Algorithme primal-dual de points intérieurs pour l'estimation pénalisée des cartes d'abondances en imagerie hyperspectrale

Emilie Chouzenoux ⁽¹⁾, Saïd Moussaoui ⁽²⁾, Maxime Legendre ⁽²⁾, Jérôme Idier ⁽²⁾ *

4avril2013

Abstract / Résumé

The estimation of abundance maps in hyperspectral imaging requires the resolution of an optimization problem under non-negativity and sum to one constraints. Assuming that the spectral signatures of the image components have been previously determined by an endmember extraction algorithm, we propose in this paper a primal-dual interior point algorithm for the estimation of their fractional abundances. In comparison with the reference method FCLS, our algorithm has the advantage of a reduced computational cost. Moreover, it allows to deal with a penalized criterion favoring the spatial smoothness of abundance maps. The performances of the proposed approach are discussed with the help of synthetic and real examples.

*** L'estimation des cartes d'abondances en imagerie hyperspectrale nécessite de résoudre un problème d'optimisation sous des contraintes de positivité et d'additivité. Nous nous plaçons dans le cadre où les spectres des composants présents au sein de l'image ont été préalablement estimés par un algorithme d'extraction des pôles de mélange. Afin de réduire le temps de calcul, nous proposons un algorithme rapide de points intérieurs de type primal-dual pour l'estimation de ces cartes. En comparaison avec la méthode de référence FCLS, l'algorithme proposé présente l'avantage d'un coût de calcul réduit. Un second avantage est de pouvoir traiter le cas d'un critère pénalisé favorisant la régularité spatiale des cartes d'abondances. Des exemples sur des données synthétiques et réelles illustrent les performances de cet algorithme.

^{*(1)} Université Paris-Est, LIGM (UMR CNRS 8049). (2) L'UNAM Université, Ecole Centrale de Nantes, CNRS, IRCCyN (UMR CNRS 6597)

1 Introduction

L'imagerie hyperspectrale est une technique de mesure qui permet d'accéder à des informations liées à la composition d'une surface, en exploitant ses propriétés optiques (réflexion, absorption ou émission) dans plusieurs bandes de fréquences [30]. Comme chaque pixel d'une image hyperspectrale correspond à une surface qui peut être composée de plusieurs types de constituants, chacun ayant sa propre signature spectrale, l'analyse de toutes les images devrait permettre l'identification de ces constituants et la détermination de leurs proportions au sein de chaque pixel [6]. Le modèle le plus couramment utilisé suppose que le spectre de réflectance dans chaque pixel de l'image est la combinaison linéaire d'un nombre fini des spectres caractéristiques des constituants, appelés aussi pôles de mélange, pondérés par des coefficients, appelés abondances, qui sont liés à la proportion de chaque constituant dans ce pixel de l'image [24].

Plus précisément, considérons N pixels d'une image hyperspectrale acquise dans L bandes spectrales. Selon le modèle de mélange linéaire, le spectre $\mathbf{Y}_{\bullet,n} \triangleq [Y_{1,n}, \ldots, Y_{L,n}]^{\mathrm{t}} \in \mathbb{R}^{L}$ du $n^{\mathrm{ème}}$ pixel s'exprime comme la combinaison linéaire de P signatures spectrales $\mathbf{S}_{\bullet,p} \triangleq [S_{1,p}, \ldots, S_{L,p}]^{\mathrm{t}} \in \mathbb{R}^{L}$, entachée d'un bruit additif $\mathbf{E}_{\bullet,n} \triangleq [E_{1,n}, \ldots, E_{L,n}]^{\mathrm{t}} \in \mathbb{R}^{L}$. On peut ainsi écrire

$$\boldsymbol{Y}_{\bullet,n} = \sum_{p=1}^{P} C_{p,n} \boldsymbol{S}_{\bullet,p} + \boldsymbol{E}_{\bullet,n}, \qquad (1)$$

où $S_{\bullet,p}$ est le spectre du $p^{\text{ème}}$ constituant et $C_{p,n}$ est le coefficient d'abondance du $p^{\text{ème}}$ constituant dans le $n^{\text{ème}}$ pixel. Si l'on considère tous les pixels de l'image hyperspectrale, le système d'équations (1) s'écrit sous forme matricielle

$$Y = SC + E, (2)$$

avec $\boldsymbol{Y} \in \mathbb{R}^{L \times N}$ les observations associées aux pixels de l'image, $\boldsymbol{S} \in \mathbb{R}^{L \times P}$ les signatures spectrales, $\boldsymbol{C} \in \mathbb{R}^{P \times N}$ les coefficients d'abondances et $\boldsymbol{E} \in \mathbb{R}^{L \times N}$ le bruit associé aux observations, qui sera supposé i.i.d. gaussien, de moyenne nulle et de matrice de covariance inconnue. L'objectif du traitement est donc d'estimer \boldsymbol{S} et \boldsymbol{C} à partir de \boldsymbol{Y} , en utilisant le modèle (2). Les vecteurs d'abondances $\boldsymbol{C}_{\bullet,n} \triangleq [C_{1,n}, \ldots, C_{P,n}]^{\text{t}} \in \mathbb{R}^{P}$ dans (2) étant reliés aux proportions des constituants de la surface, leur estimation doit être réalisée sous les contraintes de positivité et d'additivité

$$C_{p,n} \ge 0, \quad \forall p = 1, \dots, P, \quad \forall n = 1, \dots, N,$$
 (3a)

$$\sum_{p=1}^{r} C_{p,n} = 1, \quad \forall n = 1, \dots, N.$$
 (3b)

Afin de résoudre ce problème, deux stratégies concurrentes peuvent être adoptées [24, 11] : les méthodes d'estimation séquentielle et les méthodes d'estimation conjointe. Dans la première approche, une procédure d'extraction des pôles du mélange est d'abord employée pour estimer les spectres des constituants des images avant d'appliquer un algorithme d'estimation des abondances. La deuxième approche se fonde sur une estimation conjointe des spectres purs et des abondances. Les travaux de [28, 3] peuvent être consultés pour une revue récente et détaillée des méthodes existantes. D'un point de vue applicatif, la première approche est préconisée dans un contexte où l'hypothèse d'existence d'un nombre suffisant de spectres purs au sein des pixels de l'image est satisfaite, cette hypothèse étant exploitée par les méthodes d'extraction des pôles du mélange [29, 27]. L'approche séquentielle peut être également utilisée dans le cas où les spectres recherchés se situent dans une bibliothèque de spectres connus [12]. L'estimation conjointe des spectres et des abondances s'avère nécessaire en l'absence de pixels purs et dans le cas où les spectres des constituants dépendent des conditions d'acquisitions (éclairage, atmosphère, etc.) [19, 26, 21].

Dans ce travail, nous nous plaçons dans le cadre de la première approche et nous nous intéressons au développement d'une méthode d'estimation rapide des cartes d'abondances. Les algorithmes usuels sont basés sur la minimisation du critère des moindres carrés sous la contrainte (3a) (NNLS [25, 5], non-negative least squares) ou (3b) (SCLS [31], sum-to-one constrained least squares) ou encore sous les deux contraintes (3a) et (3b) (FCLS [20], pour fully constrained least squares). Dans [12] une méthode d'estimation par approche bayésienne couplée avec des techniques de simulation Monte Carlo par chaînes de Markov est proposée pour résoudre le problème d'estimation sous les contraintes (3a) et (3b). Cette approche bayésienne offre l'avantage de pouvoir estimer également le nombre de composants au sein de l'image. Néanmoins, toutes ces méthodes sont caractérisées par un coût de calcul important, notamment dans le cas d'images de grande taille. De plus, la méthode FCLS ne s'applique pas dans le cas d'un critère prenant en compte les éventuelles corrélations inter-pixels.

