Introduction 00000000 Introduction to optimization

Majoration-Minimization approaches

1/32

Optimization for data processing at a large scale

Optimization for data processing at a large scale

Sparsity4PSL Summer School

Emilie Chouzenoux Center for Visual Computing CentraleSupélec, INRIA Saclay

24 June 2019

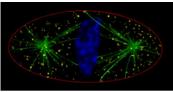
Introduction •0000000 Introduction to optimization

Majoration-Minimization approaches

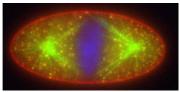
Optimization for data processing at a large scale

Inverse problems and large scale optimization

[Microscopy, ISBI Challenge 2013, F. Soulez]



Original image



Degraded image

Introduction •0000000 Introduction to optimization

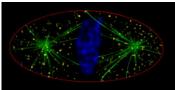
Majoration-Minimization approaches

2/32

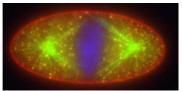
Optimization for data processing at a large scale

Inverse problems and large scale optimization

[Microscopy, ISBI Challenge 2013, F. Soulez]



Original image $\overline{x} \in \mathbb{R}^N$



Degraded image
$$z = \mathcal{D}(H\overline{x}) \in \mathbb{R}^M$$

H ∈ ℝ^{M×N}: matrix associated with the degradation operator.
 D: ℝ^M → ℝ^M: noise degradation.

Inverse problem: Find a good estimate of \overline{x} from the observations z, using some a priori knowledge on \overline{x} and on the noise characteristics.

3/32

Inverse problems and large scale optimization

Inverse problem:

Find an estimate \hat{x} close to \overline{x} from the observations \hat{x}

$$z = \mathcal{D}(H\overline{x})$$

• Inverse filtering (if M = N and H is invertible)

$$\widehat{x} = H^{-1}z$$

= $H^{-1}(H\overline{x} + b) \leftarrow \text{if } b \in \mathbb{R}^M \text{ is an additive noise}$
= $\overline{x} + H^{-1}b$

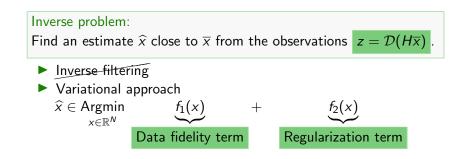
 \rightarrow Closed form expression, but amplification of the noise if *H* is ill-conditioned (*ill-posed problem*).

Majoration-Minimization approaches

Optimization for data processing at a large scale

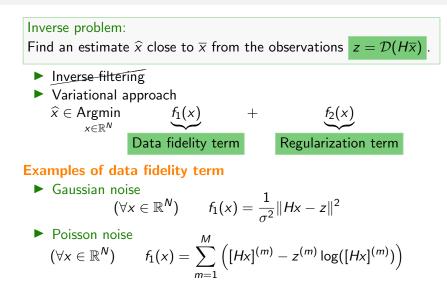
4/32

Inverse problems and large scale optimization



4/32

Inverse problems and large scale optimization



Majoration-Minimization approaches

Optimization for data processing at a large scale

5/32

Examples of regularization terms (1)

Admissibility constraints

Find
$$x \in C = \bigcap_{m=1}^{M} C_m$$

where $(\forall m \in \{1, \ldots, M\})$ $C_m \subset \mathbb{R}^N$.

Majoration-Minimization approaches

Optimization for data processing at a large scale

5/32

Examples of regularization terms (1)

Admissibility constraints

Find
$$x \in C = \bigcap_{m=1}^{M} C_m$$

where $(\forall m \in \{1, \ldots, M\})$ $C_m \subset \mathbb{R}^N$.

