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Compute-and-Forward on a Multiaccess Relay
Channel: Coding and Symmetric-Rate Optimization

Mohieddine El Soussi, Abdellatif Zaidi, and Luc Vandendorpe

Abstract—We consider a system in which two users com-
municate with a destination with the help of a half-duplex
relay. Based on the compute-and-forward scheme, we develop
and evaluate the performance of coding strategies that are of
network coding spirit. In this framework, instead of decoding
the users’ information messages, the destination decodes two
integer-valued linear combinations that relate the transmitted
codewords. Two decoding schemes are considered. In the first
one, the relay computes one of the linear combinations and then
forwards it to the destination. The destination computes the other
linear combination based on the direct transmissions. In the
second one, accounting for the side information available at the
destination through the direct links, the relay compresses what
it gets using lattice-based Wyner-Ziv compression and conveys it
to the destination. The destination then computes the two linear
combinations, locally. For both coding schemes, we discuss the
design criteria, and derive the allowed symmetric-rate. Next, we
address the power allocation and the selection of the integer-
valued coefficients to maximize the offered symmetric-rate; an
iterative coordinate descent method is proposed. The analysis
shows that the first scheme can outperform standard relaying
techniques in certain regimes, and the second scheme, while
relying on feasible structured lattice codes, can at best achieve
the same performance as regular compress-and-forward for the
multiaccess relay network model that we study. The results are
illustrated through some numerical examples.

Index Terms—Compute-and-forward, network coding, lattice
codes, relay channel, geometric programming, mixed-integer
quadratic programming.

I. INTRODUCTION

NETWORK coding was introduced by Ahlswede et al.
in [1] for wired networks. It refers to each intermediate

node sending out a function of the packets that it receives,
an operation which is more general than simple routing [2],
[3]. In linear network coding, intermediate nodes compute and
send out linear combinations over an appropriate finite field
of the packets that they receive. In general, the function does
not need to be linear. Although they are generally suboptimal
for general wireline networks, linear network codes have been
shown optimum for multicasting [4], [5]. Moreover they have
appreciable features, in particular simplicity (e.g., see [6], [7]
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and references therein). For these reasons, most of the research
on network coding has focused on linear codes.

The development of efficient network coding techniques for
wireless networks is more involved than for wired network
coding, essentially because of fading, interference and noise
effects. For general wireless networks, the quantize-map-and-
forward scheme of [8] and the more general noisy network
coding scheme of [9] can be seen as interesting and efficient
extensions for wireless settings of the original network cod-
ing principle. However, quantize-map-and-forward and noisy
network coding are based on random coding arguments. For
wireless networks, efficient linear network coding techniques
make use of structured codes, and in particular lattices [10].
Lattices play an important role in network coding for diverse
network topologies, such as the two-way relay channel [11],
[12], the Gaussian network [13] and others.

Recently, Nazer and Gastpar propose and analyse a scheme
in which receivers decode finite-field linear combinations of
transmitters’ messages, instead of the messages themselves.
The scheme is called ”Compute-and-forward” (CoF) [13], and
can be implemented with or without the presence of relay
nodes. In this setup, a receiver that is given a sufficient number
of linear combinations recovers the transmitted messages by
solving a system of independent linear equations that relate the
transmitted symbols. Critical in this scheme, however, is that
the coefficients of the equations to decode must be integer-
valued. This is necessitated by the fact that a combination of
codewords should itself be a codeword so that it is decodable.
Lattice codes have exactly this property, and are thus good
candidates for implementing compute-and-forward.

Compute-and-forward is a promising scheme for network
coding in wireless networks. However, the problem of se-
lecting the integer coefficients optimally, i.e., in a manner
that allows to recover the sent codewords from the decoded
equations and, at the same time, maximizes the transmission
rate is not an easy task. As shown by Nazer and Gastpar
[13], the compute-and-forward optimally requires a match
between the channel gains and the desired integer coefficients.
However, in real communication scenarios, it is unlikely that
the channels would produce gains that correspond to integer
values. This problem has been addressed in [14], where the
authors develop a superposition strategy to mitigate the non-
integer channel coefficients penalty. The selection of which
integer combinations to decode is then a crucial task to be
performed by the receivers. While it can be argued that linear
combinations that are recovered at the same physical entity can
always be chosen appropriately, i.e., in a way enabling system
inversion to solve for the sent codewords, selecting these
linear combinations in a distributed manner, i.e., at physically
separated nodes, is less easy to achieve. By opposition to

1536-1276/14$31.00 © 2014 IEEE



EL SOUSSI et al.: COMPUTE-AND-FORWARD ON A MULTIACCESS RELAY CHANNEL: CODING AND SYMMETRIC-RATE OPTIMIZATION 1933

previous works, part of this paper focuses on this issue.
In this work, we consider communication over a two-user

multiaccess relay channel. In this model, two independent
users communicate with a destination with the help of a
common relay node, as shown in Figure 1. The relay is
assumed to operate in half-duplex mode.

A. Contributions

We establish two coding schemes for the multiaccess relay
model that we study. The first coding scheme is based on
compute-and-forward at the relay node. On this aspect, this
strategy is conceptually similar to the compute-and-forward
approach of Nazer and Gastpar [13]. The relay uses what
it receives from the transmitters during the first transmission
period to compute a linear combination with integer coeffi-
cients of the users’ codewords. It then sends this combination
to the destination during the second transmission period.
In addition to the linear combination that it gets from the
relay’s transmission, the destination recovers the required
second linear combination from what it gets directly from
the transmitters, through the direct links. If the set of integer
coefficients that are selected at the relay and destination
are chosen appropriately, the destination can solve for the
transmitted codewords.

In the second coding scheme both required linear integer
combinations of the users’ codewords are recovered locally at
the destination. More specifically, the relay quantizes its output
from the users’ transmission during the first transmission
period using lattice-based Wyner-Ziv compression [15]. In
doing so, it accounts for the output at the destination during
this transmission period as available side information at the
decoder. Then, the relay sends the lossy version of its output
to the destination during the second transmission period. On
this aspect, the analysis is in part similar to the lattice-based
Wyner-Ziv strategy of [15], [16]. The destination determines
the two required linear combinations, as follows. It utilizes
an appropriate combination of the output from the users’
transmission during the first period and of the compressed
version of the relay’s output during the second period; from
this combination, two independent linear combinations relat-
ing the users’ codewords are recovered.

For the two coding schemes, we target the optimization of
the transmitters and the relay powers, and of the integer coef-
ficients of the linear combinations to maximize the achievable
symmetric-rate. These optimization problems are NP hard. For
the two coding schemes, we develop an iterative approach
that finds the appropriate power and integer coefficients alter-
nately. More specifically, we show that the problem of finding
appropriate integer coefficients for a given set of powers has
the same solution as a mixed integer quadratic programming
(MIQP) problem with quadratic constraints. Also, we show
that the problem of finding the appropriate power policy at the
transmitters and relay for a given set of integer coefficients is
a non-linear non-convex optimization problem. We formulate
and solve this problem through geometric programming and
a successive convex approximation approach [17].

Our analysis shows that, for certain channel conditions,
the first scheme outperforms known strategies for this model
that do not involve forms of network coding, such as those

based on having the relay implement classic amplify-and-
forward (AF), decode-and-forward (DF) or compress-and-
forward (CF) relaying schemes. The second scheme offers
rates that are at best as large as those offered by compress-
and-forward for the multiaccess relay network that we study.
However, this scheme relies on feasible structured lattice codes
and utilizes linear receivers, and so, from a practical viewpoint
it offers advantages over standard CF which is based on
random binning arguments. We illustrate our results by means
of some numerical examples. The analysis also shows the
benefit obtained from allocating the powers and the integer
coefficients appropriately.

B. Outline and Notation

An outline of the remainder of this paper is as follows.
Section II describes in more details the communication model
that we consider in this work. It also contains some prelim-
inaries on lattices and known results from the literature for
the setup under consideration where the relay uses standard
techniques. In Section III, we describe our coding strategies
and analyse the symmetric rates that are achievable using
these strategies. Section IV is devoted to the optimization
of the power values and the integer-valued coefficients for
an objective function which is the symmetric-rate. Section V
contains some numerical examples, and Section VI concludes
the paper.

We use the following notations throughout the paper. Low-
ercase boldface letters are used to denote vectors, e.g., x.
Upper case boldface letters are used to denote matrices,
e.g., X. Calligraphic letters designate alphabets, i.e., X . The
cardinality of a set X is denoted by ∣X ∣. For matrices, we
use the notation X ∈ R

m×n, m,n ∈ N, to mean that X is
an m-by-n matrix, i.e., with m rows and n columns, and its
elements are real-valued. Also, we use XT to designate the n-
by-m matrix transpose of X. We use In to denote the n-by-n
identity matrix; and 0 to denote a matrix whose elements are
all zeros (its size will be evident from the context). Similarly,
for vectors, we write x ∈ An, e.g., A = R or A = Z, to mean
that x is a column vector of size n, and its elements are in A.
For a vector x ∈ Rn, ∥x∥ designates the norm of x in terms of
Euclidean distance; and for a scalar x ∈ R, ∣x∣ stands for the
absolute value of x, i.e., ∣x∣ = x if x ≥ 0 and ∣x∣ = −x if x ≤ 0.
For two vectors x ∈ Rn and y ∈ Rn, the vector z = x ○y ∈ Rn

denotes the Hadamard product of x and y, i.e., the vector
whose ith element is the product of the ith elements of x and
y, i.e., zi = (x ○ y)i = xiyi. Also, let det(x,y) denote the
determinant of the matrix formed by the vectors x and y, i.e.,[xy]. The Gaussian distribution with mean μ and variance σ2

is denoted by N(μ,σ2). Finally, throughout the paper except
where otherwise mentioned, logarithms are taken to base 2;
and, for x ∈ R, log+(x) ∶=max{log(x),0}.

