specifically, it is easy to show that with this choice we
have

H (X2, X1 + SX1+X2) = 2 (G-3)

H (X1|SX1+X2 , X2) = 1 (G-4)

and, so, we also have

I (X1, X2; Y ) = H (Y )− H (Y |X1, X2) (G-5a)

= H (X2, X1 + SX1+X2)− H (SX1+X2 |X1, X2)

(G-5b)

= 2 − 1

2
(G-5c)

= 3

2
(G-5d)

where (G-5c) follows by using (G-1) and (G-3).
Thus, we have

I (X1; Y |V , X2) = I (X1; Y1, X2|SX1+X2, X2) (G-6a)

= I (X1; X1|SX1+X2 , X2) (G-6b)

= H (X1|SX1+X2 , X2) (G-6c)

= 1 (G-6d)

where (G-6b) follows by setting V = SX1+X2 , and (G-6d)
follows by (G-4).

Similarly, we have

I (V , X1, X2; Y )− I (V , X1, X2; S)

= I (X1, X2; Y )− I (V ; S|X1, X2,Y ) (G-7a)

= I (X1, X2; Y )− I (SX1+X2 ; S|X1, X2,Y1) (G-7b)

= I (X1, X2; Y )− I (SX1+X2 ; S|X1, X2, SX1+X2,Y1) (G-7c)

= I (X1, X2; Y ) (G-7d)

= 3

2
(G-7e)

where (G-7b) follows by setting V = SX1+X2 , (G-7c) follows
since V = SX1+X2 is a deterministic function of (X1,Y1), and
(G-7d) follows by (G-5).

It remains to show that the constraint (10) is satisfied with
the choice V = SX1+X2 and the inputs X1 and X2 to be i.i.d.
with X1 ∼ Bernoulli (1/2) and X2 ∼ Bernoulli (1/2). This
can be seen as follows

I (V , X2; Y )− I (V , X2; S)

= I (SX1+X2 , X2; Y )− I (SX1+X2, X2; S) (G-8a)

= H (X2, X1+SX1+X2)−H (X2, X1+SX1+X2 |X2, SX1+X2 )

− H (S)+ H (S|X2, SX1+X2) (G-8b)

= H (X2, X1 + SX1+X2)− H (X1|X2, SX1+X2)

− H (S)+ H (S|X2, SX1+X2) (G-8c)

= H (X2)+ H (X1 + SX1+X2)− H (X1)

− H (S)+ H (S|X2, SX1+X2) (G-8d)

= H (X1 + SX1+X2)+ H (S|X2, SX1+X2)− 1 (G-8e)

= 1 + 1

2
− 1 (G-8f)

= 1

2
(G-8g)

≥ 0 (G-8h)

where (G-8d) follows since X1 and X2 are independent of
each other and independent of (S, SX1+X2); (G-8e) follows by
substituting H (X1) = 1, H (X2) = 1 and H (S) = 1; (G-8f)
follows by straightforward algebra to obtain and then substitute
using H (X1 + SX1+X2) = 1 and H (S|X2, SX1+X2) = 1/2.

The above shows that the outer bound Rout
s-c contains the

rate pair (Rc, R1) = (1/2, 1).
We now turn to proving that (Rc, R1) = (1/2, 1) /∈ Rin

s-c.
Fix a distribution PS,V ,X1,X2,Y of the form (26); and, assume
that (Rc, R2) ∈ Rin

s-c with R1 = 1. We will show that Rc must
be zero.

First, note that, by R1 = 1 and (28a), X1 is not determinis-
tic, i.e., pX1(x1) > 0 for all x1 ∈ {0, 1}. Also, it can be seen
easily that if X2 is deterministic then one immediately gets
Rc + R1 ≤ H (X1) ≤ 1 from (28a), where the last inequality
follows since X1 is binary. Therefore, in the rest of this proof
we assume that both X1 and X2 are not deterministic.

First consider (28b). We get

Rc + R1 ≤ I (V , X1, X2; Y )− I (V , X1, X2; S) (G-9a)

= I (X1, X2; Y )− I (V ; S|X1, X2,Y ) (G-9b)

= H (Y1,Y2)− H (X1 + SX1+X2 |X1, X2)

− I (V ; S|X1, X2,Y1) (G-9c)

= H (Y1,Y2)− H (SX1+X2 |X1, X2)

− H (S|X1, X2,Y1)+ H (S|X1, X2,Y1, V ) (G-9d)

= H (Y1,Y2)−H (SX1+X2 |X1, X2)−H (S|X1, X2,Y1, SX1+X2)

+ H (S|X1, X2,Y1, V , SX1+X2) (G-9e)

= H (Y1,Y2)− H (SX1+X2 |X1, X2)

−H (S|X1, X2, SX1+X2)+H (S|X1, X2, V , SX1+X2) (G-9f)

≤ 2 − H (SX1+X2 |X1, X2)− H (S|X1, X2, SX1+X2)

+ H (S|X1, X2, V , SX1+X2) (G-9g)

≤ 2 − 1

2
− 1

2
+ H (S|X1, X2, V , SX1+X2) (G-9h)

= 1 + H (S|X1, X2, V , SX1+X2) (G-9i)

where (G-9e) follows since SX1+X2 = X1 + Y1 is a
deterministic function of X1 and Y1, (G-9f) follows since
Y1 is a deterministic function of X1 and SX1+X2 , (G-9g)
follows since the alphabet Y1×Y2 has four elements, and
(G-9h) follows since H (SX1+X2 |X1, X2) = 1/2 by (G-1) and
H (S|X1, X2, SX1+X2) = 1/2 by (G-2f).

In what follows we will show that the term
H (S|X1, X2, V , SX1+X2) on the RHS of (G-9i) is zero,
which together with R1 = 1 will then imply that Rc = 0.