Nous proposons dans cet article un algorithme rapide basé sur une stratégie de points intérieurs [35, 15, 4] permettant de minimiser un critère strictement convexe quelconque en intégrant les contraintes de positivité et d'additivité. Par conséquent, cet algorithme peut s'appliquer au cas d'un critère de moindres carrés pénalisé par un terme convexe favorisant la régularité spatiale des cartes d'abondances. Du point de vue de l'implémentation, l'algorithme d'optimisation adopté nécessite la résolution à chaque itération d'un système d'équations linéaires dont la taille dépend de la taille des images et du nombre de constituants. Nous montrons que la résolution approchée de ce système par un algorithme de gradient conjugué linéaire [10, 32] permet de réduire notablement le temps de calcul. Des illustrations sur la base d'images simulées et réelles permettront d'illustrer ce gain en temps de calcul par rapport à une méthode de type FCLS, la qualité de l'estimation étant préservée, ainsi que le gain de performances lié à l'introduction d'une pénalisation spatiale.

Le reste de cet article est organisé comme suit. La section 2 présente la méthode d'optimisation proposée pour l'estimation des cartes d'abondances. Son implémentation dans le cadre des problèmes de grande taille ainsi qu'une variante présentant un coût de calcul réduit sont discutées dans la section 3. Enfin la section 4 illustre les performances de cette approche en termes de temps de calcul et de comparaison avec la méthode de référence FCLS dans le cas non-pénalisé. La réduction du temps de calcul apportée par la forme accélérée de l'algorithme primal-dual est démontrée dans le cas pénalisé. Une application à des données réelles est enfin présentée pour illustrer l'applicabilité de l'approche proposée.

2 Optimisation sous contraintes pour l'estimation des cartes d'abondances

Nous adoptons une approche itérative pour traiter le problème d'estimation sous les contraintes de positivité et d'additivité. Pour cela, le problème d'estimation est d'abord formulé comme la minimisation d'un critère F(C)strictement convexe de $\mathbb{R}^{P \times N}$. Puis un algorithme de type points intérieurs est utilisé pour résoudre

$$\min_{\boldsymbol{C} \in \mathbb{R}^{P \times N}} F(\boldsymbol{C}) \quad \text{sous les contraintes} \quad (3a) - (3b). \tag{4}$$

Le critère F(C) résulte de la modélisation statistique du processus de mesure ainsi que du rajout éventuel de connaissances *a priori* sur les cartes d'abondances.

2.1 Construction du critère

Une stratégie courante consiste à définir $F(\cdot)$ comme le critère de moindres carrés non pénalisé [25, 5, 31, 20],

$$F(\boldsymbol{C}) = \frac{1}{2} \|\boldsymbol{Y} - \boldsymbol{S}\boldsymbol{C}\|_F^2,$$
(5)

où $\|\cdot\|_F$ représente la norme de Frobénius. Ce critère mesure l'adéquation aux données sous l'hypothèse d'un bruit de mesure additif blanc gaussien de moyenne nulle. Il est également possible d'introduire une pénalisation $R(\mathbf{C})$, pondérée par un paramètre η ,

$$F(\boldsymbol{C}) = \frac{1}{2} \|\boldsymbol{Y} - \boldsymbol{S}\boldsymbol{C}\|_F^2 + \eta R(\boldsymbol{C}),$$
(6)

afin de favoriser la régularité de la répartition spatiale des coefficients d'abondances. Un exemple de terme de régularisation est de la forme

$$R(\boldsymbol{C}) = \sum_{p=1}^{P} \left(\varphi \left(\boldsymbol{\nabla}^{v} \boldsymbol{C}_{p, \bullet} \right) + \varphi \left(\boldsymbol{\nabla}^{h} \boldsymbol{C}_{p, \bullet} \right) \right), \tag{7}$$

avec $C_{p,\bullet} \triangleq [C_{p,1}, \ldots, C_{p,N}]^{t} \in \mathbb{R}^{N}$, ∇^{v} et ∇^{h} respectivement les opérateurs de gradient spatial vertical et horizontal, et φ une fonction de pondération quadratique (ℓ_{2}) favorisant l'apparition de zones lisses dans les cartes, ou semi-quadratique ($\ell_{2} - \ell_{1}$) pour également préserver les discontinuités [16, 17, 22].

2.2 Intégration de la contrainte d'égalité

Tout d'abord, à l'aide d'un changement de variable, le problème (4) est transformé en un nouveau problème faisant apparaître des contraintes d'inégalité uniquement. Comme souligné dans [2], pour tout vecteur initial $C_{\bullet,n}^{(1)}$ vérifiant la contrainte (3b), le vecteur défini par $C_{\bullet,n} = C_{\bullet,n}^{(1)} + ZA_{\bullet,n}$, avec $A_{\bullet,n} \triangleq [A_{1,n}, \ldots, A_{P-1,n}]^{t} \in \mathbb{R}^{P-1}$, satisfait également cette contrainte d'additivité si $Z \in \mathbb{R}^{P \times P-1}$ est une matrice dont les colonnes forment l'espace nul de $\mathbf{1}_{1 \times P}$. Dans notre cas, cette matrice étant, par exemple, donnée par :

$$Z_{i,j} = \begin{cases} 1 & \text{si } i = j, \\ -1 & \text{si } i = j + 1, \\ 0 & \text{sinon}, \end{cases}$$
(8)

le problème (4) est réécrit sous la forme

$$\min_{\boldsymbol{A}\in\mathbb{R}^{(P-1)\times N}} F(\boldsymbol{C}^{(1)} + \boldsymbol{Z}\boldsymbol{A}),\tag{9}$$

sous les contraintes

$$\mathbf{Z}\mathbf{A}_{\bullet,n} + \mathbf{C}_{\bullet,n}^{(1)} \ge 0, \quad \forall n = 1, \dots, N.$$
(10)

En introduisant l'opérateur m = vect(M) qui correspond à la transformation de la matrice M en un vecteur m dans l'ordre lexicographique, ce problème s'exprime de façon équivalente sous la forme :

$$\min_{\boldsymbol{a}\in\mathbb{R}^{(P-1)N}}\Phi(\boldsymbol{a}),\quad\text{sous les contraintes}\quad \boldsymbol{T}\boldsymbol{a}+\boldsymbol{t}\geqslant\boldsymbol{0},\tag{11}$$

où le critère $\Phi(\cdot)$ se déduit de $F(\cdot)$ par $\Phi(\boldsymbol{a}) = F(\boldsymbol{C}^{(1)} + \boldsymbol{Z}\boldsymbol{A}), \boldsymbol{a} = \operatorname{vect}(\boldsymbol{A})$ et $\boldsymbol{t} = \operatorname{vect}(\boldsymbol{C}^{(1)})$. La matrice \boldsymbol{T} est égale à $\boldsymbol{I}_N \otimes \boldsymbol{Z}$ où \otimes est le produit de Kronecker et \boldsymbol{I}_N est la matrice identité de taille $N \times N$.

2.3 Algorithme de points intérieurs primal-dual

La résolution du problème d'optimisation sous contraintes (11) se fait par un algorithme itératif de type points intérieurs. A chaque itération, la satisfaction stricte des contraintes est assurée par une fonction de mérite présentant une barrière logarithmique à la frontière du domaine admissible des solutions [35].

