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Inverse problems and large scale optimization

Original image Degraded image
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Inverse problems and large scale optimization

Original image Degraded image

x ∈ R
N y = D(Hx) ∈ R

M

◮ H ∈ R
M×N : matrix associated with the degradation

operator.
◮ D : RM → R

M : noise degradation.

How to find a good estimate of x from the observations y and the

model H in the context of large scale processing?
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Inverse problems and large scale optimization

Variational approach:

An image estimate x̂ ∈ R
N is generated by minimizing (iteratively)

(∀x ∈ R
N ) F (x) = f(Hx) + Ψ(x)

with f : RM → R, Ψ : RN → R.
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Inverse problems and large scale optimization

Variational approach:

An image estimate x̂ ∈ R
N is generated by minimizing (iteratively)

(∀x ∈ R
N ) F (x) = f(Hx) + Ψ(x)

with f : RM → R, Ψ : RN → R.

⇒ In the context of maximum a posteriori estimation :

∗ f ◦H : Data fidelity term related to the acquisition model;

Example: Least squares function

(∀x ∈ R
N ) f(Hx) = ‖Hx− y‖2
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Inverse problems and large scale optimization

Variational approach:

An image estimate x̂ ∈ R
N is generated by minimizing (iteratively)

(∀x ∈ R
N ) F (x) = f(Hx) + Ψ(x)

with f : RM → R, Ψ : RN → R.

⇒ In the context of maximum a posteriori estimation :

∗ f ◦H : Data fidelity term related to the acquisition model;

∗ Ψ : Regularization function.

Example: Sparsity prior (analysis)

(∀x ∈ R
N ) Ψ(x) = ‖Fx‖1

with F ∈ R
P×N , P ≥ N , a frame decomposition operator.
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Inverse problems and large scale optimization

Variational approach:

An image estimate x̂ ∈ R
N is generated by minimizing (iteratively)

(∀x ∈ R
N ) F (x) = f(Hx) + Ψ(x)

with f : RM → R, Ψ : RN → R.

⇒ In the context of maximum a posteriori estimation :

∗ f ◦H : Data fidelity term related to the acquisition model;

∗ Ψ : Regularization function.

◮ Choosing an efficient iterative minimization strategy depends
on the properties of (f,Ψ).
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A unified framework: Majorize-Minimize principle

PROBLEM: Find x̂ ∈ Argminx∈RN F (x)

For all x′ ∈ R
N , let Q(.,x′) a tangent majorant of F at x′ i.e.,

(∀x ∈ R
N ) Q(x,x′) > F (x) and Q(x′,x′) = F (x′)

MM algorithm:

(∀k ∈ N)

xk+1 ∈ Argminx∈RN Q(x,xk)

xk xk+1

F (.)

Q(.,xk)

⋆ Quadratic majorants tractable inner minimization step
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Outline

∗ MAJORIZE-MINIMIZE MEMORY GRADIENT ALGORITHM

◮ Majorize-Minimize principle
◮ Subspace acceleration
◮ Convergence properties
◮ Block parallel 3MG algorithm
◮ Stochastic 3MG algorithm

∗ VARIABLE METRIC FORWARD-BACKWARD ALGORITHM

◮ Majorize-Minimize preconditioning
◮ Block alternating extension
◮ Application to phase retrieval
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Majorize-Minimize Memory

Gradient algorithm
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Majorize-Minimize subspace algorithm [Chouzenoux et al., 2013]

⋆ Minimize differentiable and nonconvex function F on R
N .

At each iteration k ∈ N:

➊ Build a quadratic majorant function Q(·,xk) of F at xk:

Q(x,xk) = F (xk) + (x− xk)
⊤∇F (xk) +

1

2
(x− xk)

⊤Ak(x− xk)

➋ Minimize it within the subspace spanned by the columns

of a matrix Dk ∈ R
N×Mk :

xk+1 = xk −Dk(D
⊤
k AkDk)

†D⊤
k ∇F (xk)

✘ MM algorithm : rank(Dk) = N  Large computational cost.
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Majorize-Minimize subspace algorithm [Chouzenoux et al., 2013]

⋆ Minimize differentiable and nonconvex function F on R
N .

