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Inverse problems and large scale optimization

Original image Degraded image
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Original image Degraded image
z e RN y=D(HZ) ¢ RM

» H c RM*N: matrix associated with the degradation
operator.
» D: RM — RM: noise degradation.

How to find a good estimate of = from the observations y and the
model H in the context of large scale processing?



Introduction 3MG Algorithm Variable metric FB algorithm Conclusion
[e] Jele) 0000000000000 0000 0000000000000 [e]e]

IFPEN - 2017 3/37

Inverse problems and large scale optimization

Variational approach:

An image estimate & € RY is generated by minimizing (iteratively)
(Ve € RY) F(x) = f(Hzx) + ¥(x)

with f : RM 5 R, ¥ : RN — R.
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Inverse problems and large scale optimization

Variational approach:

An image estimate & € R is generated by minimizing (iteratively)
(Ve € RY) F(x) = f(Hzx)+ ¥(x)

with f: RM™ R, U : RNV — R.

= In the context of maximum a posteriori estimation :

x f o H : Data fidelity term related to the acquisition model;
Example: Least squares function

(v eRY) f(Hz)=|Hz -yl
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Inverse problems and large scale optimization

An image estimate & € R is generated by minimizing (iteratively)
(Ve € RY) F(x) = f(Hzx) + U(x)

with f: RM™ - R, U : RNV — R.

In the context of maximum a posteriori estimation :
x f o H : Data fidelity term related to the acquisition model;

x W : Regularization function.
Sparsity prior (analysis)
(Vz e RY) ¥U(z) = ||Fz|,
with F € RPXN | P > N, a frame decomposition operator.
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Inverse problems and large scale optimization

Variational approach:

An image estimate & € RY is generated by minimizing (iteratively)
(Ve € RY) F(x) = f(Hzx) + U(x)

with f : RM 5 R, ¥ : RN — R.

= In the context of maximum a posteriori estimation :

« f o H : Data fidelity term related to the acquisition model;

x W : Regularization function.

» Choosing an efficient iterative minimization strategy depends
on the properties of (f, V).
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A unified framework: Majorize-Minimize principle
PROBLEM: Find & € Argmin, g~ F ()

Forall z’ € RY, let Q(.,x') a tangent majorant of F at x’ i.e.,

(Ve e RY) Q(z,2') > F(x) and Q(z,z') = F(x)

MM algorithm:

(VE € N)

Tiy1 € Argmingcpy Q(x, )

T Tk+1
+ Quadratic majorants ~- tractable inner minimization step
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x  MAJORIZE-MINIMIZE MEMORY GRADIENT ALGORITHM

> Majorize-Minimize principle
Subspace acceleration
Convergence properties
Block parallel 3MG algorithm
Stochastic 3MG algorithm

vyvyyvyy

«  VARIABLE METRIC FORWARD-BACKWARD ALGORITHM

> Majorize-Minimize preconditioning
> Block alternating extension
> Application to phase retrieval

Conclusion
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Majorize-Minimize Memory
Gradient algorithm
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Majorize-Minimize subspace algorithm (chouzenoux et ar., 2013]

r

* Minimize differentiable and nonconvex function F on RY.
[0 Build a quadratic majorant function Q(-, x) of F at x:
1
Q(z, xy) = F(zx) + (x — xp) VF () + 5(93 — i) Az — )

[0 Minimize it within the subspace spanned by the columns
of a matrix D, € RN*Mx:

Lpt1 = T — Dk D,IVF(:L';C)

[0 MM algorithm : rank(Dy) = N ~ Large computational cost.
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[Chouzenoux et al., 2013]

r

* Minimize differentiable and nonconvex function F on RY.
[0 Build a quadratic majorant function Q(-, x) of F at x:
1
Q(z, xy) = F(zx) + (x — xp) VF () + 5(33 — i) Az — )

[0 Minimize it within the subspace spanned by the columns
of a matrix D, € RN*Mx:

Lp+1 = T — Dk DkTVF(mk)

[0 MM algorithm : rank(Dy) = N ~ Large computational cost.

0 3MG algorithm M =2 and D, = [VF(:ck) ’ Ty — .’Ekfl].