To this end, consider now (28a). Since R1 = 1 and X1 is
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binary, we have

1 ≤ H (X1|V , X2)− H (X1|V , X2,Y ) ≤ H (X1) ≤ 1. (G-10)

Thus, H (X1|V , X2) = H (X1); and, so X1 is independent of
(V , X2). Since X1 is also independent of S, we then have that

X1 is independent of (S, V , X2). (G-11)

From (28a), we also obtain

1 = R1 ≤ H (Y |V , X2)− H (Y |V , X1, X2) (G-12a)

= H (Y1|V , X2)− H (Y1|V , X1, X2) (G-12b)

≤ H (Y1)− H (Y1|V , X1, X2) (G-12c)

≤ H (Y1) (G-12d)

≤ 1 (G-12e)

where the last inequality follows since Y1 is binary. This
implies that H (Y1) = 1 and H (Y1|V , X1, X2) = 0. Thus,

0 = H (Y1|V , X1, X2) (G-13a)

= H (X1 + SX1+X2 |V , X1, X2) (G-13b)

= H (SX1+X2 |V , X1, X2). (G-13c)

The joint distribution of X1 and X2 satisfies

pX1,X2(x1, x2) = pX1(x1)pX2(x2) > 0, ∀(x1, x2) ∈ {0, 1}2

(G-14)

where the equality follows by (G-11) from the independence of
X1 and X2, and the strict positivity follows since both X1 and
X2 are assumed to be non deterministic. Next, from (G-13c),
we get

0 = H (SX1+X2 |V , X1, X2) (G-15a)

= E(X1,X2)

[
H (Sx1+x2 |V , X1 = x1, X2 = x2)

]
(G-15b)

= pX1,X2(0, 0)H (S0|V , X1 = 0, X2 = 0)

+pX1,X2(1, 1)H (S0|V , X1 = 1, X2 = 1)

+pX1,X2(1, 0)H (S1|V , X1 = 1, X2 = 0)

+pX1,X2(0, 1)H (S1|V , X1 = 0, X2 = 1) (G-15c)

= pX1,X2(0, 0)H (S0|V , X2 = 0)

+pX1,X2(1, 1)H (S0|V , X2 = 1)

+pX1,X2(1, 0)H (S1|V , X2 = 0)

+pX1,X2(0, 1)H (S1|V , X2 = 1) (G-15d)

where the last equality follows since, by (26), X1 ↔
(V , X2) ↔ S is a Markov chain.

From (G-15), and the fact that, by (G-14), pX1,X2(x1, x2) >
0 for all (x1, x2) ∈ {0, 1}2, we get that all the conditional
entropy terms on the RHS of (G-15) are zero,

H (S0|V , X2 = 0) = 0, H (S0|V , X2 = 1) = 0 (G-16a)

H (S1|V , X2 = 0) = 0, H (S1|V , X2 = 1) = 0. (G-16b)

Consider now the term H (S|X1, X2, V , SX1+X2) on the
RHS of (G-9i). We have

0 ≤ H (S|X1, X2, V , SX1+X2)

= E(X1,X2)

[
H (S|X1 = x1, X2 = x2, V , Sx1+x2)

]
(G-17a)

= pX1,X2(0, 0)H (S|X1 = 0, X2 = 0, V , S0)

+pX1,X2(1, 1)H (S|X1 = 1, X2 = 1, V , S0)

+pX1,X2(0, 1)H (S|X1 = 0, X2 = 1, V , S1)

+pX1,X2(1, 0)H (S|X1 = 1, X2 = 0, V , S1) (G-17b)

= pX1,X2(0, 0)H (S1|X1 = 0, X2 = 0, V , S0)

+pX1,X2(1, 1)H (S1|X1 = 1, X2 = 1, V , S0)

+pX1,X2(0, 1)H (S0|X1 = 0, X2 = 1, V , S1)

+pX1,X2(1, 0)H (S0|X1 = 1, X2 = 0, V , S1) (G-17c)

≤ pX1,X2(0, 0)H (S1|X1 = 0, X2 = 0, V )

+pX1,X2(1, 1)H (S1|X1 = 1, X2 = 1, V )

+pX1,X2(0, 1)H (S0|X1 = 0, X2 = 1, V )

+pX1,X2(1, 0)H (S0|X1 = 1, X2 = 0, V ) (G-17d)

= pX1,X2(0, 0)H (S1|X2 = 0, V )

+pX1,X2(1, 1)H (S1|X2 = 1, V )

+pX1,X2(0, 1)H (S0|X2 = 1, V )

+pX1,X2(1, 0)H (S0|X2 = 0, V ) (G-17e)

= 0 (G-17f)

where (G-17c) follows by substituting S = (S0, S1), (G-17d)
follows since conditioning reduces entropy, (G-17e) follows
since by (26), X1 ↔ (V , X2) ↔ S is a Markov chain, and
(G-17f) follows by substituting using (G-16b).

Finally, combining (G-9i) and (G-17f), we get that

0 ≤ Rc + R1 ≤ 1 (G-18)

which, together with R1 = 1, implies that Rc = 0.
The above shows that the inner bound Rin

s-c does not contain
any rate pair of the form (Rc, R1 = 1) with Rc > 0; and, so,
in particular (Rc, R1) = (1/2, 1) /∈ Rin

s-c.

H. Proof of Proposition 4

We show that the capacity region of the state-dependent
MAC with strictly causal states known only at the encoder
that sends both messages is given by the set of all rate pairs
(Rc, R1) such that

R1 ≤ I (X1; Y |X2) (H-1a)

Rc + R1 ≤ I (X1, X2; Y ) (H-1b)

for some measure of the form

PS,X1,X2,Y = QS PX2 PX1|X2 WY |X1,X2,S . (H-2)

i) The region described by (H-1) is the capacity region of the
same MAC model without states; and, so, it is also achievable
in the presence of (strictly causal) states, as these states can
always be ignored by the transmitters.

ii) The proof of the converse is as follows.
The bound (H-1b) on the sum rate (Rc + R1) follows by using
the result of Proposition 3.