At each iteration k ∈ N:

➊ Build a quadratic majorant function Q(·,xk) of F at xk:

Q(x,xk) = F (xk) + (x− xk)
⊤∇F (xk) +

1

2
(x− xk)

⊤Ak(x− xk)

➋ Minimize it within the subspace spanned by the columns

of a matrix Dk ∈ R
N×Mk :

xk+1 = xk −Dk(D
⊤
k AkDk)

†D⊤
k ∇F (xk)

✘ MM algorithm : rank(Dk) = N  Large computational cost.

☛ 3MG algorithm : Mk = 2 and Dk = [∇F (xk) | xk − xk−1].
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Other examples of subspace construction

Subspace name Set of directions Dk

Memory gradient [−∇F (xk) |dk−1]

Supermemory gradient [−∇F (xk) |dk−1 | . . . |dk−m]

Gradient subspace [−∇F (xk) | − ∇F (xk−1) | . . . | − ∇F (xk−m)]

Nemirovski subspace
[
−∇F (xk) |xk − x1 |

∑k
i=0 ωi∇F (xk)

]

Sequential subspace
[
−∇F (xk) |xk − x1 |

∑k
i=0 ωi∇F (xk) |dk−1 | . . . |dk−m

]

Quasi-Newton subspace [−∇F (xk) | δk−1 | . . . |δk−m |dk−1 | . . . |dk−m]

For all k ∈ N, (ωi)1≤i≤k ∈ R
N , dk = xk+1 − xk, δk = ∇F (xk+1)−∇F (xk).
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3MG algorithm

Initialize x0 ∈ R
N

For k = 0, 1, 2, . . .

Compute ∇F (xk)
If k = 0⌊
Dk = −∇F (x0)

Else⌊
Dk = [−∇F (xk),xk − xk−1]

Sk = D⊤
k AkDk

uk = S
†
kD

⊤
k ∇F (xk)

xk+1 = xk +Dkuk

 Low computational cost since Sk is of dimension Mk ×Mk, with Mk ∈ {1, 2}.

 Complexity reductions possible by taking into account the structures of F and Dk.
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Link between MM-subspace and other approaches

◮When F is quadratic and F ≡ Q, 3MG is equivalent to the

famous linear conjugate gradient.

◮ More generally, 3MG can be viewed as a special instance of a

nonlinear conjugate gradient method with closed forms for

stepsize/conjugacy parameters.

◮ MM-subspace, with Quasi-Newton direction set, is similar to a

low memory BFGS algorithm with a specific combination of

memory directions and closed form stepsize parameter.

◮ MM-subspace, associated with directions spanning the whole

space R
N , is equivalent to a half-quadratic approach.
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Convergence theorem for 3MG

Let assume that:

1. F : RN → R is a coercive, differentiable function.

2. There exists (ν, ν) ∈]0,+∞[2 such that (∀k ∈ N)
ν Id � Ak � ν Id,

Then, the following hold:

• ‖∇F (xk)‖ → 0 and F (xk) ց F (x̂) where x̂ is a critical

point of F .

• If F is convex, any sequential cluster point of (xk)k∈N is a

minimizer of F .

• If F is strongly convex, then (xk)k∈N converges to the

unique (global) minimizer x̂ of F

• If F satisfies the Kurdyka-Łojasiewicz inequality, then the

sequence (xk)k∈N converges to a critical point of F .
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Application to parallel MRI [Florescu et al. - 2014]

Challenges:

◮ Parallel acquisition and compressive sensing

◮ Complex-valued signals

Results:

Original 3MG - convex 3MG - nonconvex

SNR = 20.05 dB SNR = 20.27 dB
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Application to parallel MRI [Florescu et al. - 2014]

Challenges:

◮ Parallel acquisition and compressive sensing

◮ Complex-valued signals

Results:

 

 

Original 3MG - convex 3MG - nonconvex

(zoom) SNR = 20.05 dB SNR = 20.27 dB
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Application to parallel MRI [Florescu et al. - 2014]

Challenges:

◮ Parallel acquisition and compressive sensing

◮ Complex-valued signals

Results:
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Convergence speed of 3MG, compared with

several proximal-based algorithms
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3MG in high dimensional problems

3MG algorithm outperforms state-of-the arts optimization

algorithms in many image processing applications.

Problem: Computational issues with very large-size problems.

Main reasons: High computational time; High storage cost.

Large value of N

⇓

Block parallel
approach

Large value of M

⇓

Online approach
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Parallel 3MG algorithm [Cadoni et al., 2016]

How to make 3MG algorithm efficient for parallel implementation ?

At each iteration k ∈ N:

➊ Choose a subset of block indexes Sk ⊂ {1, . . . , J}.