\.
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Other examples of subspace construction

Subspace name Set of directions D,

Memory gradient [-VF(x) | di-1]

Supermemory gradient [-VF(xk)|dr-1] ... | dk—m]

Gradient subspace [-VF(xk)| = VF(xk-1)| ... | = VF(Xr—m)]

Nemirovski subspace [—VF(mk) |xr — 1 | Zf;o inF(a:k)]

Sequential subspace [—VF(mk) | @, — @1 | S8 wiVF(xr) |de-1] ... |dk_m}
Quasi-Newton subspace | [~V F (k) [dk—1] ... [0k—m |dr—1] ... [dk—m]

Forall k € N, (“’i)1§i§k S RN, d;, = Tri41 — Tk, 6k = VF(wk+1) — VF(CBk)
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3MG algorithm

e Y

Initialize o € RV
Fork=0,1,2,...

Compute VF (xy)

fk=0

[ Dk = —VF(J)())

Else

[ Dk = [—VF(:ck),ack — ack_l]
S = D,;rAka

Tpy1 = T + Dyug

\ J

~ Low computational cost since Sy is of dimension M} x M, with Mj € {1,2}.

~ Complexity reductions possible by taking into account the structures of F and Dy,.
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Link between MM-subspace and other approaches

» When F' is quadratic and F' = @, 3MG is equivalent to the
famous linear conjugate gradient.

» More generally, 3MG can be viewed as a special instance of a
nonlinear conjugate gradient method with closed forms for
stepsize/conjugacy parameters.

» MM-subspace, with Quasi-Newton direction set, is similar to a
low memory BFEGS algorithm with a specific combination of
memory directions and closed form stepsize parameter.

» MM-subspace, associated with directions spanning the whole
space RY, is equivalent to a half-quadratic approach.



Introduction 3MG Algorithm Variable metric FB algorithm Conclusion
0000 000008000000 00000 0000000000000 [e]e]

IFPEN - 2017 11/37

Let assume that:
1. F:RY — Ris a coercive, differentiable function.

2. There exists (v,7) €]0, +-oc[? such that (Vk € N)
vId X Ay < 7Id,

Then, the following hold:

e |[VF(xy)|| — 0and F(xx) \, F(x) where Z is a critical
point of F.

e If F'is convex, any sequential cluster point of (xzy)rey is @
minimizer of F.

e If F'is strongly convex, then (x;)rcn converges to the
unique (global) minimizer z of F

e If F" satisfies the Kurdyka-tojasiewicz inequality, then the
sequence (xx),cy CcOnverges to a critical point of F.
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Challenges:

» Parallel acquisition and compressive sensing
» Complex-valued signals

Results:

Original 3MG - 3MG -
SNR = 20.05 dB SNR = 20.27 dB
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Application to parallel MRI [Fiorescu et al. - 2014]

Challenges:

» Parallel acquisition and compressive sensing
» Complex-valued signals

Results:

Original 3MG - convex 3MG - nonconvex
(zoom) SNR = 20.05 dB SNR = 20.27 dB
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Application to parallel MRI
Challenges:

» Parallel acquisition and compressive sensing
» Complex-valued signals
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Convergence speed of 3MG, compared with
several proximal-based algorithms
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3MG algorithm outperforms state-of-the arts optimization
algorithms in many image processing applications.

Problem: Computational issues with very large-size problems.

High computational time; High storage cost.

Large value of NV Large value of M

v y
Block parallel .
Online approach
approach
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[Cadoni et al., 2016]

How to make 3MG algorithm for

0 Choose a Sk C{l,...,J}.

[J Update the selected blocks using a 3MG step performed
thanks to a MM metric.

Iteration k

> Application to 3D image
deblurring with space-variant
{ PSF (CNRS OPTIMISM

. project).

3 ' » SPMD implementation on
' Matlab Parallel Toolbox.

iiii......| » Greatpotential for
Core number C para”e“Z&tiOn .
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STOCHASTIC PROBLEM

minimize (F(x) + m(@)

xRN
The second-order statistics of (h;,y;);>1 are estimated
in an manner.

NUMEROUS APPLICATIONS:
* supervised classification x linear prediction/interpolation

x inverse problems « echo cancellation
« system identification « channel equalization
How to find a and optimization algorithm

with theoretical ?
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[Chouzenoux and Pesquet, 2017]

[J Build an estimate of the objective function:
1 J
(Ve € RY) Fj(z) = %5 > llyx —hiz|® + ¥(x)
k=1
1 Construct a quadratic majorant for Fj.