Variational formulation

$$(\forall x \in \mathbb{R}^N)$$
 $f_2(x) = \sum_{m=1}^M \iota_{C_m}(x)$

. .

where, for all $m \in \{1, ..., M\}$, ι_{C_m} is the indicator function of C_m :

$$(\forall x \in \mathbb{R}^N)$$
 $\iota_{C_m}(x) = \begin{cases} 0 & \text{if } x \in C_m \\ +\infty & \text{otherwise.} \end{cases}$

Majoration-Minimization approaches

Optimization for data processing at a large scale

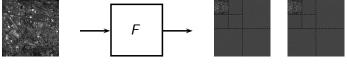
6/32

Examples of regularization terms (2)

• ℓ_1 norm (analysis approach)

$$(\forall x \in \mathbb{R}^N)$$
 $f_2(x) = \sum_{k=1}^K \left| [Fx]^{(k)} \right| = \|Fx\|_1$

 $F \in \mathbb{R}^{K \times N}$: Frame decomposition operator ($K \ge N$)



signal x

frame coefficients

Majoration-Minimization approaches

Optimization for data processing at a large scale

6/32

Examples of regularization terms (2)

• ℓ_1 norm (analysis approach)

$$(\forall x \in \mathbb{R}^N)$$
 $f_2(x) = \sum_{k=1}^K \left| [F_x]^{(k)} \right| = \|F_x\|_1$

Total variation

$$(\forall x = (x^{(i_1, i_2)})_{1 \le i_1 \le N_1, 1 \le i_2 \le N_2} \in \mathbb{R}^{N_1 \times N_2})$$

 $f_2(x) = \operatorname{tv}(x) = \sum_{i_1=1}^{N_1} \sum_{i_2=1}^{N_2} \|\nabla x^{(i_1, i_2)}\|_2$

 $\nabla x^{(i_1,i_2)}$: discrete gradient at pixel (i_1,i_2) .

Inverse problems and large scale optimization

Inverse problem:

Find an estimate \hat{x} close to \overline{x} from the observations z

$$z=\mathcal{D}(H\overline{x})$$

Inverse filtering

Variational approach (more general context)

$$\widehat{x} \in \operatorname*{Argmin}_{x \in \mathbb{R}^N} \sum_{i=1}^m f_i(x)$$

where f_i may denote a data fidelity term / a (hybrid) regularization term / constraint.

Inverse problems and large scale optimization

Inverse problem:

Find an estimate \hat{x} close to \overline{x} from the observations z

$$z=\mathcal{D}(H\overline{x})$$

Inverse filtering

Variational approach (more general context)

$$\widehat{x} \in \operatorname*{Argmin}_{x \in \mathbb{R}^N} \sum_{i=1}^m f_i(x)$$

where f_i may denote a data fidelity term / a (hybrid) regularization term / constraint.

 \rightarrow Often no closed form expression or solution expensive to compute (especially in large scale context).

▶ Need for an efficient iterative minimization strategy !

Optimization for data processing at a large scale

Main challenges

- How to exploit the mathematical properties of each term involved in f? How to handle constraints efficiently ? How to deal with non differentiable terms in f ? Which convergence result can be expected if f is non convex?
- How to reduce the memory requirements of an optimization algorithm? How to avoid large-size matrix inversion?
- What are the benefits of block alternating strategies? What are their convergence guaranties?
- How to accelerate the convergence speed of a first-order (gradient-like) optimization method?

Outline

1. Introduction to optimization

- Notation/definitions
- Existence and unicity of minimizers
- Differential/subdifferential
- Optimality conditions

2. Majoration-Minimization approaches

- Majorization-Minimization principle
- Majorization techniques
- MM quadratic methods
- Forward-backward algorithm
- Block-coordinate MM algorithms

Introduction	Introduction to optimization	Majoration-Minimization approaches
0000000	●000000000	0000000000
Optimization for data p	rocessing at a large scale	10/32

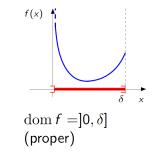
11/32

Domain of a function

- The domain of f is dom $f = \{x \in \mathbb{R}^N | f(x) < +\infty\}.$
- The function f is proper if dom $f \neq \emptyset$.

Domains of the functions?





