
g

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

SuperDeConFuse: A supervised deep convolutional transform based fusion
framework for financial trading systems
Pooja Gupta a,∗, Angshul Majumdar a, Emilie Chouzenoux b, Giovanni Chierchia c

a Indraprastha Institute of Information Technology, Delhi, India
b CVN, Inria Saclay, CentraleSupélec, Gif-sur-Yvette, France
c LIGM, Université Gustave Eiffel, CNRS, ESIEE Paris, Noisy-le-Grand, France

A R T I C L E I N F O

Keywords:
Information fusion
Deep learning
Convolution
Transform learning
Stock trading

A B S T R A C T

This work proposes a supervised multi-channel time-series learning framework for financial stock trading.
Although many deep learning models have recently been proposed in this domain, most of them treat the
stock trading time-series data as 2-D image data, whereas its true nature is 1-D time-series data. Since the
stock trading systems are multi-channel data, many existing techniques treating them as 1-D time-series data
are not suggestive of any technique to effectively fusion the information carried by the multiple channels.
To contribute towards both of these shortcomings, we propose an end-to-end supervised learning framework
inspired by the previously established (unsupervised) convolution transform learning framework. Our approach
consists of processing the data channels through separate 1-D convolution layers, then fusing the outputs with
a series of fully-connected layers, and finally applying a softmax classification layer. The peculiarity of our
framework, that we call SuperDeConFuse (SDCF), is that we remove the nonlinear activation located between
the multi-channel convolution layers and the fully-connected layers, as well as the one located between the
latter and the output layer. We compensate for this removal by introducing a suitable regularization on
the aforementioned layer outputs and filters during the training phase. Specifically, we apply a logarithm
determinant regularization on the layer filters to break symmetry and force diversity in the learnt transforms,
whereas we enforce the non-negativity constraint on the layer outputs to mitigate the issue of dead neurons.
This results in the effective learning of a richer set of features and filters with respect to a standard
convolutional neural network. Numerical experiments confirm that the proposed model yields considerably
better results than state-of-the-art deep learning techniques for the real-world problem of stock trading.
1. Introduction

Financial time series forecasting, and particularly stock price fore-
casting, requires to determine the future value of a company’s stock
or any other form of a financial instrument traded on exchange as per
the company. It plays a significant role in trading strategies to identify
opportunities to buy and sell a stock and this process is known as stock
trading. This future movement prediction of stock could capitulate the
significant profit.

However, the problem of stock trading has been one of the most
difficult problems for the researchers in finance data processing, and
speculators. Struggles are mainly due to the uncertainties and noises
of the samples. These samples are generated as a consequence of
historical market behaviors. But their generation is also affected by
other factors such as macroeconomy and investor feelings, hence it is
not only dependent on historical information (Sezer & Ozbayogl, 2018).

∗ Corresponding author.
E-mail addresses: poojag@iiitd.ac.in (P. Gupta), angshul@iiitd.ac.in (A. Majumdar), emilie.chouzenoux@centralesupelec.fr (E. Chouzenoux),

iovanni.chierchia@esiee.fr (G. Chierchia).

Two famous hypotheses emphasize how difficult it is to accurately
predict a stock price. First, the efficient market hypothesis introduced
in (Fama & Malkiel, 1970) states that the current price of an asset al-
ways reflects all previous information available for it instantly. Second,
the random-walk hypothesis (Malkiel, 1973) claims that stock price
changes independently from its history. In other words, tomorrow’s
price will only depend on tomorrow’s information regardless of today’s
price. Hence, automating the prediction of stock trends/movements is
a very challenging task.

In past works, feature engineering played a key role in the pre-
diction process. Features were extracted from the original stock data
using technical analysis/indicators, which are in general used for an-
alyzing the stock market data. Traditional statistical methods such as
linear regression, autoregressive moving average (ARMA), and GARCH,
were much beneficial for financial time series forecasting due to their
https://doi.org/10.1016/j.eswa.2020.114206
Received 27 August 2020; Received in revised form 28 October 2020; Accepted 31
 October 2020

http://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
mailto:poojag@iiitd.ac.in
mailto:angshul@iiitd.ac.in
mailto:emilie.chouzenoux@centralesupelec.fr
mailto:giovanni.chierchia@esiee.fr
https://doi.org/10.1016/j.eswa.2020.114206


P. Gupta et al.

t

s
l
s

w
i
S
a
c
m
S

2

2

d
s
l

interpretability. These statistical models were thus used on the ex-
tracted features, processed using technical indicators related to histori-
cal data for future value prediction (Shynkevich et al., 2017). Previous
works have also used the extracted features as input to machine learn-
ing models like Naive Bayes (NB), Logistic Regression (LR), Random
Forest (RF), and k-nearest neighbors (kNN) (Ballings et al., 2015; Patel
et al., 2015a; Sen & Chaudhuri, 2017).