[J Minimize in a memory gradient subspace.
[0 Perform recursive updates of the second-order statistics.

) CONVERGENCE GUARANTEES on the sequence (x;) ;-

[J REDUCED COMPLEXITY thanks to recursive update scheme.

[0 CONVERGENCE RATE ANALYSIS in stochastic and batch case
([Chouzenoux and Pesquet, 201 6]).
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Application to 2D filter identification chouzenoux et al. - 2014]

OBSERVATION MODEL
( y=S@h+w

> h e RE large size original image (L = 40962),
» Z ¢ RY unknown two-dimensional blur kernel (N = 212),

» S(x) Hankel-block Hankel matrix such that
S(z)h = Hrx,

> w ¢ R” realization of white A/(0,0.03%) noise
(BSNR = 25.7 dB)

> y € R” blurred and noisy image.
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Application to 2D filter identification [chouzenoux et al. - 2014]

OBSERVATION MODEL
( y=S@h+w

> h e RE large size original image (L = 40962),
» Z ¢ RY unknown two-dimensional blur kernel (N = 212),

» S(x) Hankel-block Hankel matrix such that
S(z)h = Hrx,

> w ¢ R” realization of white A/(0,0.03%) noise
(BSNR = 25.7 dB)

> y € R” blurred and noisy image.

= Minimization of a penalized MSE criterion: y, € R? and h{ € R®*": Q
lines of y and H, ¥ = 1, and ¥ isotropic penalization on the gradient of x
(~ smoothed version of total variation prior).
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Original blur kernel 21 x 21. Estimated blur kernel, relative error 0.064.

» The regularization parameters are optimized manually.
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Application to 2D filter identification

——s3MG
10 <= ="8GD [Robbins et al., 1951]

- - = RDA [Xiao, 2010]
SAGA [Defazio et al., 2014]

Relative error

0 500 1000 1500 2000 2500 3000 3500
Time (s.)

Comparison of stochastic 3MG algorithm, SGD algorithm with decreasing
stepsize o ;~1/2, and SAGA/RDA algorithms with constant stepsizes.

» The stepsize values in SGD/SAGA/RDA methods are optimized manually .
» The S3MG algorithm leads to a faster convergence .
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Application to 2D filter identification

—Q=8x8
102 —Q=16x16
—Q=32x32
—— Q=164x64
—Q=128x128
— Q=256x256
——Q=512x512
——Q=1024x1024
— Q =2048x2048

o_.

Relative error

o
=)

L

0 500 1000 1500 2000 2500 3000 3500
Time (s.)

Effect of the minibatch size @ on the convergence speed of S3MG.

» The best trade-off is obtained for Q = 256 x 256.



Introduction 3MG Algorithm Variable metric FB algorithm Conclusion
0000 000000000000000e0 0000000000000 oo

IFPEN - 2017 21/37

Application to 2D filter identification

—s3MG
2| |—samaD
10
S2M SMG (M, =4)
—52M SMG (M, =7)
5 ~S2M SMG (M, =12)
5 10
[0}
2
©
&
10°
107 é

0 500 1000 1500 2000 2500 3000 3500
Time (s.)

Effect of the choice of the subspace on the convergence speed.

» The best trade-off is obtained for memory gradient subspace.
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Application to sparse adaptive filtering

Iog‘o(error)

RANDOM INPUT SIGNAL

(hj)j>1 —]

UNKNOWN FILTER
xr

(¥j)j=1

—21\
-2.51 ‘
_3f

—— [Chouzenouxetal, 2014] |
[Kopsinis et al., 2011] ||
—— [Chen et al, 2010]
[Meng etal., 2011]
[Werner et al., 2007]

1P

I»

5 L L L L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

7

(W;)j=1
x: sparse linear filter with abrupt
change at j = 2500.

S3MG algorithm with forgetting
factor and smoothed /, penalty.

Minimal estimation error, and
good tracking properties.
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Variable metric forward-backward
algorithm
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Variable metric FB algorithm chouzenoux et at, 2014]

( )

= Minimize F = f; + fo with f; Lipschitz-differentiable and fo non smooth .
= Forward-backward: on f; and on fo:

(Vk’ S N) Lrt1 = proxakfz (:Bk — Gkal(:Bk)) .