➋ Update the selected blocks using a 3MG step performed in

parallel thanks to a block-diagonal MM metric.

Iteration k

x(1)

x(J)

Core 1

Core 2

Core 3

Core 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1

2

3

4

5

6

7

8

9

10

11

Core number C

A
c
c
e
le
r
a
t
io
n

◮ Application to 3D image

deblurring with space-variant

PSF (CNRS OPTIMISM

project).

◮ SPMD implementation on

Matlab Parallel Toolbox.

◮ Great potential for

parallelization.
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Stochastic 3MG algorithm

minimize
x∈RN

(
F (x)=

1

2
E(‖yj − h⊤

j x‖
2) + Ψ(x)

)STOCHASTIC PROBLEM

⋆ The second-order statistics of (hj ,yj)j≥1 are estimated online

in an adaptive manner.

NUMEROUS APPLICATIONS:

∗ supervised classification ∗ linear prediction/interpolation

∗ inverse problems ∗ echo cancellation

∗ system identification ∗ channel equalization

How to find a fast and flexible stochastic optimization algorithm

with theoretical convergence guarantees ?
?
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Stochastic 3MG algorithm [Chouzenoux and Pesquet, 2017]

At each iteration j ∈ N
∗:

➊ Build an estimate of the objective function:

(∀x ∈ R
N ) Fj(x) =

1

2j

j∑

k=1

‖yk − h⊤
k x‖

2 +Ψ(x)

➋ Construct a quadratic majorant for Fj .

➌ Minimize in a memory gradient subspace.

➍ Perform recursive updates of the second-order statistics.

✓ CONVERGENCE GUARANTEES on the sequence (xj)j≥1.

✓ REDUCED COMPLEXITY thanks to recursive update scheme.

✓ CONVERGENCE RATE ANALYSIS in stochastic and batch case

([Chouzenoux and Pesquet, 2016]).
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Application to 2D filter identification [Chouzenoux et al. - 2014]

y = S(x)h+w

OBSERVATION MODEL

◮ h ∈ R
L large size original image (L = 40962),

◮ x ∈ R
N unknown two-dimensional blur kernel (N = 212),

◮ S(x) Hankel-block Hankel matrix such that

S(x)h = Hx,

◮ w ∈ R
L realization of white N (0, 0.032) noise

(BSNR = 25.7 dB)

◮ y ∈ R
L blurred and noisy image.
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Application to 2D filter identification [Chouzenoux et al. - 2014]

y = S(x)h+w

OBSERVATION MODEL

◮ h ∈ R
L large size original image (L = 40962),

◮ x ∈ R
N unknown two-dimensional blur kernel (N = 212),

◮ S(x) Hankel-block Hankel matrix such that

S(x)h = Hx,

◮ w ∈ R
L realization of white N (0, 0.032) noise

(BSNR = 25.7 dB)

◮ y ∈ R
L blurred and noisy image.

⇒ Minimization of a penalized MSE criterion: yk ∈ R
Q and h⊤

k ∈ R
Q×N : Q

lines of y and H, ϑ = 1, and Ψ isotropic penalization on the gradient of x

(∼ smoothed version of total variation prior).
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Application to 2D filter identification

Original blur kernel 21× 21. Estimated blur kernel, relative error 0.064.

◮ The regularization parameters are optimized manually.
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Application to 2D filter identification
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S3MG

SGD [Robbins et al., 1951]

RDA [Xiao, 2010]

SAGA [Defazio et al., 2014]

Comparison of stochastic 3MG algorithm, SGD algorithm with decreasing

stepsize ∝ j−1/2, and SAGA/RDA algorithms with constant stepsizes.

◮ The stepsize values in SGD/SAGA/RDA methods are optimized manually .

◮ The S3MG algorithm leads to a faster convergence .
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Application to 2D filter identification
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Q = 128x128

Q = 256x256

Q = 512x512

Q = 1024x1024

Q = 2048x2048

Effect of the minibatch size Q on the convergence speed of S3MG.

◮ The best trade-off is obtained for Q = 256× 256.
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Application to 2D filter identification
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Effect of the choice of the subspace on the convergence speed.

◮ The best trade-off is obtained for memory gradient subspace.
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Application to sparse adaptive filtering

x
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[Chouzenoux et al., 2014]

[Kopsinis et al., 2011]

[Chen et al, 2010]

[Meng et al., 2011]

[Werner et al., 2007]

◮ x: sparse linear filter with abrupt

change at j = 2500.