The bound (H-1a) on the individual rate R1 follows as
follows.

n R1 ≤ H (W1)

= H (W1|Wc)

= I (W1; Y n|Wc)+ H (W1|Wc,Y n)
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≤ I (W1; Y n|Wc)+ nεn

=
n∑

i=1

I (W1; Yi |Wc,Y i−1)+ nεn

=
n∑

i=1

H (Yi |Wc,Y i−1)− H (Yi |Wc,W1,Y i−1)+ nεn

(a)=
n∑

i=1

H (Yi |Wc,Y i−1, X2i )

− H (Yi |Wc,W1,Y i−1, X2i )+ nεn

(b)≤
n∑

i=1

H (Yi |X2i )−H (Yi |Wc,W1,Y i−1, X1i , X2i )+nεn

(c)≤
n∑

i=1

H (Yi |X2i )− H (Yi |X1i , X2i )+ nεn

=
n∑

i=1

I (X1i ; Yi |X2i )+ nεn (H-3)

where (a) follows by the fact that X1i is a deterministic func-
tion of Wc for the model in which the states are known, strictly
causally, at only the encoder that sends both messages; (b)
follows since conditioning reduces the entropy; and (c) follows
from the fact that (Wc,W1,Y i−1, Si−1) ↔ (X1i , X2i , Si ) ↔
Yi and (Wc,W1,Y i−1, Si−1, X1i , X2i ) is independent of Si .

The rest of the proof of Proposition 4 follows by standard
single-letterization.

I. Analysis of Example 4

In this section, we use the result of Theorem 4 to show that
the capacity region of the model of Example 4 is given by
(70).

1) Fix a joint distribution of (X1, X2, S,Y ) of the form (66)
and satisfying

E[X2
1] = P̃1 ≤ P1, E[X2

2] = P̃2 ≤ P2, E[X1 X2] = σ12

(I-1)

We shall also use the correlation coefficient ρ12 defined as

ρ12 = σ12√
P̃1 P̃2

. (I-2)

We first compute the RHS of the bound on the sum rate.

I (X1, X2; Y1,Y2) = h(Y1,Y2)− h(Y1,Y2|X1, X2) (I-3)

= h(Y1,Y2)− h(S, Z |X1, X2) (I-4)
(a)= h(Y1,Y2)− h(S)− h(Z) (I-5)

= h(Y1|X2 + Z)+ h(X2 + Z)− h(S)− h(Z) (I-6)

(b)≤ 1

2
log

∣∣E[Y1Y T
1 ] − E[Y1E[Y1|X2 + Z ]]∣∣

Q

+ 1

2
log

(
1 + P̃2

N

)
(I-7)

(c)= 1

2
log

(
1 + P̃1 + P̃2 + 2σ12

Q
− (σ12 + P̃2)

2

Q(P̃2 + N)

)

+ 1

2
log

(
1 + P̃2

N

)
(I-8)

= 1

2
log

×
(
1+ (1−ρ2

12)P̃1 P̃2+N((
√

P̃1+ρ12

√
P̃2)

2+(1−ρ2
12)P̃2)

Q(P̃2+N)

)

+ 1

2
log

(
1 + P̃2

N

)
(I-9)

where (a) follows since the state S and the noise Z are inde-
pendent of each other and independent of the channel inputs
X1 and X2; (b) follows by the Maximum Differential Entropy
Lemma [44, Sec. 2.2]; and (c) follows by straightforward
algebra, noticing that the minimum mean square estimator
(MMSE) of Y1 given Y2 = X2 + Z is

E[Y1|X2 + Z ] = σ12 + P̃2

P̃2 + N
(X2 + Z). (I-10)

It is easy to see that the RHS of the bound on the individual
rate is redundant.

For convenience, let us define the function 	(P̃1, P̃2, ρ12)
as the RHS of (I-9). The above shows that the capacity region
of the model of Example 4 is outer-bounded by the set of pairs
(Rc, R1) satisfying

0 ≤ Rc + R1 ≤ max 	(P̃1, P̃2, ρ12) (I-11)

where the maximization is over 0 ≤ P̃1, 0 ≤ P̃2 and
−1 ≤ ρ12 ≤ 1.

Investigating 	(P̃1, P̃2, ρ12), it can be see that it suffices to
consider ρ12 ∈ [0, 1] for the maximization in (I-11); and that
	(P̃1, P̃2, ρ12) is maximized at P̃1 = P1 and P̃2 = P2.

2) As for the proof of achievability, choose in the inner
bound of Theorem 4, random variables S, X1, X2 and Y that
are jointly Gaussian with second moments E[X2

1] = P̃1 and
E[X2

2] = P̃2, and with E[X1 X2] = ρ12
√

P1 P2. The rest of the
proof of the direct part follows by straightforward algebra that
is very similar to that for the converse proof above and that
we omit for brevity.

This completes the proof of Theorem 4.

J. Proof of Theorem 5

The transmission takes place in B blocks. The common
message Wc and the individual message W1 are sent over all
blocks. We thus have BWc = nB Rc, BW1 = nB R1, N = nB ,
RWc = BWc/N = Rc and RW1 = BW1/N = R1, where BWc

is the number of common message bits, BW1 is the number
of individual message bits, N is the number of channel uses
and RWc and RW1 are the overall rates of the common and
individual messages, respectively.
Codebook Generation: Fix a measure PS,U,V ,X1,X2,Y ∈
P in

asym,s-c. Fix ε > 0, ηc > 0, η1 > 0, η̂ > 0, δ > 1 and denote

Mc = 2nB[Rc−ηcε], M1 = 2nB[R1−η1ε], and M̂ = 2n[R̂+η̂ε].
Also, let ηc1 > 0, ηc2 > 0 and Mc1 = 2nB[Rc1−ηc1ε] and
Mc2 = 2nB[Rc2−ηc2ε] such that Rc = Rc1 + Rc2.

