MAJORIZATION-MINIMIZATION ALGORITHMS FOR LARGE SCALE DATA PROCESSING

Emilie CHOUZENOUX

Center for Visual Computing, CentraleSupelec, INRIA Saclay

IFPEN

6 December 2017

Introduction •000 IFPEN - 2017 3MG Algorithm

Variable metric FB algorithm

2/37

Inverse problems and large scale optimization

Original image

Degraded image

Introduction •000 IEPEN - 2017 3MG Algorithm

Variable metric FB algorithm

2/37

Inverse problems and large scale optimization

Original image $\overline{oldsymbol{x}} \in \mathbb{R}^N$

Degraded image $oldsymbol{y} = \mathcal{D}(oldsymbol{H}\overline{oldsymbol{x}}) \in \mathbb{R}^M$

- ► H ∈ ℝ^{M×N}: matrix associated with the degradation operator.
- $\mathcal{D}: \mathbb{R}^M \to \mathbb{R}^M$: noise degradation.

How to find a good estimate of \overline{x} from the observations y and the model H in the context of large scale processing?

Inverse problems and large scale optimization Variational approach:

An image estimate $\hat{x} \in \mathbb{R}^N$ is generated by minimizing (iteratively)

$$(orall oldsymbol{x} \in \mathbb{R}^N) \quad F(oldsymbol{x}) = f(oldsymbol{H}oldsymbol{x}) + \Psi(oldsymbol{x})$$

with $f : \mathbb{R}^M \to \mathbb{R}, \Psi : \mathbb{R}^N \to \mathbb{R}$.

Inverse problems and large scale optimization Variational approach:

An image estimate $\hat{x} \in \mathbb{R}^N$ is generated by minimizing (iteratively)

$$(\forall \boldsymbol{x} \in \mathbb{R}^N) \quad F(\boldsymbol{x}) = f(\boldsymbol{H}\boldsymbol{x}) + \Psi(\boldsymbol{x})$$

with $f : \mathbb{R}^M \to \mathbb{R}, \Psi : \mathbb{R}^N \to \mathbb{R}$.

 \Rightarrow In the context of maximum a posteriori estimation :

* f
 • H
 : Data fidelity term related to the acquisition model;
 Example: Least squares function

$$(\forall \boldsymbol{x} \in \mathbb{R}^N) \quad f(\boldsymbol{H}\boldsymbol{x}) = \|\boldsymbol{H}\boldsymbol{x} - \boldsymbol{y}\|^2$$

Inverse problems and large scale optimization Variational approach:

An image estimate $\hat{x} \in \mathbb{R}^N$ is generated by minimizing (iteratively)

$$(\forall \boldsymbol{x} \in \mathbb{R}^N) \quad F(\boldsymbol{x}) = f(\boldsymbol{H}\boldsymbol{x}) + \Psi(\boldsymbol{x})$$

with $f : \mathbb{R}^M \to \mathbb{R}, \Psi : \mathbb{R}^N \to \mathbb{R}.$

 \Rightarrow In the context of maximum a posteriori estimation :

 $* f \circ H$: Data fidelity term related to the acquisition model;

* Ψ : Regularization function. Example: Sparsity prior (analysis)

$$(orall oldsymbol{x} \in \mathbb{R}^N) \quad \Psi(oldsymbol{x}) = \|oldsymbol{F}oldsymbol{x}\|_1$$

with $\boldsymbol{F} \in \mathbb{R}^{P \times N}$, $P \ge N$, a frame decomposition operator.

Inverse problems and large scale optimization Variational approach:

An image estimate $\hat{m{x}} \in \mathbb{R}^N$ is generated by minimizing (iteratively)

$$(\forall \boldsymbol{x} \in \mathbb{R}^N) \quad F(\boldsymbol{x}) = f(\boldsymbol{H}\boldsymbol{x}) + \Psi(\boldsymbol{x})$$

with $f : \mathbb{R}^M \to \mathbb{R}, \Psi : \mathbb{R}^N \to \mathbb{R}$.

 \Rightarrow In the context of maximum a posteriori estimation :

 $* f \circ H$: Data fidelity term related to the acquisition model;

* Ψ : Regularization function.