2.3.1 Principe

Les conditions d'optimalité dites de Karush-Kuhn-Tucker (KKT) permettant de caractériser la solution a de (11) et les multiplicateurs de Lagrange associés $\lambda \in \mathbb{R}^{NP}$ s'expriment sous la forme :

$$\begin{cases}
\nabla \Phi(a) - T^{t} \lambda = 0 \\
\Lambda(Ta + t) = 0 \\
Ta + t \ge 0 \\
\lambda \ge 0
\end{cases}$$
(12)

où $\Lambda \triangleq \text{Diag}(\lambda)$. L'approche primale-duale consiste à estimer de façon jointe a et λ en résolvant une séquence de problèmes correspondants à des versions perturbées des conditions KKT paramétrées par une suite de paramètres positifs $\{\mu_k\}_{k\in\mathbb{N}}$ convergeant vers 0 :

$$\begin{cases}
\nabla \Phi(a) - T^{t} \lambda = 0 \\
\Lambda (Ta + t) = \mu_{k} \\
Ta + t \ge 0 \\
\lambda \ge 0
\end{cases}$$
(13)

avec $\boldsymbol{\mu}_k \triangleq \mu_k \mathbf{1}_{NP \times 1}$.

2.3.2 Algorithme Primal-Dual

Une itération k de l'algorithme primal-dual se décompose en deux étapes. Tout d'abord, (a_{k+1}, λ_{k+1}) est calculé en fonction de (a_k, λ_k) en résolvant (13). Puis le paramètre μ_{k+1} est déterminé selon une règle de mise à jour permettant de garantir la convergence de l'algorithme. Dans le cadre des problèmes de grande taille, il n'est pas possible de résoudre (13) de façon exacte. En pratique, une solution approchée de (13) est obtenue par quelques itérations de Newton couplées avec une recherche de pas [4, Chap.11], selon le schéma général :

$$(\boldsymbol{a}_{k+1}, \boldsymbol{\lambda}_{k+1}) = (\boldsymbol{a}_k + \alpha_k \boldsymbol{d}_k^a, \boldsymbol{\lambda}_k + \alpha_k \boldsymbol{d}_k^\lambda).$$
(14)

Calcul des directions primales et duales. Les directions de Newton primales-duales (d_k^a, d_k^λ) sont calculées en résolvant le système linéaire

$$\begin{pmatrix} \nabla^2 \Phi(\boldsymbol{a}_k) & -\boldsymbol{T}^{\mathrm{t}} \\ \boldsymbol{\Lambda}_k \boldsymbol{T} & \mathrm{Diag}(\boldsymbol{T}\boldsymbol{a}_k + \boldsymbol{t}) \end{pmatrix} \begin{pmatrix} \boldsymbol{d}_k^a \\ \boldsymbol{d}_k^\lambda \end{pmatrix} = -\boldsymbol{r}_{\mu_k}(\boldsymbol{a}_k, \boldsymbol{\lambda}_k), \quad (15)$$

où $r_{\mu}(a, \lambda)$ est le résidu primal-dual défini par les deux premières équations de KKT perturbées,

$$\boldsymbol{r}_{\mu}(\boldsymbol{a},\boldsymbol{\lambda}) = \begin{pmatrix} \nabla \Phi(\boldsymbol{a}) - \boldsymbol{T}^{\mathrm{t}}\boldsymbol{\lambda} \\ \boldsymbol{\Lambda}(\boldsymbol{T}\boldsymbol{a} + \boldsymbol{t}) - \boldsymbol{\mu} \end{pmatrix} = \begin{pmatrix} \boldsymbol{r}_{\mu}^{\mathrm{prim}}(\boldsymbol{a},\boldsymbol{\lambda}) \\ \boldsymbol{r}_{\mu}^{\mathrm{dual}}(\boldsymbol{a},\boldsymbol{\lambda}) \end{pmatrix}.$$
(16)

Le système (15) n'est pas inversé de façon directe. En effet, il est souligné dans [36, 37] que ce système devient très mal conditionné, notamment à l'approche de la convergence de l'algorithme, dès lors qu'une des contraintes est active. De plus, celui-ci ne vérifie pas les propriétés de symétrie ni de définie positivité, souhaitables dès lors que l'on applique une stratégie d'inversion itérative. Plusieurs stratégies de résolution de (15), présentées dans [15, Sec.5.1], permettent de pallier ces difficultés. Nous utilisons la technique de [9, 2], consistant à effectuer le calcul des directions en deux étapes : la direction primale d_k^a est d'abord obtenue par inversion du système réduit

$$\boldsymbol{H}_{k}\boldsymbol{d}_{k}^{a} = -\nabla\Phi(\boldsymbol{a}_{k}) + \boldsymbol{T}^{\mathrm{t}}\mathrm{Diag}(\boldsymbol{T}\boldsymbol{a}_{k} + \boldsymbol{t})^{-1}\boldsymbol{\mu}_{k}$$
(17)

avec

$$\boldsymbol{H}_{k} = \nabla^{2} \Phi(\boldsymbol{a}_{k}) + \boldsymbol{T}^{\mathrm{t}} \mathrm{Diag}(\boldsymbol{T} \boldsymbol{a}_{k} + \boldsymbol{t})^{-1} \boldsymbol{\Lambda}_{k} \boldsymbol{T}.$$
 (18)

En fait, ce système réduit s'obtient par substitution de d_k^{λ} dans la première équation de (15) par son expression déduite de la seconde partie de ce système,

$$\boldsymbol{d}_{k}^{\lambda} = \operatorname{Diag}(\boldsymbol{T}\boldsymbol{a}_{k} + \boldsymbol{t})^{-1} \left[\boldsymbol{\mu}_{k} - \boldsymbol{\Lambda}_{k}\boldsymbol{T}(\boldsymbol{a}_{k} + \boldsymbol{d}_{k}^{a}) - \boldsymbol{\Lambda}_{k}\boldsymbol{t}\right].$$
(19)

Finalement, après obtention de la direction primale, l'expression (19) est utilisée pour déterminer la direction duale d_k^{λ} .

Recherche de pas. Le pas α_k est déterminé de façon à garantir la convergence de l'algorithme et à vérifier les deux contraintes d'inégalité de (13). La convergence de l'algorithme est garantie sous réserve que le pas entraîne une décroissance suffisante d'une fonction de mérite primale-duale $\Psi_{\mu}(\boldsymbol{a},\boldsymbol{\lambda})$ liée aux conditions d'optimalité du problème [15, Sec.5.2]. Nous employons la fonction de mérite primale-duale de [1, 14, 2] définie par

$$\Psi_{\mu}(\boldsymbol{a},\boldsymbol{\lambda}) = \Phi(\boldsymbol{a}) - \mu \sum_{i=1}^{NP} \ln([\boldsymbol{T}\boldsymbol{a} + \boldsymbol{t}]_i) + \boldsymbol{\lambda}^{\mathrm{t}}(\boldsymbol{T}\boldsymbol{a} + \boldsymbol{t}) - \mu \sum_{i=1}^{NP} \ln(\lambda_i [\boldsymbol{T}\boldsymbol{a} + \boldsymbol{t}]_i).$$
(20)

Nous soulignons la présence des deux fonctions barrières logarithmiques pour satisfaire strictement les contraintes d'inégalités de (13).