We randomly and independently generate a codebook for
each block.
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1) For each block i , i = 1, . . . , B , we generate Mc1
independent and identically distributed (i.i.d.) codewords
ui (wc1) indexed by wc1 = 1, . . . ,Mc1, each with i.i.d.
components drawn according to PU .

2) For each block i , for each codeword ui (wc1), we
generate Mc2 M̂ independent and identically distributed
(i.i.d.) codewords x2,i(wc1, wc2, t ′i ) indexed by wc2 =
1, . . . ,Mc2, t ′i = 1, . . . , M̂ , each with i.i.d. components
drawn according to PX2|U .

3) For each block i , for each pair of codewords
(ui (wc1), x2,i (wc1, wc2, t ′i )), we generate M̂ i.i.d. code-
words vi (wc1, wc2, t ′i , ti ) indexed by ti = 1, . . . , M̂ , each
with i.i.d. components drawn according to PV |U,X2 .

4) For each block i , for each codeword ui (wc1), we generate
M1 independent and identically distributed (i.i.d.) code-
words x1,i(wc1, w1) indexed by w1 = 1, . . . ,M1, each
with i.i.d. components drawn according to PX1|U .

Encoding: Suppose that a common message Wc = wc =
(wc1, wc2) and an individual message W1 = w1 are to be
transmitted. As we mentioned previously, wc and w1 will be
sent over all blocks. We denote by s[i ] the state affecting the
channel in block i , i = 1, . . . , B . For convenience, we let
s[0] = ∅ and t−1 = t0 = 1 (a default value). The encoding at
the beginning of block i , i = 1, . . . , B , is as follows.
Encoder 2, which has learned the state sequence s[i−1], knows
ti−2 and looks for a compression index ti−1 ∈ [1 : M̂] such
that vi−1(wc1, wc2, ti−2, ti−1) is strongly jointly typical with
s[i − 1], ui−1(wc1) and x2,i−1(wc1, wc2, ti−2). If there is no
such index or the observed state s[i − 1] is not typical, ti−1
is set to 1 and an error is declared. If there is more than one
such index ti−1, choose the smallest. It can be shown that the
error in this step has vanishing probability as long as n and
B are large and

R̂ > I (V ; S|U, X2). (J-1)

Encoder 2 then transmits the vector x2,i(wc1, wc2, ti−1).
Encoder 1 transmits the vector x1,i(wc1, w1).

Decoding: At the end of the transmission, the decoder has
collected all the blocks of channel outputs y[1], . . . , y[B].
Step (a): The decoder estimates message wc = (wc1, wc2)
using all blocks i = 1, . . . , B , i.e., simultaneous decoding.
It declares that ŵc = (ŵc1, ŵc2) is sent if there exist t B =
(t1, . . . , tB) ∈ [1 : M̂]B and w1 ∈ [1 : M1] such that ui (ŵc1),
x2,i (ŵc1, ŵc2, ti−1), vi (ŵc1, ŵc2, ti−1, ti ), x1,i(ŵc1, w1) and
y[i ] are jointly typical for all i = 1, . . . , B . One can show
that the decoder obtains the correct wc = (wc1, wc2) as long
as n and B are large and

Rc2 + R1 ≤ I (V , X1, X2; Y |U)− R̂ (J-2)

Rc1 + Rc2 + R1 ≤ I (U, V , X1, X2; Y )− R̂. (J-3)

Step (b): Next, the decoder estimates message w1 using
again all blocks i = 1, . . . , B , i.e., simultaneous decoding.
It declares that ŵ1 is sent if there exist t B =
(t1, . . . , tB) ∈ [1 : M̂]B such that ui (ŵc1), x2,i(ŵc1, ŵc2, ti−1),
vi (ŵc1, ŵc2, ti−1, ti ), x1,i (ŵc1, w1) and y[i ] are jointly typical
for all i = 1, . . . , B . One can show that the decoder obtains

the correct w1 as long as n and B are large and

R1 ≤ I (X1; Y |U, V , X2) (J-4)

R1 ≤ I (V , X1, X2; Y |U)− R̂. (J-5)

Probability of error analysis: We examine the probability
of error associated with each of the encoding and decoding
procedures. The events E1, E2 and E3 correspond to encoding
errors, and the events E4, E5, E6 and E7 correspond to
decoding errors. To bound the probability of error, we assume
without loss of generality that the messages equal to unity,
i.e., wc1 = wc2 = w1 = 1; and, except for the anlysis of the
event E1, we also assume that the compression indices are all
equal unity, i.e., t1 = t2 = . . . = tB = 1.

• Let E1 = ∪B
i=1 E1i where E1i is the event that, for

the encoding in block i , there is no covering codeword
vi−1(1, 1, ti−2, ti−1) strongly jointly typical with s[i − 1]
given ui−1(1) and x2,i−1(1, 1, ti−2), i.e.,

E1 =
B⋃

i=1

{
� ti−1 ∈ [1 : M̂] s.t.:

(
vi−1(1, 1, ti−2, ti−1), s[i −1],
ui−1(1), x2,i−1(1, 1, ti−2)

)

∈ T n
ε (PV ,S,U,X2)

}
. (J-6)

For i ∈ [1 : B], the probability that (s[i − 1],ui−1(1),
x2,i−1(1, 1, ti−2)) is not jointly typical goes to zero
as n → ∞, by the asymptotic equipartition prop-
erty (AEP) [55, p. 384]. Then, for (s[i − 1],ui−1(1),
x2,i−1(1, 1, ti−2)) jointly typical, the covering lemma [44,
Lecture Note 3] ensures that the probability that there
is no ti−1 ∈ [1 : M̂] such that (vi−1(1, 1, ti−2, ti−1),
s[i − 1]) is strongly jointly typical given ui−1(1) and
x2,i−1(1, 1, ti−2) is exponentially small for large n pro-
vided that the number of covering codewords vi−1 is
greater than 2nI (V ;S|U,X2), i.e.,

R̂ > I (V ; S|U, X2). (J-7)

Thus, if (J-7) holds, Pr(E1i ) → 0 as n → ∞ and,
so, by the union of bound over the B blocks, Pr(E1) →
0 as n → ∞.

