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Abstract—Various recent iterative optimization methods re- when dealing with massive datasets. Therefore, various-asy
quire to compute the proximity operator of a sum of functions. chronous or distributed extensions have been proposed [13]
We address this problem by proposing a new distributed al- [20], [14], [21], where each term is handled by a processing
gorithm for a sum of non-necessarily smooth convex functions o ! ’ . L .
composed with arbitrary linear operators. In our approach, unit and an aggregate SOIUt'_On _Of the optimization problem !
each function is associated with a node of a graph, which reached thanks to communications between those processing

communicates with its neighbors. Our algorithm relies on a units.

primal-dual splitting strategy that avoids to in\{ert any Iingar In our paper, we propose a new distributed algorithm for
operator, thus making it suitable for processing high-dimensional computing the proximity operator of the following sum of
datasets. The proposed algorithm has a wide array of applica- . ;
tions in signal/image processing and machine learning and its functions:
convergence is established.

I. INTRODUCTION (Ve eRY)  H(z) =) hj(4;x), 1)

=1
Proximal splitting approaches for finding the minimizer ’

of a sum of convex non-necessarily smooth functions hawéere, for everyj € {1,...,J}, h;: RMi — ] — 0o, +o0]
encountered growing popularity and attracted a large ésterare convex possibly nonsmooth functions afigis a matrix
in the last years [1], [2]. In these approaches, the funstame in RMi <N,
processed either via their gradient or their proximity @per  The proposed algorithm extends the dual block precondi-
depending on their differentiability properties. Howewshen tioned forward-backward algorithm that was recently pisgsb
these functions are very complex, a closed form expresdioni [22] to a distributed asynchronous version. Then, each
the latter proximity operator does not exist, so that onetbasfunction /; is now considered as locally related to a node of
resort to iterative strategies in order to compute it. a connected hypergraph where communications are allowed
Primal-dual splitting methods are of prominent use whdretween neighbors nodes. Moreover, our method takes advan-
dealing with convex optimization problems where numerouage of variable metric techniques that have been shown to be
linear operators are involved [3], [4], [5], [6]. Indeed \sng efficient for accelerating the convergence speed of praxima
both primal and dual problems leads to algorithms that avoighproaches [23], [24], [25]. Finally, it takes advantagealbf
the inversion of any involved linear operator, so making ththe benefits of primal-dual splitting strategies (handbrfinite
class of methods very well suited to large-scale problersam of convex functions without inverting none of the imvav
encountered in various application fields [7], [8]. Prindalal linear operators) and it offers convergence guaranties.
techniques are based on several well-known strategies sucfThe reminder of this paper is organized as follows: in
as the Forward-Backward iteration [9], [10], the DouglasSection Il we recall some fundamental background and we
Rachford algorithm [11], [12], or the Alternating Directio introduce a centralized dual forward-backward algorition f
Method of Multipliers [13], [14]. Recently, primal-dualgd- computing the desired proximity operator. Section Il s
rithms have been combined with block-coordinate approachdistributed version of this algorithm, furthermore a fata
where at each iteration only a few blocks are activated¥ello variant of the distributed algorithm is proposed. Finadigme
ing a specific selection rule, and the associated varialskes gonclusions are given.
updated [15], [16], [17]. Stochastic and deterministicsi@ns
of these algorithms have been used in numerous fields such I[l. PROBLEM FORMULATION
as image processing and machine learning, where they %r
often known as dual ascent methods [18], [19]. New intemgsti ™
algorithms have been produced with a high flexibility in the Let T,(RY™) designate the class of proper lower-
rule of selection of the blocks and a faster convergencedspesemicontinuous convex functions fraid¥ to | — oo, +oc] and
combined with a reduced memory requirement. let B € RV*YN pbe a symmetric positive definite matrix. The
All the aforementioned algorithms are designed to be inproximity operator ofy) € I'o(RY) atz € R” relative to the
plemented in a centralized manner which may be suboptinmaétric induced byB is denoted by prox ,(z) and defined
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as the unique solution to the following minimization prable ||A4,||?I;,. Moreover, when all the dual variableg are

[1]: updated in a parallel way followed by an update of the primal
minimize (z) + l\w — 7|3, (2) Vvariablez,, one recovers the Parallel Dual Forward-Backward
zeRN 2 proposed in [27].

Results in terms of convergence speed reveal the effective-
ness of the above algorithm compared to existing algorithms
in the literature and convergence guaranties on both gestera
primal and dual sequences are supplied.

where the weighted nort- || 5 is defined by(- | B - )1/2 with
(-]-) the usual scalar product @". When B is set to the
identity matrix, note that the standard proximity operaisor
recovered.