II. PRELIMINARIES AND SYSTEM MODEL

In this section, we first recall some basics on lattices, and
then present the system model that we study and recall some
known results from the literature, obtained through classic
relaying, i.e., amplify-and-forward, decode-and-forward and
compress-and-forward. The results given in Section II-C will
be used later for comparison purposes in this paper.
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A. Preliminaries on Lattices

Algebraically, an n-dimensional lattice Λ is a discrete
additive subgroup of R

n. Thus, if λ1 ∈ Λ and λ2 ∈ Λ, then(λ1 + λ2) ∈ Λ and (λ1 − λ2) ∈ Λ. A lattice can always be
written in terms of a lattice generator matrix G ∈ Rn×n

Λ = {λ = zG ∶ z ∈ Zn}. (1)

A lattice quantizer QΛ : Rn → Λ maps a point x ∈ Rn to the
nearest lattice point in Euclidean distance, i.e.,

QΛ(x) = argmin
λ ∈Λ

∥x −λ∥. (2)

The Voronoi region V(λ) of λ ∈ Λ is the set of all points in
R

n that are closer to λ than to any other lattice point, i.e.,V(λ) = {x ∈ Rn ∶ QΛ(x) = λ}. (3)

The fundamental Voronoi region V of lattice Λ is the Voronoi
region V(0), i.e., V = V(0). The modulo reduction with
respect to Λ returns the quantization error, i.e.,[x]modΛ = x −QΛ(x) ∈ V . (4)

The second moment σ2
Λ quantifies per dimension the average

power for a random variable that is uniformly distributed overV , i.e.,

σ2
Λ = 1

nVol(V) ∫V ∥x∥2dx (5)

where Vol(V) is the volume of V . The normalized second
moment of Λ is defined as

G(Λ) = σ2
Λ

Vol(V)2/n . (6)

A lattice Λ is said to be nested into another lattice ΛFINE if
Λ ⊆ ΛFINE, i.e., every point of Λ is also a point of ΛFINE. We
refer to Λ as the coarse lattice and to ΛFINE as the fine lattice.
Also, given two nested lattices Λ ⊆ ΛFINE, the set of all the
points of the fine lattice ΛFINE that fall in the fundamental
Voronoi region V of the coarse lattice Λ form a codebookC = ΛFINE ∩ V = {x = λmodΛ, λ ∈ ΛFINE}. (7)

The rate of this codebook is

R = 1

n
log2(∣C ∣). (8)

Finally, the mod operation satisfies the following properties:(P1) [[x]modΛ + y]mod Λ = [x + y]mod Λ, ∀ x, y ∈ Rn(P2) [k([x]mod Λ)]mod Λ = [kx]modΛ, ∀ k ∈ Z, x ∈ Rn(P3) γ([x]modΛ) = [γx]mod γΛ, ∀ γ ∈ R, x ∈ Rn. (9)

B. System Model

We consider the communication system shown in Figure 1.
Two transmitters A and B communicate with the destination
with the help of a common relay. Transmitter A and B want
to transmit the messages Wa ∈ Wa, and Wb ∈ Wb to the
destination reliably, in 2n uses of the channel. At the end of
the transmission, the destination guesses the pair of transmitted
messages using its output. Let Ra be the transmission rate of
message Wa and Rb be the transmission rate of message Wb.
We concentrate on the symmetric rate case, i.e., Ra = Rb = R,
or equivalently, ∣Wa∣ = ∣Wb∣ = 22nR. We measure the system

Fig. 1. Multiple-access channel with a half-duplex relay

performance in terms of the allowed achievable symmetric-rate
Rsym = Ra = Rb = R. Also, we divide the transmission time
into two transmission periods with each of length n channel
uses. The relay operates in a half-duplex mode.

During the first transmission period, Transmitter A encodes
its message Wa ∈ [1,22nR] into a codeword xa and sends it
over the channel. Similarly, TransmitterB encodes its message
Wb ∈ [1,22nR] into a codeword xb and sends it over the
channel. Let yr and yd be the signals received respectively at
the relay and destination during this period. These signals are
given by

yr = harxa + hbrxb + zr

yd = hadxa + hbdxb + zd, (10)

where had and hbd are the channel gains on the links
transmitters-to-destination, har and hbr are the channel gains
on the links transmitters-to-relay, and zr and zd are additive
background noises at the relay and destination.

During the second transmission period, the relay sends a
codeword x̃r to help both transmitters. During this period, the
destination receives

ỹd = hrdx̃r + z̃d, (11)

where hrd is the channel gain on the link relay-to-destination,
and z̃d is additive background noise.

Throughout the paper, we assume that all channel gains are
real-valued, fixed and known to all the nodes in the network;
and the noises at the relay and destination are independent
among each others, and independently and identically dis-
tributed (i.i.d) Gaussian, with zero mean and variance N .
Furthermore, we consider the following individual constraints
on the transmitted power (per codeword),

E[∥xa∥2] = nβ2
aP ≤ nPa, E[∥xb∥2] = nβ2

bP ≤ nPb,

E[∥x̃r∥2] = nβ2
rP ≤ nPr, (12)

where Pa ≥ 0, Pb ≥ 0 and Pr ≥ 0 are some constraints imposed
by the system; P ≥ 0 is given, and βa, βb and βr are some
scalars that can be chosen to adjust the actual transmitted
powers, and are such that 0 ≤ ∣βa∣ ≤ √

Pa/P , 0 ≤ ∣βb∣ ≤√
Pb/P and 0 ≤ ∣βr ∣ ≤ √

Pr/P . For convenience, we will
sometimes use the shorthand vector notation hd = [had, hbd]T ,
hr = [har, hbr]T ∈ R

2 and β = [βa, βb, βr]T ∈ R
3, and the

shorthand matrix notation H = [hd, hr]T ∈ R2×2 . Also, we
will find it useful to sometimes use the notation βs to denote
the vector composed of the first two components of vector β,
i.e., βs = [βa, βb]T – the subscript “s” standing for “sources”.
Finally, the signal-to-noise ratio will be denoted as snr = P /N
in the linear scale, and by SNR = 10 log10(snr) in decibels in
the logarithmic scale.
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C. Symmetric Rates Achievable Through Classic Relaying

In this section, we review some known results from the
literature for the model we study. These results will be used
for comparisons in Section V.

1) Amplify-and-Forward: The relay receives yr as given by
(10) during the first transmission period. It simply scales yr to
the appropriate available power and sends it to the destination
during the second transmission period. That is, the relay
outputs x̃r = γ yr , with γ = √β2

r snr/(1 + snr ∥βs ○ hr∥2).
The destination estimates the transmitted messages from its

output vectors (yd, ỹd). Using straightforward algebra, it can
be shown [18] that this results in the following achievable sum
rate

RAF
sum =max

1

4
log

⎛⎝det(I2 + β2
asnr(hah

T
a ) + β2

b snr(hbh
T
b ))⎞⎠,

(13)
where the vectors are given by hi =[hid, hirhrdγ/(√1 + γ2∣hrd∣2)]T for i = a, b, and the
maximization is over β.
The achievable sum rate (13) does not require the two users
to transmit at the same rate. Recall that, for a symmetric
rate point to be achievable, both transmitters must be able
to communicate their messages with at least that rate. Un-
der the constraint of symmetric-rate, it can be shown in a
straightforward manner [13] that the following symmetric-rate
is achievable with the relay operating on the amplify-and-
forward mode,

RAF
sym =max

1

4
min

⎧⎪⎪⎨⎪⎪⎩ log (det (I2 + β2
asnr(hah

T
a ))) ,

log (det (I2 + β2
b snr(hbh

T
b ))) ,

1

2
log (det(I2 + β2

asnr(hah
T
a ) + β2

b snr(hbh
T
b )))⎫⎪⎪⎬⎪⎪⎭.

(14)

2) Decode-and-Forward: At the end of the first transmis-
sion period, the relay decodes the message pair (Wa,Wb) and
then, during the second transmission period, sends a codeword
x̃r that is independent of xa and xb and carries both messages.
The relay employs superposition coding and splits its power
among the two messages. It can be shown easily that the
resulting achievable sum rate is given by [19]

RDF
sum =max

1

4
min

⎧⎪⎪⎨⎪⎪⎩ log (1 + snr ∥βs ○ hr∥2) ,
log (1 + snr ∥βs ○ hd∥2) + log (1 + snr ∣hrd∣2β2

r)⎫⎪⎪⎬⎪⎪⎭,
(15)

where the maximization is over β. Under the constraint of
symmetric-rate, it can be shown that the following symmetric-
rate is achievable with the relay operating on the decode-and-
forward mode,

RDF
sym =max

1

4
min

⎧⎪⎪⎨⎪⎪⎩R(hr),R(hd)+1
2
log (1 + snr∣hrd∣2β2

r)⎫⎪⎪⎬⎪⎪⎭,
(16)

where

R(hi) =min

⎧⎪⎪⎨⎪⎪⎩ log (1 + snr∣hai∣2β2
a) , log (1 + snr∣hbi∣2β2

b ) ,
1

2
log (1 + snr ∥βs ○ hi∥2)⎫⎪⎪⎬⎪⎪⎭. (17)

3) Compress-and-Forward: At the end of the first trans-
mission period, the relay quantizes the received yr using
Wyner-Ziv compression [20], accounting for the available side
information yd at the destination. It then sends an independent
codeword x̃r that carries the compressed version of yr. The
destination guesses the transmitted messages using its output
from the direct transmission along with the lossy version of the
output of the relay that is recovered during the second trans-
mission period. It can be shown that the resulting achievable
sum rate is given by [19], [21],

RCF
sum = max

1

4
RCF, (18)

where

RCF = log
⎛⎝(1 + snr∥βs ○ hd∥2) (1 +D/N + snr∥βs ○ hr∥2)(1 +D/N)
− snr2((βs ○ hr)T (βs ○ hd))2(1 +D/N) ⎞⎠ , (19)

the maximization is over βs and D ≥ 0, where D is the
distortion due to Wyner-Ziv compression, which is given by,

D = N2 (1 + snr∥βs ○ hr∥2)
∣hrd∣2Pr

− N2(snr(βs ○ hr)T (βs ○ hd))2
∣hrd∣2Pr (1 + snr∥βs ○ hd∥2) .