• For the decoding of the common message wc = (1, 1)
at the receiver, let E2 = ∪B

i=1 E2i where E4i is the event

that
(

ui−1(1), x2,i (1, 1, 1), vi(1, 1, 1, 1), x1,i(1, 1), y[i ]
)

is not jointly typical, i.e.,

E2

=
B⋃

i=1

{(
ui−1(1), x2,i(1,1,1), vi (1,1,1,1), x1,i(1,1), y[i ]

)

/∈ T n
ε (PU,X2,V ,X1,Y )

}
. (J-8)

Conditioned on Ec
1i , the vectors s[i ], ui−1(1), x2,i (1, 1, 1)

and vi (1, 1, 1, 1) are jointly typical, and with x1,i(1, 1).
Then, conditioned on Ec

1i , the vectors s[i ], ui−1(1),
x2,i (1, 1, 1) and vi (1, 1, 1, 1), x1,i(1, 1) and y[i ] are
jointly typical by the Markov lemma [55, p. 436], i.e.,
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Pr(E3|Ec
1, Ec

2) = Pr
( ⋃

wc1 �=1

⋃

wc2∈[1,Mc2]

⋃

w1 ∈ [1:M1]

⋃

t B ∈ [1:M̂]B

B⋂

i=1

E3i (wc1, wc2, ti−1, ti , w1)|Ec
1, Ec

2

)

(a)≤
∑

wc1 �=1

∑

wc2∈[1,Mc2]

∑

w1∈[1:M1]

∑

t B ∈ [1:M̂]B

Pr
( B⋂

i=1

E3i (wc1, wc2, ti−1, ti , w1)|Ec
1, Ec

2

)

(b)=
∑

wc1 �=1

∑

wc2∈[1,Mc2]

∑

w1∈[1:M1]

∑

t B ∈ [1:M̂]B

B∏

i=1

Pr
(

E3i(wc1, wc2, ti−1, ti , w1)|Ec
1, Ec

2

)

≤
∑

wc1 �=1

∑

wc2∈[1,Mc2]

∑

w1∈[1:M1]

∑

t B ∈ [1:M̂]B

B∏

i=2

Pr
(

E3i(wc1, wc2, ti−1, ti , w1)|Ec
1, Ec

2

)

(c)≤
∑

wc1 �=1

∑

wc2∈[1,Mc2]

∑

w1∈[1:M1]

∑

t B ∈ [1:M̂]B

B∏

i=2

2−n
[

I (U,V ,X1,X2;Y )−ε
]

=
∑

wc1 �=1

∑

wc2∈[1,Mc2]

∑

w1∈[1:M1]

∑

tB ∈ [1:M̂]
2n(B−1)

[
R̂+η̂ε

]
2−n(B−1)

[
I (U,V ,X1,X2;Y )−ε

]

≤ Mc1 Mc2 M1 M̂2−n(B−1)
[

I (U,V ,X1,X2;Y )−R̂−(η̂+1)ε
]

= 2−nB
[

B−1
B

(
I (U,V ,X1,X2;Y )−R̂

)
−(Rc1+Rc2+R1)− R̂

B +
(
ηc1+ηc2+η1−η̂− B−1

B

)
ε
]

(J-9)

where: (a) follows by the union bound; (b) follows since the codebook is generated independently for each block i ∈ [1 : B]
and the channel is memoryless; and (c) follows by (J-11).

Pr(E2i |Ec
1i ) → 0 as n → ∞. Thus, by the union bound

over the B blocks, Pr(E2|Ec
1) → 0 as n → ∞.

• For the decoding of the common message wc = (1, 1)
at the receiver, let E3 be the event that ui (wc1),
x2,i (wc1, wc2, ti−1), vi (wc1, wc2, ti−1, ti ), x1,i(wc1, w1)
and y[i ] are jointly typical for all i = 1, . . . , B and
some wc1 ∈ [1 : Mc1], wc2 ∈ [1 : Mc2], w1 ∈
[1 : M1] and t B = (t1, . . . , tB) ∈ [1 : M̂]B such that
wc1 �= 1, i.e.,

E3

=
{
∃ wc1 ∈ [1 : Mc1], wc2 ∈ [1 : Mc2], w1 ∈ [1 : M1],

t B = (t1, . . . , tB) ∈ [1 : M̂]B s.t.:wc1 �= 1,
B⋂

i=1

{(
ui (wc1), x2,i (wc1, wc2, ti−1),

vi (wc1, wc2, ti−1, ti ), x1,i (wc1, w1), y[i ]
)

∈ T n
ε (PU,X2,V ,X1,Y )

}}
. (J-10)

To bound the probability of the event E3, define the
following event for given wc1 ∈ [1 : Mc1], wc2 ∈ [1 :
Mc2], w1 ∈ [1 : M1] and (ti−1, ti ) ∈ [1 : M̂]2 such that
wc1 �= 1,

E3i(wc1, wc2, ti−1, ti , w1)

=
{(

ui (wc1), x2,i (wc1, wc2, ti−1),

vi (wc1, wc2, ti−1, ti ), x1,i (wc1, w1), y[i ]
)

∈ T n
ε (PU,X2,V ,X1,Y )

}
.