La décroissance suffisante de la fonction de mérite se traduit par la vérification de la condition d'Armijo

$$\psi_{\mu_k}(\alpha_k) - \psi_{\mu_k}(0) \leqslant c \,\alpha_k \nabla \psi_{\mu_k}(0), \qquad c \in (0, 1/2), \tag{21}$$

où

$$\psi_{\mu_k}(\alpha) = \Psi_{\mu_k}(\boldsymbol{a}_k + \alpha \boldsymbol{d}_k^a, \boldsymbol{\lambda}_k + \alpha \boldsymbol{d}_k^\lambda).$$
(22)

L'obtention d'un pas α_k vérifiant (21) est réalisée par une simple stratégie de rebroussement (ou *backtracking*). Partant d'un pas initial α_k^0 , et s'il ne vérifie pas la condition d'Armijo, on rebrousse chemin en essayant des pas plus petits $\alpha_k^0 \tau$, $\alpha_k^0 \tau^2$, etc. avec $\tau \in (0,1)$. Afin que la fonction $\psi_{\mu}(\cdot)$ soit bien définie, le backtracking est initialisé de la façon suivante :

$$\begin{cases} \alpha_k^0 = 1 & \text{si } \alpha_k^+ = +\infty \\ \alpha_k^0 = 0.99 \,\alpha_k^+ & \text{sinon} \end{cases}$$
(23)

où α_k^+ est la plus grande valeur telle que

$$\lambda_k + \alpha d_k^{\lambda} > 0, \qquad T(\boldsymbol{a}_k + \alpha d_k^{a}) + \boldsymbol{t} > 0.$$
(24)

Soulignons que des stratégies de recherches de pas plus sophistiquées ne semblent pas nécessaires dans le cadre des méthodes primales-duales [7].

Critères de mise à jour de la barrière et d'arrêt de l'algorithme. La résolution de (11) étant effectuée par l'algorithme primal-dual (Algorithme 1), nous utilisons le critère d'arrêt global [4, Chap.11]

$$\mu_k \leqslant \mu_{\min}, \quad \text{ou} \quad \|\boldsymbol{r}_0(\boldsymbol{a}_k, \lambda_k)\| \leqslant \epsilon_0.$$
(25)

Le paramètre de barrière μ_k est mis à jour selon la règle de μ -criticité définie dans [13] :

$$\mu_k = \theta \frac{\delta_k}{NP},\tag{26}$$

où $\delta_k = (\mathbf{T}\mathbf{a}_k + \mathbf{t})^{\mathrm{t}} \boldsymbol{\lambda}_k$ est le saut de dualité et $\theta \in (0, 1)$.

Enfin, l'arrêt de la boucle interne de calcul des directions primales et duales est régi par deux conditions [9, 23]:

$$\|r_{\mu_k}^{\text{prim}}(\boldsymbol{a}_k,\boldsymbol{\lambda}_k)\|_{\infty} \leqslant \epsilon_k^{\text{prim}},\tag{27}$$

$$\|r_{\mu_k}^{\text{dual}}(\boldsymbol{a}_k, \boldsymbol{\lambda}_k)\|_1 / NP \leqslant \epsilon_k^{\text{dual}}, \tag{28}$$

avec $\epsilon_k^{\text{prim}} = \eta^{\text{prim}} \mu_k$, $\epsilon_k^{\text{dual}} = \eta^{\text{dual}} \mu_k$ où η^{prim} et η^{dual} sont deux paramètres positifs.

Initialiser $\lambda_0 > 0$ et a_0 vérifiant $Ta_0 + t > 0$ Tant que ((25) n'est pas vérifiée) faire Tant que ((27) et (28) ne sont pas vérifiées) faire Calculer d_k^a par résolution du système (17) Déduire d_k^λ de (19) Déterminer α_k vérifiant (21) par rebroussement Mettre à jour (a_{k+1}, λ_{k+1}) selon (14) Fait Mettre à jour μ_{k+1} d'après (26). Fait

Algorithme 1: Algorithme de points intérieurs primal-dual.

Analyse de convergence. La convergence de l'algorithme 1 dans le cas strictement convexe est donnée dans le théorème (2.1), déduit de [2].

Theorème 2.1 Supposons que l'ensemble $S = \{a \in \mathbb{R}^{NP-N} | Ta + t > 0\}$ est non vide et borné et que la fonction $\Phi(.)$ est strictement convexe et deux fois différentiable sur \mathbb{R}^{NP-N} . Si les séquences $\{\mu_k\}_{k\in\mathbb{N}}, \{\epsilon_k^{prim}\}_{k\in\mathbb{N}}$ et $\{\epsilon_k^{dual}\}_{k\in\mathbb{N}}$ tendent vers 0 lorsque k tend vers l'infini, alors la suite $\{a_k\}_{k\in\mathbb{N}}$ générée par l'algorithme (1) converge vers la solution unique du problème (11).

3 Mise en oeuvre de l'algorithme primal-dual

Le coût de calcul de l'algorithme (1) est fortement dépendant du coût de l'inversion du système linéaire primal

$$\boldsymbol{H}_k \boldsymbol{d}_k^a = -\boldsymbol{g}_k, \tag{29}$$

où

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

Afin de réduire le temps de calcul, il est judicieux d'alléger la complexité de cette étape. Nous étudions tout d'abord dans cette section la structure de la matrice H_k en distinguant le cas sans pénalisation et avec pénalisation. Puis, nous proposons une variante accélérée de l'algorithme primal-dual, consistant à résoudre (29) de façon approchée. Enfin, le réglage des paramètres de l'algorithme primal-dual initial et de sa version accélérée est discuté.

3.1 Structure du système primal-dual

3.1.1 Critère des moindres carrés non pénalisé

Etudions tout d'abord la structure du terme $T^{t}\text{Diag}(Ta_{k}+t)^{-1}\Lambda_{k}T$. D'après la section 2, on a $T = I_{N} \otimes Z$. Par conséquent, T est une matrice blocdiagonale de N blocs identiques égaux à Z:

$$T = \text{Bdiag}(Z). \tag{30}$$

Pour tout $n \in \{1, \dots, N\}$, notons $A_{\bullet,n}^{(k)} \in \mathbb{R}^{P-1}$ (resp. $L_{\bullet,n}^{(k)} \in \mathbb{R}^{P}$) la *n*-ième colonne de $A_k = \max(a_k)$ (resp. de $L_k = \max(\lambda_k)$) où mat(.) est l'opérateur réciproque de vect(.) défini précédemment. Ainsi, on a

$$\operatorname{Diag}(\boldsymbol{T}\boldsymbol{a}_k + \boldsymbol{t})^{-1}\boldsymbol{\Lambda}_k = \operatorname{Bdiag}(\boldsymbol{D}_n^{(k)}), \tag{31}$$

où $\boldsymbol{D}_n^{(k)}$ désigne une matrice diagonale de taille $P\times P$ de diagonale

$$\operatorname{Diag}\left(\boldsymbol{Z}\boldsymbol{A}_{\bullet,n}^{(k)} + \boldsymbol{C}_{\bullet,n}^{(1)}\right)^{-1} \boldsymbol{L}_{\bullet,n}^{(k)}.$$
(32)

Donc T^{t} Diag $(Ta_{k} + t)^{-1}\Lambda_{k}T$ est également une matrice bloc-diagonale définie par :

$$T^{t}\text{Diag}(Ta_{k}+t)^{-1}\Lambda_{k}T = \text{Bdiag}(Z)^{t}\text{Bdiag}(D_{n}^{(k)})\text{Bdiag}(Z),$$
$$= \text{Bdiag}(Z^{t}D_{n}^{(k)}Z).$$
(33)

Intéressons-nous maintenant à la structure de la matrice hessienne $\nabla^2 \Phi(\mathbf{a}_k)$ dans le cas du critère des moindres carrés non pénalisé (5) :

$$\nabla^{2} \Phi(\boldsymbol{a}_{k}) = (\boldsymbol{I}_{N} \otimes \boldsymbol{S}\boldsymbol{Z})^{\mathrm{t}}(\boldsymbol{I}_{N} \otimes \boldsymbol{S}\boldsymbol{Z}),$$

