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Linear binary classifier

Goal: Learn a function d : RN 7→ {−1,+1} from L training examples.

S =
{
(xℓ, yℓ) ∈ R

N × {−1,+1} | ℓ ∈ {1, . . . , L}
}
,

◮ Model form in linear classification:

dw(x) = sign
(
x⊤w

)

where w ∈ R
N is a vector of parameters for the classifier,

to be estimated from the training set.

◮ Geometric intuition: The coefficients of w specify a
hyperplane (linear separator) that separates points into −1
versus +1 class.



Introduction Proposed minimization approach Application to binary logistic regression Experimental results

GRETSI 2017 4/20

Risk minimization problem

minimize
w∈RN

f(w) +

L∑

ℓ=1

h
(
yℓ x

⊤
ℓ w

)
,

MINIMIZATION PROBLEM

◮ h ∈ Γ0(R): loss function.

Examples: quadratic, hinge, smoothed hinge, Huber, logistic
[Bartlett et al., 2006] [Parikh and Boyd, 2014][Rosasco et al., 2004].

◮ f ∈ Γ0(R
N ): sparse regularization term.

Examples: ℓ1, group-Lasso, non-convex potential
[Bradley and Mangasarian, 1998][Laporte et al., 2014][Meier et al., 2008].
* Γ0(H) is the set of convex, lower semi-continuous proper functions of the Hilbert space H.
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Risk minimization problem

minimize
w∈RN

f(w) +
L∑

ℓ=1

h
(
yℓ x

⊤
ℓ w

)
MINIMIZATION PROBLEM

Challenges:

✗ Very large size L of the training set

 Random block-alternating strategy

✗ Possibly non-smooth regularization function f

 Proximal minimization algorithm

✗ Slow convergence rate when treating h through its gradient

 Primal-dual scheme
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Proposed approach
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Proximity operator

Let f ∈ Γ0(R
N ).

(∀v ∈ R
N ) ŵ = proxf (v) ⇔ v − ŵ ∈ ∂f(ŵ).

CHARACTERIZATION OF PROXIMITY OPERATOR

The proximity operator proxf (v) of f at v ∈ R
N is the unique vector

ŵ ∈ R
N such that

f(ŵ) +
1

2
‖ŵ − v‖2 = inf

w∈RN
f(w) +

1

2
‖w − v‖.
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Proposed random block-coordinate strategy

minimize
w∈RN

f(w) +
L∑

ℓ=1

h
(
yℓ x

⊤
ℓ w

)
MINIMIZATION PROBLEM

General idea: At each iteration i ∈ N, select randomly a subset
(xℓ, yℓ)ℓ∈Li

of S with Li ⊂ {1, . . . , L}, using the Douglas-Rachford
proximal splitting scheme from [Combettes and Pesquet, 2016].
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Proposed random block-coordinate strategy

minimize
w∈RN

f(w) +
L∑

ℓ=1

h
(
yℓ x

⊤
ℓ w

)
MINIMIZATION PROBLEM

General idea: At each iteration i ∈ N, select randomly a subset
(xℓ, yℓ)ℓ∈Li

of S with Li ⊂ {1, . . . , L}, using the Douglas-Rachford
proximal splitting scheme from [Combettes and Pesquet, 2016].

Related works:
∗ Coordinate ascent method [Shalev-Shwartz and Tewari, 2011]

∗ Stochastic forward-backward strategy [Combettes and Pesquet, 2015][Rosasco

et al., 2016]

∗ Regularized dual ascent approach [Xiao, 2010]

∗ Stochastic primal-dual proximal algorithms [Chierchia et al., 2015][Pesquet

and Repetti, 2016]
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Minimization algorithm

Q =
(

Id +
∑L

ℓ=1 xℓx
⊤
ℓ

)−1

t[0] ∈ R
N ,

(
v
[0]
1 , . . . , v

[0]
L

)
∈ R

L, u[0] =
∑L

ℓ=1 yℓxℓ v
[0]
ℓ

γ ∈ ]0,+∞[ , µ ∈ ]0, 2[
For i = 0, 1, . . .