(20)
Under the constraint of symmetric-rate, it can be shown that
the following symmetric-rate is achievable with the relay
operating on the compress-and-forward mode,

RCF
sym =max

1

4
min

⎧⎪⎪⎨⎪⎪⎩ log(1 + snr∣had∣2β2
a + snr∣har ∣2β2

a

1 +D/N ) ,
log(1 + snr∣hbd∣2β2

b + snr∣hbr ∣2β2
b

1 +D/N ) , 1
2
RCF

⎫⎪⎪⎬⎪⎪⎭ (21)

III. NETWORK CODING STRATEGIES

In this section, we develop two coding strategies that are
both based on the compute-and-forward strategy of [13]. The
two strategies differ essentially through the operations imple-
mented by the relay. In the first strategy, the relay computes
an appropriate linear combination that relates the transmitters’
codewords and forwards it to the destination. The destination
computes the other required linear combination from what it
gets through the direct links. In the second strategy, the relay
sends a lossy version of its outputs to the destination, obtained
through lattice-based Wyner-Ziv compression [15], [16]. The
destination then obtains the desired two linear combinations
locally, by using the recovered output from the relay and the
output obtained directly from the transmitters.
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A. Compute-and-Forward at the Relay

The following proposition provides an achievable
symmetric-rate for the multiaccess relay model that we
study.

Proposition 1: For any set of channel vector h =[har, hbr, had, hbd, hrd]T ∈ R5, the following symmetric-rate
is achievable for the multiaccess relay model that we study:

RCoF
sym =max

1

4
min

⎧⎪⎪⎨⎪⎪⎩ log+
⎛⎝(∥t∥2 − P ((βs ○ hd)T t)2

N +P ∥βs ○ hd∥2 )
−1⎞⎠ ,

log+
⎛⎝(∥k∥2 − P ((βs ○ hr)Tk)2

N +P ∥βs ○ hr∥2 )
−1⎞⎠ ,

log(1 + P ∣hrd∣2β2
r

N
)⎫⎪⎪⎬⎪⎪⎭, (22)

where the maximization is over β and over the integer
coefficients k ∈ Z2 and t ∈ Z2 such that det(k, t) ≠ 0.

In the coding scheme of Proposition 1, the relay first
computes a linear combination with integer coefficients of the
transmitters codewords and then forwards this combination
to the destination during the second transmission period. The
destination computes another linear combination that relates
these codewords using its output from the direct transmissions.
With an appropriate choice of the integer-valued coefficients
of the combinations, the destination obtains two equations that
can be solved for the transmitted codewords.

Remark 1: The scheme of Proposition 1 is conceptually
similar to the compute-and-forward approach of Nazer and
Gastpar [13]. This can be seen by noticing that the multiaccess
relay network that we study in this paper can be thought
as being a Gaussian network with two users, two relays
and a central processor. The first relay in the equivalent
network plays the role of the relay in our MARC model,
and the second relay in the equivalent network plays the
role of the destination in our MARC model. The second
relay in the equivalent network is connected with the central
processor, which is the destination itself, via a bit-pipe of
infinite capacity. Furthermore, it can be seen that, in the
equivalent model, the bit-pipe with infinite capacity can be
replaced with one that has the same capacity as that of the
relay-to-destination link. This follows since the two equations
that are forwarded to the central processor have the same rate.
Hence, in what follows, we outline the encoding procedures
at the transmitters and relay, and the decoding procedures at
the relay and destination. Then the rate of Proposition 1 can
be readily obtained by viewing the MARC network that we
study as described in this remark and applying the result of
[13, Theorem 5].

Let Λ be an n-dimensional lattice that is good for quantiza-
tion in the sense of [22] and whose second moment is equal
to P , i.e., σ2

Λ = P . We denote by G(Λ) and V respectively
the normalized second moment and the fundamental Voronoi
region of lattice Λ. Also, let ΛFINE ⊇ Λ be a lattice that is good
for AWGN in the sense of [13, Definition 23], and chosen
such that the codebook C = ΛFINE ∩ V be of cardinality 22nR

[15]. We designate by VFINE the fundamental Voronoi region
of lattice ΛFINE. The coarse lattice Λ and the fine lattice ΛFINE

form a pair of nested lattices that we will utilize as a structured
code.

Let (Wa,Wb) be the pair of messages to be transmitted.
Let ua, ub and ur be some dither vectors that are drawn
independently and uniformly over V and known by all nodes
in the network. Since the codebook C is of size 22nR = ∣Wa∣,
there exists a one-to-one mapping function φa(⋅) between the
set of messages {Wa} and the nested lattice code C . Similarly,
there exists a one-to-one mapping function φb(⋅) between the
set of messages {Wb} and the nested lattice code C . Let va =
φa(Wa) and vb = φb(Wb), where va ∈ C and vb ∈ C .

During the first transmission period, to transmit message
Wa, Transmitter A sends

xa = βa ([va − ua] modΛ) , (23)

for some βa ∈ R such that 0 ≤ ∣βa∣ ≤ √Pa/P ; and to transmit
message Wb, Transmitter B sends

xb = βb ([vb − ub] mod Λ) , (24)

where 0 ≤ ∣βb∣ ≤ √
Pb/P . The scalars βa and βb are chosen

so as to adjust the transmitters’ powers during this period.
The relay decodes correctly an integer combination e2 =
kava + kbvb, [13, Theorem 5], from what it receives during
the first transmission period. It then sends

x̃r = βr ([kava + kbvb − ur] modΛ) (25)

during the second transmission period, where the scalar βr is
chosen so as to adjust its transmitted power during this period.
Similar to the relay, the destination computes an integer
combination e1 = tava + tbvb from what it receives during
the first transmission period. During the second transmission
period, the destination can obtain a second integer combination
e2 = kava + kbvb of the users’ codewords using its output
component from the relay.

Summary: Over the entire transmission time, the destination
collects two linear combinations with integer coefficients that
relate the users’ codewords, as

[ e1
e2

] = [ ta tb
ka kb

][ va

vb
] . (26)

Now, since the integer-valued matrix in (26) is invertible
(recall that the integer-valued coefficients are chosen such
that det(k, t) ≠ 0), the destination obtains the transmitted
codewords by solving (26).
The destination is able to recover the messages Ŵa and Ŵb

reliably if the message rate is less or equal to the computa-
tional rate RCoF

sym [13]. Hence, it can decode the transmitters’
codewords correctly at the transmission symmetric-rate RCoF

sym

given in (22). We should note that we can replace β2
r by

its maximum value Pr/P without altering the symmetric-rate
RCoF

sym.

Although the achievable symmetric-rate in Proposition 1
requires the relay to only decode a linear combination of
the codewords transmitted by the users, not the individual
messages, this can be rather a severe constraint in certain
cases. In the following section, the relay only compresses its
output and sends it to the destination. The computation of
the desired linear combinations of the users’ codewords takes
place at the destination, locally.
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B. Compress-and-Forward at the Relay and Compute at the
Destination

The following proposition provides an achievable
symmetric-rate for the multiaccess relay model that we
study.

Proposition 2: For any set of channel vector h =[har, hbr, had, hbd, hrd]T ∈ R5, the following symmetric-rate
is achievable:

R
CoD
sym =max

1

4
min

⎧⎪⎪⎨⎪⎪⎩ log
+ ( snr

snr∣∣βs ○HTαt − t∣∣2 + (αt ○αt)Tnd
) ,

log+ ( snr
snr∣∣βs ○HTαk − k∣∣2 + (αk ○αk)Tnd

)⎫⎪⎪⎬⎪⎪⎭,
(27)

where αt = [α1t, α2t]T and αk = [α1k, α2k]T ∈ R
2 are

some inflation factors with αt = (GGT +Nd)−1Gt, αk =(GGT +Nd)−1Gk, G = [(βs ○ hd), (βs ○ hr)]T ∈ R
2×2,

Nd = [1/snr, 0; 0, 1/snr+D/P ] ∈ R2×2, nd = [1, 1+D/N]T∈ R2, and D is given by

D ≥ N2 (1 + snr∥βs ○ hr∥2)
∣hrd∣2Pr

− N2(snr(βs ○ hr)T (βs ○ hd))2
∣hrd∣2Pr (1 + snr∥βs ○ hd∥2) ,

(28)
and the maximization is over αt, αk, βs, and over the integer
coefficients k and t such that det(k, t) ≠ 0.

In the coding scheme that we use for the proof of Propo-
sition 2, the relay conveys a lossy version of its output to the
destination during the second transmission period. In doing
so, it accounts for the available side information at the desti-
nation, i.e., what the destination has received during the first
transmission period. The destination computes two linearly
independent combinations that relate the users’ codewords
using its outputs from both transmission periods, as follows.
The destination combines appropriately the obtained lossy
version of the relay’s output (that it recovered from the relay’s
transmission during the second transmission period) and from
what it received during the first transmission period. Then it
computes two linearly independent combinations with integer
coefficients that relate the users’ codewords.