• Choosing an efficient iterative minimization strategy depends on the properties of (f, Ψ) .

ntroduction	3MG Algorithm	Variable metric FB algorithm	Conclusion
FPEN - 2017			4/37

A unified framework: Majorize-Minimize principle

PROBLEM: Find $\hat{x} \in \operatorname{Argmin}_{x \in \mathbb{R}^N} F(x)$

For all $x' \in \mathbb{R}^N$, let Q(., x') a *tangent majorant* of F at x' i.e.,

 $(\forall \boldsymbol{x} \in \mathbb{R}^N) \quad Q(\boldsymbol{x}, \boldsymbol{x}') \ge F(\boldsymbol{x}) \text{ and } Q(\boldsymbol{x}', \boldsymbol{x}') = F(\boldsymbol{x}')$

* Quadratic majorants ~> tractable inner minimization step

IFPEN - 2017

Outline

* MAJORIZE-MINIMIZE MEMORY GRADIENT ALGORITHM

- Majorize-Minimize principle
- Subspace acceleration
- Convergence properties
- Block parallel 3MG algorithm
- Stochastic 3MG algorithm

* VARIABLE METRIC FORWARD-BACKWARD ALGORITHM

- Majorize-Minimize preconditioning
- Block alternating extension
- Application to phase retrieval

Majorize-Minimize Memory Gradient algorithm

Introduction	3MG Algorithm ○●○○○○○○○○○○○○○○○	Variable metric FB algorithm	Conclusion
IEPEN - 2017			7/37

Majorize-Minimize subspace algorithm [Chouzenoux et al., 2013]

- * Minimize differentiable and nonconvex function F on \mathbb{R}^N . At each iteration $k \in \mathbb{N}$:
 - Build a quadratic majorant function $Q(\cdot, \boldsymbol{x}_k)$ of F at \boldsymbol{x}_k :

$$Q(\boldsymbol{x}, \boldsymbol{x}_k) = F(\boldsymbol{x}_k) + (\boldsymbol{x} - \boldsymbol{x}_k)^\top \nabla F(\boldsymbol{x}_k) + \frac{1}{2} (\boldsymbol{x} - \boldsymbol{x}_k)^\top \boldsymbol{A}_k (\boldsymbol{x} - \boldsymbol{x}_k)$$

2 Minimize it within the subspace spanned by the columns of a matrix $D_k \in \mathbb{R}^{N \times M_k}$:

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \boldsymbol{D}_k (\boldsymbol{D}_k^\top \boldsymbol{A}_k \boldsymbol{D}_k)^\dagger \boldsymbol{D}_k^\top \nabla F(\boldsymbol{x}_k)$$

X MM algorithm : rank $(D_k) = N \rightsquigarrow$ Large computational cost.

Introduction	3MG Algorithm ○●○○○○○○○○○○○○○○○	Variable metric FB algorithm	Conclusion
IEPEN - 2017			7/37

Majorize-Minimize subspace algorithm [Chouzenoux et al., 2013]

- * Minimize differentiable and nonconvex function F on \mathbb{R}^N . At each iteration $k \in \mathbb{N}$:
 - Build a quadratic majorant function $Q(\cdot, \boldsymbol{x}_k)$ of F at \boldsymbol{x}_k :

$$Q(oldsymbol{x},oldsymbol{x}_k) = F(oldsymbol{x}_k) + (oldsymbol{x}-oldsymbol{x}_k)^{ op}
abla F(oldsymbol{x}_k) + rac{1}{2} (oldsymbol{x}-oldsymbol{x}_k)^{ op} oldsymbol{A}_k (oldsymbol{x}-oldsymbol{x}_k)$$

• Minimize it within the subspace spanned by the columns of a matrix $D_k \in \mathbb{R}^{N \times M_k}$:

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \boldsymbol{D}_k (\boldsymbol{D}_k^\top \boldsymbol{A}_k \boldsymbol{D}_k)^\dagger \boldsymbol{D}_k^\top \nabla F(\boldsymbol{x}_k)$$

X MM algorithm : rank $(D_k) = N \rightsquigarrow$ Large computational cost.