In the last decade, deep learning based models/techniques have
gained attention in multiple domains, and financial stock trading is one
such domain. Owing to the success of Convolutional Neural Networks
(CNNs), there are previous studies that have used this model for the
future prediction of the stock value. In (Sezer & Ozbayogl, 2018), the
features extracted using technical indicators for stock data are fed as a
2-D ‘‘image’’ matrix to the CNN, where each column represents shifted
windows of the data. The work (Long et al., 2019) utilizes long short-
term memory (LSTM), deemed most suitable for time series analysis as
they were supposed to mimic memory, and CNN for the stock trading
task. However, it is likely that the most natural and thus efficient way
to process time-series is to consider its original form as 1-D data rather
than a 2-D matrix. It is worth mentioning that, up to our knowledge,
despite its multi-channel form, the problem of financial stock trading
has been rarely treated as a fusion problem. We can only mention (Yang
et al., June 2015; Yao et al., April 2017) where a fusion framework is
proposed, but only at the feature level rather than at the raw level.

In this work, motivated by the success of CNNs, we propose an end-
to-end supervised fusion framework for multi-channel time-series based
financial trading systems that makes use of our recently introduced con-
volutional transform learning (CTL) approach (Maggu et al., Dec 2018).
We call this framework -SuperDeConFuse (SDCF).1 Our framework has
he following contributions:

• It is an end-to-end framework that treats the multi-channel time-
series stock data as univariate data corresponding to every chan-
nel, thus overcoming both the aforementioned issues present in
the previous works solving the problem of stock trading.

• It promotes the learning of unique filters and hence a richer set of
features, that was not guaranteed with CNNs, due to a ‘‘logarithm
determinant’’ penalty applied to the transforms/filters.

• A non-negativity constraint on coefficients/features mitigates the
dead neurons issue by removing the nonlinear activation of the
fully-connected layers and the last convolution layer.

The remainder of this paper is organized as follows. Section 2
ummarizes related works in the field of machine learning and deep
earning that have been proposed for solving the stock trading problem/
tock market prediction.

Since our work focuses on a supervised multi-channel fusion frame-
ork, we will also review recent machine learning approaches for

nformation fusion. Section 3 introduces the details of our proposed
uperDeConFuse (SDCF) approach, the mathematical tools involved
nd the training strategy that is retained. Section 4 discusses the
onsidered dataset, data labeling, data preprocessing and the training
ethodology used. Section 5 provides the experimental results. Finally,

ection 6 concludes this work.

. Literature review

.1. Financial stock data analysis

In literature, different methodologies have been applied to the stock
ata for predicting future trading strategies (e.g., buy and sell deci-
ions). These include statistical methods, machine learning algorithms
ike Support Vector Machine (SVM) and Artificial Neural Networks

1 https://github.com/pooja290992/SuperDeConFuse.git.
(ANN), feature extraction approaches, deep learning models (e.g., CNN,
LSTM), that we briefly review in this section.

Statistical methods are probably the methods among others that are
universally used for the prediction of financial stock trading strategies.
In particular, many studies rely on the use of sequential statistical
models, such as ARMA (Kocak, 2017), ARCH (Zumbach & Fernndez,
2014), GARCH (Lin, 2018; lk et al., 2017), Kalman filter (Bisoi & Dash,
2014).

Feature-based techniques are also considered as state-of-the-art.
Technical indicators like Exponential moving average (EMA), Moving
average convergence and divergence (MACD), Williams %R, etc. have
been used in past studies to extract the features from the data. Text
mining can be used to process financial analysis from newspapers (Ming
et al., 2014). The features are then used as input to machine learn-
ing models, for example, SVM, ANN, kNN (Shynkevich et al., 2017).
Another work (Royo & Guijarro, 2019) compares various off-the-shelf
machine learning tools for stock prediction. Further studies have pro-
posed hybrid machine learning models, based on the use of multiple
types of base classifiers that operate on a common input and a meta
classifier that learns from base classifiers’ outputs to obtain a more
precise stock return and risk predictions. In the work (Garcia et al.,
2018), the authors study the performance of financial technical indica-
tors when used as inputs instead of machine learning based features
for a neuro-fuzzy classifier. The study by (Tsinaslanidis & Guijarro,
2020) uses a sophisticated version of template matching called chart
pattern recognition to identify profitable stocks. Strategies such as
Bagging, Boosting and AdaBoost, can be also applied to create diversity
in classifier combinations (Barak et al., 2017; Weng et al., 2018).
For example, a hybrid weighted SVM and weighted KNN model for
predicting stock market indices is proposed in (Chen & Hao, 2017).
Similarly, a technique that combines Support Vector Regression (SVR),
Random Forests and ANNs for predicting stock market index, is intro-
duced in (Patel et al., 2015b). Another study (Ticknor, 2013) combines
the statistical and probabilistic Bayesian Learning and the machine
learning model ANN for the same. However, in all the aforementioned
techniques, the relationship built between historical data and future
value prediction may lack interpretation because of their ‘‘black-box’’
property and, thus, the performance of these methods are directly
related to the quality of the features. Moreover, with machine learning
techniques, overfitting is a major issue owing to their capability of
non-linear mapping and fitting.

