DEQUANTIZING COMPRESSED SENSING : SPARSE RECOVERY WITH NON-GAUSSIAN CONSTRAINTS

Jalal Fadili¹, Laurent Jacques^{2,3} and David Hammond²

¹GREYC CNRS-ENSICAEN-Université de Caen, 14050 Caen France ²Institute of Electrical Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

³Communications and Remote Sensing Laboratory, Université catholique de Louvain (UCL), B-1348 Louvain-la-Neuve, Belgium

In this paper, following the Compressed Sensing paradigm, we study the problem of recovering sparse or compressible signals from uniformly quantized measurements. We present a new class of convex optimization programs, or decoders, coined Basis Pursuit DeQuantizer of moment p (BPDQ_p), that model the quantization distortion more faithfully than the commonly used Basis Pursuit DeNoise (BPDN) program. Our decoders proceed by minimizing the sparsity of the signal to be reconstructed while enforcing a data fidelity term of bounded ℓ_p -norm, for 2 .

We show that in oversampled situations, i.e. when the ratio between the number of measurements and the sparsity of the signal becomes large, the performance of the BPDQ_p decoders are significantly better than that of BPDN, with reconstruction error due to quantization divided by $\sqrt{p+1}$. This reduction relies on a modified Restricted Isometry Property of the sensing matrix expressed in the ℓ_p -norm (RIP_p); a property satisfied by Gaussian random matrices with high probability.

The challenging BPDQ_p optimization programs are solved by monotone operator splitting methods (Douglas-Rachford and Forward-Backward). In particular, the computation of the projector onto the ℓ_p -norm data fidelity constraint relies on a dual formulation and Newton method. To demonstrate the power of BPDQ_p, we report numerical simulations that support our theoretical findings and compare BPDQ_p and BPDN for various signal and image reconstruction problems.