3MG algorithm : $M_k = 2$ and $D_k = [\nabla F(\boldsymbol{x}_k) | \boldsymbol{x}_k - \boldsymbol{x}_{k-1}].$

Variable metric FB algorithm

Other examples of subspace construction

Subspace name	Set of directions D_k
Memory gradient	$[- abla F(oldsymbol{x}_k) oldsymbol{d}_{k-1}]$
Supermemory gradient	$[- abla F(oldsymbol{x}_k) oldsymbol{d}_{k-1} \dots oldsymbol{d}_{k-m}]$
Gradient subspace	$[-\nabla F(\boldsymbol{x}_k) \mid -\nabla F(\boldsymbol{x}_{k-1}) \mid \ldots \mid -\nabla F(\boldsymbol{x}_{k-m})]$
Nemirovski subspace	$\left[- abla F(oldsymbol{x}_k) oldsymbol{x}_k-oldsymbol{x}_1 \sum_{i=0}^k\omega_i abla F(oldsymbol{x}_k) ight]$
Sequential subspace	$\left[-\nabla F(\boldsymbol{x}_k) \boldsymbol{x}_k - \boldsymbol{x}_1 \sum_{i=0}^k \omega_i \nabla F(\boldsymbol{x}_k) \boldsymbol{d}_{k-1} \dots \boldsymbol{d}_{k-m}\right]$
Quasi-Newton subspace	$[- abla F(oldsymbol{x}_k) oldsymbol{\delta}_{k-1} \dots oldsymbol{\delta}_{k-m} oldsymbol{d}_{k-1} \dots oldsymbol{d}_{k-m}]$

 $\text{ For all } k \in \mathbb{N}, \left(\omega_i\right)_{1 \leq i \leq k} \in \mathbb{R}^N, \, \boldsymbol{d}_k = \boldsymbol{x}_{k+1} - \boldsymbol{x}_k, \, \boldsymbol{\delta}_k = \nabla F(\boldsymbol{x}_{k+1}) - \nabla F(\boldsymbol{x}_k).$

Introduction	3MG Algorithm	Variable metric FB algorithm	Conclusion
IEPEN - 2017		000000000000000000000000000000000000000	9/37
IT EN LOT			0/01

Initialize
$$\boldsymbol{x}_0 \in \mathbb{R}^N$$

For $k = 0, 1, 2, ...$
Compute $\nabla F(\boldsymbol{x}_k)$
If $k = 0$
 $\lfloor \boldsymbol{D}_k = -\nabla F(\boldsymbol{x}_0)$
Else
 $\lfloor \boldsymbol{D}_k = [-\nabla F(\boldsymbol{x}_k), \boldsymbol{x}_k - \boldsymbol{x}_{k-1}]$
 $\boldsymbol{S}_k = \boldsymbol{D}_k^\top \boldsymbol{A}_k \boldsymbol{D}_k$
 $\boldsymbol{u}_k = \boldsymbol{S}_k^\dagger \boldsymbol{D}_k^\top \nabla F(\boldsymbol{x}_k)$
 $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \boldsymbol{D}_k \boldsymbol{u}_k$

→ Low computational cost since S_k is of dimension $M_k \times M_k$, with $M_k \in \{1, 2\}$. → Complexity reductions possible by taking into account the structures of F and D_k .

Link between MM-subspace and other approaches

- ▶ When *F* is quadratic and $F \equiv Q$, 3MG is equivalent to the famous linear conjugate gradient.
- ► More generally, 3MG can be viewed as a special instance of a nonlinear conjugate gradient method with closed forms for stepsize/conjugacy parameters.
- ► MM-subspace, with Quasi-Newton direction set, is similar to a low memory BFGS algorithm with a specific combination of memory directions and closed form stepsize parameter.
- ▶ MM-subspace, associated with directions spanning the whole space \mathbb{R}^N , is equivalent to a half-quadratic approach.