Deep learning based models have also been extensively used for
solving stock forecasting problems. Recurrent Neural Networks (RNNs)
are considered to be the most appropriate models for time-series
analysis. LSTM is one such RNN which is regarded as the memory-
mimicking model. Some studies use LSTM for the time-series stock
forecasting (Nelson et al., 2017). Another work uses LSTM on the
technical indicators for the prediction (Tingwei & Yueting, 2018).
However, despite the great performance obtained, the time complexity
of training RNN via backpropagation has encouraged the users for
searching for more tractable models and solutions. CNNs constitute
another important deep learning model, apart from RNNs, which have
been used profusely and have performed well in the stock time-series
forecasting, especially 2-D CNNs. In (Sezer & Ozbayogl, 2018), the said
techniques have been used on stock prices for forecasting. A slightly
different input is used in (Tsantekidis et al., July 2017), instead of using
the standard variables (opening, closing, high, low and NAV), it uses
high frequency data for forecasting major points of inflection in the
financial market. In another work (Gudelek et al., November 2017), a
similar approach is used for modeling exchange traded fund (ETF). The
2-D CNN model performs similarly as LSTM or the standard multi-layer
perceptron (Hiransha et al., 2018; Persio & Honchar, 2016) while being
simpler to train. This apparent lack of performance improvement may
be owing to the incorrect choice of CNN model, since these studies

model an inherently 1D time series as an image.

https://github.com/pooja290992/SuperDeConFuse.git


P. Gupta et al.

w
p
u
C

𝐹

w

2.2. Information fusion

Many real world domains raise problems pertaining to the need for
the fusion of information from multiple sources. Consider the problem
of demand forecasting which requires estimating the power consump-
tion at a future point given the available information until the current
instant. At the building level forecasting, the inputs are usually power
consumption, weather (temperature, humidity), and occupancy. This
is a crucial problem in smart grids that ranges from planning elec-
tricity generation to preventing non-technical losses. Another area is
biomedical signal analysis, for example, the problem of blood pres-
sure estimation. The inputs are usually from two sources, namely
the electrocardiogram (ECG) and pulsepleithismogram (PPG) (Yoon
et al., 2009), and the goal is to estimate the systolic and diastolic
pressures. Transportation is also one such domain that needs the fusion
of information from many sources to build intelligent transportation
systems (ITS) (El Faouzi et al., 2011; Saadi et al., 2018). This is
needed to improve passenger safety, reduced transportation time and
fuel consumption, etc.

Image fusion is another area where the information from two or
more images of an object has to be integrated into a single image
that is more informative and appropriate for visual perception or com-
puter analysis. It finds great application in medical imaging. One can
mention for instance the fusion of MRI (Magnetic Resonance Imaging)
and PET (Positron Emission Tomography) images using IHS (Intensity
Hue Saturation) and RIM (Retina-Inspired Models) fusion methods to
improve the functional and spatial information content of the PET
images (Daneshvar & Ghassemian, 2010).

Deep learning has been widely used for analyzing multi-channel/
multi-sensor signals. In such studies, all the sensors are stacked one
after the other to form a matrix using 2-D CNN further to analyze
these signals. For example, (Yang et al., June 2015) uses the same
explained model to analyze human activity recognition from multiple
body sensors. Note that it must be distinguished from the studies
mentioned before (Gudelek et al., November 2017; Hiransha et al.,
2018; Persio & Honchar, 2016; Sezer & Ozbayogl, 2018; Tsantekidis
et al., July 2017), as the images in (Yang et al., June 2015) are not
formed from stacking windowed signals from the same signal one after
the other, they are formed by stacking signals from different sensors.
Note, however, that (Yang et al., June 2015) does not account for
any temporal modeling. This is rectified in (Yao et al., April 2017)
where 2-D CNN is used on a time series window. The different windows
are finally processed by GRU, thus explicitly incorporating time series
modeling. In the aforesaid studies, there is however no explicit fusion
framework. The information from raw signals is fused to form matrices
and treated by 2-D convolutions. A true fusion framework was proposed
in (Zheng et al., June 2014). Here, the fusion was happening at the
feature level and not in the raw signal level as was in (Yang et al.,
June 2015; Yao et al., April 2017).