Introduction	Introduction to optimization	Majoration-Minimization approaches
0000000	0000000000	000000000
Optimization for data processing at	a large scale	12/32

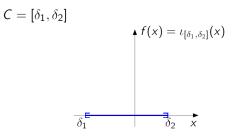
Indicator function

Let $C \subset \mathbb{R}^N$. The indicator function of C is

$$(\forall x \in \mathbb{R}^N)$$
 $\iota_C(x) = \begin{cases} 0 & \text{if } x \in C \\ +\infty & \text{otherwise.} \end{cases}$

.

Example:

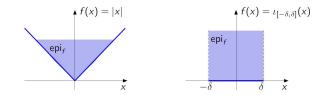


Introduction	Introduction to optimization	Majoration-Minimization approaches
0000000	0000000000	0000000000
Optimization for data pro	cessing at a large scale	13/32

Epigraph

Let
$$f : \mathbb{R}^N \to \mathbb{R} \cup +\infty$$
. The epigraph of f is
epi $f = \{(x, \zeta) \in \text{dom } f \times \mathbb{R} \mid f(x) \le \zeta\}$

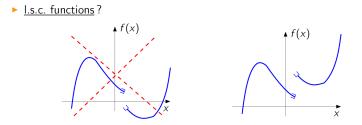
Examples:



14/32

Lower semi-continuous function

Let $f : \mathbb{R}^N \to \mathbb{R} \cup +\infty$. f is a lower semi-continuous function on \mathbb{R}^N if and only if epi f is closed Examples:



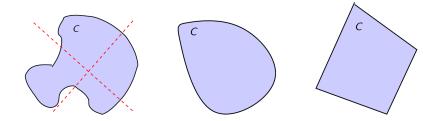
Introduction	Introduction to optimization	Majoration-Minimization approaches
0000000	0000000000	0000000000
Optimization for data proc	essing at a large scale	15/32

Convex set

 $C \subset \mathbb{R}^N$ is a convex set if

$$(\forall (x, y) \in C^2)(\forall \alpha \in]0, 1[) \qquad \alpha x + (1 - \alpha)y \in C$$

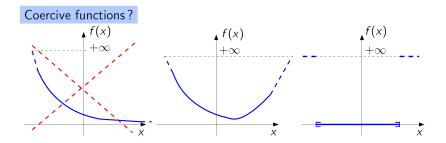
Convex sets?



Introduction	Introduction to optimization	Majoration-Minimization approaches
0000000	0000000000	000000000
Optimization for data pr	rocessing at a large scale	16/32

Coercive function

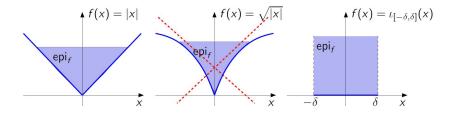
Let
$$f : \mathbb{R}^N \to \mathbb{R} \cup +\infty$$
.
f is coercive if $\lim_{\|x\| \to +\infty} f(x) = +\infty$.



Convex function

$$f: \mathbb{R}^N \to \mathbb{R} \cup +\infty \text{ is a convex function if}$$
$$(\forall (x, y) \in (\mathbb{R}^N)^2)(\forall \alpha \in]0, 1[)$$
$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

• f is convex \Leftrightarrow its epigraph is convex. Examples:

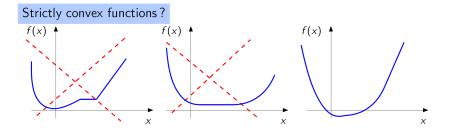


Optimization for data processing at a large scale

Strictly convex function

 $f: \mathbb{R}^N \to \mathbb{R} \cup +\infty$ is strictly convex if

$$egin{aligned} (orall x \in \operatorname{\mathsf{dom}} f)(orall y \in \operatorname{\mathsf{dom}} f)(orall lpha \in]0,1[) \ & x
eq y \quad \Rightarrow \quad f(lpha x + (1-lpha)y) < lpha f(x) + (1-lpha)f(y). \end{aligned}$$



Existence/unicity of minimizers

Theorem [Market Content in the second second

Let $f : \mathbb{R}^N \to \mathbb{R} \cup +\infty$ be a proper l.s.c. coercive function.