Convergence theorem for 3MG

Let assume that:

- 1. $F : \mathbb{R}^N \to \mathbb{R}$ is a coercive, differentiable function.
- 2. There exists $(\underline{\nu}, \overline{\nu}) \in]0, +\infty[^2 \text{ such that } (\forall k \in \mathbb{N}) \\ \underline{\nu} \operatorname{Id} \preceq A_k \preceq \overline{\nu} \operatorname{Id},$

Then, the following hold:

- $\|\nabla F(\boldsymbol{x}_k)\| \to 0$ and $F(\boldsymbol{x}_k) \searrow F(\widehat{\boldsymbol{x}})$ where $\widehat{\boldsymbol{x}}$ is a critical point of *F*.
- If *F* is convex, any sequential cluster point of (*x_k*)_{k∈ℕ} is a minimizer of *F*.
- If *F* is strongly convex, then $(x_k)_{k\in\mathbb{N}}$ converges to the unique (global) minimizer \hat{x} of *F*
- If *F* satisfies the Kurdyka-Łojasiewicz inequality, then the sequence (*x_k*)_{k∈ℕ} converges to a critical point of *F*.

Variable metric FB algorithm

Application to parallel MRI [Florescu et al. - 2014]

Challenges:

- Parallel acquisition and compressive sensing
- Complex-valued signals

Results:

Original

3MG - convexSNR = 20.05 dB

3MG - nonconvex SNR = 20.27 dB

Variable metric FB algorithm

Application to parallel MRI [Florescu et al. - 2014]

Challenges:

- Parallel acquisition and compressive sensing
- Complex-valued signals

Results:

Original (zoom)

3MG - convex SNR = 20.05 dB

3MG - nonconvex SNR = 20.27 dB

Variable metric FB algorithm

12/37

Application to parallel MRI [Florescu et al. - 2014]

Challenges:

- Parallel acquisition and compressive sensing
- Complex-valued signals

Results:

several proximal-based algorithms

3MG in high dimensional problems

3MG algorithm outperforms state-of-the arts optimization algorithms in many image processing applications.

Problem: Computational issues with very large-size problems.

Main reasons: High computational time; High storage cost.

Introduction
0000
IEPEN - 2017

Variable metric FB algorithm

Parallel 3MG algorithm [Cadoni et al., 2016]

How to make 3MG algorithm efficient for parallel implementation

At each iteration $k \in \mathbb{N}$:

- Choose a subset of block indexes $S_k \subset \{1, \ldots, J\}$.
- Output the selected blocks using a 3MG step performed in parallel thanks to a block-diagonal MM metric.

- Application to 3D image deblurring with space-variant PSF (CNRS OPTIMISM project).
- SPMD implementation on Matlab Parallel Toolbox.
- Great potential for parallelization.

Introduction
0000
IEPEN - 2017

Variable metric FB algorithm

Stochastic 3MG algorithm

STOCHASTIC PROBLEM minimize $\left(F(\boldsymbol{x}) = \frac{1}{2}\mathbb{E}(\|\mathbf{y}_j - \mathbf{h}_j^{\top}\boldsymbol{x}\|^2) + \Psi(\boldsymbol{x})\right)$

* The second-order statistics of $(\mathbf{h}_j, \mathbf{y}_j)_{j \ge 1}$ are estimated online in an adaptive manner.

NUMEROUS APPLICATIONS:

- * supervised classification
- * inverse problems
- * system identification

- * linear prediction/interpolation
- * echo cancellation
- * channel equalization

How to find a fast and flexible stochastic optimization algorithm with theoretical convergence guarantees ?

Introduction	3MG Algorithm	Variable metric FB algorithm	Conclusion
0000	0000000000000000	00000000000	00
IFPEN - 2017			16/37

Stochastic 3MG algorithm [Chouzenoux and Pesquet, 2017]

At each iteration $j \in \mathbb{N}^*$:

• Build an estimate of the objective function:

$$(orall oldsymbol{x} \in \mathbb{R}^N) \quad F_j(oldsymbol{x}) = rac{1}{2j} \sum_{k=1}^j \|oldsymbol{y}_k - oldsymbol{ extbf{h}}_k^ op oldsymbol{x} \|^2 + \Psi(oldsymbol{x})$$

- **2** Construct a quadratic majorant for F_j .
- Minimize in a memory gradient subspace.
- Perform recursive updates of the second-order statistics.
- CONVERGENCE GUARANTEES on the sequence $(\mathbf{x}_j)_{j>1}$.
- REDUCED COMPLEXITY thanks to recursive update scheme.
- CONVERGENCE RATE ANALYSIS in stochastic and batch case ([Chouzenoux and Pesquet, 2016]).