Proof: The transmission scheme and the encoding proce-
dures at the transmitters are similar to those of Proposition 1.
Therefore, for brevity, they will only be outlined. We will
insist more on aspects of the coding scheme that are inherently
different from those of the coding scheme of Proposition 1. We
should note that the analysis, shown below, is in part similar
to [15], [16].

In addition to the codebook described in Section III-A for
the transmitters, we construct a channel codebook for the relay
and a Quantization/Compression codebook as in [16]. Let Λr

be an n-dimensional lattice that is good for quantization in the
sense of [22] and whose second moment is equal to Pr, i.e.,
σ2
Λr

= Pr . We denote by Vr the fundamental Voronoi region
of lattice Λr. Also, let ΛrFINE ⊇ Λr be a lattice that is good
for AWGN in the sense of [13, Definition 23], and chosen
such that the codebook Cr = ΛrFINE ∩Vr be of cardinality 22nRr

[15]. We designate by VrFINE the fundamental Voronoi region
of lattice ΛrFINE . Also, we associate each compression index{q} ∈ [1,22nRr] with a codeword vr = φr(q), where φr(⋅)

is a one-to-one mapping function between the compression
index {q} and the nested lattice code Cr. Moreover, let ΛRC

be an n-dimensional lattice that is Poltyrev-good and Λq

be an n-dimensional lattice that is Rogers-good such that
Λq ⊇ ΛRC. The existence of such a nested lattice pair good
for quantization is guaranteed as in [15]. Also, we denote byVRC and Vq the fundamental Voronoi regions of lattices ΛRC

and Λq, respectively. We define the Quantization/Compression
codebook as Cq = Λq ∩ VRC. Also, let the second moment of
ΛRC be equal to

σ2
ΛRC

=D+N+P ∥βs○hr∥2−[P (βs ○ hr)T (βs ○ hd)]2
N +P ∥βs ○ hd∥2 , (29)

the second moment of Λq to be equal to σ2
Λq

= D such that
the source coding rate is

R̂ = 1

2n
log (Vol(VRC)

Vol(Vq) )
= 1

4
log (1 + N + P ∥βs ○ hr∥2

D
− [P (βs ○ hr)T (βs ○ hd)]2

D(N + P ∥βs ○ hd∥2) ) .
(30)

Encoding: During the first transmission period, the trans-
mitters send the same inputs as in the coding scheme of
Proposition 1, i.e., to transmit message Wa, Transmitter A
sends the input xa given by (23); and to transmit message
Wb, Transmitter B sends the input xb given by (24).
During this period, the relay receives yr given by (10). Then,
it quantizes the received signal yr to

q = [Qq(yr − uq)]mod ΛRC= [yr − uq − d]mod ΛRC= [harxa + hbrxb + zr − uq − d]mod ΛRC (31)

by using the quantization lattice code pair (Λq,ΛRC) where
uq is a quantization dither that is uniformly distributed overVq and d is given by [harxa + hbrxa + zr − uq]mod Λq and
is independent of all other signals and uniformly distributed
over Vq with second moment D.
During the second transmission period, the relay conveys the
description q to the destination. To this end, the relay chooses
the codeword vr = φr(q) associated with the index {q} of q
and sends

x̃r = [vr − ur] modΛr (32)

where ur is a dither vector that is drawn independently and
uniformly over Vr.

Decoding: During the two transmission periods, the desti-
nation receives,

yd = hadxa + hbdxb + zd

ỹd = hrdx̃r + z̃d. (33)

It first recovers the compressed version of the relay’s output
sent by the relay during the second transmission period, by
utilizing its output ỹd as well as the available side information
yd. As it will be shown below, the destination recovers the
compressed version ŷr = yr − d of yr if the constraint (45)
below is satisfied (see the “Rate Analysis” section).
Next, the destination combines yd and ŷr as follows

yi = α1iyd + α2iŷr, for i = t, k (34)
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and uses the obtained signals to compute two linear combi-
nations with integer coefficients of the users’ codewords [23],

y′t = [tava + tbvb + z′t]modΛ (35)

y′k = [kava + kbvb + z′k]modΛ (36)

where z′t and z′k are the effective noises given by

z′t ≜ [α1tzd + α2tzr + α2td + (α1thad + α2thar − ta
βa

)xa

+ (α1thbd + α2thbr − tb
βb
)xb]modΛ, (37)

z′k ≜ [α1kzd + α2kzr + α2kd + (α1khad + α2khar − ka
βa

)xa

+ (α1khbd + α2khbr − kb
βb
)xb]modΛ. (38)

The effective noises z′t and z′k are the sum of signals
uniformly distributed over fundamental Voronoi regions of
Rogers-good lattices and Gaussian noises. Finally, by de-
coding the lattice points e1 = [tava + tbvb] ∈ Λ and e2 =[kava + kbvb] ∈ Λ using the modulo-lattice additive noise
(MLAN) channels y′t and y′k, respectively, the destination
obtains the two linear combinations with integer coefficients
of the users’ codewords. As it will be shown below, this can
be accomplished with probabilities of error Pr(z′t ∉ VFINE) and
Pr(z′k ∉ VFINE) that are as small as desired.

Rate Analysis:
The relay compresses its output yr and sends index {q} of

q at the per-channel use rate [15], [16]

R̂ = 1

2n
log (Vol(VRC)

Vol(Vq) )
= 1

4
log(1 + N + P ∥βs ○ hr∥2

D
− [P (βs ○ hr)T (βs ○ hd)]2

D(N + P ∥βs ○hd∥2) ) .
(39)

The destination receives the index {q} of q and recovers ŷr
as

ŷr = [q + uq − α(hadxa + hbdxb + zd)]mod ΛRC+ α(hadxa + hbdxb + zd)= [harxa + hbrxb + zr − d − α(hadxa + hbdxb+ zd)]modΛRC + α(hadxa + hbdxb + zd)
(a)= harxa + hbrxb + zr − d= yr − d (40)

where (a) follows since the probability of decoding error Pe,
given by

Pe = Pr{[(har − αhad)xa + (hbr − αhbd)xb + zr

− αzd − d]modΛRC ≠ (har − αhad)xa

+ (hbr − αhbd)xb + zr − αzd − d}, (41)

vanishes asymptotically (Pe /→ 0) as n/→∞ [15, Proof of
(4.19)], [16, Proof of Corollary 11] for a sequence of a good
nested lattice codes since
1

n
E∣∣(har −αhad)xa+(hbr −αhbd)xb+zr −αzd−d∣∣2 = σ2

ΛRC
.

(42)

We should note that, from [13, Lemma 8] and [16, Lemma
5], (har − αhad)xa + (hbr − αhbd)xb + zr − αzd − d can be
upper bounded by the density of an i.i.d. zero-mean Gaussian
vector whose variance approaches (42), since xa and xb are
uniformly distributed over the Rogers-good V , d is uniformly
distributed over the Rogers-good Vq and zr−αzd is Gaussian.
As ΛRC is Poltyrev-good, (41) can be made arbitrary small as
n /→ ∞. We also note that α is chosen so as to guarantee
(42).
At the end of the second transmission period, the destination
can decode the correct relay input x̃r reliably [22] if

Rr < 1

4
log(1 + Pr ∣hrd∣2

N
) . (43)

We should note that the source coding rate of q, R̂, must be
less than the channel coding rate Rr,

R̂ ≤ Rr < 1

4
log(1 + Pr ∣hrd∣2

N
) . (44)

From (39) and (44), we get the following constraint on the
distortion

D ≥ N2 (1 + snr∥βs ○ hr∥2)
∣hrd∣2Pr

− N2(snr(βs ○ hr)T (βs ○ hd))2
∣hrd∣2Pr (1 + snr∥βs ○ hd∥2) .

(45)

The above implies that, under the constraint (45), the desti-
nation recovers the lossy version ŷr of what was sent by the
relay during the second transmission period.
Using the MLAN channel y′t given by (35) and proceeding
in a way that is essentially similar to [13], the destination
can decode the linear combination e1 = tava + tbvb with a
probability of error Pr(z′t ∉ VFINE) going to zero exponentially
in n if

R1 < 1

4
log+ ( snr

snr∣∣βs ○HTαt − t∣∣2 + (αt ○αt)Tnd
) ,

(46)

where the distortion D satisfies the constraint (45) and αt

should be chosen to minimize the effective noise z′t in (37),
i.e., such that

α⋆t = (GGT +Nd)−1Gt, (47)

where G = [βs ○ hd, βs ○ hr]T ∈ R
2×2 and Nd =[1/snr, 0; 0, 1/snr+D/P ] ∈ R2×2. Similarly, in decoding the

linear combination e2 = kava + kbvb, the probability of error
at the destination Pr(z′k ∉ VFINE) goes to zero exponentially
in n if

R2 < 1

4
log+ ( snr

snr∣∣βs ○HTαk − k∣∣2 + (αk ○αk)Tnd
) ,
(48)

where αk should be chosen to minimize the effective noise
z′k in (38), i.e., such that

α⋆k = (GGT +Nd)−1Gk. (49)

The above means that using the lattice-based coding scheme
that we described, the destination can decode the transmit-
ters’ codewords correctly at the transmission symmetric-rate
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RCoD
sym = min{R1,R2} provided that the condition (45) is

satisfied. This completes the proof of Proposition 2.
Remark 2: There are some high level similarities among

the coding strategies of proposition 1 and proposition 2. Both
strategies decode two linearly independent equations with
integer coefficients. However, the required two equations are
obtained differently in the two cases. More specifically, while
the two equations are computed in a distributed manner using
the coding strategy of proposition 1, they are both computed
locally at the destination in a joint manner using the coding
strategy of proposition 2. The advantage of decoding the
equations locally at the destination is that the decoder utilizes
all the output available. This means that the destination utilizes
the outputs received during the first and second transmission
periods in a joint manner. By opposition, the coding strategy
of proposition 1 is such that the computation of one equation
utilizes only the output received directly from the transmitters
during the first transmission period. The computation of the
other equation is limited by the weaker output among the
output at the relay during the first transmission period and the
output at the destination during the second transmission period
(since the equation decoded at the relay has to be recovered at
the destination). The reader may refer to Section V where this
aspect will be illustrated through some numerical examples
and discussed further.