Multi-modal data processing is another area that makes use of deep
learning based fusion techniques. Although this problem is not multi-
channel data processing per se, we will briefly review here some studies
on this topic. In (Ngiam et al., 2011) a fusion scheme is proposed
for audio-visual analysis, that uses a fusion scheme for deep belief
network (DBN) and stacked autoencoder (SAE) for fusing the audio and
video channels. Each of the said channels is processed separately and
connected by a fully connected layer to produce fused features. These
fused features are further processed for inference. The problem of video
based action recognition is addressed in (Feichtenhofer et al., 2016). It
does not require audio data for the task; rather it proposes a fusion
scheme for incorporating temporal information (processed by CNN)
and spatial information (also processed by CNN). Experiments were
carried out with different levels of early and late fusion. The fusion of
multi-channel image dataset has also been investigated. In (Eitel et al.,
September 2015), a fusion scheme is proposed for processing color

and depth information (via 3-D and 2-D convolutions, respectively) s
with the objective of action recognition. In (Chen et al., 2017), the
authors consider fusing hyperspectral data (high spatial resolution)
with Lidar (depth information), with the consequence of better classifi-
cation results. In (Antropova et al., 2017), it was shown that by fusing
deeply learnt features (from CNN) with handcrafted features via a fully
connected layer, can improve analysis tasks.

It is worthy to point out that the aforementioned time-series data
based fusion studies do not process the time-series data as 1-D but as
2-D image/matrix. In the context of financial time-series, the state-of-
the-art methods seem mostly based either on statistical and machine
learning models or CNNs. For the former, the relationship built between
historical data and future value prediction may lack interpretation
because of their ‘‘black-box’’ property; and hence, the performance of
the methods is directly related to the quality of the features. While in
the latter case of CNNs, there is no guarantee of unique filters learnt. In
this work, we propose a novel framework that can tackle those issues.

3. Proposed technique

This paper introduces a novel supervised framework for multi-
channel data representation learning. A crucial element of the latter
is our recently introduced CTL (Maggu et al., Dec 2018). For clarity,
we first recall the important steps of the CTL technique. Then, we
propose an extension of this approach in order to handle a multi-layer
architecture. Finally, we present the overall SuperDeConFuse (SDCF)
architecture.

3.1. Convolutional transform learning

As introduced in our seminal paper (Maggu et al., Dec 2018),
CTL learns some filters

(

𝑡𝑚
)

1≤𝑚≤𝑀 operated on samples
(

𝑠(𝑘)
)

1≤𝑘≤𝐾 to
generate the features

(

𝑥(𝑘)𝑚
)

1≤𝑚≤𝑀,1≤𝑘≤𝐾 . The inherent learning model
is expressed by convolution operations (assuming suitable padding)
defined as

(∀𝑚 ∈ {1,… ,𝑀} ,∀𝑘 ∈ {1,… , 𝐾}) 𝑡𝑚 ∗ 𝑠(𝑘) = 𝑥(𝑘)𝑚 . (1)

A regularization is imposed on the filters to improve the representa-
tion ability and limit the overfitting issues, following from the original
study on transform learning (Ravishankar & Bresler, 2012). Also, non-
negativity constraint is imposed on the features, as it is commonly done
in CNNs. The convolutional filters and the representation coefficients
are learnt from the data during training. This is expressed as the
following optimization problem:

minimize
(𝑡𝑚)𝑚 ,(𝑥

(𝑘)
𝑚 )𝑚,𝑘

1
2

𝐾
∑

𝑘=1

𝑀
∑

𝑚=1

(

‖

‖

‖

𝑡𝑚 ∗ 𝑠(𝑘) − 𝑥(𝑘)𝑚
‖

‖

‖

2

2
+ 𝜓(𝑥(𝑘)𝑚 )

)

+𝜇
𝑀
∑

𝑚=1

‖

‖

𝑡𝑚‖‖
2
2 − 𝜆 log det

(

[𝑡1 … 𝑡𝑀 ]
)

, (2)

here 𝜓 is a suitable penalization function, and (𝜇, 𝜆) are positive hy-
erparameters. It should be noted that the regularization term promotes
nique filters to be learnt, something that is not easy to guarantee in
NNs. We can rewrite equivalently Eq. (2) in matrix notation as2

(𝑇 ,𝑋) = 1
2
‖𝑇 ⋆ 𝑆 −𝑋‖

2
𝐹 + 𝛹 (𝑋) + 𝜇 ‖𝑇 ‖2𝐹 − 𝜆 log det (𝑇 ) , (3)

where 𝑇 =
[

𝑡1 … 𝑡𝑀
]

, 𝑆 =
[

𝑠(1) … 𝑠(𝐾)]⊤,
𝑋 =

[

𝑥(𝑘)1 … 𝑥(𝑘)𝑀
]

1≤𝑘≤𝐾
,

𝑇 ⋆ 𝑆 =
⎡

⎢

⎢

⎣

𝑡1 ∗ 𝑠(1) … 𝑡𝑀 ∗ 𝑠(1)

⋮ ⋱ ⋮
𝑡1 ∗ 𝑠(𝐾) … 𝑡𝑀 ∗ 𝑠(𝐾),

⎤

⎥

⎥

⎦

(4)

2 Note that 𝑇 is not necessarily a square matrix. By an abuse of notation,
e define the ‘‘log-det’’ of a rectangular matrix as the sum of logarithms of its

ingular values, taking infinity value as soon as one of those is non positive.