We also define the conjugate of a functione T'y(R”Y) as

* RN = [—o0, +o0] sz — sup ((v|z) —¥(v)). (3) o _ _
vERN In order to generate a distributed or decentralized saiuttio

According to the Moreau decomposition theorem [26]: Problem (5), we will make use of a global consensus technique
by rewriting the problem under the following form:

IIl. DISTRIBUTED ALGORITHM

proxg . = Id — B~'proxz 1 ,(B -). (4)

J J
B. Minimization Problem Find 7 = argmin Z hj(ijj)Jr% Z%‘W*fHQ,
In this paper, we are interested in computing the proximity z=(a")1gj<a €A j=1 j=1
operator of H defined in (1) att € RY , which amounts to , (7)
find the solution to the following minimization problem: ~ Where(w;)i1< < €]0,1]7 are such tha~;_, w; = 1, andA,;
o _ is the vector subspace &~ that enforces the convergence
Find Z = proxg (z) toward the aggregate solution, defined as
J
:arggljin Zhj(Aja:)—F%Hx—fHZ. 5) AJZ{[(I‘l)T,...,(.rJ)T]T e RNV | et=...=z"}. (8)
S j=1
One can notice that the solution to Problem (7) is linked to
e solution to Problem (5) when the variableg), << are
Il equal toz, that is the value of the proximity operator of
S hjoA; at (see (5)).

J J
o _ 1 R L
Find = argmin §Hx_ZAj ng +2_ ), A. Local Form of Consensus

y=(")1<j<sERM j=1 j=1

whereﬂje{l,w,} dom(h; o A;) # @. A number of primal-
dual algorithms™ can be applied to solve Problem (5) b
resorting to its dual formulation given by:

(6) For more flexibility, let us split the constraint sat; into
where (h})1<;< are the conjugate functions 0f;)1<;<s. L local constraintsA,, with cardinalities (k¢)1</<z. Each
Among existing efficient primal-dual approaches, the Dugbnstraint set\,,, handles a subsé,);<,<; of {1,...,J}
Block Preconditioned Forward-Backward algorithm was resuch that, for everye = [(z')",..., (z/)"]" € RN/,
cently proposed in [22] :

xelA; & (Ve{l,...,L}) (29)jev, € Av,. (9)
Algorithm 1 Dual Block Preconditioned Forward-Backward

Fig. 1 represents an example of a connected hypergraph
induced by the set&V,);<¢<r. This hypergraph is composed
of J = 7 nodes associated to the functiofis;)<;<7 and

Initialization:
Bj € RMi>M; with B; = AjA], Vje{l,...,J}

e €]0,1], ()1<jcs €ERM 2o =7 — Y7 ATy L = 4 hyperedges represented by the s@fs);<,<s with
Main loop: cardinalitiesk; = 3, ko = 2, k3 = 2 and k4 = 3 respectively.
Forn=0,1, Each functionh; is considered as local and processes its own
n € 6,2 — €] pr_|vate data. Moreover, each nogles allowed to communicate
) with nodes that belong to the same gt
In € {1"' -5 J} For instance, nodé belongs to the sé¥s and communicates
g = yp YB; ' Aj, with node5. Besides, nod8 belongs toV; andV, hence it
Y =yir — %Bj:mlprOX%B;}’hjn (v 1B vr) is allowed to communicate with the nod¢s, 2,5,7}. Note
vio=yl, Yie{l,..., T3\ {jn} that the connectivity of the hypergraph is essential in otde
. oy AT (yjn —yin). ensure the copvergence toward the consensus SOlﬁIIOI’].
LAl T T e el e Let us define, for every¢ € {1,...,L}, the matrix

S, € RN=xNJ agsociated to a constraift,, that extracts

Algorithm 1 benefits from the acceleration provided byhe vector (+7);cy, € A, from the concatenated vector
variable metric methods through the introduction of preton g — [(z!)T (x)T]T e RNV :

tioning matrices(B;)1<;<s. Note that a non-preconditioned ‘ _ _
version is obtained by settingj ¢ {1,...,J} B; = (@) ey, = [(@EDT L (@ EFN)TIT = Sy, (10)
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Fig. 1. Connected hypergraph dfnodes andl hyperedges.

wherei(¢,1),...,i(¢,x¢) denote the elements &f, ordered B. Proposed Algorithm
in an increasing manner. The transpose matriX.$f)1</<r.