O slow convergence in practice.




Introduction 3MG Algorithm Variable metric FB algorithm Conclusion
0000 0000000000000 0000 O®00000000000 [e]e]

IFPEN - 2017 24/37

[Chouzenoux et al., 2014]

( )

= Minimize F = f; + fo with f; Lipschitz-differentiable and fo non smooth .

= Forward-backward: on f; and on fo:
O Use to propose an efficient strategy:

(Vk S N) Tpi1 = prOXG;IAs o (.’Bk — HkA/ XVfl(mk)) .

[ CONVERGENCE of the sequence (xy),y o a critical point of F°
under KL assumption.

[J ROBUSTNESS TO ERRORS in the computation of the proximity
operator within the metric.

[0 EFFICIENT CONSTRUCTION of the preconditioning matrices
thanks to the MM framework.
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The vector of unknowns x is partitioned into block subsets.
At each iteration, one or several blocks are updated.

PRACTICAL ADVANTAGES:
[0 Control of for large scale image processing (eg, 3D, video).
O of alternating scheme suitable to blind/unmixing problems.

[J A first step towards and implementation.

How to find and schemes for
nonconvex and/or non differentiable optimization problems ?
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[Chouzenoux et al., 2016]

[ Minimize F = f1 + fo with f; smooth and f> non differentiable.

[ Choose a block index j; € {1,...,J} according to a
rule.

[J Perform a gradient step on the restriction of f; to block jx, using a

[0 Perform a proximal step on the restriction of f; to block ji, within
the

1 CONVERGENCE GUARANTEES on the sequence (xy), . under
KL assumption.

[1 EXPERIMENTAL VALIDATION in numerous applications of

image/signal processing (eg, phase retrieval, spectral unmixing,
blind deconvolution).
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r

We observe measurements y < [0, +-c0)® through

y = |Hv| +w.
e v cRM original unknown image
e HcCHM degradation operator

e w e [0,+00)° - additive noise.

Objective: Produce an estimate v of the target image @ from the observed

measurements y.
Application fields:
» Crystallography [Harrison et al. - 1993]
» Phase contrast tomography [Bauschke et al. - 2005]
» Coherent diffraction imaging [Shechtman, et al. - 2013]
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r

We observe measurements y € [0, +00)° through

y = |HD| + w.
o v cRM original unknown image
e Hc(CHM degradation operator

e wc [0, +00)° ~ additive noise.

\.

What happens if v is complex?

v=vr tivz
y=|(Hr+iHz)(vr+iv1)|+w

R

y=|[Hg +iHz | —Hz +iHg) [ ’%I }|—|—w

Complex N——
Real
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State of the art

> Alternating projections methods:
[Gerchberg et al. - 1972] [Fienup - 1972] [Bauschke et al. - 2002]

» Convex relaxations based on SDP programming:

PhaselLift algorithm [Candés et al. - 2013]
PhaseCut algorithm [Waldspurger et al. - 2013]

» Regularized approaches assuming that v is sparse in a
given dictionary:

SPD programming [Fogel et al. - 2013]
Alternating projections [Mukherjee et al. - 2012]
Greedy algorithm [Shechtman et al. - 2013]
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Proposed method
Let W € RM*N A1 < N, be a given
frame synthesis operator such that v = Wz.

The frame coefficient vector z € R" is estimated by minimizing
f1 + f2 where

» /1 is a smooth nonconvex data fidelity term,

S
(Vz eRY) fi(m) =) oW(HW]), where
s=1

(ueC) @)= (I + ()2) — = (uf +5%)"%,

with 6 € (0, +00).
» f5 is a block separable regularization function.
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[ At iteration k € N, let Jx be the chosen index in {1,...,J} and let x|
be the k-th iterate generated by the BC-VMFB algorithm.

The is fulfilled by the diagonal matrix
A;, = Diag ((2115)

where 15 is the unit vector on R and the elements of ©;, € R¥*Nix
are given by

Q(S,n) _ ‘[HW]%M)

+| WS

N ! N !
S |iEw S [Ewie|
n/=1 n/=1

\. J
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» Complex valued original image:
v € CM with M = 128 x 128

Real part g € RM Imaginary part 57 € RM
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» Observation matrix:
H ¢ C%*M js the composition of

e a projection matrix modeling S = 23400 Radon projections
from

o 128 parallel acquisition lines,
o 180 angles regularly distributed on [0, 7),

e a complex-valued blur operator.