Emilie Chouzenoux
Crayon 
remove the comma



P. Gupta et al.

s

t
2
u
P
l
a

T

w
p
g

3

o
d
a
o

w
i
o
a
i
P
s

(

w

m

w

𝐹

c

w
c
b

𝐹

and 𝛹 amounts to applying the penalty term 𝜓 column-wise on 𝑋 and
umming.

A local minimizer to (3) can be reached efficiently using the al-
ernating proximal algorithm (Attouch et al., Feb. 2011; Bolte et al.,
014; Chouzenoux et al., 2016), which alternates between proximal
pdates on variables 𝑇 and 𝑋. The proximity operator (Combettes &
esquet, 2011) at �̃� ∈ , with (, ‖ ⋅ ‖) a Hilbert space, of a proper
ower-semi-continuous convex function 𝜑 ∶  → ] −∞,+∞] is defined
s

prox𝜑(�̃�) = argmin
𝑥∈

𝜑(𝑥) + 1
2
‖𝑥 − �̃�‖2 . (5)

hen, the alternating proximal algorithm for CTL reads:

For 𝑛 = 0, 1,…
⌊

𝑇 [𝑛+1] = prox𝛾1𝐹 (⋅,𝑋[𝑛])
(

𝑇 [𝑛])

𝑋[𝑛+1] = prox𝛾2𝐹 (𝑇 [𝑛+1] ,⋅)
(

𝑋[𝑛])
(6)

ith initializations 𝑇 [0], 𝑋[0] of suitable dimensions, and 𝛾1, 𝛾2 some
ositive constants. For more details on the derivations and the conver-
ence guarantees, the readers can refer to (Maggu et al., Dec 2018).

.2. Deep convolutional transform learning

Deep CTL consists in stacking multiple convolutional layers on top
f each other to generate the features, as shown in Fig. 1. Deep CTL
epends on the key property that the solution 𝑋 to the CTL problem,
ssuming fixed filters 𝑇 , can be reformulated as the simple application
f an element-wise activation function. That is:

argmin
𝑋

𝐹 (𝑇 ,𝑋) = 𝛷
(

𝑇 ⋆ 𝑆
)

, (7)

ith 𝛷 the proximity operator of 𝛹 (Combettes & Pesquet, 2018). It is
nteresting to remark that, if 𝛹 is the indicator function of the positive
rthant, then 𝛷 identifies with the famous rectified linear unit (ReLU)
ctivation function. Many other examples of mapping between prox-
mity operators and activation functions are provided in (Combettes &
esquet, 2018). Consequently, we propose to compute deep features by
tacking many such layers:

∀𝓁 ∈ {1,… , 𝐿 − 1}) 𝑋𝓁 = 𝛷𝓁(𝑇𝓁 ⋆𝑋𝓁−1), (8)

here we set 𝑋0 = 𝑆. Deep CTL consists of solving the problem

inimize
𝑇1 ,…,𝑇𝐿 ,𝑋

𝐹conv(𝑇1,… , 𝑇𝐿, 𝑋 ∣ 𝑆) (9)

ith

conv(𝑇1,… , 𝑇𝐿, 𝑋 ∣ 𝑆) = 1
2
‖𝑇𝐿 ⋆ 𝛷𝐿−1(𝑇𝐿−1 ⋆…𝛷1(𝑇1 ⋆ 𝑆)) −𝑋‖

2
𝐹

+ 𝛹 (𝑋) +
𝐿
∑

𝓁=1

(

𝜇‖𝑇𝓁‖
2
𝐹 − 𝜆 log det(𝑇𝓁)

)

. (10)

Deep CTL can thus be viewed as a natural and simple extension of the
one-layer CTL formulation in (3).

3.3. Our proposed approach — SuperDeConFuse

We now present our novel approach, SuperDeConFuse (SDCF), which
is a supervised fusion framework for multi-channel time-series stock
data. This framework takes the channels of input data samples to
separate branches of convolutional layers, leading to multiple sets of
channel-wise features. The features obtained are thus decoupled. In
order to couple (i.e., fuse) them, these are concatenated and passed to a
fully-connected layer, which yields a set of unique coupled features via
transform learning. These features are then fed to another linear fully-
connected layer. This provides features that are finally inputted to the
softmax layer that yields the probabilities for the classes. The complete
architecture, called SuperDeConFuse (SDCF), is shown in Fig. 2.