Select Li ⊂ {1, . . . , L}
w[i] = Q

(
t[i] + u[i]

)

t[i+1] = t[i] + µ
(

proxγf (2w
[i] − t[i])− w[i]

)

(∀ℓ ∈ Li) v
[i+1]
ℓ = v

[i]
ℓ + µ

(
proxγh(2yℓx

⊤
ℓ w

[i] − v
[i]
ℓ )− yℓx

⊤
ℓ w

[i]
)

(∀ℓ /∈ Li) v
[i+1]
ℓ = v

[i]
ℓ

u[i+1] = u[i] +
∑

ℓ∈Li

(
v
[i+1]
ℓ − v

[i]
ℓ

)
yℓxℓ.
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Convergence result

Assume that the following conditions hold:

∗ The set of solutions F of the problem is nonempty;

∗ t[0] is a R
N -valued random variable, and

(
v
[0]
1 , . . . , v

[0]
L

)
is an

R
L-valued random variable;

∗ The (Li)i∈N are drawn in an independent and identical manner.

Then, (w[i])i∈N converges almost surely to an element of F .
Moreover, consider F∗ the set of solutions to the associated dual prob-
lem. Then the sequence (γ−1[y1x

⊤
1 w − v1, . . . , yLx

⊤
Lw − vL])i∈N con-

verges almost surely to an element of F∗.

X The convergence result still holds when the involved
proximity operators are computed up to summable errors.
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Application to binary logistic
regression
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Binary logistic regression

Goal: Maximize the posterior probability of the weights given the train-
ing data i.e, optimize the product of the weight prior probability and the
conditional data likelihood :

maximize
w∈RN

ϕ(w)

L∏

ℓ=1

π(yℓ |xℓ, w)θℓ(xℓ|w).

➨

(∀v ∈ R) h(v) = log
(
1 + exp(−v)

)
.

BINARY LOGISTIC LOSS
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Proximity operator of the binary logistic loss

Let γ ∈ ]0,+∞[. The proximity operator of the logistic loss is

(∀v ∈ R) proxγh(v) = v +Wexp(−v)

(
γ exp (−v)

)
,

◮ Hereabove, W· is the generalized W-Lambert function
from [Mező et al., 2014], which solves transcendental equations
in the form:

(∀v̄ ∈ R)(∀v ∈ R)(∀r ∈ ]exp(−2),+∞[)

v̄ exp(v̄) + rv̄ = v ⇔ v̄ = Wr(v).

◮ This function can be efficiently evaluated through a
Newton-based method devised by Mező et al.



Introduction Proposed minimization approach Application to binary logistic regression Experimental results

GRETSI 2017 14/20

Proximity operator of the binary logistic loss

Let γ ∈ ]0,+∞[. The proximity operator of the logistic loss is

(∀v ∈ R) proxγh(v) = v +Wexp(−v)

(
γ exp (−v)

)
,

◮ Exponentiation leads to arithmetic overflow when v tends
to minus infinity.

 Study of asymptotic behaviour :

Let γ ∈ ]0,+∞[. Then,

proxγh(v) ∼v→−∞ v + γ
(
1− exp(γ + v)

)
.

◮ Similar results available for the Fenchel conjugate function
of h.



Introduction Proposed minimization approach Application to binary logistic regression Experimental results

GRETSI 2017 15/20

Experimental results
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Experimental results

◮ Two standard data sets: MNIST (N = 717, L = 60000) and
W8A (N = 300, L = 49749);

◮ h= binary logistic loss, f= ℓ1 norm (with weight λ = 1);
◮ Mini-batches of size 1000 randomly selected using a

uniform distribution;
◮ Initial vector w[0] randomly drawn from a normal distribution

with zero mean and unit variance;

Algorithm Parameters
Stochastic Forward Backward
(SFB) [Rosasco et al., 2016]

γ = 10
−4

Regularized Dual Ascent (RDA)
[Xiao, 2010]

γ = 10
−4

Block Coordinate primal-dual algo-
rithm (BCPD) [Chierchia et al., 2015]

σ = τ
−1

∥

∥

∑L

ℓ=1 xℓx
⊤

ℓ

∥

∥

−1

Proposed algorithm γ = 10
−4, µ = 1.8
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Experimental results

Evolution of the cost function along iterations for dataset MNIST
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Experimental results

Evolution of the cost function along iterations for dataset W8A
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Conclusion

X Proposition of a random block-coordinate
Douglas-Rachford algorithm for sparse linear regression at
a large scale;

X Convergence guaranteed under mild assumptions on the
algorithmic parameters;

X Derivation of a closed-form expression for the proximity
operator of the logistic loss;

X Training performance compares favorably to
state-of-the-art stochastic methods;

X Coming soon : An improved version of the algorithm.
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