Then, the set of minimizers of f is a nonempty compact set.

Convex case

• Let $f: \mathbb{R}^N \to \mathbb{R} \cup +\infty$ be a proper convex function such that $\mu = \inf f > -\infty$. Then, every local minimizer of f is a global minimizer. Moreover, if f is strictly convex, then there exists at most one minimizer.

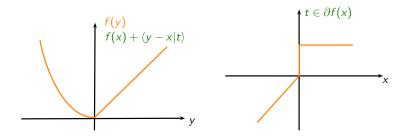
• Let *C* a closed convex subset of \mathbb{R}^N . Let $f: \mathbb{R}^N \to \mathbb{R} \cup +\infty$ proper, convex, lsc such that dom $f \cap C \neq \emptyset$. If *f* is coercive or *C* is bounded, then there exists $\hat{x} \in C$ such that $f(\hat{x}) = \inf_{x \in C} f(x)$. If, moreover, *f* is strictly convex, this minimizer \hat{x} is unique.

Introduction	
00000000	

Optimization for data processing at a large scale

Subdifferential

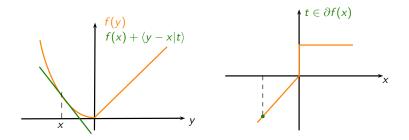
$$\begin{aligned} \partial f : \mathbb{R}^N &\to 2^{\mathbb{R}^N} \\ x &\to \{ u \in \mathbb{R}^N \, | \, (\forall y \in \mathbb{R}^N) \, \langle y - x | u \rangle + f(x) \leq f(y) \} \end{aligned}$$



Optimization for data processing at a large scale

Subdifferential

$$\begin{aligned} \partial f : \mathbb{R}^N &\to 2^{\mathbb{R}^N} \\ x &\to \{ u \in \mathbb{R}^N \, | \, (\forall y \in \mathbb{R}^N) \, \langle y - x | u \rangle + f(x) \leq f(y) \} \end{aligned}$$

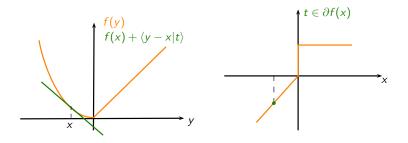


Introduction	
00000000	

Optimization for data processing at a large scale

Subdifferential

$$\begin{aligned} \partial f : \mathbb{R}^N &\to 2^{\mathbb{R}^N} \\ x &\to \{ u \in \mathbb{R}^N \, | \, (\forall y \in \mathbb{R}^N) \, \langle y - x | u \rangle + f(x) \leq f(y) \} \end{aligned}$$

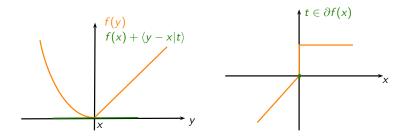


Introduction	
00000000	

Optimization for data processing at a large scale

Subdifferential

$$\begin{aligned} \partial f : \mathbb{R}^N &\to 2^{\mathbb{R}^N} \\ x &\to \{ u \in \mathbb{R}^N \, | \, (\forall y \in \mathbb{R}^N) \, \langle y - x | u \rangle + f(x) \leq f(y) \} \end{aligned}$$

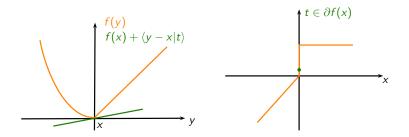


Introduction	
00000000	

Optimization for data processing at a large scale

Subdifferential

$$\begin{aligned} \partial f : \mathbb{R}^N &\to 2^{\mathbb{R}^N} \\ x &\to \{ u \in \mathbb{R}^N \, | \, (\forall y \in \mathbb{R}^N) \, \langle y - x | u \rangle + f(x) \leq f(y) \} \end{aligned}$$