= Bdiag($\boldsymbol{Z}^{\mathrm{t}}\boldsymbol{S}^{\mathrm{t}}\boldsymbol{S}\boldsymbol{Z}$), (34)

où (34) est une conséquence des propriétés du produit de Kronecker [33] :

$$\begin{cases} (\boldsymbol{A} \otimes \boldsymbol{B})^{t} = \boldsymbol{A}^{t} \otimes \boldsymbol{B}^{t}, \\ (\boldsymbol{A} \otimes \boldsymbol{B})(\boldsymbol{C} \otimes \boldsymbol{D}) = \boldsymbol{A}\boldsymbol{C} \otimes \boldsymbol{B}\boldsymbol{D}. \end{cases}$$
(35)

En utilisant (33), on obtient

$$H_{k} = \text{Bdiag}(\boldsymbol{Z}^{t}\boldsymbol{S}^{t}\boldsymbol{S}\boldsymbol{Z}) + \text{Bdiag}(\boldsymbol{Z}^{t}\boldsymbol{D}_{n}^{(k)}\boldsymbol{Z}),$$

= Bdiag($\boldsymbol{Z}^{t}(\boldsymbol{S}^{t}\boldsymbol{S} + \boldsymbol{D}_{n}^{(k)})\boldsymbol{Z}$). (36)

En conclusion, dans le cas d'un critère de moindres carrés non pénalisé, la matrice H_k est une matrice bloc-diagonale contenant N blocs distincts, carrés de taille $P-1 \times P-1$. L'inverse de cette matrice s'obtient simplement en calculant l'inverse de chacun des blocs :

$$\boldsymbol{H}_{k}^{-1} = \text{Bdiag}((\boldsymbol{Z}^{\text{t}}(\boldsymbol{S}^{\text{t}}\boldsymbol{S} + \boldsymbol{D}_{n}^{(k)})\boldsymbol{Z})^{-1}).$$
(37)

3.1.2 Critère des moindres carrés pénalisé

L'ajout d'un terme de pénalisation a pour effet de modifier la structure du hessien $\nabla^2 \Phi(\boldsymbol{a}_k)$. Considérons une fonction de pénalisation de forme générale

$$R(\boldsymbol{C}) = \sum_{p=1}^{P} \varphi(\boldsymbol{\Delta}\boldsymbol{C}_{p,\bullet}), \qquad (38)$$

où $C_{p,\bullet} \in \mathbb{R}^N$ représente la *p*-ième carte d'abondance, $\Delta \in \mathbb{R}^{Q \times N}$ est une matrice de pénalisation et φ est une fonction de pondération différentiable et strictement convexe de \mathbb{R}^Q dans \mathbb{R} . La matrice $\nabla^2 \Phi(\boldsymbol{a}_k)$ a pour expression

$$\nabla^2 \Phi(\boldsymbol{a}_k) = \text{Bdiag}(\boldsymbol{Z}^{\text{t}} \boldsymbol{S}^{\text{t}} \boldsymbol{S} \boldsymbol{Z}) + \eta(\boldsymbol{\Delta} \otimes \boldsymbol{Z})^{\text{t}} \text{Diag}(\ddot{\varphi}((\boldsymbol{\Delta} \otimes \boldsymbol{Z}) \boldsymbol{a}_k))(\boldsymbol{\Delta} \otimes \boldsymbol{Z}), \quad (39)$$

où $\ddot{\varphi}(.)$ est la dérivée seconde de $\varphi(.)$. Dans le cas particulier où $\Delta = I_N$, une démarche similaire à celle de la section précédente conduit à

$$\nabla^{2} \Phi(\boldsymbol{a}_{k}) = \operatorname{Bdiag}\left(\boldsymbol{Z}^{\mathrm{t}}(\boldsymbol{S}^{\mathrm{t}}\boldsymbol{S} + \eta \operatorname{Diag}(\ddot{\varphi}(\boldsymbol{Z}\boldsymbol{A}_{\bullet,n}^{(k)}))\boldsymbol{Z}\right).$$
(40)

Alors, H_k est bloc-diagonale et peut être inversée simplement.

De meilleurs résultats de reconstruction sont obtenus en considérant une pénalisation plus élaborée. Par exemple, une régularisation spatiale, prenant en compte les corrélations entre pixels voisins, est obtenue en prenant φ quadratique, Q = 2N et $\mathbf{\Delta} = [(\nabla^v)^t (\nabla^h)^t]^t$ avec ∇^v et ∇^h respectivement les opérateurs de gradient spatial vertical et horizontal. La structure complexe de la matrice hessienne (39) dans ce cas ne permet pas d'exprimer simplement la solution du système (29). En pratique, le système est inversé en utilisant la décomposition de Cholesky de \mathbf{H}_k .

3.2 Algorithme primal-dual accéléré

Même dans le cas où H_k est bloc-diagonale, la résolution du système (29) est coûteuse et fortement dépendante de la taille du problème considéré. Nous proposons dans cette section une version accélérée de l'algorithme 1 dans lequel la direction primale d_k^a est obtenue par résolution approchée de (29). Plus précisément, d_k^a est obtenue en appliquant un algorithme de gradient conjugué au système $H_k d = -g_k$. L'algorithme utilisé (Algorithme 2) est le gradient biconjugué [32] auquel est incorporée une stratégie de préconditionnement basée sur une décomposition LU incomplète de H_k . L'algorithme est stoppé dès que l'une des conditions suivantes est vérifiée [23] :

$$\|\boldsymbol{r}_i\| / \|\boldsymbol{g}_k\| \leq \min(\eta_1^{\text{pcg}}, \eta_2^{\text{pcg}} \delta_k / \|\boldsymbol{g}_k\|), \tag{41}$$

$$\omega_i = 0, \tag{42}$$

$$i \geqslant I_{\max},$$
 (43)

où δ_k est le saut de dualité à l'itération k, et η_1^{pcg} , η_2^{pcg} et I_{max} sont des paramètres positifs.

Effectuer la décomposition $LU \approx H_k$ Initialiser $d_0 = 0$, $r_0 = -g_k$, $\hat{r}_0 = r_0$ $\rho_0 = \alpha = \omega_0 = i = 1$ et $\boldsymbol{\nu}_0 = \boldsymbol{p}_0 = \boldsymbol{0}$ Tant que (Aucune des conditions (41)-(42)-(43) n'est vérifiée) faire $\rho_i = \hat{\boldsymbol{r}}_0^{\mathrm{t}} \boldsymbol{r}_{i-1}$ $\beta = (\rho_i / \rho_{i-1})(\alpha / \omega_{i-1})$ $egin{aligned} m{p}_i &= m{r}_{i-1} + eta(m{p}_{i-1} - \omega_{i-1}m{
u}_{i-1}) \ m{y} &= (m{L}m{U})^{-1}m{p}_i \end{aligned}$ $oldsymbol{
u}_i = oldsymbol{H}_k oldsymbol{y}$ $\alpha = \rho_i / (\hat{\boldsymbol{r}}_0^{\mathrm{t}} \boldsymbol{\nu}_i)$ $s = r_{i-1} - \alpha \nu_i$ $\boldsymbol{z} = (\boldsymbol{L}\boldsymbol{U})^{-1}\boldsymbol{s}$ $egin{aligned} egin{aligned} egi$ $\boldsymbol{d}_i = \boldsymbol{d}_{i-1} + \alpha \boldsymbol{y} + \omega_i \boldsymbol{z}$ $m{r}_i = m{s} - \omega_i m{t}$ i = i + 1Fait Retourner $d_k^a = d_i$.