Remark 3: For the multiaccess relay network that we study,
the coding strategy of Proposition 2 can at best achieve the
same performance as that allowed by regular compress-and-
forward. This can be observed as follows. After conveying
a quantized version of the relay’s output to the destination,
the decoding problem at the destination is equivalent to
that over a regular two-user multiaccess channel with the
output at the receiver given by (ŷr,yd). Optimal decoding
of the messages can then be accomplished directly using
joint decoding of the messages as in the CF-based approach
of Section II-C. However, note that even though the coding
strategy of Proposition 2 can not achieve larger rates, it has
some advantages over standard CF. For instance, it is based
on feasible structured codes instead of random codes which
are infeasible in practice. Also, it utilizes linear receivers that
have a computational complexity similar to that of the decor-
relator and minimum-mean-squared error receiver. These two
linear receivers are often used as low-complexity alternatives
instead of the maximum likelihood receiver which has high
computational complexity. From this angle, note that this work
also connects with [16] in which the authors show that, for
the standard Gaussian three-terminal relay channel, the rate
achievable using standard CF can also be achieved alternately
using lattice codes.

Remark 4: The system model that we study can be ex-
tended to the case in which the relay is full-duplex. This can
be done in the same spirit as described in [16, Section IV-C].

Remark 5: The system model that we study can be ex-
tended to the case of multiple transmitters. Let us consider
a system in which M transmitters would like to communicate
with a common destination with the help of a single relay. The
destination needs M independent linear combinations of the
transmitters’ codewords to be able to recover the transmitted
messages. Hence, in scheme 1, the relay and destination
compute M independent linear combinations that yield the

highest symmetric-rate. In scheme 2, the destination, using
the available outputs, computes the M independent linear
combinations.

IV. SYMMETRIC RATES OPTIMIZATION

Section IV-A is devoted to finding optimal powers and
integer-coefficients that maximize the symmetric-rate of
Proposition 1. Section IV-B deals with the optimization prob-
lem of Proposition 2.

A. Compute-and-Forward at Relay

1) Problem Formulation: Consider the symmetric-rate
RCoF

sym as given by (22) in Proposition 1. The optimization
problem can be stated as:

(A) :max
1

4
min

⎧⎪⎪⎨⎪⎪⎩log+ ⎛⎝(∥t∥2 − P ((βs ○ hd)T t)2
N +P ∥βs ○ hd∥2 )

−1⎞⎠ ,
log+

⎛⎝(∥k∥2 − P ((βs ○ hr)Tk)2
N +P ∥βs ○ hr∥2 )

−1⎞⎠ ,
log(1 + Pr ∣hrd∣2

N
)} , (50)

where the maximization is over βs such that 0 ≤ ∣βa∣ ≤√
Pa/P and 0 ≤ ∣βb∣ ≤ √

Pb/P , and over the integer coef-
ficients k and t such that det(k, t) ≠ 0.

The optimization problem (A) is non-linear and non-convex.
Also, it is a MIQP optimization problem; and, so, it is not easy
to solve it optimally. In what follows, we solve this optimiza-
tion problem iteratively, by finding appropriate preprocessing
vector βs and integer coefficients t and k, alternately. We note
that the allocation of the vector βs determines the power that
each of the transmitters should use for the transmission. For
this reason, we will sometimes refer loosely to the process of
selecting the vector βs as the power allocation process.
Let, with a slight abuse of notation, RCoF

sym[ι] denote the value
of the symmetric-rate at some iteration ι ≥ 0. To compute
RCoF

sym as given by (50) iteratively, we develop the following
algorithm, to which we refer to as “Algorithm A” in reference
to the optimization problem (A).

Algorithm A Iterative algorithm for computing RCoF
sym as given

by (50)

1: Initialization: set ι = 1 and βs = βs
(0)

2: Set βs = βs
(ι−1) in (50), and solve the obtained problem using

Algorithm A-1 given below. Denote by k(ι) the found k, and by
t(ι) the found t

3: Set k = k(ι) and t = t(ι) in (50), and solve the obtained problem
using Algorithm A-2 given below. Denote by β(ι)s the found βs

4: Increment the iteration index as ι = ι+ 1, and go back to Step 2
5: Terminate if ∥βs

(ι) −βs
(ι−1)∥ ≤ ε1, ∣RCoF

sym[ι] −RCoF
sym[ι − 1]∣ ≤ ε2

As described in “Algorithm A”, we compute the appropriate
preprocessing vector βs and integer coefficients k and t,
alternately. More specifically, at iteration ι ≥ 1, the algo-
rithm computes appropriate integer coefficients k(ι) ∈ Z2 and
t(ι) ∈ Z

2 that correspond to a maximum of (50) computed
with the choice of the preprocessing vector βs set to its value
obtained from the previous iteration, i.e., βs = β(ι−1)s (for
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the initialization, set β(0)s to a default value). As we will
show, this sub-problem is a MIQP problem with quadratic
constraints; and we solve it using “Algorithm A-1”. Next,
for the found integer coefficients, the algorithm computes
the adequate preprocessing vector β(ι)s that corresponds to
a maximum of (50) computed with the choice k = k(ι) and
t = t(ι). As we will show, this sub-problem can be formulated
as a complementary geometric programming problem. We
solve it through a series of geometric programming and
successive convex optimization approach (see “Algorithm A-
2” below). The iterative process in “Algorithm A” terminates
if the following two conditions hold: ∥βs

(ι) − βs
(ι−1)∥ and∣RCoF

sym[ι]−RCoF
sym [ι−1]∣ are smaller than prescribed small strictly

positive constants ε1 and ε2, respectively — in this case,
the optimized value of the symmetric-rate is RCoF

sym[ι], and is
attained using the preprocessing power vector β⋆s = βs

(ι) and
integer vectors k⋆ = k(ι) and t⋆ = t(ι).

In the following two sections, we study the aforementioned
two sub-problems of problem (A), and describe the algorithms
that we propose to solve them.

2) Integer Coefficients Optimization: In this section, we
focus on the problem of finding appropriate integer vectors
k ∈ Z

2 and t ∈ Z
2 for a given choice of the preprocessing

vector βs. Investigating the objective function in (50), it can
easily be seen that this problem can be equivalently stated as

min
k, t,Δ1

Δ1 (51a)

s. t. Δ1 ≥ ∥t∥2 − P ((βs ○ hd)T t)2
N +P ∥βs ○ hd∥2 (51b)

Δ1 ≥ ∥k∥2 − P ((βs ○ hr)Tk)2
N +P ∥βs ○ hr∥2 (51c)

Δ1 ≥ N

N +Pr ∣hrd∣2 , (51d)

det(k, t) ≠ 0 (51e)

k ∈ Z2, t ∈ Z2, Δ1 ∈ R. (51f)

Note that Δ1 is simultaneously an extra optimization variable
and the objective function in (51). Also, it is easy to see that
the integer coefficients k and t that achieve the minimum
value of Δ1 also achieve a maximum value of the objective
function in (50).

To find a convenient solution, we reformulate the prob-
lem (51) and introduce the following quantities. Let a0 =[0,0,0,0,1]T ; a1 = a2 = a3 = [0,0,0,0,−1]T and a4 =[0,0,0,0,0]T . Also, let b = [ta, tb, ka, kb,Δ1]T ; and the
scalars c1 = c2 = 0, c3 = N/(N + Pr ∣hrd∣2) and c4 = −1.
We also introduce the following five-by-five matrices F1, F2,
F3 and F4, where

F1 = [ 2(I2 −Ω1) 0
0 0

] , F2 =
⎡⎢⎢⎢⎢⎣

0 0 0
0 2(I2 −Ω2) 0
0 0 0

⎤⎥⎥⎥⎥⎦
, (52)

with

Ω1 ∶= P

N +P ∥hd∥2 (βs ○ hd)(βs ○ hd)T ,
Ω2 ∶= P

N +P ∥hr∥2 (βs ○ hr)(βs ○ hr)T , (53)

F3 = 0, and F4 = ⎡⎢⎢⎢⎢⎢⎣
0 0 −2 0
0 2 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ . (54)

The optimization problem (51) can now be reformulated
equivalently as

min
b

aT0 b

s. t.
1

2
bTFib + aTi b ≤ ci i = 1,⋯,4

k ∈ Z2, t ∈ Z2, Δ1 ∈ R (55)

The equivalent optimization problem (55) is a MIQP prob-
lem with quadratic constraints [24]. If the involved matrices
associated with the quadratic constraints (i.e., the matrices
F1, F2 and F4 here) are all semi-definite, there are known
approaches for solving MIQP optimization problems, such
as cutting plane, decomposition, logic-based and branch and
bound approaches [24]. In our case, it is easy to see that the
matrices F1 and F2 are positive semi-definite. However, the
matrix F4 is indefinite, irrespective to the values of k and t.
To solve the optimization problem (55), we transform it into
one that is MIQP-compatible (i.e., in which all the quadratic
constraints are associated with semi-definite matrices). First,
we solve the problem without considering the quadratic con-
straint (51e) and we denote by κ0 and τ 0 the found solutions
of k and t, respectively. The optimization problem terminates
only if κ0 and τ 0 are independent. However, if κ0 and τ 0

are not independent, we resolve the optimization problem (51)
replacing the quadratic constraint (51e) with a linear constraint
given by

det(κ0,k) + det(τ 0, t) ≠ 0. (56)

Then, we denote by κ1 and τ 1 the found solutions of k and
t, respectively. It can easily be seen that i) one of the integer
vectors either κ1 or τ 1 will keep its original solution κ0 or
τ 0; and ii) the other integer vector either κ1 or τ 1 will be
independent from its original solution. Let us consider the case
in which κ1 keeps its original solution κ0, then det(κ0,κ1)
is equal to zero, and thus det(τ 0,τ 1) must be different than
zero to satisfy the constraint (56). In this case, κ1 and τ 1

are independent since τ 0 and τ 1 are independent, and τ 0 and
κ1 are not independent. Similarly, we can show that, for the
case in which τ 1 keeps its original solution, det(κ0,κ1) is
different than zero and κ1 and τ 1 are independent. Hence, the
optimization problem with the constraint given in (56) yields
two independent vectors that minimize (55). The optimization
problem (55) can be solved using “Algorithm A-1” hereinafter.