is such that, for every’ = (v“*), <<, € RV, Using Algorithm 1 to solve Problem (14) leads to the

following distributed algorithm after some reindexing and
z=[aHT,... ()] =8/ (11) simplifications :

where Algorithm 2 Distributed Preconditioned Dual Forward-
- Gk if § =0 k) with k€ {1,...
o= {v J '.( k) €{l,....re} (12) Backward
0 otherwise. Initialization: p
initi ing(w;)1<j<s €]0,1]7 such that =1
The above definitions allow us to propose the following(w;)i<i<s €U, Wi
alternative formulation of Problem (7): j=1
Bj € RMi*Miwith B; = A;AT, je{l,...,J}
J L ﬁg =minw,;, £€{1,.
Find z = argmin Zhj(ijj)+Z A, (Sex) jeve 7 L. }
@=(x;)1<;<s€ERYT 1 =1 € E}O 1]

L e RM xo—x—ATyO, jed{l,....J}
+3 > wille; —FP. (13) Maln loop:
= Forn=0,1,...
The main difference between formulations (7) and (13) is thgY. € [€,2 — €]
introduction of the termd_;_, ta,, (Sex) that allows updates | j, € {1,...,J + L}
in an asynchronous fashion and ensures the convergence ijn <J
the aggregate solution.

In order to solve Problem (13) using Algorithm 1, it is Local opt|m|zat|on'

necessary to set the following parameters: ?/51" =yp + %B AJnxJ" _
e J=J+L, Ui = T — B prox 5y, (0 B Ui
. (W & {1 }) MJ+@ = Nﬂg, y%Jrl = yn’ j S {]. J} \ {]n}
M5 u 1/ i = 2l — AT, (W — o)
e (Vje{l,..., }) Aj=[0...0w;""A; 0...0], _ﬂffq,+1=33¥u 36{17...,J}\{jn}
iy N(lJ/zl)X N(J—j)x else
« D= Dlag( Iy, wy N, Synchronization:
. (V[ € {1 }) hjte = Av, and AJ+g =SyD. Oy =G —J
! O
Then, Problem (13) is recast as: y"+1 y"’ JEL. I}
7Zn . ]
= — x,
Find Z = Dz’ such that ln ]ezv;n
J' 1 o Fork =1,. ™
Z' = argmin hj(Ajz')+ ||l —Z'||°, (14 (6 k) _ (6 k _ ik
gy ; )+ 5l I, (14) MEH ) < ) ey @ — )

n+1 x{'m j ¢ V@n'

whered’ = [w]/?ZT,...,w"/?FT]T € RV, - -



One can notice that Algorithm 2 is composed of two maito large-scale inverse problems, especially those enepeoht
parts: in video restoration [28].

* ,';h';StDi;IO%all(l)fkptllzrgzv?rg%girktwggcgléir[;rgnﬁﬁgg’ (;',,ﬁlgorithm 3 Parallel Preconditioned Dual Forward-Backward
each iteration, a blocl,, is selected and the associatethitialization:
dual and primal variableg’» and z/» respectively are
updated. Note that the difference between the propose@f]j )i<i<s € .
glg_orlthm and A!gorlthm 1 I|e_zs in the_fact_ that each b_IockB_ € RMi*M; with B, = A _;177 jefl,...,.n
jn IS NOW associated to a primal variabté¢: whereas, in 19]7 . 4 J 77
Algorithm 1 x,, was a shared variable. o je{r{?,r,l,‘;} i

« The second part of Algorithm 2 is a synchronizatione €]0, 1]
step in-which a sev,, is selected gnd all the variables yJ ¢ RM: ) =7 — A]Tyg, je{l,...,J}
(z77);,ev,, are updated by computing the average ov
the selected sety,, .

In Algorithm 2 all computation steps only involve local
variables, so considerable flexibility is allowed by the sjua
cyclic rule for choosing the indices, and#,, at each iteration |JIn C {1,....,J}
n. This distributed algorithm inherits all the advantages of For j e J,,
primal-dual methods, in particular it requires no invensiaf
the matriceg 4;),<;j<., which is of main interest when these :
matrices do not have a simple structure and are of very largd v/, ., = 7/, — %Bj‘lprox%ijfl’hj (y,lejg{L)
size. Note that the proposed approach is quite differemn fro j i AT j]

; ince i : x =2}, = Aj (Y1 — Y1)
the ones developed in [20] since it does not implement fat“n+1/2 J \In+
random sweeping rule and the convergence results do not relyorj € {1,...,J}\ J,
on nonexpansiveness properties of some stochastic operat(