As the data considered is multi-channel, we learn a different set
(𝑐) (𝑐) (𝑐)
of convolutional filters 𝑇1 ,… , 𝑇𝐿 and features 𝑋 for each channel
𝑐 ∈ {1,… , 𝐶}. We also learn the (not convolutional) linear transform
𝑇 = (𝑇𝑐 )1≤𝑐≤𝐶 to fuse the channel-wise features 𝑋 = (𝑋(𝑐))1≤𝑐≤𝐶 , along
with the corresponding fused features 𝑍 at the same time. The latter
task is carried out by the cost function

𝐹fusion(𝑇 ,𝑍,𝑋) = 1
2
‖

‖

‖

𝑍 −
𝐶
∑

𝑐=1
f lat(𝑋(𝑐))𝑇𝑐

‖

‖

‖

2

𝐹

+ 𝛹 (𝑍)

+
𝐶
∑

𝑐=1

(

𝜇‖‖
‖

𝑇𝑐
‖

‖

‖

2

𝐹
− 𝜆 log det(𝑇𝑐 )

)

(11)

where the operator ‘‘f lat’’ transforms 𝑋(𝑐) into a matrix where each row
ontains the ‘‘flattened’’ features of a sample.

Further, we learn the weight matrix 𝜃 of a multiclass classifier
hich takes the input features 𝑍 and yields the class probabilities. The

ross-entropy (CE) loss associated with the final classification is given
y

CE(𝜃,𝑍 ∣ 𝑦) =
𝐾
∑

𝑘=1
log

(

𝑉
∑

𝑣=1
𝑒𝑧
⊤
𝑘 (𝜃𝑣−𝜃𝑦𝑘 )

)

, (12)

where 𝑉 is the number of classes, 𝜃𝑣 is the 𝑣th column of matrix 𝜃, 𝑧⊤𝑘
is the 𝑘th row of matrix 𝑍, and 𝑦𝑘 ∈ {1,… , 𝑉 } is the label of the 𝑘th
sample. This finally leads to the joint optimization problem defined as

minimize
(𝑇 ,𝑋,𝑇 ,𝑍,𝜃)

𝐶
∑

𝑐=1
𝐹conv(𝑇

(𝑐)
1 ,… , 𝑇 (𝑐)

𝐿 , 𝑋(𝑐)
|𝑆(𝑐)) + 𝐹fusion(𝑇 ,𝑍,𝑋) + 𝐹CE(𝜃,𝑍 ∣ 𝑦).

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐽 (𝑇 ,𝑋,𝑇 ,𝑍,𝜃)

(13)

Conclusively, our formulation aims at jointly training the channel-
wise convolutional filters 𝑇 (𝑐)

𝑙 , the fusion coefficients 𝑇 , and the mul-
ticlass classifier 𝜃 in an end-to-end fashion. We explicitly learn the
features 𝑋 and 𝑍 subject to the regularization 𝛹 , so as to avoid the
problem of dead neurons. Moreover, the ‘‘log-det’’ regularization on
both 𝑇 (𝑐)

𝑙 and 𝑇 breaks the symmetry and enforces the diversity in
the learnt transforms, whereas the Frobenius regularization keeps the
transform coefficients bounded.

3.4. Optimization algorithm

We propose to find a local minimizer to the nonconvex Problem (13)
through the projected (sub)gradient descent, whose iterations read:

For 𝑛 = 0, 1,…
⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑇 [𝑛+1] = 𝑇 [𝑛] − 𝛾∇𝑇 𝐽 (𝑇 [𝑛], 𝑋[𝑛], 𝑇 [𝑛], 𝑍[𝑛], 𝜃[𝑛])
𝑋[𝑛+1] = +

(

𝑋[𝑛] − 𝛾∇𝑋𝐽 (𝑇 [𝑛], 𝑋[𝑛], 𝑇 [𝑛], 𝑍[𝑛], 𝜃[𝑛])
)

𝑇 [𝑛+1] = 𝑇 [𝑛] − 𝛾∇𝑇 𝐽 (𝑇
[𝑛], 𝑋[𝑛], 𝑇 [𝑛], 𝑍[𝑛], 𝜃[𝑛])

𝑍[𝑛+1] = +
(

𝑍[𝑛] − 𝛾∇𝑍𝐽 (𝑇 [𝑛], 𝑋[𝑛], 𝑇 [𝑛], 𝑍[𝑛], 𝜃[𝑛])
)

𝜃[𝑛+1] = 𝜃[𝑛] − 𝛾∇𝜃𝐽 (𝑇 [𝑛], 𝑋[𝑛], 𝑇 [𝑛], 𝑍[𝑛], 𝜃[𝑛])

(14)

with + = max{⋅, 0} (applied element-wise). In practice, we initialize
it with some random matrices 𝑇 [0], 𝑋[0], 𝑇 [0], 𝑍[0], 𝜃[0], we choice a
suitable stepsize 𝛾 > 0, and we evaluate numerically the gradient step
with the accelerated scheme initially introduced for the ADAM method
in (Kingma & Ba, 2015).