◮ S3MG algorithm with forgetting

factor and smoothed ℓ0 penalty.

◮ Minimal estimation error, and

good tracking properties.
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Variable metric forward-backward

algorithm
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Variable metric FB algorithm [Chouzenoux et al., 2014]

⋆ Minimize F = f1 + f2 with f1 Lipschitz-differentiable and f2 non smooth .

⇒ Forward-backward: gradient steps on f1 and proximal steps on f2:

(∀k ∈ N) xk+1 = proxθkf2 (xk − θk∇f1(xk)) .

✘ slow convergence in practice.
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Variable metric FB algorithm [Chouzenoux et al., 2014]

⋆ Minimize F = f1 + f2 with f1 Lipschitz-differentiable and f2 non smooth .

⇒ Forward-backward: gradient steps on f1 and proximal steps on f2:

☛ Use MM framework to propose an efficient variable metric strategy:

(∀k ∈ N) xk+1 = proxθ−1

k
Ak,f2

(
xk − θkA

−1
k ∇f1(xk)

)
.

✓ CONVERGENCE of the sequence (xk)k∈N
to a critical point of F

under KL assumption.

✓ ROBUSTNESS TO ERRORS in the computation of the proximity

operator within the metric.

✓ EFFICIENT CONSTRUCTION of the preconditioning matrices

thanks to the MM framework.
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Block alternating strategy

The vector of unknowns x is partitioned into block subsets.

At each iteration, one or several blocks are updated.

x = x(1) x(j) x(J)

PRACTICAL ADVANTAGES:

✓ Control of memory for large scale image processing (eg, 3D, video).

✓ Flexibility of alternating scheme suitable to blind/unmixing problems.

✓ A first step towards parallel and distributed implementation.

How to find efficient and reliable block alternating schemes for

nonconvex and/or non differentiable optimization problems ?
?
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Block coordinate VMFB algorithm [Chouzenoux et al., 2016]

⋆ Minimize F = f1 + f2 with f1 smooth and f2 non differentiable.

At each iteration k ∈ N:

➊ Choose a block index jk ∈ {1, . . . , J} according to a quasi-cyclic

rule.

➋ Perform a gradient step on the restriction of f1 to block jk, using a

MM preconditioner.

➌ Perform a proximal step on the restriction of f2 to block jk, within

the MM metric.

✓ CONVERGENCE GUARANTEES on the sequence (xk)k∈N under

KL assumption.

✓ EXPERIMENTAL VALIDATION in numerous applications of

image/signal processing (eg, phase retrieval, spectral unmixing,

blind deconvolution).
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Application to phase retrieval

OBSERVATION MODEL:

We observe measurements y ∈ [0,+∞)S through

y = |Hv|+w.

• v ∈ R
M  original unknown image

• H ∈ C
S×M  degradation operator

• w ∈ [0,+∞)S  additive noise.

Objective: Produce an estimate v̂ of the target image v from the observed

measurements y.

Application fields:

◮ Crystallography [Harrison et al. - 1993]

◮ Phase contrast tomography [Bauschke et al. - 2005]

◮ Coherent diffraction imaging [Shechtman, et al. - 2013]
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Application to phase retrieval

OBSERVATION MODEL:

We observe measurements y ∈ [0,+∞)S through

y = |Hv|+w.

• v ∈ R
M  original unknown image

• H ∈ C
S×M  degradation operator

• w ∈ [0,+∞)S  additive noise.

What happens if v is complex?

v = vR + i vI

 y = | (HR + i HI) (vR + i vI) |+w

 y = | [HR + iHI | −HI + iHR]
︸ ︷︷ ︸

Complex

[
vR

vI

]

︸ ︷︷ ︸
Real

|+w
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State of the art

◮ Alternating projections methods:

[Gerchberg et al. - 1972] [Fienup - 1972] [Bauschke et al. - 2002]

◮ Convex relaxations based on SDP programming:

 PhaseLift algorithm [Candés et al. - 2013]

 PhaseCut algorithm [Waldspurger et al. - 2013]

◮ Regularized approaches assuming that v is sparse in a
given dictionary:

 SPD programming [Fogel et al. - 2013]

 Alternating projections [Mukherjee et al. - 2012]

 Greedy algorithm [Shechtman et al. - 2013]
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Proposed method

Synthesis approach: Let W ∈ R
M×N , M ≤ N , be a given

frame synthesis operator such that v̂ = Wx̂.