Note that for wc1 �= 1 the vectors ui (wc1),
x2,i (wc1, wc2, ti−1), vi (wc1, wc2, ti−1, ti ) and
x1,i(wc1, w1) are generated independently of y[i ]. Hence,
by the joint typicality lemma [44, Lecture Note 2], we
get

Pr
(

E3i (wc1, wc2, ti−1, ti , w1)|Ec
1, Ec

2

)

≤ 2−n[I (U,V ,X1,X2;Y )−ε]. (J-11)

Then, conditioned on the events Ec
1 and Ec

2, the proba-
bility of the event E3 can be bounded as given by (J-9)
at the top of the page.
The right hand side (RHS) of (J-9) tends to zero as n →
∞ if

Rc1 + Rc2 + R1 ≤ B − 1

B

(
I (U, V , X1, X2; Y )− R̂

)

− R̂

B
. (J-12)

Taking B → ∞, we get Pr(E3|Ec
1, Ec

2) → 0 as long as

Rc + R1 ≤ I (U, V , X1, X2; Y )− R̂. (J-13)

• For the decoding of the common message wc =
(1, 1) at the receiver, let E4 be the event that ui (1),
x2,i (1, wc2, ti−1), vi (1, wc2, ti−1, ti ), x1,i(1, w1) and y[i ]
are jointly typical for all i = 1, . . . , B and some wc2 ∈
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Pr(E4|Ec
1, Ec

2, Ec
3) = Pr

( ⋃

wc2 �=1

⋃

w1 ∈ [1:M1]

⋃

t B ∈ [1:M̂]B

B⋂

i=1

E4i (wc2, ti−1, ti , w1)|Ec
1, Ec

2, Ec
3

)

(a)≤
∑

wc2 �=1

∑

w1∈[1:M1]

∑

t B ∈ [1:M̂]B

Pr
( B⋂

i=1

E4i (wc2, ti−1, ti , w1)|Ec
1, Ec

2, Ec
3

)

(b)=
∑

wc2 �=1

∑

w1∈[1:M1]

∑

t B ∈ [1:M̂]B

B∏

i=1

Pr
(

E4i (wc2, ti−1, ti , w1)|Ec
1, Ec

2, Ec
3

)

≤
∑

wc2 �=1

∑

w1∈[1:M1]

∑

t B ∈ [1:M̂]B

B∏

i=2

Pr
(

E4i (wc2, ti−1, ti , w1)|Ec
1, Ec

2, Ec
3

)

(c)≤
∑

wc2 �=1

∑

w1∈[1:M1]

∑

t B ∈ [1:M̂]B

B∏

i=2

2−n
[

I (V ,X1,X2;Y |U )−ε
]

=
∑

wc2 �=1

∑

w1∈[1:M1]

∑

tB ∈ [1:M̂]
2n(B−1)

[
R̂+η̂ε

]
2−n(B−1)

[
I (V ,X1,X2;Y |U )−ε

]

≤ Mc2 M1 M̂2−n(B−1)
[

I (V ,X1,X2;Y |U )−R̂−(η̂+1)ε
]

= 2−nB
[

B−1
B

(
I (V ,X1,X2;Y |U )−R̂

)
−(Rc2+R1)− R̂

B +
(
ηc2+η1−η̂− B−1

B

)
ε
]

(J-15)

where: (a) follows by the union bound; (b) follows since the codebook is generated independently for each block i ∈ [1 : B]
and the channel is memoryless; and (c) follows by (J-16).

[1 : Mc2], w1 ∈ [1 : M1] and t B = (t1, . . . , tB) ∈ [1 :
M̂]B such that wc2 �= 1, i.e.,

E4 =
{
∃wc2 ∈ [1 : Mc2], w1 ∈ [1 : M1],

t B = (t1, . . . , tB) ∈ [1 : M̂]B s.t.:wc2 �= 1,
B⋂

i=1

{(
ui (1), x2,i (1, wc2, ti−1), vi (1, wc2, ti−1, ti ),

x1,i (1, w1), y[i ]
)

∈ T n
ε (PU,X2,V ,X1,Y )

}}
. (J-14)

To bound the probability of the event E4, define the
following event for given wc2 ∈ [1 : Mc2], w1 ∈ [1 : M1]
and (ti−1, ti ) ∈ [1 : M̂]2 such that wc2 �= 1,

E4i (wc2, ti−1, ti , w1)

=
{(

ui (1), x2,i(1, wc2, ti−1),

vi (1, wc2, ti−1, ti ), x1,i (1, w1), y[i ]
)

∈ T n
ε (PU,X2,V ,X1,Y )

}
.

For wc2 �= 1 the vectors x2,i (1, wc2, ti−1),
vi (1, wc2, ti−1, ti ) and x1,i(1, w1) are generated
independently of y[i ] conditionnally given ui (1). Hence,
by the joint typicality lemma [44, Lecture Note 2],
we get

Pr
(

E4i (wc2, ti−1, ti , w1)|Ec
1, Ec

2, Ec
3

)

≤ 2−n[I (V ,X1,X2;Y |U )−ε]. (J-16)

Then, conditioned on the events Ec
1, Ec

2 and Ec
3, the

probability of the event E4 can be bounded as indicated
by (J-15) at the top of the page.
The right hand side (RHS) of (J-15) tends to zero as
n → ∞ if

Rc2 + R1 ≤ B − 1

B

(
I (V , X1, X2; Y |U)− R̂

)

− R̂

B
. (J-17)

Taking B → ∞, we get Pr(E4|Ec
1, Ec

2, Ec
3) → 0 as long

as

Rc2 + R1 ≤ I (V , X1, X2; Y |U)− R̂. (J-18)

• For the decoding of the individual message w1 = 1 at the
receiver, let E5 = ∪B

i=1 E5i where E5i is the event that(
x2,i (1, 1, 1), vi (1, 1, 1, 1), x1,i (1, 1), y[i ]

)
is not jointly

typical conditionnally given ui−1(1), i.e.,

E5 =
B⋃

i=1

{(
ui−1(1), x2,i (1, 1, 1), vi(1, 1, 1, 1),

x1,i(1, 1), y[i ]
)
/∈ T n

ε (PU,X2,V ,X1,Y )
}
.