There are two remarkable advantages of the proposed optimiza-
tion approach. Firstly, we depend on automatic differentiation (Paszke
et al., 2017) and stochastic gradient approximations to efficiently solve
Problem (13). Secondly, any sub-differentiable activation function 𝛷 in
(7) can be plugged into our model, for instance SELU (Klambauer et al.,
2017) or Leaky ReLU (Mass et al., 2013). This flexibility will play a key
role in the performance, as shown in the experimental section.

3.5. Computational complexity of proposed framework — SuperDeCon-
Fuse(SDCF)

Table 1 summarizes the computational complexity of SuperDecon-
Fuse(SDCF) architecture, both for training and test phases. We report



P. Gupta et al.

t
t
c
o
r
a
f
s

4

4

t
T
o
d
p
m
c
s
w
o
a
o
D

Fig. 1. Deep CTL architecture for 𝐿 = 2 layers.
Fig. 2. SuperDeConfuse Architecture. The architecture is tested for 𝐿 = 1, 2, 3, 4 layers. Here 𝑃1 × 1,… , 𝑃𝐿 × 1 represents the kernel size used in each layer 𝓁 ∈ {1,… , 𝐿}. Here,
maxpooling is not performed after layer 4 due to the small window size/input sequence length.
a
𝐼
l
𝑂
f
𝑉

4

—
h

he cost incurred for one input sample, either at an iteration of the
raining algorithm or at the testing phase. It is to be noted that the
omputational complexity of SDCF architecture is comparable to that
f a standard CNN. The log-det regularization is the only addition that
equires to compute the truncated singular value decomposition of 𝑇 (𝑐)

𝓁
nd 𝑇𝑐 . However, as the size of these matrices is determined by the
ilter size, the number of filters, and the number of output features per
ample, the training complexity is not worse than that of a CNN.

. Methodology

.1. Dataset description

The dataset consists of 15 Indian stocks that fall under the Na-
ional Stock Exchange (NSE) and the Bombay Stock Exchange (BSE).
he stock symbols end with .NS if fall under NSE and .BO for BSE
therwise. These stock symbols are taken from Yahoo finance symbols
ata available publicly. The data is made of day-wise readings for the
ast 22 years i.e. from 1998–2019 is collected using the in-built python
odule web and the Yahoo API end-point internally. At the time of data

ollection, the data for the year 2019 was not a complete year’s data,
o that there were some missing values for some raw features. Thus,
e have not used the data for 2019 in our experiments for the sake
f simplicity. The dataset includes stocks from multiple sectors such
s Indian consumer products manufacturers (e.g., HINDUNILVR.NS),
il and gas (e.g. CAIRN.NS), pharmaceuticals (e.g. AUROPHARMA.NS,
RREDDY.NS), mining and metal industry (e.g. NATIONALUM.BO).
 t
Table 1
Time complexity in training and test phases (for one input sample).

Phase Steps Time Dimension
Complexity Description

Training 1. Convolution layers (𝑃𝓁𝐷𝓁𝑀𝓁𝐶)
2. Fully-connected (f.-c.) layer (𝐼2𝐶2) 𝑆 (𝑐) ∈ R𝐾×𝐷

3. Frobenius norm on conv. layers 
(

𝑃𝓁𝑀𝓁𝐶
)

𝑇 (𝑐)
𝓁 ∈ R𝑃𝓁×𝑀𝓁

4. Frobenius norm on f.-c. layer (𝐼2𝐶2) f lat(𝑋(𝑐)) ∈ R𝐾×𝐼

5. log-det on conv. layers (𝑃 2
𝓁𝑀𝓁𝐶) 𝑇𝑐 ∈ R𝐼×𝑂

6. log-det on f.-c. layer (𝐼3𝐶2) 𝑍 ∈ R𝐾×𝑂

7. output layer (classifier) (𝑉 ) 𝜃 ∈ R𝑂×𝑉

Test Step 1 + Step 2 + Step 7. See above.