Algorithme 2: Calcul approché de la direction primale par gradient biconjugué préconditionné.

Nous en déduisons une variante accélérée de l'algorithme primal-dual (Algorithme 3). Cependant, l'étude théorique de la convergence de cet algorithme est laissée comme perspective de ce travail.

Initialiser $\lambda_0 > 0$ et a_0 vérifiant $Ta_0 + t > 0$ Tant que ((25) n'est pas vérifiée) faire Tant que ((27) et (28) ne sont pas vérifiées) faire Calculer d_k^a par l'algorithme 2 Déduire d_k^λ de (19) Déterminer α_k vérifiant (21) par rebroussement Mettre à jour (a_{k+1}, λ_{k+1}) selon (14) Fait Mettre à jour μ_{k+1} d'après (26). Fait

Algorithme 3: Algorithme de points intérieurs primal-dual accéléré.

3.3 Réglage des paramètres de l'algorithme

L'algorithme 1 et sa variante 3 dépendent de plusieurs paramètres qui règlent la précision du calcul des directions primales et duales (η^{prim} , η^{dual} et η^{pcg}_1 , η^{pcg}_2 , I_{max} dans la version accélérée), la mise à jour du paramètre de barrière (θ), et la précision de la résolution du problème contraint initial (μ_{\min} et ϵ_0). Ces paramètres influent sur la vitesse de convergence de l'algorithme. Nous avons obtenu le meilleur compromis entre le nombre d'itérations de la boucle interne et le nombre d'itérations globales pour les valeurs suivantes :

$$\eta^{\text{prim}} = 100, \qquad \eta^{\text{dual}} = 1.9, \qquad \theta = 0.5,$$
(44)

$$\mu_{\min} = 10^{-9}, \quad \epsilon_0 = 10^{-7},$$
(45)

$$I_{\rm max} = 200, \qquad \eta_1^{\rm pcg} = 10^{-3}, \qquad \eta_2^{\rm pcg} = 10^{-2}$$
 (46)

Notons que les valeurs (44) sont identiques à celles utilisées dans [9, 23].

4 Résultats expérimentaux

Nous analysons tout d'abord les performances de l'algorithme 1 en terme de temps de calcul pour la minimisation du critère des moindres carrés sous contraintes d'additivité et de positivité. Dans ce cadre, une comparaison avec l'algorithme FCLS est réalisée. Nous présentons ensuite les résultats obtenus dans le cas de l'intégration d'une régularisation spatiale sur les cartes d'abondances. L'analyse se focalisera sur le gain en temps de calcul introduit par le calcul de la direction primale par la méthode approchée 2, conduisant à l'algorithme 3.

4.1 Simulation des mélanges

Nous disposons d'un ensemble de spectres issus de la bibliothèque USGS (U.S. Geological Survey) [8] qui sont utilisés pour créer des mélanges artificiels permettant d'étudier les performances des méthodes sur des données réalistes. La figure 1 illustre P = 5 spectres, de L = 224 bandes spectrales, choisis arbitrairement dans cette bibliothèque.

Par ailleurs, des cartes d'abondances sont simulées de façon à contenir trente motifs gaussiens, de variance égale à $\frac{N}{200}$, positionnés aléatoirement au sein de l'image et normalisés pour satisfaire la contrainte (3b). La figure 2 illustre un exemple de cartes d'abondances générées pour P = 5 et N = 256^2 . Nous pouvons constater que cette stratégie de simulation nous permet d'obtenir des cartes dans lesquelles il n'existe pas de pixel purs et également d'obtenir une corrélation spatiale de la répartition des composantes.

Un bruit gaussien i.i.d de moyenne nulle et de variance adéquate est ajouté pour obtenir un rapport signal sur bruit de 20dB dans chaque pixel de l'image. Les résultats de simulation présentés dans cet article ont tous

Figure 1: Signatures spectrales sélectionnées dans la bibliothèque USGS. (a) Andradite. (b) Erionite. (c) Chlorite. (d) Biotite. (e) Carnallite.

été obtenus avec Matlab 2007b sur un MacbookPro muni d'un processeur Intel Core 2 Duo 2.4 GHz et de 4 Go de RAM avec un bus de 667 MHz.

4.2 Moindres carrés sous contraintes de positivité et d'additivité

Tout d'abord, nous nous proposons de comparer l'algorithme primal-dual non pénalisé (IPLS, Interior Point Least Squares) à la méthode de référence FCLS [20], en terme de temps de calcul, pour la résolution du problème de moindres carrés contraint (4)-(5). Nous nous concentrons ici sur la version exacte 1 de IPLS, puisque, comme souligné en Section 3.1.1, dans le cas non pénalisé, le calcul de la direction primale est peu coûteux. Des images hyperspectrales de taille variable (de $N = 64^2$ à 256^2) ont été simulées en considérant un nombre de constituants égal à P = 3, 5 ou 10. Notons que la méthode FCLS et notre méthode résolvent le même problème d'optimisation. Le critère à minimiser étant strictement convexe, et les contraintes convexes, il y a unicité de la solution, et par conséquent, les deux méthodes doivent fournir des résultats identiques (à la précision numérique près). En effet, pour l'ensemble des tests effectués, les solutions fournies par les algorithmes FCLS et IPLS sont similaires en termes de valeur de résidu et de qualité de reconstruction. Cependant, comme illustré par la figure 3, le temps de calcul nécessaire à l'optimisation du critère est sensiblement réduit par l'utilisation de l'algorithme primal-dual.

A titre d'exemple, un gain de temps d'un facteur de l'ordre de 5 est obtenu pour une image de taille 256^2 dans le cas de P = 10 composantes. Pour la même taille d'image, ce facteur est de l'ordre de 7 pour P = 5 et 11 pour P = 3. Notons également la forte croissance du coût de calcul lorsque la taille de l'image augmente. Cependant, ce coût de calcul pourrait être réduit par une implémentation exploitant le potentiel de parallélisation offert par ces deux méthodes.

Figure 2: Exemple de cartes d'abondances simulées de taille $N = 256^2$ pour P = 5.

4.3 Intégration d'une pénalisation spatiale

Nous présentons à présent les résultats d'estimation obtenus par la résolution du problème pénalisé (4)-(6), où R est la fonction de pénalisation (7), visant à tenir compte de la régularité de la distribution spatiale des cartes d'abondances. Dans ce contexte, seul l'algorithme primal-dual pénalisé (IPPLS, *Interior Point Penalized Least Squares*) est applicable, dans sa version exacte 1 ou approchée 3. La qualité de l'estimée \hat{C} est évaluée au sens de l'erreur quadratique moyenne normalisée

EQMn(%) =
$$\frac{100}{P} \sum_{p=1}^{P} \left(\| \boldsymbol{C}_{p,\bullet} - \hat{\boldsymbol{C}}_{p,\bullet} \|_2^2 / \| \boldsymbol{C}_{p,\bullet} \|_2^2 \right),$$
 (47)

par rapport aux cartes de référence $C_{p,\bullet}$, $p \in \{1, ..., P\}$. Le paramètre de régularisation η est choisi égal à 0.1 afin de minimiser cette erreur de reconstruction.

L'analyse rapportée dans la figure 4 montre que la version accélérée 3 présente un temps de calcul sensiblement réduit.