(J-19)

Conditioned on Ec
1i , the vectors s[i ], ui−1(1), x2,i (1, 1, 1)

and vi (1, 1, 1, 1) are jointly typical, and with x1,i(1, 1).
Then, conditioned on Ec

1i , the vectors s[i ], ui−1(1),
x2,i (1, 1, 1) and vi (1, 1, 1, 1), x1,i(1, 1) and y[i ] are
jointly typical by the Markov lemma [55, p. 436], i.e.,
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Pr(E2i |Ec
1i ) → 0 as n → ∞. Thus, by the union bound

over the B blocks, Pr(E5|Ec
1, Ec

2, Ec
3) → 0 as n → ∞.

• For the decoding of the individual message w1 = 1 at the
receiver, let E6 be the event that ui (1), x2,i (1, 1, ti−1),
vi (1, 1, ti−1, ti ), x1,i (1, w1) and y[i ] are jointly typical
for all i = 1, . . . , B and some w1 ∈ [1 : M1] and t B =
(t1, . . . , tB) ∈ [1 : M̂]B such that w1 �= 1, i.e.,

E6 =
{
∃ w1 �= 1, t B = (t1, . . . , tB) ∈ [1 : M̂]B s.t.:

B⋂

i=1

{(
ui (1), x2,i (1, 1, ti−1), vi (1, 1, ti−1, ti ),

x1,i(1, w1), y[i ]
)
∈T n

ε (PU,X2,V ,X1,Y )
}}
. (J-20)

To bound the probability of the event E6, define the
following event for given w1 ∈ [1 : M1] and (ti−1, ti ) ∈
[1 : M̂]2,

E6i (ti−1, ti , w1)

=
{ (

ui (1), x2,i (1, 1, ti−1), vi (1, 1, ti−1, ti ),

x1,i(1, w1), y[i ]
)

∈ T n
ε (PU,X2,V ,X1,Y )

}
.

Then, we have

Pr(E6|Ec
1, Ec

2, Ec
3, Ec

4, Ec
5)

= Pr
( ⋃

w1 �=1

⋃

t B ∈ [1:M̂]B

B⋂

i=1

E6i (ti−1, ti , w1)|Ec
1, Ec

2, Ec
3, Ec

4, Ec
5,

)

(d)≤
∑

w1 �=1

∑

t B ∈ [1:M̂]B

Pr
( B⋂

i=1

E6i (ti−1, ti , w1)|Ec
1, Ec

2, Ec
3, Ec

4, 5c
)

(e)=
∑

w1 �=1

∑

t B ∈ [1:M̂]B

B∏

i=1

Pr
(

E6i (ti−1, ti , w1)|Ec
1, Ec

2, Ec
3, Ec

4, 5c
)

≤
∑

w1 �=1

∑

t B ∈ [1:M̂]B

B∏

i=2

Pr
(

E6i (ti−1, ti , w1)|Ec
1, Ec

2, Ec
3, Ec

4, 5c
)

(J-22)

where: (d) follows by the union bound and (e) follows
since the codebook is generated independently for each
block i ∈ [1 : B] and the channel is memoryless.
For w1 �= 1, the probability of the event E6i(ti−1, ti , w1)
conditioned on Ec

1, Ec
2, Ec

3, Ec
4, Ec

5 can be bounded as
follows, depending on the values of ti−1 and ti :

i) if ti−1 �= 1 then
(

x2,i (1, 1, ti−1), vi (1, 1, ti−1, ti ),

x1,i(1, w1)
)

is generated independently of the output
vector y[i ] conditionnally given ui (1) irrespective to

the value of ti , and so, by the joint typicality lemma
[44, Lecture Note 2]

Pr
(

E6i(ti−1, ti , w1)| ∩5
k=1 Ec

k

)

≤ 2−n[I (V ,X1,X2;Y |U )−ε]. (J-23)

ii) if ti−1 = 1 and ti �= 1, then
(

vi (1, 1, ti−1, ti ),

x1,i(1, w1)
)

is generated independently of the out-
put vector y[i ] conditionnally given ui (1) and
x2,i(1, 1, ti−1); and, hence,

Pr
(

E6i (ti−1, ti , w1)| ∩5
k=1 Ec

k

)

≤ 2−n[I (V ,X1;Y |U,X2)−ε]. (J-24)

iii) if ti−1 = 1 and ti = 1 then x1,i(1, w1)
is generated independently of the output vector
y[i ] conditionnally given ui (1), x2,i (1, 1, ti−1) and
vi (1, 1, ti−1, ti ); and, hence,

Pr
(

E6i (ti−1, ti , w1)| ∩5
k=1 Ec

k

)

≤ 2−n[I (X1;Y |U,V ,X2)−ε]. (J-25)

Now, note that since I (V , X1; Y |U, X2) ≥
I (X1; Y |U, V , X2), if w1 �= 1 and ti−1 = 1 the
following holds irrespective to the value of ti ,

Pr
(

E6i(ti−1, ti , w1)| ∩5
k=1 Ec

k

)

≤ 2−n[I (X1;Y |U,V ,X2)−ε]. (J-26)

Let I1 := I (X1; Y |U, V , X2) and I2 :=
I (V , X1, X2; Y |U). If the sequence (t1, . . . , tB−1)
has k ones, we have

B∏

i=2

Pr
(

E6i (ti−1, ti , w1)| ∩5
k=1 Ec

k

)

≤ 2−n[kI1+(B−1−k)I2−(B−1)ε]. (J-27)

Continuing from (J-22), we then bound the probability
of the event E6 as given by (J-21) at the top of the next
page.
The right hand side (RHS) of (J-21) tends to zero as
n → ∞ if

R1 ≤ B − 1

B
(min(I1, I2 − R̂)− R̂

B
. (J-28)

Taking B → ∞, we get Pr(E6| ∩5
k=1 Ec

k) → 0 as long as

R1 ≤ I (X1; Y |U, V , X2) (J-29)

R1 ≤ I (V , X1, X2; Y |U)− R̂. (J-30)

Summarizing: From the above, we get that the error
probability is small provided that n and B are large
and