Algorithm A-1 Integer coefficients selection for RCoF
sym as given

by (50)
1: Use the branch-and-bound algorithm of [25], [26] to solve for

Δ1, k and t without considering the constraint (51e). Denote the
found solutions of k and t as κ0 and τ 0, respectively

2: Terminate if det(κ0,τ 0) ≠ 0 otherwise GOTO Step 3
3: Use the branch-and-bound algorithm to solve for Δ1, k and

t with the constraint (51e) substituted with det(κ0,k) +
det(τ 0, t) > 0. Denote the found solution of Δ1 as Δmin,1

1
4: Again, use the branch-and-bound algorithm to solve for Δ1, k

and t with the constraint (51e) substituted with −det(κ0,k) −
det(τ 0, t) > 0. Denote the found solution of Δ1 as Δmin,2

1
5: Select the integer coefficients corresponding to the minimum

among Δmin,1
1 and Δmin,2

1
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Remark 6: We should note that, since the integer vectors t
and k are not coupled through the objective function, they can
be optimized separately. One solution is to find the best two
linearly independent solutions for t and the best two linearly
independent solutions for k using the Lenstra-Lenstra-Lovász
(LLL) algorithm as in [27] or the branch and bound method.
Then, we search for the two independent vectors t and k that
yield the highest symmetric rate.

3) Power Allocation Policy: Let us now focus on the
problem of finding an appropriate preprocessing vector βs

for given integer vectors k and t. Again, investigating the
objective function in (50), it can easily be seen that this
problem can be equivalently stated as

min
βs,Δ2

Δ2 (57a)

s. t. Δ2 ≥ ∥t∥2 − P ((βs ○ hd)T t)2
N + P ∥βs ○ hd∥2 (57b)

Δ2 ≥ ∥k∥2 − P ((βs ○ hr)Tk)2
N +P ∥βs ○ hr∥2 (57c)

Δ2 ≥ N

N +Pr ∣hrd∣2 , (57d)

−√Pi

P
≤ βi ≤√Pi

P
, i = a, b (57e)

βs ∈ R2, Δ2 ∈ R. (57f)

Here, similar to the previous section, Δ2 is simultaneously
an extra optimization variable and the objective function in
(57). Also, it is easy to see that the value of βs that achieves
the minimum value of Δ2 also achieves a maximum value of
the objective function in (50).
The optimization problem in (57) is non-linear and non-
convex. We use geometric programming [17] to solve it. Geo-
metric programming is a special form of convex optimization
for which efficient algorithms have been developed and are
known in the related literature [28]. There are two forms of
GP: the standard form and the convex form. In its standard
form, a GP optimization problem is generally written as [28]

minimize f0(βs,Δ2) (58a)

subject to fj(βs,Δ2) ≤ 1, j = 1,⋯, J, (58b)

gl(βs,Δ2) = 1, l = 1,⋯, L, (58c)

where the functions f0 and fj , j = 1,⋯, J , are posynomials
and the functions gl, l = 1,⋯, L, are monomials in βs and
Δ2. In its standard form, (58) is not a convex optimization
problem. However, when possible, a careful application of an
appropriate logarithmic transformation of the involved vari-
ables and constants generally turns the problem (58) into one
that is equivalent and convex. That is, (58) is a GP nonlinear,
nonconvex optimization problem that can be transformed into
a nonlinear, convex optimization problem.

In the problem (57), the constraints (57b) and (57c) contain
functions that are non posynomial. Also, the variables in (57)
are not all positive, thus preventing a direct application of loga-
rithmic transformation. In what follows, we first transform the
problem (57) into an equivalent one in which the constraints
involve functions that are all posynomial and the variables are
all positive; and then we develop an algorithm to solve the
equivalent problem.

Let c = [ca, cb]T ∈ R
2 and δs = [δa, δb]T ∈ R

2, such that
ci > √Pi/P and δi = βi+ci for i = a, b. Note that the elements
of δs are all strictly positive. Also, for convenience, we define
the following functions, for z = [za, zb] ∈ Z2,

ψi
1(δs,Δ2,z) = 2Δ2P (∣hai∣2δaca + ∣hbi∣2δbcb)

+ P (z2a + z2b) (∣hai∣2(δ2a + c2a) + ∣hbi∣2(δ2b + c2b))
+ 2P ∣hai∣2z2aδaca + 2P ∣hbi∣2z2bδbcb
+ 2Phaihbizazb(δacb + δbca) +N (z2a + z2b )

ψi
2(δs,Δ2,z) = Δ2 (N + P ∣hai∣2(δ2a + c2a) + P ∣hbi∣2(δ2b + c2b))

+ 2P (z2a + z2b ) (∣hai∣2δaca + ∣hbi∣2δbcb)
+ P ∣hai∣2z2a(δ2a + c2a) + P ∣hbi∣2z2b (δ2b + c2b)+ 2Phaihbizazb(δaδb + cacb). (59)

Let us now define the following functions, f1(δs,Δ2) =
ψd
1(δs,Δ2, t), f2(δs,Δ2) = ψr

1(δs,Δ2,k), g1(δs,Δ2) =
ψd
2(δs,Δ2, t), g2(δs,Δ2) = ψr

2(δs,Δ2,k), f3(Δ2) =
Δ−12 N(N +Pr ∣hrd∣2)−1.

It is now easy to see that the optimization problem (57) can
be stated in the following form.

min
δs,Δ2

Δ2 (60a)

s. t.
f1(δs,Δ2)
g1(δs,Δ2) ≤ 1,

f2(δs,Δ2)
g2(δs,Δ2) ≤ 1, f3(Δ2) ≤ 1 (60b)

−√Pi

P
+ ci ≤ δi ≤√Pi

P
+ ci , i = a, b (60c)

δs ∈ R2, c ∈ R2, Δ2 ∈ R. (60d)

The constraints (60b) involve functions that consist of ratios
of posynomials, i.e., are not posynomial — recall that a ratio
of posynomials is in general non posynomial. Minimizing or
upper bounding a ratio of posynomials belongs to a class
of non-convex problems known as complementary GP [28].
We can solve a complementary GP problem by transforming
it into a series of GPs. For this, we use Lemma 1 [17] to
approximate the functions g1(δs,Δ2) and g2(δs,Δ2) with
monomials around some initial value.

Lemma 1: Let g(δs,Δ2) = ∑j uj(δs,Δ2) be a posyno-
mial. Then

g(δs,Δ2) ≥ g̃(δs,Δ2) =∏
j

(uj(δs,Δ2)
γj

)γj

. (61)

Here, γj = uj(δs†,Δ†
2)/g(δs†,Δ†

2), ∀j, for any fixed positive
δs

† and Δ†
2, then g̃(δs†,Δ†

2) = g(δs†,Δ†
2), and g̃(δs

†,Δ†
2) is

the best local monomial approximation to g(δs†,Δ†
2) near δs

†

and Δ†
2.

Let g̃1(δs,Δ2) and g̃2(δs,Δ2) be the monomial approxima-
tions of the posynomial functions g1(δs,Δ2) and g2(δs,Δ2)
obtained using Lemma 1. Using these monomial approxima-
tions, the ratios of posynomials involved in the constraint
(60b) can be upper bounded by posynomials. Hence, we have
transformed the optimization problem (60) into a GP one that
can be solved easily using an interior point approach. Then,
the found solution is used as initial value to transform the
complementary GP into a new GP problem. This process is
repeated until convergence as described in “Algorithm A-2”.
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We should note that each GP in the iteration loop tries to
improve the accuracy of the approximation to a particular
minimum in the original feasible region.

The optimal solution of the problem obtained using the
convex approximations is also optimal for the original problem
(57), i.e., satisfies the Karush-Kuhn-Tucker (KKT) conditions
of the original problem (57), since the applied approximations
satisfy the following three properties [29], [17]:

1) gj(δs,Δ2) ≤ g̃j(δs,Δ2) for all δs and Δ2 where
g̃j(δs,Δ2) is the approximation of gj(δs,Δ2).

2) gj(δs‡,Δ‡
2) = g̃j(δs

‡,Δ‡
2) where δs

‡ and Δ‡
2 are the

optimal solutions of the approximated problem in the
previous iteration.

3) ▽gj(δs‡,Δ‡
2) = ▽g̃j(δs

‡,Δ‡
2), where ▽gj(⋅) stands for

the gradient of function gj(⋅).
The “Algorithm A-2” is provably convergent [17] since

all the three conditions for convergence described above are
satisfied.

