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Linear binary classifier

Goal: Learn afunction d : RN — {—1,+1} from L training examples.

S={(ze,y0) e RY x {-1,4+1} | L€ {1,...,L}},

» Model form in linear classification:
dy(z) = Sign(xTw)

where w € RY is a vector of parameters for the classifier,
to be estimated from the training set.

» Geometric intuition:  The coefficients of w specify a
hyperplane (linear separator) that separates points into —1
versus +1 class.
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Risk minimization problem

MINIMIZATION PROBLEM

minimize f(w)+ S A (yg x}w) :

weRN

» h € I'h(R): loss function.

Examples: quadratic, hinge, smoothed hinge, Huber, logistic
[Bartlett et al., 2006] [Parikh and Boyd, 2014][Rosasco et al., 2004].

» f € To(RY): sparse regularization term.

Examples: ¢1, group-Lasso, non-convex potential
[Bradley and Mangasarian, 1998][Laporte et al., 2014][Meier et al., 2008].

* T (H) is the set of convex, lower semi-continuous proper functions of the Hilbert space H.
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Risk minimization problem

MINIMIZATION PROBLEM

minimize f(w)+ > h <yg angw)

weRN

O Very large size L of the training set
~» Random block-alternating strategy

[J Possibly non-smooth regularization function f
~+ Proximal minimization algorithm

[0 Slow convergence rate when treating i through its gradient

~+ Primal-dual scheme

Experimental results

000000
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Proposed approach
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Let f € To(RY).

CHARACTERIZATION OF PROXIMITY OPERATOR

(Vo e RY) @ = prox(v) & v —w € df(w).

The proximity operator of f at v € RY is the unique vector
€ RY such that

PO
1@ + 515 —ol]* =
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Proposed random block-coordinate strategy

MINIMIZATION PROBLEM

minimize f(w +Zh (ygl‘z w)

weRN —

General idea: At each iteration i € N, select randomly a subset
(xe,ye)eer, of Swith L; € {1,..., L}, using the Douglas-Rachford
proximal splitting scheme from [Combettes and Pesquet, 2016].



Introduction Proposed minimization approach Application to binary logistic regression Experimental results
[ee]e} [e]e] lele] 0000 000000

GRETSI 2017 8/20

Proposed random block-coordinate strategy

MINIMIZATION PROBLEM

minimize f(w +Zh (ygi)i‘g w)

weRN —

General idea: At each iteration i € N, select randomly a subset
(xe,ye)eer, of Swith L; € {1,..., L}, using the Douglas-Rachford
proximal splitting scheme from [Combettes and Pesquet, 2016].

Related works:

+ Coordinate ascent method [Shalev-Shwartz and Tewari, 2011]

« Stochastic forward-backward strategy [Combettes and Pesquet, 2015][Rosasco
et al., 2016]

« Regularized dual ascent approach [Xiao, 2010]

« Stochastic primal-dual proximal algorithms [Chierchia et al., 2015][Pesquet
and Repetti, 2016]
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Minimization algorithm

19 e RY, (41, 0
7 €10, +o0[, p €0, 2[
Fori=0,1,...

SelectL; C {1,...,

wll = Q¢ + uli)

(Vel;) oft"=
(Ve L) oft

Q= (1d + X, wea]

=0
|l =l Y,

/

-1

e RL, w0 = Zz 1 Yoy v[ ]

L}

¢
. (UE—H]

1) = 404 4 pu(prox, (2wl — ¢19) — wld)

[Z] +p,<prox w2y ] wl] —v[]) Yoy w[l]>
[]

ol yeme.
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Assume that the following conditions hold:
The set of solutions F of the problem is nonempty;
t% is a RV-valued random variable, and (v, ..., v[")) is an
RZL-valued random variable;
The (L;);en are drawn in an independent and identical manner.

Then, (w!);cy converges almost surely to an element of F.
Moreover, consider F* the set of solutions to the associated dual prob-
lem. Then the sequence (v ![yi2{ w — vy,...,yLx w — vL])ien CON-
verges almost surely to an element of F*.

v The convergence result still holds when the involved
proximity operators are computed up to summable errors.
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Application to binary logistic
regression
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Binary logistic regression

e N

Goal: Maximize the posterior probability of the weights given the train-
ing data i.e, optimize the product of the weight prior probability and the
conditional data likelihood :

L
maximize o(w) [ [ 7 (ye | e, w)be(xelw).
weRN =1
]

[~ BINARY LOGISTIC LOSS

(Vv € R) h(v) = log (1 + exp(—’u)).
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Proximity operator of the binary logistic loss

Let v € ]0, +oo[. The proximity operator of the logistic loss is

(Vo € R)  Prox,;(v) = v+ Wexp(uy (vexp (~0) ),

» Hereabove, W. is the generalized W-Lambert function
from [Mez6 et al.,, 2014], which solves transcendental equations
in the form:

(Vo € R)(Yv € R)(Vr € Jexp(—2), +o0])
vexp(0)+ro=v <& U= W,(v).

» This function can be efficiently evaluated through a
Newton-based method devised by Mezd et al.
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Proximity operator of the binary logistic loss

Let v € ]0, +oo[. The proximity operator of the logistic loss is

(Vo €R)  Prox,;,(v) = v+ Wexp(u) (vexD (~0) ),

» Exponentiation leads to arithmetic overflow when v tends
to minus infinity.
~ Study of asymptotic behaviour

Let v € ]0,4o0[. Then,

ProX.., (v) ~y——oo v + v(1 — exp(y +v)).

» Similar results available for the Fenchel conjugate function
of h.
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Experimental results




Introduction
[ee]e}

GRETSI 2017

Proposed minimization approach Application to binary logistic regression

00000 0000

Two standard data sets: MNIST (V. = 717, L = 60000) and

WB8A (N = 300, L = 49749);

O®O0000

h= binary logistic loss, f=¢; norm (with weight \ = 1);
Mini-batches of size 1000 randomly selected using a

uniform distribution;

Initial vector w!% randomly drawn from a normal distribution

with zero mean and unit variance;

Algorithm Parameters
Stochastic  Forward  Backward 4
(SFB) [Rosasco et al., 2016] v=10
Regularized Dual Ascent (RDA) y =104

[Xiao, 2010]

Block Coordinate primal-dual algo-
rithm (BCPD) [Chierchia et al., 2015]

-1 L T
o =7 X we ||

Proposed algorithm

y=10 u=18

Experimental results
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Experimental results
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Evolution of the cost function along iterations for dataset MNIST
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Experimental results
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v Proposition of a random block-coordinate
Douglas-Rachford algorithm for sparse linear regression at
a large scale;

v/ Convergence guaranteed under mild assumptions on the
algorithmic parameters;

v Derivation of a closed-form expression for the proximity
operator of the logistic loss;

v~ Training performance compares favorably to
state-of-the-art stochastic methods;

v/ Coming soon : An improved version of the algorithm.
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