The frame coefficient vector x̂ ∈ R
N is estimated by minimizing

f1 + f2 where

◮ f1 is a smooth nonconvex data fidelity term,

(∀x ∈ R
N ) f1(x) =

S∑

s=1

ϕ(s)([HWx](s)), where

(∀u ∈ C) ϕ(s)(u) =
1

2

(
|u|2 + (z(s))2

)
− z(s)

(
|u|2 + δ2

)1/2
,

with δ ∈ (0,+∞).

◮ f2 is a block separable regularization function.
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Construction of the preconditioning matrices

At iteration k ∈ N, let ̇k be the chosen index in {1, . . . , J} and let xk

be the k-th iterate generated by the BC-VMFB algorithm.

The majorization condition is fulfilled by the diagonal matrix

Ȧk = Diag
(
Ω⊤

̇k
1S

)

where 1S is the unit vector on R
S and the elements of Ω̇k ∈ R

S×Ṅk

are given by

Ω(s,n) =
∣∣∣[HW ]

(s,n)
R

∣∣∣
N∑

n′=1

∣∣∣[HW ]
(s,n′)
R

∣∣∣+
∣∣∣[HW ]

(s,n)
I

∣∣∣
N∑

n′=1

∣∣∣[HW ]
(s,n′)
I

∣∣∣ .
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Simulation results

◮ Complex valued original image:

v ∈ C
M with M = 128× 128

Real part vR ∈ R
M Imaginary part vI ∈ R

M
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Simulation results

◮ Observation matrix:

H ∈ C
S×M is the composition of

• a projection matrix modeling S = 23400 Radon projections
from

◦ 128 parallel acquisition lines,

◦ 180 angles regularly distributed on [0, π),

• a complex-valued blur operator.

 Reminiscent of the phase contrast tomography model from

[Davidoiu et al. - 2012].
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Simulation results

◮ Observation matrix:

H ∈ C
S×M is the composition of

• a projection matrix modeling S = 23400 Radon projections
from

◦ 128 parallel acquisition lines,

◦ 180 angles regularly distributed on [0, π),

• a complex-valued blur operator.

 Reminiscent of the phase contrast tomography model from

[Davidoiu et al. - 2012].

◮ Synthesis frame operator:

W ∈ C
M×N , N = 8M , is such that x = (x(n))1≤n≤N is the

concatenation of an overcomplete Haar decomposition of vR
(resp. vI) for one resolution level.
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Simulation results

◮ Regularization function:

f2 is the sum, for p ∈ {1, . . . , 4M}, of

ρ(p)(u(p)) =






ϑp‖u
(p) − ωp‖

κp

2 if p /∈ E,

0 if p ∈ E and u(p) = 0,

+∞ otherwise,

where

• u(p) ∈ R
2 is the p-th pair of frame coefficients

corresponding to the real and imaginary parts of

the image,

• E is the object background,

• κp = 1, ϑp = ϑd ∈ (0,+∞) for the detail

subbands, and κp = 2, ϑp = ϑa ∈ (0,+∞) for

the approximation subbands,

• ωp ∈ R
2 controls the mean value of u(p).
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Simulation results

◮ Definition of blocks:

For every j, x(̇) ∈ R
8Q gathers 8 blocks from the approximation

and detail subbands of both real and imaginary parts.

Indices of a block x(̇) for Q = 32.

 At each iteration k ∈ N, ̇k is randomly chosen so that each

block is updated at least once per J iterations.
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Simulation results

Real part

• Original image vR

• Reconstructed image v̂R with BC-VMFB Algorithm: SNR = 21.27 dB.

• Reconstructed image v̂R with the ℓ0-regularized Fienup algorithm

from [Mukherjee et al. - 2012]: SNR = 14.45 dB.
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Simulation results

Imaginary part

• Original image vI

• Reconstructed image v̂I with BC-VMFB Algorithm: SNR = 21.27 dB.

• Reconstructed image v̂I with the ℓ0-regularized Fienup algorithm

from [Mukherjee et al. - 2012]: SNR = 14.45 dB.
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Conclusion

MM algorithms allow to solve efficiently optimization problems of

image/signal processing.

Several extensions are proposed for very large scale problems :

 Block Parallel 3MG

 Stochastic 3MG

 Block-coordinate VMFB

More to come, with ANR MajIC project.

THANK YOU !
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