Remark that the case of a graph topology is encompasse ,
by Algorithm 2, by setting for every € {1,...,L} the xi+1/2 =z,
cardinality of the set&, to x, = 2, and requiring after each | 1. .
optimization step on block,,, a synchronization step on all | Zn = 7 inﬂ/g
the setsV, to which j,, belongs. j=1

J
0,1]7 such that) ~w; =1

Fain loop:
Forn=0,1,...
Yn € 6,2 — €

U, =yl + By Ay,

jyngrl = yﬂ,

Forj=1,...,J
C. Secial Casewhen L = 1

An interesting instance of Algorithm 2 is obtained by sejtin =
L=1,V,={1,...,J}, and by performing at each iteration
an update of a subset of the dual variables followed by a
global averaging step. After some reindexing of the invdlve
variables, this yields Algorithm 3.

This algorithm allows to solve Problem (7) by computing
the dual variables in a parallel manner. At iteratiore N, it
allows to activate only a subsgy);c;, of them. It should be
emphasized that even in the case when all the dual variables
are updated iteratively (i.e(vn € N) J, = {1,...,J}),
Algorithm 3 exhibits a different structure from the Parhlle
Dual Forward-Backward Algorithm in [27].

. , i .
{xfﬁl = :Cfl+1/2 +yndw; (Tn — xfl+l/2).

IV. CONCLUSION

We have proposed a new asynchronous primal-dual algo-
rithm for computing the proximity operator of a sum of convex
functions composed with arbitrary linear operators, which
frequently encountered problem in various applicatiordfel
The proposed algorithm benefits from the flexibility offered
by variable metric techniques that can significantly imerov
its convergence speed. The convergence properties of this
algorithms will be discussed in a forthcoming paper.

As future work, we also intend to apply the proposed algorith



(1]

(2]
(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

(18]

[16]

(17]

(18]

[19]

[20]

[21]

REFERENCES [22]
P. L. Combettes and J.-C. Pesquet, “Proximal splitting odshin
signal processing,” irFixed-Point Algorithms for Inverse Problems in
Science and Engineering, H. H. Bauschke, R. Burachik, P. L. Combettes,
V. Elser, D. R. Luke, and H. Wolkowicz, Eds. New York: Springe [2
Verlag, 2010, pp. 185-212.

N. Parikh and S. Boyd, “Proximal algorithmsffound. Trends Optim.,
vol. 1, no. 3, pp. 127-239, Jan. 2014.

N. Komodakis and J.-C. Pesquet, “Playing with duality: Awverview
of recent primal-dual approaches for solving large-scalgnopation
problems,”|EEE Sgnal Process. Mag., vol. 32, no. 6, pp. 31-54, Oct.
2015. [25]
P. L. Combettes, D. Dung, and B. Ciiy“Dualization of signal recovery
problems,"Set-Valued Var. Anal., vol. 18, no. 3, pp. 373-404, Dec. 2010.
L. Condat, “A primal-dual splitting method for convex optization
involving lipschitzian, proximable and linear compositetsy” J. Optim.
Theory App., vol. 158, no. 2, pp. 460-479, Aug. 2013.

S. R. Becker and P. L. Combettes, “An algorithm for spiigtiparallel
sums of linearly composed monotone operators, with applicaitio
signal recovery,”J. Nonlinear Convex Anal., vol. 15, no. 1, pp. 137—
159, Jan. 2014.

C. Couprie, L. Grady, L. Najman, J.-C. Pesquet, and H. daltDual
constrained tv-based regularization on grapl®$AM J. Imaging ci.,
vol. 6, pp. 1246-1273, Jul. 2013.

A. Jezierska, E. Chouzenoux, J.-C. Pesquet, and H. TalAgrimal-
dual proximal splitting approach for restoring data coregptwith
poisson-gaussian noise,” IREE International Conference on Acoustics,
Soeech and Signal Processing (ICASSP 2012), Kyoto, Japan, 25-30 Mar.
2012, pp. 1085-1088.

A. Chambolle and T. Pock, “A first-order primal-dual algbrn for
convex problems with applications to imagind,’Math. Imaging Vision,
vol. 40, no. 1, pp. 120-145, May 2011.

P. L. Combettes, L. Condat, J.-C. Pesquet, and B. @. ¥ forward-
backward view of some primal-dual optimization methods in image
recovery,” inlEEE International Conference on Image Processing (ICIP
2014), Paris, France, 27-30 Oct. 2014, pp. 4141-4145.