R1 ≤ I (X1; Y |U, V , X2) (J-31a)

R1 ≤ I (V , X1, X2; Y |U)− R̂ (J-31b)

Rc2 + R1 ≤ I (V , X1, X2; Y |U)− R̂ (J-31c)

Rc + R1 ≤ I (U, V , X1, X2; Y )− R̂. (J-31d)
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Pr(E6|Ec
1, Ec

2, Ec
3, Ec

4, Ec
5) ≤

∑

w1 �=1

∑

t B ∈ [1:M̂]B

B∏

i=2

Pr
(

E6i (ti−1, ti , w1)|Ec
1, Ec

2, Ec
3, Ec

4, 5c
)

=
∑

w1 �=1

∑

tB ∈ [1:M̂]

∑

t B−1 ∈ [1:M̂]B−1

B∏

i=2

Pr
(

E6i (ti−1, ti , w1)|Ec
1, Ec

2, Ec
3, Ec

4, 5c
)

≤
∑

w1 �=1

∑

tB ∈ [1:M̂]

B−1∑

k=0

(
B − 1

k

)
2n(B−1−k)

[
R̂+η̂ε

]
2−n

[
kI1+(B−1−k)I2−(B−1)ε

]

=
∑

w1 �=1

∑

tB ∈ [1:M̂]

∑

j B−1 ∈ [1:J ]B−1

B−1∑

k=0

(
B − 1

k

)
2−n

[
kI1+(B−1−k)(I2−R̂)−(B−1−k)η̂ε−(B−1)ε

]

=
∑

w1 �=1

∑

tB ∈ [1:M̂]

B−1∑

k=0

(
B − 1

k

)
2−n

[
kI1+(B−1−k)(I2−R̂)−(B−1)(η̂+1)ε

]

≤
∑

w1 �=1

∑

tB ∈ [1:M̂]

B−1∑

k=0

(
B − 1

k

)
2−n

[
(B−1)min(I1, I2−R̂)−(B−1)(η̂+1)ε

]

≤ M1 M̂2B2−n
[
(B−1)min(I1, I2−R̂)−(B−1)(η̂+1)ε

]

= 2−nB
[

B−1
B min(I1, I2−R̂)−R1− R̂

B − 1
n +

(
η1− η̂

B − (B−1)(η̂++1)
B

)
ε
]

= 2−nB
[

B−1
B min(I1, I2−R̂)−R1− R̂

B − 1
n +

(
η1−η̂− B−1

B

)
ε
]
. (J-21)

Finally, using Fourier-Motzkin Elimination to successively
project out Rc2 and R̂ from (J-31d), we get

R1 ≤ I (X1; Y |U, V , X2) (J-32a)

R1 ≤ I (V , X1, X2; Y |U)− I (V ; S|U, X2) (J-32b)

Rc + R1 ≤ I (U, V , X1, X2; Y )− I (V ; S|U, X2). (J-32c)

This completes the proof of Theorem 5.

K. Proof of Theorem 6

1) Direct Part: Recall the inner bound of Theorem 5.
Setting Rc = 0, we obtain

R1 ≤ I (X1; Y |U, V , X2) (K-1a)

R1 ≤ I (V , X1, X2; Y |U)− I (V ; S|U, X2) (K-1b)

for some measure

PS,U,V ,X1,X2,Y = QS PU PX2|U PX1|U PV |S,U,X2 WY |S,X1,X2 .

(K-2)

(Note that the bound on the sum rate is redundant).
Setting V = S and U = ∅ in (K-1a), we obtain the first term
of the minimum in the capacity expression (75). Similarly,
setting V = S and U = ∅ in (K-1b), we obtain

R1 ≤ I (V , X1, X2; Y |U)− I (V ; S|U, X2) (K-3)

= I (X1, X2; Y |U)− I (V ; S|U, X1, X2,Y ) (K-4)

= I (X1, X2; Y )− H (S|X1, X2,Y ) (K-5)

= I (X1, X2,Y ) (K-6)

where the last equality holds since the state S is a deterministic
function of (X1, X2,Y ).

2) Converse Part: The converse proof also follows in a
manner that is similar to that of Proposition 1, by noticing
that in this case the channel inputs are independent.

L. Proof of Theorem 7

To see that the knowledge of the states strictly causally at
the encoders does not increase the sum-rate capacity, observe
that we can bound the sum rate as follows.

1) Direct Part: The achievability follows straightforwardly
by using Shannon strategies, without Block-Markov coding.

2) Converse Part: The converse proof also follows
through straightforward steps. More specifically, let us define
Vi = (Wc,Y i−1) and Ui = (W1, Vi ), i = 1, . . . , n.

We can bound the sum rate (Rc + R1) as follows.

n(Rc + R1) ≤ H (Wc,W1)

= I (Wc,W1; Y n)+ H (Wc,W1|Y n)

≤ I (Wc,W1; Y n)+ nεn

=
n∑

i=1

I (Wc,W1; Yi |Y i−1)+ nεn

≤
n∑

i=1

I (Wc,W1,Y i−1; Yi )+ nεn

(a)≤
n∑

i=1

I (Vi ,Ui ; Yi )+ nεn (L-1)

where (a) follows by substituting using the definitions of Ui

and Vi .
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Similarly, we can bound the individual rate R1 as follows

n R1 ≤ H (W1)

= H (W1|Wc)

= I (W1; Y n|Wc)+ H (W1|Wc,Y n)

≤ I (W1; Y n|Wc)+ nεn

=
n∑

i=1

I (W1; Yi |Wc,Y i−1)+ nεn

≤
n∑

i=1

I (W1,Wc,Y i−1; Yi |Wc,Y i−1)+ nεn

(b)≤
n∑

i=1

I (Ui ; Yi |Vi)+ nεn (L-2)

where (b) follows by substituting using the definitions of Ui

and Vi .
The rest of the proof of Theorem 7 follows by standard single-
letterization.
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