Reminiscent of the phase contrast tomography model from
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» Observation matrix:
H ¢ C%*M js the composition of
e a projection matrix modeling S = 23400 Radon projections
from

o 128 parallel acquisition lines,
o 180 angles regularly distributed on [0, 7),

e a complex-valued blur operator.

Reminiscent of the phase contrast tomography model from

» Synthesis frame operator:

W € CM*N N =8M, is such that x = (z(™); <, < is the
concatenation of an overcomplete Haar decomposition of vz
(resp. vz) for one resolution level.
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Simulation results

» Regularization function:
f2 isthe sum, forp € {1,...,4M}, of

Opllu® —wplly” ifp ¢ E,

PPy =<0 if pe Eandu® =0,
+00 otherwise,
where
e u® ¢ R? s the p-th pair of frame coefficients
corresponding to the and parts of
the image,
e [E is the object background,
e kp=1,9, =0 € (0,+00) for the
subbands, and x, = 2, ¥, = V" € (0, +o0) for
the subbands,

e w, € R? controls the mean value of u(®.
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Simulation results

» Definition of blocks:

For every j, () € R3<Q gathers 8 blocks from the approximation
and detail subbands of both and parts.

Indices of a block =¥ for Q = 32.

At each iteration k € N, j; is randomly chosen so that each
block is updated at least once per J iterations.
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e Original image v
e Reconstructed image vz with : SNR = 21.27 dB.

e Reconstructed image vz with the ¢y-regularized Fienup algorithm
from [Mukherjee et al. - 2012]: SNR = 14.45 dB.
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Simulation results

e Original image vz

e Reconstructed image vz with : SNR = 21.27 dB.

e Reconstructed image vz with the ¢y-regularized Fienup algorithm
from [Mukherjee et al. - 2012]: SNR = 14.45 dB.
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Conclusion

MM algorithms allow to solve efficiently optimization problems of
image/signal processing.

Several extensions are proposed for very large scale problems :
~ Block Parallel 3BMG
~ Stochastic SMG

~» Block-coordinate VMFB
More to come, with ANR MajlC project.

THANK YOU !



Introduction 3MG Algorithm Variable metric FB algorithm Conclusion
0000 0000000000000 0000 0000000000000 oe

IFPEN - 2017 37/37

Some references

S. Cadoni, E. Chouzenoux, J.-C. Pesquet, C. Chaux.
A Block Parallel Majorize-Minimize Memory Gradient Algorithm
in Proc. IEEE Conf. Image Process. (ICIP 2016), pp. 3194-3198, Phoenix, AZ, 25-28 Sep. 2016. Best paper
award finalist.

E. Chouzenoux, J. Idier, S. Moussaoui

A Majorize-Minimize strategy for subspace optimization applied to image restoration
in IEEE Trans. Image Process., vol.20, no.18, pp. 1517-1528, 2011.

E. Chouzenoux, A. Jezierska, J.-C. Pesquet, H. Talbot

A Majorize-Minimize Subspace Approach for £5-¢ Image Regularization
in SIAM J. Imag. Sci., vol.6, no.1, pp. 563-591,2013.

E. Chouzenoux, J.-C. Pesquet and A. Repetti

A Block Coordinate Variable Metric Forward-Backward Algorithm
in J. Global Optim., vol. 66, no. 3, pp. 457485, 2016

E. Chouzenoux and J.-C. Pesquet

Convergence Rate Analysis of the Majorize-Minimize Subspace Algorithm
in [EEE Sig. Process. Lett., vol. 23, no. 9, pp. 1284-1288, Sep. 2016

E. Chouzenoux and J.-C. Pesquet

A Stochastic Majorize-Minimize Subspace Algorithm for Online Penalized Least Squares Estimation
in IEEE Trans. Sig. Proc., vol. 65, no. 18, pp. 4770-4783, 2017.



	Introduction
	1/38

	3MG Algorithm
	5/38

	Variable metric forward-backward algorithm
	22/38

	Conclusion
	35/38