Les tableaux 1 et 2 présentent les résultats obtenus en termes de qualité d'estimation des cartes d'abondances et de temps de calcul, par IPLS et IP-PLS, dans leur version accélérée 3, pour P = 5 composantes, $N = 256^2$ pixels et différents niveaux de rapport signal sur bruit. Sont indiqués également, à titre de comparaison, les résultats obtenus par les méthodes de références NNLS et FCLS. Les stratégies IPLS et FCLS étant basées sur la même formulation variationnelle, elles conduisent à des valeurs très similaires d'erreur

Figure 3: Temps de calcul de l'algorithme FCLS (Gauche) et gain en temps de calcul apporté par l'algorithme IPLS 1 (Droite) en fonction de la taille de l'image et du nombre de composantes.

Figure 4: Temps de calcul pour l'algorithme primal-dual exact 1 (Gauche) et gain en temps de calcul apporté par l'algorithme accéléré 3 (Droite) en fonction de la taille de l'image, pour P = 3 et P = 5.

de reconstruction. Nous pouvons constater que le rajout de la régularisation permet de réduire l'erreur d'estimation des cartes. Cette amélioration est d'autant plus notable que le niveau de bruit est élevé. A l'inverse, la méthode NNLS conduit à des erreurs importantes, du fait du non respect de la contrainte d'additivité sur les abondances estimées. Remarquons enfin que notre stratégie d'accélération, basée sur l'utilisation d'un algorithme de résolution approchée de la direction primale, permet de conserver un temps de calcul raisonnable, comparé à celui de FCLS et NNLS.

4.4 Application à des données réelles

Dans cette section, nous appliquons la méthode proposée à l'analyse de données réelles obtenues par le spectro-imageur AVIRIS [34, 18], disponibles sur le site http://aviris.jpl.nasa.gov/data/free_data.html. L'image considérée est celle de Cuprite, site minier situé au sud de Nevada avec beaucoup de minerais et peu de végétation. Ce cube de données a été

RSB	NNLS	FCLS	IPLS 3	IPPLS 3
5	9.26	1.21	1.20	0.77
10	2.07	0.47	0.47	0.25
15	0.80	0.12	0.11	0.07
20	0.43	0.04	0.04	0.03

Table 1: Performance des différents algorithmes en terme d'erreur de reconstruction moyenne EQMn (%) pour P = 5, $N = 256^2$.

RSB	NNLS	FCLS	IPLS 3	IPPLS 3
5	99.71	91.01	10.11	19.48
10	100.23	90.80	10.15	19.40
15	100.35	90.66	9.99	19.02
20	100.42	90.51	9.94	19.18

Table 2: Performances des différents algorithmes en terme de temps de calcul (en secondes) pour P = 5, $N = 256^2$.

retenu car il est très largement utilisé pour illustrer les méthodes d'analyse d'images hyperspectrales. Il a été enregistré par l'instrument AVIRIS le 19 juin 1997 puis prétraité pour réduire la contribution atmosphérique et éliminer les bandes défectueuses. Finalement, le cube retenu est de taille 250×190 pixels et 188 bandes spectrales.

Figure 5: Aperçu des images spectrales pour trois bandes de longueurs d'ondes.

Afin d'illustrer les différentes étapes du traitement, la méthode VCA est d'abord utilisée pour l'estimation des pôles du mélange, puis les différents algorithmes proposés dans cet article sont appliqués pour l'estimation des cartes d'abondances avec ou sans pénalisation spatiale. Le tableau 3 résume le temps de calcul de l'étape d'estimation des abondances pour différents nombres de sources. Ces résultats sont en parfait accord avec ceux obtenus

Р	NNLS	FCLS	IPLS 1	IPLS 3	IPPLS 1	IPPLS 3
3	29.52	28.92	4.66	4.51	337.6	7.74
4	39.59	40.89	7.59	7.79	645.4	14.17
5	52.95	52.25	11.16	11.27	1263.6	22.49
6	65.36	64.99	23.10	23.13	1520.1	43.58
7	77.62	78.16	24.66	24.45	2260.8	45.34
8	89.80	93.96	30.74	30.89	—	56.97
9	103.14	106.45	39.60	40.32	—	72.80
10	114.69	120.02	48.08	49.16	—	90.87
11	130.20	132.39	65.23	66.96	—	123.57
12	161.40	163.15	84.19	87.26	—	152.38
13	189.76	192.19	97.64	102.15	—	181.07
14	216.14	221.65	116.50	121.07	—	206.75
15	242.67	251.50	133.87	138.75	—	236.36

Table 3: Performances des différents algorithmes en terme de temps de calcul (en secondes) en fonction du nombre de composantes pour les données Cuprite.

dans le cas de mélanges synthétiques : dans le cas non-pénalisé, nous observons une réduction du temps de calcul par la méthode primale-duale. Dans le cas d'une pénalisation spatiale, la résolution approchée du système primal est à privilégier pour réduire le temps de calcul. Cette troncature n'apporte aucun gain significatif dans le cas non-pénalisé. Nous signalons également que la résolution exacte n'a pas été possible pour P \geq 8 pour cause d'insuffisance en espace mémoire.

La figure 6 présente le rapport signal sur résidu en décibels, défini par

$$RSR = 20 \log_{10} \left(\|\boldsymbol{Y}\|_{F} / \|\boldsymbol{Y} - \boldsymbol{S}\hat{\boldsymbol{C}}\|_{F} \right).$$
(48)

Nous remarquons que les méthodes NNLS, IPLS et IPPLS conduisent à des valeurs similaires de RSR. La méthode NNLS permet d'obtenir un RSR plus élevé, ce qui correspond à une meilleure vérification du modèle de mélange. Ces observations sont confirmées par la figure 7, présentant la valeur du RSR pour chaque pixel n, obtenu avec P = 6. Cependant, comme nous pouvons le voir dans le tableau 4, cette méthode conduit à l'apparition de coefficients de mélanges qui peuvent être supérieurs à 1, et dont la somme n'est pas égale à 1.

La figure 8 illustre les résultats des méthodes NNLS, IPLS et IPPLS pour P = 6 en termes de spectres purs et de cartes d'abondances. Nous pouvons constater par exemple sur les images 8-(d) et 8-(e) l'effet de lissage introduit par la régularisation spatiale. A l'inverse, les cartes obtenues par NNLS demeurent très bruitées. Il serait par ailleurs judicieux de réaliser une analyse plus complète de l'effet de la régularisation en envisageant des fonc-

Figure 6: Rapport signal sur résidu (en dB) pour les différents algorithmes en fonction du nombre de composantes pour les données Cuprite.

Р	somme	min	max
3	0.889(0.107)	0.469	1.747
6	0.963(0.132)	0.498	1.555
10	0.907 (0.117)	0.498	1.555
15	$1.125\ (0.186)$	0.690	2.427

Table 4: Somme (moyenne et écart-type sur l'ensemble des pixels) et valeurs extrémales des abondances estimées par NNLS en fonction du nombre de composantes pour les données Cuprite.

Figure 7: Rapport signal sur résidu par pixel obtenu par les différentes méthodes d'estimation pour les données Cuprite avec P = 6.

tions de pénalisation $\ell_2-\ell_1$ et des images présentant des régions homogènes et des contours plus marqués.

Figure 8: Aperçu des spectres estimés par VCA et des cartes d'abondances obtenues pour P = 6 avec ou sans régularisation spatiale.