Application to 2D filter identification [Chouzenoux et al. - 2014]

OBSERVATION MODEL

$$\boldsymbol{y} = S(\overline{\boldsymbol{x}})\boldsymbol{h} + \boldsymbol{w}$$

- $h \in \mathbb{R}^L$ large size original image ($L = 4096^2$),
- $\overline{\boldsymbol{x}} \in \mathbb{R}^N$ unknown two-dimensional blur kernel ($N = 21^2$),
- $S(\overline{x})$ Hankel-block Hankel matrix such that $S(\overline{x})h = H\overline{x}$,
- $\boldsymbol{w} \in \mathbb{R}^L$ realization of white $\mathcal{N}(0, 0.03^2)$ noise (BSNR = 25.7 dB)
- $y \in \mathbb{R}^L$ blurred and noisy image.

Variable metric FB algorithm

Application to 2D filter identification [Chouzenoux et al. - 2014]

OBSERVATION MODEL

$$\boldsymbol{y} = S(\overline{\boldsymbol{x}})\boldsymbol{h} + \boldsymbol{w}$$

- $h \in \mathbb{R}^L$ large size original image ($L = 4096^2$),
- $\overline{\boldsymbol{x}} \in \mathbb{R}^N$ unknown two-dimensional blur kernel ($N = 21^2$),
- $S(\overline{x})$ Hankel-block Hankel matrix such that $S(\overline{x})h = H\overline{x}$,
- $\boldsymbol{w} \in \mathbb{R}^L$ realization of white $\mathcal{N}(0, 0.03^2)$ noise (BSNR = 25.7 dB)
- $y \in \mathbb{R}^L$ blurred and noisy image.
- ⇒ Minimization of a penalized MSE criterion: $\mathbf{y}_k \in \mathbb{R}^Q$ and $\mathbf{h}_k^\top \in \mathbb{R}^{Q \times N}$: Q lines of \boldsymbol{y} and $\boldsymbol{H}, \vartheta = 1$, and Ψ isotropic penalization on the gradient of \mathbf{x} (~ smoothed version of total variation prior).

3MG Algorithm

Variable metric FB algorithm

Conclusion

18/37

IFPEN - 2017

Application to 2D filter identification

 $\label{eq:constraint} \mbox{Original blur kernel} \ \mbox{Prime} 21 \times 21. \qquad \mbox{Estimated blur kernel, relative error} \ 0.064.$

The regularization parameters are optimized manually.

3MG Algorithm

Variable metric FB algorithm

IFPEN - 2017

Application to 2D filter identification

Comparison of stochastic 3MG algorithm, SGD algorithm with decreasing stepsize $\propto j^{-1/2}$, and SAGA/RDA algorithms with constant stepsizes.

The stepsize values in SGD/SAGA/RDA methods are optimized manually.
 The S3MG algorithm leads to a faster convergence.

3MG Algorithm

Variable metric FB algorithm

IFPEN - 2017

Application to 2D filter identification

Effect of the minibatch size Q on the convergence speed of S3MG.

▶ The best trade-off is obtained for $Q = 256 \times 256$.

3MG Algorithm

Variable metric FB algorithm

Application to 2D filter identification

Effect of the choice of the subspace on the convergence speed.

The best trade-off is obtained for memory gradient subspace.

Variable metric FB algorithm

22/37

Application to sparse adaptive filtering

- x: sparse linear filter with abrupt change at j = 2500.
- ► S3MG algorithm with forgetting factor and smoothed ℓ₀ penalty.
- Minimal estimation error, and good tracking properties.

Variable metric forward-backward algorithm

ntroduction	3MG Algorithm	Variable metric FB algorithm	Conclusion
0000	0000000000000000	0000000000	00
EDEN 2017			70/10

Variable metric FB algorithm [Chouzenoux et al., 2014]

* Minimize $F = f_1 + f_2$ with f_1 Lipschitz-differentiable and f_2 non smooth. \Rightarrow Forward-backward: gradient steps on f_1 and proximal steps on f_2 :

$$(\forall k \in \mathbb{N}) \quad \boldsymbol{x}_{k+1} = \mathsf{prox}_{\theta_k f_2} \left(\boldsymbol{x}_k - \theta_k \nabla f_1(\boldsymbol{x}_k) \right).$$

X slow convergence in practice.