R. I. Bof and C. Hendrich, “A Douglas-Rachford type rpal-dual
method for solving inclusions with mixtures of composite andapel-
sum type monotone operatorsAM J. Optim., vol. 23, no. 4, pp.
2541-2565, Dec. 2013.

P. L. Combettes and J.-C. Pesquet, “Stochastic quaéi-Haock-
coordinate fixed point iterations with random sweepin§fAM J.
Optim., vol. 25, no. 2, pp. 1221-1248, Jul. 2015.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Ecksteisttibuted
optimization and statistical learning via the alternatimgction method
of multipliers,” Found. Trends Machine Learn., vol. 8, no. 1, pp. 1-122,
Jan. 2011.

F. lutzeler, P. Bianchi, P. Ciblat, and W. Hachem, “Egjtlconvergence
rate of a distributed alternating direction method of muidird,” to
appear in |[EEE Trans. Autom. Control, Dec. 2014.

S. Shalev-Shwartz and T. Zhang, “Stochastic dual doatd ascent
methods for regularized loss minimization). Mach. Learn. Res,,
vol. 14, no. 1, pp. 567-599, Feb. 2013.

A. Chambolle and T. Pock, “A remark on accelerated block co
ordinate descent for computing the proximity operators of a su
of convex functions,” Tech. Rep., 2015, http://www.optiatinn-
online.org/DB FILE/2015/01/4719.pdf.

P. Bianchi, W. Hachem, and F. lutzeler, “A stochastic rcimate de-
scent primal-dual algorithm and applications to largeea@mposite
optimization,” 2014, http://arxiv.org/pdf/1407.0898pdf.

Z. Qu, P. Richarik, and T. Zhang, “Randomized dual coordinate ascent
with arbitrary sampling,” 2014, http://arxiv.org/abs/148873.

M. Jaggi, V. Smith, M. Takac, J. Terhorst, S. Krishnan,Hofmann,
and M. |. Jordan, “Communication-efficient distributed duabinate
ascent,” inAdv. Neural Inf. Process. Syst., Z. Ghahramani, M. Welling,
C. Cortes, N. Lawrence, and K. Weinberger, Eds. Curran Astesx;
Inc., Sept. 2014, pp. 3068-3076.

J.-C. Pesquet and A. Repetti, “A class of randomized grinal
algorithms for distributed optimization,J. Nonlinear Convex Anal.,
vol. 16, no. 12, Dec. 2015.

P. Richérik and M. Takg€, “Distributed coordinate descent method for
learning with big data,” 2013, http://arxiv.org/pdf/132059v1.pdf.

(24]

(26]

(27]

(28]

F. Abboud, E. Chouzenoux, J.-C. Pesquet, J.-H. Chemud, L. La-
borelli, “A dual block coordinate proximal algorithm with piication
to deconvolution of interlaced video sequences,THEE |nternational
Conference on Image Processing (ICIP 2015), Quebec City, Canada,
27-30 Sep. 2015, 5 pages.

3] E. Chouzenoux, J.-C. Pesquet, and A. Repetti, “Vaeiahétric forward-

backward algorithm for minimizing the sum of a differentiablection
and a convex function,J. Optim. Theory App., vol. 162, no. 1, pp.
107-132, Jul. 2014.

E. Chouzenoux, J.-C. Pesquet, and A. Repetti, “A blodordi-
nate variable metric forward-backward algorithm,” Tech. Rei®13,
http://www.optimization-online.org/DBHTML/2013/12/4178.html.

S. Becker and J. Fadili, “A quasi-Newton proximal spti¢¢ method,”
in Adv. Neural Inf. Process. Syst., Lake Tahoe, Nevada, 3-8 Dec. 2012,
pp. 2627-2635.

P. L. Combettes and B. C.{V “Variable metric forward-backward split-
ting with applications to monotone inclusions in dualit@ptimization,
vol. 63, no. 9, pp. 1289-1318, Sept. 2014.

P. L. Combettes, D. Ong, and B. C. W, “Proximity for sums of
composite functions,J. Math. Anal. Appl., vol. 380, no. 2, pp. 680—
688, Aug. 2011.

F. Abboud, E. Chouzenoux, J.-C. Pesquet, J.-H. Chesud, L. La-
borelli, “A hybrid alternating proximal method for blind viderestora-
tion,” in 22nd | EEE European Sgnal Processing Conference (EUSIPCO
2014), Lisbon, Portugal, 1-5 Sep. 2014, pp. 1811-1815.