5 Conclusion

Nous avons proposé un algorithme rapide pour l'estimation des cartes d'abondances en imagerie hyperspectrale sous contraintes de positivité et additivité. Cette approche peut s'appliquer au cas d'un bruit non nécessairement gaussien ou de contraintes de somme inférieure ou égale à un. En outre, l'utilisation d'une méthode de type points intérieurs permet de traiter simultanément tous les pixels de l'image et par conséquent d'intégrer simplement une information spatiale sur les coefficients. Nous avons montré que la résolution approchée du système primal permet de pallier la forte augmentation du temps de calcul induit par l'introduction de la pénalisation. La prochaine étape de ce travail consiste en l'étude de la convergence théorique de cet algorithme et en son extension au cas de mélanges non-linéaires.

References

- K. M. Anstreicher and J.-P. Vial. On the convergence of an infeasible primal-dual interior-point method for convex programming. *Optim. Method. Soft.*, 3(4):273–283, 1994.
- [2] P. Armand, J. C. Gilbert, and S. Jan-Jégou. A feasible BFGS interior point algorithm for solving strongly convex minimization problems. *SIAM J. Optim.*, 11:199–222, 2000.
- [3] J. Bioucas-Dias and A. Plaza. An overview on hyperspectral unmixing: geometrical, statistical, and sparse regression based approaches. In Proc. IEEE International Geoscience and Remote Sensing Symposium (IGARSS'11), Vancouver, Canada, 2011.
- [4] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, New York, 1ère edition, 2004.
- [5] R. Bro and S. De Jong. A fast non-negativity constrained least squares algorithm. *Journal of Chemometrics*, 11:393–401, 1997.
- [6] C.-I. Chang. Hyperspectral Data Exploitation. Wiley Interscience, 2007.
- [7] E. Chouzenoux, S. Moussaoui, and J. Idier. Efficiency of linesearch strategies in interior point methods for linearly constrained signal restoration. In Proc. IEEE workshop on Statistical Signal Processing Workshop (SSP'11), pages 101–104, Nice, France, 2011.
- [8] R. N. Clark, G. A. Swayze, A. Gallagher, T. V. King, and W. M. Calvin. The U.S. geological survey digital spectral library: version 1: 0.2 to 3.0 μm. U.S. Geol. Surv., Denver, CO, Open File Rep. 93-592, 1993.
- [9] A. Conn, N. Gould, and L. Toint. A primal-dual algorithm for minimizing a nonconvex function subject to bounds and nonlinear constraints. In G. Di Pillo and F. Giannessi, editors, *Nonlinear Optimization and Applications*. Kluwer Academic Publishers, 2 edition, 1996.
- [10] L. C. W. Dixon. Conjugate directions without linear searches. SIAM J. Appl. Mathematics, 11(3):317–328, 1973.
- [11] N. Dobigeon, S. Moussaoui, M. Coulon, J. Tourneret, and A. O. Hero. Algorithmes bayésiens pour le démélange supervisé, semi-supervisé et

non-supervisé images hyperspectrales. *Traitement du signal*, 27(1):79–108, 2010.

- [12] N. Dobigeon, J.-Y. Tourneret, and C.-I Chang. Semi-supervised linear spectral unmixing using a hierarchical Bayesian model for hyperspectral imagery. *IEEE Trans. Signal Process.*, 56(7):2684–2695, 2008.
- [13] A. S. El-Bakry, R. A. Tapia, T. Tsuchiya, and Y. Zhang. On the formulation and theory of the newton interior-point method for nonlinear programming. J. Optim. Theory Appl., 89:507–541, juin 1996.
- [14] A. Forsgren and P. E. Gill. Primal-dual interior methods for nonconvex nonlinear programming. SIAM J. Optim., 8:1132–1152, avr. 1998.
- [15] A. Forsgren, P.E. Gill, and M.H. Wright. Interior methods for nonlinear optimization. SIAM Rev., 44(4):525–597, 2002.
- [16] D. Geman and G. Reynolds. Constrained restoration and the recovery of discontinuities. *IEEE Trans. Pattern Anal. Mach. Intell.*, 14:367– 383, 1992.
- [17] D. Geman and C. Yang. Nonlinear image recovery with half-quadratic regularization. *IEEE Trans. Image Process.*, 4:932–946, 1995.
- [18] R. Green and et al. Imaging spectroscopy and the airborne visible/infrared imaging (AVIRIS) spectrometer. Remote Sensing of Environment, 65:227–248, 1998.
- [19] G. Healey and D. Slater. Models and methods for automated material identification in hyperspectral imagery acquired under unknown illumination and atmospheric conditions. *IEEE Trans. Geosci. Remote Sensing*, 37(6):2706–2716, 1999.
- [20] D. C. Heinz and C.-I. Chang. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery. *IEEE Trans. Geosci. Remote Sensing*, 39(3):529-545, 2001.
- [21] A. Huck, M. Guillaume, and J. Blanc-Talon. Minimum dispersion constrained nonnegative matrix factorization to unmix hyperspectral data. *IEEE Trans. Geosci. Remote Sensing*, 48(6):2590–2602, 2010.
- [22] Jérôme Idier. Convex half-quadratic criteria and interacting auxiliary variables for image restoration. *IEEE Trans. Image Process.*, 10(7):1001–1009, 2001.
- [23] C. A. Johnson, J. Seidel, and A. Sofer. Interior-point methodology for 3-D PET reconstruction. *IEEE Trans. Medical Imaging*, 19(4), avr. 2000.

- [24] N. Keshava and J. F. Mustard. Spectral unmixing. IEEE Signal Processing Mag., 19(1):44 –57, jan. 2002.
- [25] C. L. Lawson and R. J. Hanson. Solving Least-Squares Problems. Prentice-Hall, Englewood Cliffs, New Jersey, 1974.
- [26] S. Moussaoui, H. Hauksdóttir, F. Schmidt, C. Jutten, J. Chanussot, D. Brie, S. Douté, and J. Benediktsson. On the decomposition of Mars hyperspectral data by ICA and Bayesian positive source separation. *Neurocomputing*, 71(10-12):2194–2208, June 2008.
- [27] J.M.P. Nascimento and J.M.B. Dias. Vertex component analysis: a fast algorithm to unmix hyperspectral data. *IEEE Trans. Geosci. Remote Sensing*, 43(4):898 – 910, April 2005.
- [28] M. Parente and A. Plaza. Survey of geometric and statistical unmixing algorithms for hyperspectral images. In Proc. IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Reykjavik, Iceland, juin 2010.
- [29] A. Plaza, P. Martinez, R. Perez, and J. Plaza. A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data. *IEEE Trans. Geosci. Remote Sensing*, 42(3):650–663, 2004.
- [30] J. R. Scott. Remote Sensing: The Image Chain Approach. New York: Oxford Univ. Press, 1997.
- [31] J. J. Settle and N. A. Drake. Linear mixing and the estimation of ground cover proportions. Int. J. Remote Sens., 14(6):1159–1177, 1993.
- [32] H. A. Van der Vorst. BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Comput., 13:631–644, mars 1992.
- [33] C. F. Van Loan. The ubiquitous Kronecker product. J. Comput. Appl. Math., 123(1-2):85–100, 2000.
- [34] Gregg Vane, Robert O Green, Thomas G Chrien, Harry T Enmark, Earl G Hansen, and Wallace M Porter. The airborne visible/infrared imaging spectrometer (AVIRIS). *Remote Sensing of Environment*, 44(2-3):127 – 143, 1993.
- [35] M. H. Wright. Interior methods for constrained optimization. In Acta Numerica 1992, pages 341–407. Cambridge University Press, 1991.
- [36] M. H. Wright. Some properties of the Hessian of the logarithmic barrier function. *Math. Prog.*, 67(2):265–295, 1994.

[37] M. H. Wright. Ill-conditioning and computational error in interior methods for nonlinear programming. SIAM J. Optim., 9(1):84–111, 1998.