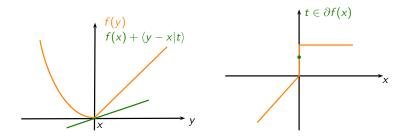


Introduction	
00000000	

Optimization for data processing at a large scale

Subdifferential

$$\begin{aligned} \partial f : \mathbb{R}^N &\to 2^{\mathbb{R}^N} \\ x &\to \{ u \in \mathbb{R}^N \, | \, (\forall y \in \mathbb{R}^N) \, \langle y - x | u \rangle + f(x) \leq f(y) \} \end{aligned}$$

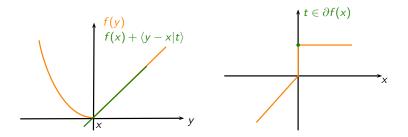


Introduction	
00000000	

Optimization for data processing at a large scale

Subdifferential

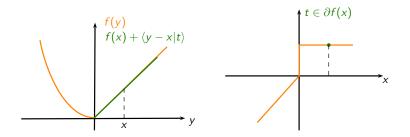
$$\begin{aligned} \partial f : \mathbb{R}^N &\to 2^{\mathbb{R}^N} \\ x &\to \{ u \in \mathbb{R}^N \, | \, (\forall y \in \mathbb{R}^N) \, \langle y - x | u \rangle + f(x) \leq f(y) \} \end{aligned}$$



Optimization for data processing at a large scale

Subdifferential

$$\begin{aligned} \partial f : \mathbb{R}^N &\to 2^{\mathbb{R}^N} \\ x &\to \{ u \in \mathbb{R}^N \, | \, (\forall y \in \mathbb{R}^N) \, \langle y - x | u \rangle + f(x) \leq f(y) \} \end{aligned}$$



Optimality conditions

Fermat's rule :
$$0 \in \partial f(x) \Leftrightarrow x \in \operatorname{Argmin} f$$

Differentiable case

Let *C* be a nonempty convex subset of \mathbb{R}^N . Let $f: \mathbb{R}^N \to \mathbb{R} \cup +\infty$ be Gâteaux differentiable at $\hat{x} \in C$. If \hat{x} is a local minimizer of *f* over *C*, then

$$(\forall y \in C) \quad \nabla f(\widehat{x})^{\top}(y - \widehat{x}) \geq 0.$$

If $\hat{x} \in int(C)$, then the condition reduces to

$$\nabla f(\widehat{x}) = 0.$$

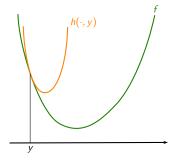
Introduction	Introduction to optimization	Majoration-Minimization approaches
0000000	0000000000	●000000000
Optimization for data processing at a large scale		22/32

Majoration-Minimization approaches

Introduction 00000000	Introduction to optimization	Majoration-Minimization approaches ○●○○○○○○○○
Optimization for data processing at a large scale		23/32

Majorant function

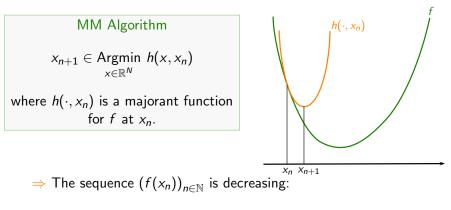
Let $f : \mathbb{R}^N \to \mathbb{R}$. Let $y \in \mathbb{R}^N$. $h(\cdot, y) : \mathbb{R}^N \to \mathbb{R}$ is a majorant function of f at y if: $\begin{cases} (\forall x \in \mathbb{R}^N) \quad f(x) \le h(x, y), \\ f(y) = h(y, y). \end{cases}$



Optimization for data processing at a large scale

Majorization-Minimization algorithm

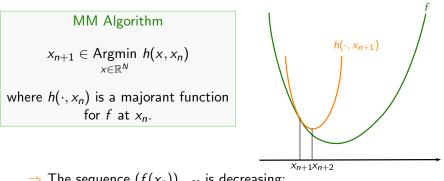
Problem: Minimization of function $f : \mathbb{R}^N \to \mathbb{R}$.