Variable metric FB algorithm [Chouzenoux et al., 2014]

* Minimize $F = f_1 + f_2$ with f_1 Lipschitz-differentiable and f_2 non smooth. \Rightarrow Forward-backward: gradient steps on f_1 and proximal steps on f_2 : • Use MM framework to propose an efficient variable metric strategy: $(\forall k \in \mathbb{N}) \quad x_{k+1} = \operatorname{prox}_{\theta_k^{-1}A_k, f_2} (x_k - \theta_k A_k^{-1} \nabla f_1(x_k)).$

- ✓ **CONVERGENCE** of the sequence $(x_k)_{k \in \mathbb{N}}$ to a critical point of *F* under KL assumption.
- ✓ ROBUSTNESS TO ERRORS in the computation of the proximity operator within the metric.
- EFFICIENT CONSTRUCTION of the preconditioning matrices thanks to the MM framework.

Introduction
0000
IEPEN - 2017

Block alternating strategy

The vector of unknowns x is partitioned into **block subsets**. At each iteration, **one** or **several blocks** are updated.

			: 1	:	:	:	—	:		:	:	:	:	:	:	:	:	1	: 1		:	: 1		:	. 1
$\boldsymbol{x} =$	x	(1)					<u>.</u>	÷.					\boldsymbol{x}	(j):		 		 		÷	x	(J)
w –			: :			···;··		1	÷					 		: :	 	 	: :	 				÷	 :

PRACTICAL ADVANTAGES:

- ✓ Control of memory for large scale image processing (eg, 3D, video).
- ✓ Flexibility of alternating scheme suitable to blind/unmixing problems.
- ✓ A first step towards parallel and distributed implementation.

How to find efficient and reliable block alternating schemes for nonconvex and/or non differentiable optimization problems ?

Block coordinate VMFB algorithm [Chouzenoux et al., 2016]

* Minimize $F = f_1 + f_2$ with f_1 smooth and f_2 non differentiable. At each iteration $k \in \mathbb{N}$:

- Choose a block index *j*_k ∈ {1, ..., *J*} according to a quasi-cyclic rule.
- **2** Perform a gradient step on the restriction of f_1 to block j_k , using a MM preconditioner.
- Perform a proximal step on the restriction of f_2 to block j_k , within the MM metric.
- ✓ CONVERGENCE GUARANTEES on the sequence $(x_k)_{k \in \mathbb{N}}$ under KL assumption.
- EXPERIMENTAL VALIDATION in numerous applications of image/signal processing (eg, phase retrieval, spectral unmixing, blind deconvolution).

ntroduction	3MG Algorithm	Variable metric FB algorithm	Concl oo
FPEN - 2017			

Application to phase retrieval

OBSERVATION MODEL:

We observe measurements $\boldsymbol{y} \in [0, +\infty)^S$ through

 $y = |H\overline{v}| + w.$

- $\overline{oldsymbol{v}} \in \mathbb{R}^M$ \rightsquigarrow original unknown image
- $oldsymbol{H} \in \mathbb{C}^{S imes M}$ \rightsquigarrow degradation operator
- $\boldsymbol{w} \in [0, +\infty)^S \rightsquigarrow$ additive noise.

Objective: Produce an estimate \hat{v} of the target image \overline{v} from the observed measurements y.

Application fields:

- Crystallography [Harrison et al. 1993]
- Phase contrast tomography [Bauschke et al. 2005]
- Coherent diffraction imaging [Shechtman, et al. 2013]

Introduction	3MG Algorithm	Variable metric FB algorithm	Conclusion
0000	0000000000000000	00000000000	00
IEPEN - 2017			27/37

Application to phase retrieval

OBSERVATION MODEL:

We observe measurements $\boldsymbol{y} \in [0, +\infty)^S$ through

 $y = |H\overline{v}| + w.$

- $\overline{oldsymbol{v}} \in \mathbb{R}^M$ \rightsquigarrow original unknown image
- $oldsymbol{H} \in \mathbb{C}^{S imes M} \longrightarrow$ degradation operator
- $\boldsymbol{w} \in [0, +\infty)^S \rightsquigarrow$ additive noise.

