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Abstract—Various recent iterative optimization methods re-
quire to compute the proximity operator of a sum of functions.
We address this problem by proposing a new distributed al-
gorithm for a sum of non-necessarily smooth convex functions
composed with arbitrary linear operators. In our approach,
each function is associated with a node of a graph, which
communicates with its neighbors. Our algorithm relies on a
primal-dual splitting strategy that avoids to invert any linear
operator, thus making it suitable for processing high-dimensional
datasets. The proposed algorithm has a wide array of applica-
tions in signal/image processing and machine learning and its
convergence is established.

I. I NTRODUCTION

Proximal splitting approaches for finding the minimizer
of a sum of convex non-necessarily smooth functions have
encountered growing popularity and attracted a large interest
in the last years [1], [2]. In these approaches, the functions are
processed either via their gradient or their proximity operator
depending on their differentiability properties. However, when
these functions are very complex, a closed form expression of
the latter proximity operator does not exist, so that one hasto
resort to iterative strategies in order to compute it.
Primal-dual splitting methods are of prominent use when
dealing with convex optimization problems where numerous
linear operators are involved [3], [4], [5], [6]. Indeed, solving
both primal and dual problems leads to algorithms that avoid
the inversion of any involved linear operator, so making this
class of methods very well suited to large-scale problems
encountered in various application fields [7], [8]. Primal-dual
techniques are based on several well-known strategies such
as the Forward-Backward iteration [9], [10], the Douglas-
Rachford algorithm [11], [12], or the Alternating Direction
Method of Multipliers [13], [14]. Recently, primal-dual algo-
rithms have been combined with block-coordinate approach,
where at each iteration only a few blocks are activated follow-
ing a specific selection rule, and the associated variables are
updated [15], [16], [17]. Stochastic and deterministic versions
of these algorithms have been used in numerous fields such
as image processing and machine learning, where they are
often known as dual ascent methods [18], [19]. New interesting
algorithms have been produced with a high flexibility in the
rule of selection of the blocks and a faster convergence speed,
combined with a reduced memory requirement.

All the aforementioned algorithms are designed to be im-
plemented in a centralized manner which may be suboptimal

when dealing with massive datasets. Therefore, various asyn-
chronous or distributed extensions have been proposed [13],
[20], [14], [21], where each term is handled by a processing
unit and an aggregate solution of the optimization problem is
reached thanks to communications between those processing
units.

In our paper, we propose a new distributed algorithm for
computing the proximity operator of the following sum of
functions:

(∀x ∈ R
N ) H(x) =

J∑

j=1

hj(Ajx), (1)

where, for everyj ∈ {1, . . . , J}, hj : R
Mj → ] − ∞,+∞]

are convex possibly nonsmooth functions andAj is a matrix
in RMj×N .

The proposed algorithm extends the dual block precondi-
tioned forward-backward algorithm that was recently proposed
in [22] to a distributed asynchronous version. Then, each
function hj is now considered as locally related to a node of
a connected hypergraph where communications are allowed
between neighbors nodes. Moreover, our method takes advan-
tage of variable metric techniques that have been shown to be
efficient for accelerating the convergence speed of proximal
approaches [23], [24], [25]. Finally, it takes advantage ofall
the benefits of primal-dual splitting strategies (handlinga finite
sum of convex functions without inverting none of the involved
linear operators) and it offers convergence guaranties.

The reminder of this paper is organized as follows: in
Section II we recall some fundamental background and we
introduce a centralized dual forward-backward algorithm for
computing the desired proximity operator. Section III presents
a distributed version of this algorithm, furthermore a parallel
variant of the distributed algorithm is proposed. Finally,some
conclusions are given.

II. PROBLEM FORMULATION

A. Optimization Tools

Let Γ0(R
N ) designate the class of proper lower-

semicontinuous convex functions fromRN to ]−∞,+∞] and
let B ∈ RN×N be a symmetric positive definite matrix. The
proximity operator ofψ ∈ Γ0(R

N ) at x̃ ∈ RN relative to the
metric induced byB is denoted by proxB,ψ(x̃) and defined



as the unique solution to the following minimization problem
[1]:

minimize
x∈R

N
ψ(x) +

1

2
‖x− x̃‖2B , (2)

where the weighted norm‖ ·‖B is defined by〈 · |B · 〉
1/2 with

〈 · | · 〉 the usual scalar product ofRN . WhenB is set to the
identity matrix, note that the standard proximity operatoris
recovered.