$$(\forall n \in \mathbb{N}) \quad f(x_{n+1}) \underset{\mathbb{M}}{\leq} h(x_{n+1}, x_n) \underset{\mathbb{M}}{\leq} h(x_n, x_n) = f(x_n)$$

Majorization-Minimization algorithm

Problem: Minimization of function $f : \mathbb{R}^N \to \mathbb{R}$.



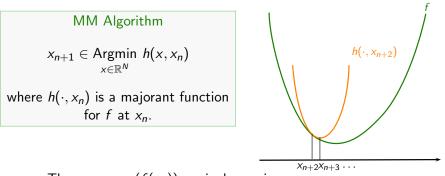
 \Rightarrow The sequence $(f(x_n))_{n \in \mathbb{N}}$ is decreasing:

$$(\forall n \in \mathbb{N}) \quad f(x_{n+1}) \leq h(x_{n+1}, x_n) \leq h(x_n, x_n) = f(x_n)$$

24/32

Majorization-Minimization algorithm

Problem: Minimization of function $f : \mathbb{R}^N \to \mathbb{R}$.



 \Rightarrow The sequence $(f(x_n))_{n\in\mathbb{N}}$ is decreasing:

$$(\forall n \in \mathbb{N}) \quad f(x_{n+1}) \leq h(x_{n+1}, x_n) \leq h(x_n, x_n) = f(x_n)$$

25/32

Majorization techniques

- Subdifferential inequality
- Descent lemma
- Proximity operator
- Even smooth functions
- Jensen's inequality

Majoration-Minimization approaches

Optimization for data processing at a large scale

26/32

Majorization techniques

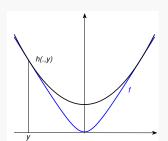
Even differentiable function

Let f be defined as

$$(\forall x \in \mathbb{R})$$
 $f(x) = \psi(|x|)$

where

(i)
$$\psi$$
 is differentiable on $]0, +\infty[$
(ii) $\psi(\sqrt{\cdot})$ is concave on $]0, +\infty[$,
(iii) $(\forall x \in [0, +\infty[) \quad \dot{\psi}(x) \ge 0,$
(iv) $\lim_{\substack{x \to 0 \\ x > 0}} \left(\omega(x) := \frac{\dot{\psi}(x)}{x} \right) \in \mathbb{R}.$



Then, for all $y \in \mathbb{R}$, $(\forall x \in \mathbb{R}) \quad f(x) \leq f(y) + \dot{f}(y)(x-y) + \frac{1}{2}\omega(|y|)(x-y)^2.$

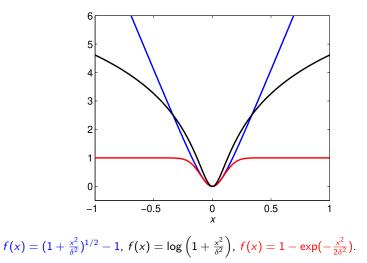
27/32

Examples of functions f

	f(x)	$\omega(x)$	
Convex	$ x - \delta \log(x /\delta + 1)$	$(x +\delta)^{-1}$	
	$\int x^2 \qquad \text{if } x < \delta$	$\int 2 \qquad \text{if } x < \delta$	
	$iggl\{ 2\delta x - \delta^2 ext{otherwise} \ iggr\}$	$2\delta/ x $ otherwise	
	$\log(\cosh(x))$	tanh(x)/x	
	$(1+x^2/\delta^2)^{\kappa/2}-1$	$(\kappa/\delta^2)(1+x^2/\delta^2)^{\kappa/2-1}$	
Nonconvex	$1-\exp(-x^2/(2\delta^2))$	$(1/\delta^2)\exp(-x^2/(2\delta^2))$	
	$\frac{x^2}{(2\delta^2+x^2)}$	$4\delta^2/(2\delta^2+x^2)^2$	
	$\int 1 - (1 - x^2/(6\delta^2))^3$ if $ x \le \sqrt{6}\delta$	$\int (1/\delta^2)(1-x^2/(6\delta^2))^2$ if $ x \le \sqrt{6}\delta$	
	1 otherwise	0 otherwise	
	$\tanh(x^2/(2\delta^2))$	$(1/\delta^2)(\cosh(x^2/(2\delta^2)))^{-2}$	
	$\log(1+x^2/\delta^2)$	$2/(\delta^2 + x^2)$	
$(\lambda,\delta)\in]0,+\infty[^2,\ \kappa\in [1,2]$			