What happens if \overline{v} is complex?

$$\overline{\boldsymbol{v}} = \overline{\boldsymbol{v}}_{\mathcal{R}} + \mathrm{i} \, \overline{\boldsymbol{v}}_{\mathcal{I}}$$

$$\rightarrow \quad \boldsymbol{y} = |\left(\boldsymbol{H}_{\mathcal{R}} + \mathrm{i} \, \boldsymbol{H}_{\mathcal{I}}\right) \left(\overline{\boldsymbol{v}}_{\mathcal{R}} + \mathrm{i} \, \overline{\boldsymbol{v}}_{\mathcal{I}}\right)| + \boldsymbol{w}$$

$$\rightarrow \quad \boldsymbol{y} = |\underbrace{\left[\boldsymbol{H}_{\mathcal{R}} + \mathrm{i} \, \boldsymbol{H}_{\mathcal{I}} \mid -\boldsymbol{H}_{\mathcal{I}} + \mathrm{i} \, \boldsymbol{H}_{\mathcal{R}}\right]}_{\text{Complex}} \underbrace{\left[\begin{array}{c} \overline{\boldsymbol{v}}_{\mathcal{R}} \\ \overline{\boldsymbol{v}}_{\mathcal{I}} \end{array}\right]}_{\text{Real}} | + \boldsymbol{w}$$

State of the art

- Alternating projections methods: [Gerchberg et al. - 1972] [Fienup - 1972] [Bauschke et al. - 2002]
- Convex relaxations based on SDP programming:
 - → PhaseLift algorithm [Candés et al. 2013]
 - → PhaseCut algorithm [Waldspurger et al. 2013]
- Regularized approaches assuming that v is sparse in a given dictionary:
 - → SPD programming [Fogel et al. 2013]
 - → Alternating projections [Mukherjee et al. 2012]
 - → Greedy algorithm [Shechtman et al. 2013]

Proposed method

Synthesis approach: Let $W \in \mathbb{R}^{M \times N}$, $M \leq N$, be a given frame synthesis operator such that $\hat{v} = W\hat{x}$.

The frame coefficient vector $\widehat{\boldsymbol{x}} \in \mathbb{R}^N$ is estimated by minimizing $f_1 + f_2$ where

• f_1 is a smooth nonconvex data fidelity term,

$$(orall oldsymbol{x} \in \mathbb{R}^N) \quad f_1(oldsymbol{x}) = \sum_{s=1}^S arphi^{(s)} ([oldsymbol{HW} oldsymbol{x}]^{(s)}), \qquad ext{ where }$$

$$(\forall u \in \mathbb{C}) \quad \varphi^{(s)}(u) = \frac{1}{2} \left(|u|^2 + (z^{(s)})^2 \right) - z^{(s)} \left(|u|^2 + \delta^2 \right)^{1/2},$$

with $\delta \in (0, +\infty)$.

• f_2 is a block separable regularization function.

Construction of the preconditioning matrices

At iteration $k \in \mathbb{N}$, let j_k be the chosen index in $\{1, \ldots, J\}$ and let x_k be the *k*-th iterate generated by the BC-VMFB algorithm.

The majorization condition is fulfilled by the diagonal matrix

 $\boldsymbol{A}_{j_k} = \operatorname{Diag}\left(\boldsymbol{\Omega}_{j_k}^{ op} \boldsymbol{1}_S\right)$

where 1_S is the unit vector on \mathbb{R}^S and the elements of $\Omega_{j_k} \in \mathbb{R}^{S \times N_{j_k}}$ are given by

$$\Omega^{(s,n)} = \left| [\boldsymbol{H}\boldsymbol{W}]_{\mathcal{R}}^{(s,n)} \right| \sum_{n'=1}^{N} \left| [\boldsymbol{H}\boldsymbol{W}]_{\mathcal{R}}^{(s,n')} \right| + \left| [\boldsymbol{H}\boldsymbol{W}]_{\mathcal{I}}^{(s,n)} \right| \sum_{n'=1}^{N} \left| [\boldsymbol{H}\boldsymbol{W}]_{\mathcal{I}}^{(s,n')} \right|.$$

Variable metric FB algorithm

Simulation results

Complex valued original image:

 $\overline{\boldsymbol{v}} \in \mathbb{C}^M$ with $M = 128 \times 128$

Real part $\overline{\boldsymbol{v}}_{\mathcal{R}} \in \mathbb{R}^{M}$

Imaginary part $\overline{m{v}}_\mathcal{I} \in \mathbb{R}^M$

Observation matrix:

 $oldsymbol{H} \in \mathbb{C}^{S imes M}$ is the composition of

- a projection matrix modeling $S=23400\ {\rm Radon}\ {\rm projections}\ {\rm from}$
 - 128 parallel acquisition lines,
 - 180 angles regularly distributed on $[0, \pi)$,
- a complex-valued blur operator.