Algorithm A-2 Power allocation policy for RCoF
sym as given by

(50)

1: Compute Δ(0)2 using δs
(0) (the initial value) and set ι2 = 1

2: Approximate g(δs
(ι2),Δ

(ι2)
2 ) with g̃(δs

(ι2),Δ
(ι2)
2 ) around

δs
(ι2−1) and Δ

(ι2−1)
2 using (61)

3: Solve the resulting approximated GP problem using an interior
point approach. Denote the found solutions as δs

(ι2) and Δ
(ι2)
2

4: Increment the iteration index as ι2 = ι2 + 1 and go back to Step
2 using δs and Δ2 of step 3

5: Terminate if ∥δs
(ι2) − δs

(ι2−1)∥ ≤ ε1

B. Compress-and-Forward at Relay and Compute at Destina-
tion

The algorithms that we develop in this section to solve the
optimization problem of Proposition 2, are essentially similar
to those that we developed in the previous section. For brevity,
we omit the details in this section.

1) Problem Formulation: Recall the expression of RCoD
sym as

given by (27) in Proposition 2. The optimization problem can
be stated as:

(B): max
1

4
min

⎧⎪⎪⎨⎪⎪⎩ log
+ ( snr

snr∣∣βs ○HTαt − t∣∣2 + (αt ○αt)Tnd
) ,

log
+ ( snr

snr∣∣βs ○HTαk − k∣∣2 + (αk ○αk)Tnd
)⎫⎪⎪⎬⎪⎪⎭, (62)

where the distortion D is given by

D ≥ N2 (1 + snr∥βs ○ hr∥2)
∣hrd∣2Pr

− N2(snr(βs ○ hr)T (βs ○ hd))2
∣hrd∣2Pr (1 + snr∥βs ○ hd∥2) ,

(63)
and the maximization is over αt, αk, βs such that 0 ≤ ∣βa∣ ≤√
Pa/P , 0 ≤ ∣βb∣ ≤ √

Pb/P , and over the integer coefficients
k and t such that det(k, t) ≠ 0.
To compute RCoD

sym as given by (62), we develop the following
iterative algorithm which optimizes the integer coefficients and
the powers alternately, and to which we refer to as “Algorithm
B” in reference to the optimization problem (B).

Algorithm B Iterative algorithm for computing RCoD
sym as given

by (62)

1: Choose an initial feasible vector βs
(0) and set ι = 1

2: Solve (62) with βs = βs
(ι−1) for the optimal k and t using

“Algorithm B-1” and assign it to k(ι) and t(ι)

3: Solve (62) with k = k(ι) and t = t(ι) for the optimal βs using
“Algorithm B-2” and assign it to βs

(ι)

4: Increment the iteration index as ι = ι + 1 and go back to Step 2
5: Terminate if ∥βs

(ι) −βs
(ι−1)∥ ≤ ε1, ∣RCoD

sym [ι] −RCoD
sym [ι− 1]∣ ≤ ε2

2) Integer Coefficients Optimization: Proceeding similarly
as above, the problem of finding the integer vectors k and
t for a fixed choice of the preprocessing vector βs can be
written as

min
k, t,Θ1

Θ1 (64a)

s. t. Θ1 ≥ tTΩt (64b)

Θ1 ≥ kTΩk (64c)

det(k, t) ≠ 0 (64d)

k, t ∈ Z2, Θ1 ∈ R, (64e)

where Ω = (GT (GGT + Nd)−1G − I2)T (GT (GGT +
Nd)−1G−I2)+((GGT +Nd)−1G)TNd((GGT +Nd)−1G).

We reformulate the problem (64) into a MIQP problem
with quadratic constraints [24] and introduce the following
quantities. Let a0 = [0,0,0,0,1]T , a1 = a2 = [0,0,0,0,−1]T
and a3 = [0,0,0,0,0]T . Also, let b = [ta, tb, ka, kb,Θ1]T ; and
the scalars c1 = c2 = 0, and c3 = −1. We also introduce the
following five-by-five matrices F1, F2, and F3, where

F1 = [ 2Ω 0
0 0

] , F2 = ⎡⎢⎢⎢⎢⎢⎣
0 0 0
0 2Ω 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦ ,

and F3 = ⎡⎢⎢⎢⎢⎢⎣
0 0 −2 0
0 2 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ . (65)

The optimization problem (64) can now be reformulated
equivalently as

min
b

aT0 b

s. t.
1

2
bTFib + aTi b ≤ ci i = 1,2,3

k ∈ Z2, t ∈ Z2, Θ1 ∈ R (66)

It is easy to see that the matrices F1 and F2 are positive semi-
definite. However, the matrix F3 is indefinite, irrespective to
the values of k and t.

To solve the optimization problem (66), we transform it into
one that is MIQP-compatible. We find the integer coefficients
k and t in a similar way as described in Section IV-A2.
We should note that the optimization problem always gives
identical value for the vectors k and t if we do not consider
the constraint (64d), since (64b) and (64c) have identical Ω.
Therefore, “Algorithm B-1”, given below, is slightly different
than “Algorithm A-1”.
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Algorithm B-1 Integer coefficients selection for RCoD
sym as given

by (62)
1: Use the branch-and-bound algorithm to solve for Θ1, k and

t without considering the constraint (64d). Denote the found
solution of k as κ0

2: Use the branch-and-bound algorithm to solve for Θ1, t with
the constraint (64d) substituted with det(t,κ0) > 0. Denote the
found solution of Θ1 as Θmin,1

1
3: Again, use the branch-and-bound algorithm to solve Θ1, t with

the constraint (64d) substituted with −det(t,κ0) > 0. Denote the
found solution of Θ1 as Θmin,2

1
4: Select the integer coefficients corresponding to the minimum

among Θmin,1
1 and Θmin,2

1

3) Power Allocation Policy: The problem of optimizing the
power value βs for a fixed integer coefficients k, and t, can
be written as,

min
βs,αt,αk,Θ2

Θ2 (67a)

s. t. Θ2 ≥ snr∣∣βs ○HTαt − t∣∣2 + (αt ○αt)Tnd

snr
,

(67b)

Θ2 ≥ snr∣∣βs ○HTαk − k∣∣2 + (αk ○αk)Tnd

snr
,

(67c)

D ≥ N2 (1 + snr∥βs ○ hr∥2)∣hrd∣2Pr

− N2(snr(βs ○ hr)T (βs ○ hd))2∣hrd∣2Pr (1 + snr∥βs ○ hd∥2) (67d)

−√Pi

P
≤ βi ≤√Pi

P
, i = a, b (67e)

βs ∈ R2, Θ2 ∈ R. (67f)

As before, let c = [ca, cb]T ∈ R
2 and δs = [δa, δb]T ∈ R

2,
such that ci > √

Pi/P and δi = βi + ci for i = a, b. We can
reformulate the optimization problem as,

min
δs,αt,αk,Θ2

Θ2 (68a)

s. t.
f1(δs,Θ2,αt,αk)
g1(δs,Θ2,αt,αk) ≤ 1, (68b)

f2(δs,Θ2,αt,αk)
g2(δs,Θ2,αt,αk) ≤ 1, (68c)

f3(δs,Θ2)
g3(δs,Θ2) ≤ 1 (68d)

−√Pi

P
+ ci ≤ δi ≤√Pi

P
+ ci , i = a, b (68e)

δs ∈ R2, c ∈ R2, Θ2 ∈ R. (68f)

The constraints (68b), (68c), and (68d) correspond to the
constraints (67b), (67c), and (67d), respectively. These func-
tions consist of ratios of posynomials, i.e., are not posynomial.
As before, we transform the complementary GP problem into
a series of GPs using convex approximations.

To get the solutions of δs, αt and αk that minimize (68),
the optimization problem is carried out in two steps. First,
for a fixed value of αt and αk, the algorithm computes the

Algorithm B-2 Power allocation policy for RCoD
sym as given by

(62)

1: Set δs(0,0) to some initial value and set ι2 = 1 and ι3 = 0
2: Compute Θ

(ι2−1,ι3)
2 , α(ι2−1,ι3)t and α

(ι2−1,ι3)
k using δs

(ι2−1,ι3)

3: Approximate g(δs(ι2,ι3),Θ(ι2,ι3)2 ) with g̃(δs(ι2,ι3),Θ(ι2,ι3)2 )
around δs

(ι2−1,ι3) and Θ
(ι2−1,ι3)
2 using (61)

4: Solve the resulting approximated GP problem using an interior
point approach. Denote the found solutions as δs

(ι2,ι3) and
Θ(ι2,ι3)2

5: Increment the iteration index as ι2 = ι2 + 1 and go back to Step
3 using δs and Θ2 of step 4.

6: Terminate if ∥δs(ι2,ι3) − δs(ι2−1,ι3)∥ ≤ ε1 and denote by δ the
final value

7: Increment the iteration index as ι3 = ι3 + 1, set ι2 = 1, and
δs
(ι2−1,ι3) = δ and then go back to Step 2

8: Terminate if ∣RCoD
sym [ι3] −RCoD

sym [ι3 − 1]∣ ≤ ε2

vector δs that corresponds to a minimum of (68). We solve this
subproblem through a geometric programming and successive
convex approximation in a similar way as described in Section
IV-A3. Next, for the found δs, the algorithm computes αt and
αk that correspond to a minimum of (68) using (47) and (49).
This process is repeated until convergence. We should note
that the algorithm of finding δs for a fixed value of αt and
αk is provably convergent [17] since all the three conditions
for convergence explained in Section IV-A3 are satisfied.
Moreover, since “Algorithm B-2” is based on coordinate
descent method, and the objective function (68) decreases
as the iterations continue, the convergence for “Algorithm
B-2” is guaranteed. The problem of finding the appropriate
preprocessing vector δs, αt and αk for given integer vectors
k and t can be solved using “Algorithm B-2”.

V. NUMERICAL EXAMPLES

In this section, we provide some numerical examples.
We measure the performance of the coding strategies using
symmetric-rate. We compare our coding strategies with those
described in Section II-C.