We also define the conjugate of a functionψ ∈ Γ0(R
N ) as

ψ∗ : RN → [−∞,+∞] : x→ sup
ν∈RN

(〈ν|x〉 − ψ(ν)) . (3)

According to the Moreau decomposition theorem [26]:

proxB,ψ∗ = Id −B−1proxB−1,ψ(B ·). (4)

B. Minimization Problem

In this paper, we are interested in computing the proximity
operator ofH defined in (1) at̃x ∈ RN , which amounts to
find the solution to the following minimization problem:

Find x̂ = proxH(x̃)

= argmin
x∈R

N

J∑

j=1

hj(Ajx) +
1

2
‖x− x̃‖2. (5)

where
⋂
j∈{1,...,J} dom(hj ◦ Aj) 6= ∅. A number of primal-

dual algorithms can be applied to solve Problem (5) by
resorting to its dual formulation given by:

Find ŷ = argmin
y=(yj)16j6J∈R

M

1

2

∥∥∥x̃−
J∑

j=1

A⊤
j y

j
∥∥∥
2

+

J∑

j=1

h∗j (y
j),

(6)
where(h∗j )16j6J are the conjugate functions of(hj)16j6J .

Among existing efficient primal-dual approaches, the Dual
Block Preconditioned Forward-Backward algorithm was re-
cently proposed in [22] :

Algorithm 1 Dual Block Preconditioned Forward-Backward

Initialization:
Bj ∈ RMj×Mj with Bj � AjA

⊤
j , ∀j ∈ {1, . . . , J}

ǫ ∈]0, 1], (yj0)16j6J ∈ RM , x0 = x̃−
∑J
j=1A

⊤
j y

j
0.

Main loop:
For n = 0, 1, . . .

γn ∈ [ǫ, 2− ǫ]

jn ∈ {1, . . . , J}

ỹjnn = yjnn + γnB
−1
jn
Ajnxn

y
jn
n+1 = ỹjnn − γnB

−1
jn

proxγnB−1

jn
,hjn

(
γ−1
n Bjn ỹ

jn
n

)

y
j
n+1 = yjn, ∀j ∈ {1, . . . , J} \ {jn}

xn+1 = xn −A⊤
jn
(yjnn+1 − yjnn ).

Algorithm 1 benefits from the acceleration provided by
variable metric methods through the introduction of precondi-
tioning matrices(Bj)16j6J . Note that a non-preconditioned
version is obtained by setting∀j ∈ {1, . . . , J} Bj =

‖Aj‖
2IMj

. Moreover, when all the dual variablesyjnn are
updated in a parallel way followed by an update of the primal
variablexn, one recovers the Parallel Dual Forward-Backward
proposed in [27].

Results in terms of convergence speed reveal the effective-
ness of the above algorithm compared to existing algorithms
in the literature and convergence guaranties on both generated
primal and dual sequences are supplied.

III. D ISTRIBUTED ALGORITHM

In order to generate a distributed or decentralized solution to
Problem (5), we will make use of a global consensus technique
by rewriting the problem under the following form:

Find x̂ = argmin
x=(xj)16j6J∈ΛJ

J∑

j=1

hj(Ajx
j)+

1

2

J∑

j=1

ωj‖x
j−x̃‖2,

(7)
where(ωj)16j6J ∈]0, 1]J are such that

∑J
j=1 ωj = 1, andΛJ

is the vector subspace ofRNJ that enforces the convergence
toward the aggregate solution, defined as

ΛJ =
{
[(x1)⊤, . . . , (xJ )⊤]⊤ ∈ R

NJ
∣∣ x1 = . . . = xJ

}
. (8)

One can notice that the solution to Problem (7) is linked to
the solution to Problem (5) when the variables(xj)16j6J are
all equal tox̂, that is the value of the proximity operator of∑J
j=1 hj ◦Aj at x̃ (see (5)).

A. Local Form of Consensus

For more flexibility, let us split the constraint setΛJ into
L local constraintsΛκℓ

with cardinalities(κℓ)16ℓ6L. Each
constraint setΛκℓ

handles a subset(Vℓ)16ℓ6L of {1, . . . , J}
such that, for everyx = [(x1)⊤, . . . , (xJ )⊤]⊤ ∈ RNJ ,

x ∈ ΛJ ⇔ (∀ℓ ∈ {1, . . . , L}) (xj)j∈Vℓ
∈ Λκℓ

. (9)

Fig. 1 represents an example of a connected hypergraph
induced by the sets(Vℓ)16ℓ6L. This hypergraph is composed
of J = 7 nodes associated to the functions(hj)16j67 and
L = 4 hyperedges represented by the sets(Vℓ)16ℓ64 with
cardinalitiesκ1 = 3, κ2 = 2, κ3 = 2 andκ4 = 3 respectively.
Each functionhj is considered as local and processes its own
private data. Moreover, each nodej is allowed to communicate
with nodes that belong to the same setVℓ.
For instance, node4 belongs to the setV2 and communicates
with node5. Besides, node3 belongs toV1 andV4 hence it
is allowed to communicate with the nodes{1, 2, 5, 7}. Note
that the connectivity of the hypergraph is essential in order to
ensure the convergence toward the consensus solutionx̂.