28/32

Examples of functions f



Optimization for data processing at a large scale

Majorization techniques

Consequences of Jensen's inequality

Let $\psi:\mathbb{R}^{\textit{N}}\rightarrow\mathbb{R}$ be a convex function.

•
$$(\forall (x,y,c) \in (]0,+\infty[^N)^3) \quad \psi\left(c^\top x\right) \leq \sum_{i=1}^N \frac{c^{(i)}y^{(i)}}{c^\top y} \psi\left(\frac{c^\top y}{y^{(i)}}x^{(i)}\right).$$

• Let $\omega \in [0, +\infty[^N \text{ such that } \sum_{i=1}^N \omega^{(i)} = 1 \text{ and } \omega^{(i)} = 0 \text{ iff } c^{(i)} = 0.$

$$\begin{aligned} (\forall (x, y, c) \in (] - \infty, +\infty[^N)^3) \\ \psi\left(c^\top x\right) &\leq \sum_{i=1}^N \omega^{(i)}\psi\left(\frac{c^{(i)}}{\omega^{(i)}}(x^{(i)} - y^{(i)}) + c^\top y\right). \end{aligned}$$

Introduction	Introduction to optimization	Majoration-Minimization approaches
0000000	0000000000	00000000000
Optimization for data proc	essing at a large scale	30/32

MM algorithms

Separable MM approach

MM quadratic algorithm

- ► 3MG algorithm
- Forward-backward algorithm
- Block-alternating MM schemes

Majoration-Minimization approaches

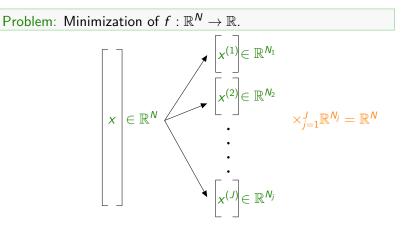
Optimization for data processing at a large scale

31/32

Acceleration via block-alternation

Problem: Minimization of $f : \mathbb{R}^N \to \mathbb{R}$.

Acceleration via block-alternation

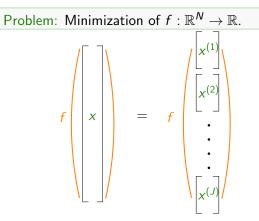


Majoration-Minimization approaches

Optimization for data processing at a large scale

31/32

Acceleration via block-alternation



Majoration-Minimization approaches

Optimization for data processing at a large scale

Acceleration via block-alternation

Problem: Minimization of $f : \mathbb{R}^N \to \mathbb{R}$. $x^{(1)}$ 1_X(2) х

⇒ Block-coordinate strategy: Instead of updating the whole vector x at iteration $n \in \mathbb{N}$, restrict the update to a block $j_n \in \{1, \ldots, J\}$.

Concluding remarks

- In large scale optimization, we search for the best possible tradeoff in terms of computational complexity and convergence rate.
- Availability of theoretical convergence results is important, to assess the reliability of an optimization scheme.
- There is rarely a single technique available for the resolution of an optimization problem.
- It is thus always recommended to test and compare different strategies, for a given application.

Not treated in this course: stochastic optimization, distributed algorithms, primal-dual strategies, etc.