Throughout this section, we assume that the channel coeffi-
cients are modeled with independent and randomly generated
variables, each generated according to a zero-mean Gaussian
distribution whose variance is chosen according to the strength
of the corresponding link. More specifically, the channel
coefficient associated with the link from Transmitter A to
the relay is modeled with a zero-mean Gaussian distribution
with variance σ2

ar and to the destination is modeled with a
zero-mean Gaussian distribution with variance σ2

ad. Similar
assumptions and notations are used for Transmitter B and
the relay. Furthermore, we assume that, at every time instant,
all the nodes know, or can estimate with high accuracy, the
values taken by the channel coefficients at that time, i.e., full
channel state information (CSI). Also, we set Pa = 20 dBW,
Pb = 20 dBW, Pr = 20 dBW and P = 20 dBW.

Figure 2 depicts the evolution of the symmetric-rate ob-
tained using the so-called compute-and-forward at the relay
approach, i.e., RCoF

sym of proposition 1 as given by (22); and
the symmetric-rate obtained using the so-called compress-and-
forward at the relay and compute at the destination approach,
i.e., RCoD

sym of proposition 2 as given by (27), as functions
of the signal-to-noise ratio SNR (in decibels). Note that the
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Fig. 2. Achievable symmetric rates. Numerical values are P = 20 dBW,
σ2

ar = 26 dB, σ2
br = 26 dB, σ2

rd = 18 dB, σ2
ad = 14 dB and σ2

bd = 0 dB.
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Fig. 3. Achievable symmetric rates. Numerical values are P = 20 dBW,
σ2

ar = 26 dB, σ2
br = 0 dB, σ2

rd = 26 dB, σ2
ad = 26 dB and σ2

bd = 0 dB.

curves correspond to numerical values of channel coefficients
chosen such that σ2

ar = 26 dB, σ2
br = 26 dB, σ2

rd = 18 dB,
σ2

ad = 14 dB and σ2
bd = 0 dB. For comparison reasons, the

figure also shows the symmetric rates obtained using the
classical strategies of Section II-C, i.e., the symmetric-rate
RAF

sym allowed by standard amplify-and-forward as given by
(14), the symmetric-rate RDF

sym allowed by standard decode-
and-forward as given by (16), and the symmetric-rate RCF

sym
allowed by standard compress-and-forward as given by (21).

For the example shown in Figure 2, we observe that the
strategy of proposition 2 achieves a symmetric-rate that is
larger than what is obtained using standard DF and AF,
and slightly less than what is obtained using standard CF
(related to this aspect, recall the discussion in Remark 3).
Also, we observe that the strategy of proposition 1 achieves
a symmetric-rate that is larger than what is obtained using
standard DF and AF.

Figure 3 depicts the same curves for other combinations of
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Fig. 4. Achievable symmetric rates. Numerical values are P = 20 dBW,
σ2

ar = 30 dB, σ2
br = 18 dB, σ2

rd = 15 dB, σ2
ad = 26 dB and σ2

bd = 0 dB.

channel coefficients, chosen such that σ2
ar = 26 dB, σ2

br = 0
dB, σ2

rd = 26 dB, σ2
ad = 26 dB and σ2

bd = 0 dB. These channel
coefficients powers represent a situation where Transmitter
A has better channel quality than Transmitter B. In this
case, we observe that the strategy of proposition 2 achieves
a symmetric-rate that is as good as what is obtained using
standard CF. Also, note that, the strategy of proposition 1
provides a symmetric-rate that is slightly less than what is
obtained using standard AF and is larger than what is obtained
using standard DF.

Remark 7: Recall that the optimization “Algorithm B” as-
sociated with the strategy of proposition 2 is non-convex. In
the figures shown in this paper, the symmetric rate provided
by this strategy are obtained by selecting only certain initial
points for “Algorithm B”. For this reason, the symmetric-rate
offered by the coding strategy of proposition 2, i.e., RCoD

sym , can
possibly be as good as the symmetric-rate offered by CF if
one considers more initial points.

Remark 8: The comparison of the coding strategies of
proposition 1 and proposition 2 is insightful. Generally, none
of the two coding schemes outperforms the other for all ranges
of SNR, and which of the two coding schemes performs better
depends on both the operating SNR and the relative strength
of the links. For example, observe that while the strategy
of proposition 2 outperforms that of proposition 1 in the
examples shown in Figures 2 and 3, the situation is reversed
for the example shown in Figure 4 for some SNR ranges
(related to this aspect, recall the discussion in Remark 2).

Figure 5 shows the symmetric-rate RCoF
sym of proposition 1

with optimum preprocessing allocation β∗s and with no pre-
processing allocation, i.e., βs = 1; the symmetric-rate RCoD

sym of
proposition 2 with optimum preprocessing allocation β∗s and
with no preprocessing allocation, i.e., βs = 1. We observe
that the strategy of proposition 1 with optimum preprocessing
vector β∗s offers significant improvement over the one with no
preprocessing allocation, and this improvement increases with
the SNR. We also observe that the strategy of proposition 2
with optimum preprocessing vector β∗s offers small improve-
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Fig. 6. Achievable symmetric rates. Numerical values are P = 20 dBW,
σ2

ar = 26 dB, σ2
br = 26 dB, σ2

rd = 0 dB, σ2
ad = 26 dB and σ2

bd = 26 dB.

ment over the one with no preprocessing allocation. However,
with different numerical values of channel coefficients, we
observe in Figure 6 that the strategy of proposition 2 with op-
timum preprocessing vector β∗s offers significant improvement
over the one with no preprocessing allocation.

We close this section with a brief discussion of the con-
vergence speed of “Algorithm A” that we use to solve the
optimization problem (A) given by (50), as described in
section IV-A. Recall that the algorithm involves allocating the
integer coefficients and the transmitters’ powers alternately,
in an iterative manner. For a given set of powers, we find
the best integer coefficients by solving a MIQP problem with
quadratic constraints using the optimization software MOSEK.
For a given set of integer-valued coefficients, we find the best
powers at the transmitters by solving a series of geometric
programs by means of an interior point approach [28].
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In order to investigate the convergence speed of the pro-
posed algorithm, we compare it with one in which the integer
coefficients search is performed in an exhaustive manner
and the power allocation is kept as in Section IV-A3. Note
that, using this exhaustive-search algorithm, for the integer
valued equations coefficients to be chosen optimally, the
search can be restricted to the set of integer values that
satisfy ∣∣k∣∣2 ≤ 1 + ∣∣hr ∣∣2snr and ∣∣t∣∣2 ≤ 1 + ∣∣hd∣∣2snr, since
otherwise the allowed symmetric rate is zero [30]. Let REx

sym
denote the symmetric rate obtained by using the described
exhaustive search-based algorithm. Figure 7 shows that the
number of iterations required for “Algorithm A” to converge,
i.e., yield the same symmetric-rate as the one obtained through
exhaustive search, is no more than three. Also, we note
that, in comparison, the exhaustive search-based algorithm is
more largely time and computationally resources consuming,
especially at large values of SNR. Similar observations, that
we omit here for brevity, also hold for “Algorithm B”.

Also, we discuss the complexity of “Algorithm A-2” and
“Algorithm B-2”. GP is typically solved by interior-point
methods which have provably polynomial time complexity
[31] and are very fast in practice. However, the complexity
for complementary GP (series of GP) can only be calcu-
lated numerically. For a given channel realization and integer
vectors k and t, we compare the maximized symmetric-rate
RCoF

sym achieved by “Algorithm A-2” over 360 different initial
vectors β(0)s . We notice that “Algorithm A-2” converges to
the same optima over the entire set of initial vectors and
achieves (or comes very close to) the optimal solution given
by an exhaustive search over βs. The average number of GP
iterations required is 15 if an extremely tight exit condition
is picked for the algorithm ε1 = 10−10. Similarly, the average
number of iterations required for “Algorithm B-2” is 40 if
an extremely tight exit condition is picked for the algorithm
ε1 = 10−10 and ε2 = 10−10.
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VI. CONCLUSION

In this paper, we study a two-user half-duplex multiac-
cess relay channel. Based on Nazer-Gastpar compute-and-
forward scheme, we develop and evaluate the performance
of coding strategies that are of network coding spirit. In this
framework, the destination does not decode the information
messages directly from its output, but uses the latter to first
recover two linearly independent integer-valued combinations
that relate the transmitted symbols. We establish two coding
schemes. In the first coding scheme, the two required linear
combinations are computed in a distributive manner: one
equation is computed at the relay and then forwarded to
the destination, and the other is computed directly at the
destination using the direct transmissions from the users. In the
second coding scheme, the two required linear combinations
are both computed locally at the destination, in a joint manner.
In this coding scheme, accounting for the side information
available at the destination through the direct links, the relay
compresses what it gets from the users using lattice-based
Wyner-Ziv compression and conveys it to the destination. The
destination then computes the desired two linear combinations,
locally, using the recovered output at the relay, and what it
gets from the direct transmission from the users. For both
coding schemes, we discuss the design criteria and establish
the associated computation rates and the allowed symmetric
rate. Next, for each of the two coding schemes, we investigate
the problem of allocating the powers and the integer-valued
coefficients of the recovered equations in a way to maximize
the offered symmetric rate. This problem is NP hard; and
in this paper we propose an iterative solution to solve this
problem, through a careful formulation and analysis. For a
given set of powers, we transform the problem of finding
the best integer coefficients into a mixed-integer quadratic
programming problem with quadratic constraints. Also, for
a given set of integer-valued coefficients, we transform the
problem of finding the best powers at the transmitters into
series of geometric programs. Comparing our coding schemes
with classic relaying techniques, we show that for certain
channel conditions the first scheme outperforms standard
relaying techniques; and the second scheme, while relying
on feasible structured lattice codes, can offer rates that are
as large as those offered by regular compress-and-forward for
the multiaccess relay network that we study.
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