→ Reminiscent of the phase contrast tomography model from [Davidoiu *et al.* - 2012].

Observation matrix:

 $oldsymbol{H} \in \mathbb{C}^{S imes M}$ is the composition of

- a projection matrix modeling $S=23400\ {\rm Radon}\ {\rm projections}\ {\rm from}$
 - 128 parallel acquisition lines,
 - 180 angles regularly distributed on $[0, \pi)$,
- a complex-valued blur operator.

→ Reminiscent of the phase contrast tomography model from [Davidoiu *et al.* - 2012].

Synthesis frame operator:

 $W \in \mathbb{C}^{M \times N}$, N = 8M, is such that $x = (x^{(n)})_{1 \le n \le N}$ is the concatenation of an overcomplete Haar decomposition of $v_{\mathcal{R}}$ (resp. $v_{\mathcal{I}}$) for one resolution level.

Regularization function:

 f_2 is the sum, for $p \in \{1, \dots, 4M\}$, of

$$\label{eq:rho} \begin{split} \rho^{(p)}(u^{(p)}) = \begin{cases} \vartheta_p \| u^{(p)} - \omega_p \|_2^{\kappa_p} & \text{if } p \notin \mathbb{E}, \\ 0 & \text{if } p \in \mathbb{E} \text{ and } u^{(p)} = 0, \\ +\infty & \text{otherwise}, \end{cases}$$

where

- $u^{(p)} \in \mathbb{R}^2$ is the *p*-th pair of frame coefficients corresponding to the real and imaginary parts of the image,
- \mathbb{E} is the object background,
- $\kappa_p = 1, \vartheta_p = \vartheta^d \in (0, +\infty)$ for the detail subbands, and $\kappa_p = 2, \vartheta_p = \vartheta^a \in (0, +\infty)$ for the approximation subbands,
- $\omega_p \in \mathbb{R}^2$ controls the mean value of $u^{(p)}$.

Definition of blocks:

For every j, $x^{(j)} \in \mathbb{R}^{8Q}$ gathers 8 blocks from the approximation and detail subbands of both real and imaginary parts.

Indices of a block $\boldsymbol{x}^{(j)}$ for Q = 32.

→ At each iteration $k \in \mathbb{N}$, j_k is randomly chosen so that each block is updated at least once per *J* iterations.

Real part

- Original image $\overline{v}_{\mathcal{R}}$
- Reconstructed image $\hat{v}_{\mathcal{R}}$ with BC-VMFB Algorithm: SNR = 21.27 dB.
- Reconstructed image $\hat{v}_{\mathcal{R}}$ with the ℓ_0 -regularized Fienup algorithm from [Mukherjee *et al.* 2012]: SNR = 14.45 dB.

IFPEN - 2017

Simulation results

Imaginary part

- Original image $\overline{v}_\mathcal{I}$
- Reconstructed image $\hat{v}_{\mathcal{I}}$ with BC-VMFB Algorithm: SNR = 21.27 dB.
- Reconstructed image $\hat{v}_{\mathcal{I}}$ with the ℓ_0 -regularized Fienup algorithm from [Mukherjee *et al.* 2012]: SNR = 14.45 dB.

Introduction 0000	3MG Algorithm	Variable metric FB algorithm
IFPEN - 2017		

Conclusion •0 36/37

Conclusion

MM algorithms allow to solve efficiently optimization problems of image/signal processing.

Several extensions are proposed for very large scale problems :

→ Block Parallel 3MG

→ Stochastic 3MG

→ Block-coordinate VMFB

More to come, with ANR MajIC project.

THANK YOU !

Some references