Let us define, for everyℓ ∈ {1, . . . , L}, the matrix
Sℓ ∈ RNκℓ×NJ associated to a constraintΛκℓ

that extracts
the vector (xj)j∈Vℓ

∈ Λκℓ
from the concatenated vector

x = [(x1)⊤, . . . , (xJ )⊤]⊤ ∈ RNJ :

(xj)j∈Vℓ
= [(xi(ℓ,1))⊤, . . . , (xi(ℓ,κℓ))⊤]⊤ = Sℓ x, (10)
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Fig. 1. Connected hypergraph of7 nodes and4 hyperedges.

where i(ℓ, 1), . . . , i(ℓ, κℓ) denote the elements ofVℓ ordered
in an increasing manner. The transpose matrix of(Sℓ)16ℓ6L
is such that, for everyvℓ = (vℓ,k)16k6κℓ

∈ RNκℓ ,

x = [(x1)⊤, . . . , (xJ )⊤] = S
⊤
ℓ v

ℓ, (11)

where

xj =

{
vℓ,k if j = i(ℓ, k) with k ∈ {1, . . . , κℓ}

0 otherwise.
(12)

The above definitions allow us to propose the following
alternative formulation of Problem (7):

Find x̂ = argmin
x=(xj)16j6J∈R

NJ

J∑

j=1

hj(Ajxj)+

L∑

ℓ=1

ιΛκℓ
(Sℓ x)

+
1

2

J∑

j=1

ωj‖xj − x̃‖2. (13)

The main difference between formulations (7) and (13) is the
introduction of the term

∑L
ℓ=1 ιΛκℓ

(Sℓ x) that allows updates
in an asynchronous fashion and ensures the convergence to
the aggregate solution.

In order to solve Problem (13) using Algorithm 1, it is
necessary to set the following parameters:

• J ′ = J + L,
• (∀ℓ ∈ {1, . . . , L}) MJ+ℓ = Nκℓ,
• M =

∑J ′

j=1Mj ,

• (∀j ∈ {1, . . . , J}) Aj = [ 0 . . . 0︸ ︷︷ ︸
N(j−1)×

ω
−1/2
j Aj 0 . . . 0︸ ︷︷ ︸

N(J−j)×

],

• D = Diag(ω−1/2
1 IN , . . . , ω

−1/2
J IN ),

• (∀ℓ ∈ {1, . . . , L}) hJ+ℓ = ιΛκℓ
and AJ+ℓ = SℓD.

Then, Problem (13) is recast as:

Find x̂ = Dx̂
′ such that

x̂
′ = argmin

x
′∈R

NJ

J ′∑

j=1

hj(Ajx
′) +

1

2
‖x′ − x̃

′‖2, (14)

wherex̃′ = [ω
1/2
1 x̃⊤, . . . , ω

1/2
J x̃⊤]⊤ ∈ RNJ .

B. Proposed Algorithm

Using Algorithm 1 to solve Problem (14) leads to the
following distributed algorithm after some reindexing and
simplifications :

Algorithm 2 Distributed Preconditioned Dual Forward-
Backward

Initialization:

(ωj)16j6J ∈]0, 1]J such that
J∑

j=1

ωj = 1

Bj ∈ RMj×Mj with Bj � AjA
⊤
j , j ∈ {1, . . . , J}

ϑℓ = min
j∈Vℓ

ωj , ℓ ∈ {1, . . . , L}

ǫ ∈]0, 1]

y
j
0 ∈ R

Mj , x
j
0 = x̃−A⊤

j y
j
0, j ∈ {1, . . . , J}.

Main loop:
For n = 0, 1, . . .

γn ∈ [ǫ, 2− ǫ]

jn ∈ {1, . . . , J + L}

If jn 6 J

Local optimization:

ỹjnn = yjnn + γnB
−1
jn
Ajnx

jn
n

y
jn
n+1 = ỹjnn − γnB

−1
jn

proxγnωjnB
−1

jn
,hjn

(
γ−1
n Bjn ỹ

jn
n

)

y
j
n+1 = yjn, j ∈ {1, . . . , J} \ {jn}

x
jn
n+1 = xjnn −A⊤

jn
(yjnn+1 − yjnn )

x
j
n+1 = xjn, j ∈ {1, . . . , J} \ {jn}

else

Synchronization:

ℓn = jn − J

y
j
n+1 = yjn, j ∈ {1, . . . , J}

xℓnn =
1

κℓn

∑

j∈Vℓn

xjn

For k = 1, . . . , κℓn⌊
x
i(ℓn,k)
n+1 = x

i(ℓn,k)
n + γnϑℓnω

−1
i(ℓn,k)

(xℓnn − x
i(ℓn,k)
n )

x
j
n+1 = xjn, j 6∈ Vℓn .



One can notice that Algorithm 2 is composed of two main
parts:

• First a local optimization part which is reminiscent of
the Dual Block Forward-Backward algorithm where, at
each iteration, a blockjn is selected and the associated
dual and primal variablesyjnn and xjnn respectively are
updated. Note that the difference between the proposed
algorithm and Algorithm 1 lies in the fact that each block
jn is now associated to a primal variablexjnn whereas, in
Algorithm 1 xn was a shared variable.

• The second part of Algorithm 2 is a synchronization
step in-which a setVℓn is selected and all the variables
(xjn)jn∈Vℓn

are updated by computing the average over
the selected setVℓn .

In Algorithm 2 all computation steps only involve local
variables, so considerable flexibility is allowed by the quasi-
cyclic rule for choosing the indicesjn andℓn at each iteration
n. This distributed algorithm inherits all the advantages of
primal-dual methods, in particular it requires no inversion of
the matrices(Aj)16j6J , which is of main interest when these
matrices do not have a simple structure and are of very large
size. Note that the proposed approach is quite different from
the ones developed in [20] since it does not implement a
random sweeping rule and the convergence results do not rely
on nonexpansiveness properties of some stochastic operators.

Remark that the case of a graph topology is encompassed
by Algorithm 2, by setting for everyℓ ∈ {1, . . . , L} the
cardinality of the setsVℓ to κℓ = 2, and requiring after each
optimization step on blockjn, a synchronization step on all
the setsVℓ to which jn belongs.

C. Special Case when L = 1

An interesting instance of Algorithm 2 is obtained by setting
L = 1, V1 = {1, . . . , J}, and by performing at each iteration
an update of a subset of the dual variables followed by a
global averaging step. After some reindexing of the involved
variables, this yields Algorithm 3.

This algorithm allows to solve Problem (7) by computing
the dual variables in a parallel manner. At iterationn ∈ N, it
allows to activate only a subset(yjn)j∈Jn of them. It should be
emphasized that even in the case when all the dual variables
are updated iteratively (i.e.(∀n ∈ N) Jn = {1, . . . , J}),
Algorithm 3 exhibits a different structure from the Parallel
Dual Forward-Backward Algorithm in [27].

IV. CONCLUSION

We have proposed a new asynchronous primal-dual algo-
rithm for computing the proximity operator of a sum of convex
functions composed with arbitrary linear operators, whichis a
frequently encountered problem in various application fields.
The proposed algorithm benefits from the flexibility offered
by variable metric techniques that can significantly improve
its convergence speed. The convergence properties of this
algorithms will be discussed in a forthcoming paper.
As future work, we also intend to apply the proposed algorithm

to large-scale inverse problems, especially those encountered
in video restoration [28].

Algorithm 3 Parallel Preconditioned Dual Forward-Backward

Initialization:

(ωj)16j6J ∈]0, 1]J such that
J∑

j=1

ωj = 1

Bj ∈ RMj×Mj with Bj � AjA
⊤
j , j ∈ {1, . . . , J}

ϑ = min
j∈{1,...,J}

ωj

ǫ ∈]0, 1]

y
j
0 ∈ R

Mj , x
j
0 = x̃−A⊤

j y
j
0, j ∈ {1, . . . , J}.

Main loop:
For n = 0, 1, . . .

γn ∈ [ǫ, 2− ǫ]

Jn ⊂ {1, . . . , J}

For j ∈ Jn

ỹjn = yjn + γnB
−1
j Ajx

j
n

y
j
n+1 = ỹjn − γnB

−1
j proxγnωjB

−1

j
,hj

(
γ−1
n Bj ỹ

j
n

)

x
j
n+1/2 = xjn −A⊤

j (y
j
n+1 − yjn)

For j ∈ {1, . . . , J} \ Jny
j
n+1 = yjn

x
j
n+1/2 = xjn

xn =
1

J

J∑

j=1

x
j
n+1/2

For j = 1, . . . , J⌊
x
j
n+1 = x

j
n+1/2 + γnϑω

−1
j (xn − x

j
n+1/2).
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