𝐷 = input sample size – 𝐾 = num. of samples – 𝐶 = num. of channels – 𝐿 = num.
of layers.
𝑃𝓁 = filter size at layer 𝓁 – 𝑀𝓁 = num. of filters at layer 𝓁 – 𝐷𝓁 = output sample size
t layer 𝓁.
= 𝐷𝐿𝑀𝐿 is the num. of output features per sample and per channel at last convolution

ayer.
= 𝛼𝐼𝐶 (with 𝛼 ∈ ]0, 1]) is the num. of output features per sample at the

ully-connected layer.
= num. of classes.

.2. Labeling

After curating the dataset for 15 stocks with values for the features
date, symbol, adjusted (adj.) close price, opening price, low price,

igh price, and net asset value, we have labeled the data. We will call
he adj. close price as Close Price in the rest of the paper. In the labeling



P. Gupta et al.
Fig. 3. Sliding walk-forward validation technique used for hyperparameters tuning.
phase, we manually assign the labels to the daily close prices as Buy
(0), Hold (1), Sell (2). The labels are determined by performing a grid
search on the list of holding percentages to identify the percentage
change for which the stocks should be held to maximize the annualized
returns for the company. Algorithm 1 gives the details of the labeling
process.

Algorithm 1 Labelling Method
Input : CP - Array of Closing Prices, S - stock/symbol
Parameter : X - array of K holding percentages,
NUMDAYS - number of days for the current symbol or len(CP)
Labels - 2D array of size K x NUMDAYS
Output : FinalLabels - Labelled Dataset for S

1: AR = [ ] //it is of size K
2: for 𝑘 = 0, 1, 2,… , 𝐾 − 1 do
3: for 𝑛 = 0,… , 𝑁𝑈𝑀𝐷𝐴𝑌 𝑆 − 1 do
4: change = abs((𝐶𝑃 [𝑛 + 1] − 𝐶𝑃 [𝑛]∕𝐶𝑃 [𝑛]) ∗ 100) //where

CP[n+1] is the next day closing price
5: if change > X[k] then
6: if 𝐶𝑃 [𝑛 + 1] > 𝐶𝑃 [𝑛] then
7: label == ‘‘Sell’’
8: else
9: label == ‘‘Buy’’

10: end if
11: else
12: label == ‘‘Hold’’
13: end if
14: Labels[k].append(label)
15: end for
16: ar = AnnualisedReturn(Labels[k],CP)
17: AR.append(ar)
18: end for
19: maxAr = Max(AR), maxIndex = index(Max(AR))
20: HoldPercentage = X[maxIndex]
21: FinalLabels = Labels[maxIndex]
22: return FinalLabels
23: Repeat all steps till 22 for all the Stocks/Symbols in the dataset.

4.3. Training details

We use the sliding walk forward validation technique which is used
as the cross-validation technique in case of time-series data also shown
in Fig. 3. As can be seen from Fig. 3, we use 10 years of data for training
and the subsequent 1 year data for testing, i.e., the stock data from
1998–2007 is for training and the year 2008 for testing. Then we slide
the training window by 1 year which implies that we next train it from
1999–2008 and test it on the following year 2009 data and this period
is called as horizon. In general, we train for 10 years, test it for the
following year and then slide it by a 1 year horizon and again train
and test and so on till the year 2018. Thus, 11 years of data from 2008–
2018 are used as test data. This way, we have 11 models and we select
the set of hyperparameters that give the best results across all the 11
models. The set of hyperparameters that we tune includes 𝜇, 𝜆, kernel
sizes, number of filters/kernels, learning rate, weight decay of the
Adam optimizer, batch size, and number of epochs. Additionally, we
randomly initialize the weights for each stock’s training. This appears
here as a very efficient technique to analyze the robustness of the
architecture. In other words, we calculate the model performance every
time a year’s data becomes available for testing and we use previous 1
year test data for training. We standardize the training and the test
data using Normalizer from Python library as prices and the NAV
features/channels have a varied range of values.

5. Experimental evaluation

We carry out experiments on the real world problem of stock
trading. Stock trading is a classification problem, where the decision
whether to buy or hold or sell a stock has to be taken at each time.
The problem makes a decision that if the price of a stock at a later
date is expected to increase, the stock must be bought; and if the stock
price is expected to go down, the stock must be sold; and if there is
no change in the price then it should be held, i.e., do nothing until the
price increases. This is done in a way so as to maximize the annualized
returns from the stock for the company’s profit as mentioned in the
labeling process.

We use the five raw inputs for both the tasks, namely open price,
close price, high, low and net asset value (NAV). We chose to stay
with the raw values. However, one could compute technical indicators
based on the raw inputs (Sezer & Ozbayogl, 2018) but raw values
allow here to keep up with the essence of the true nature of repre-
sentation learning. Each of the five inputs is processed by a separate
1D processing pipeline. Each of these pipelines produces a flattened
output (Fig. 2). These flattened outputs are then concatenated and
fed for fusion into the Transform Learning layer acting as the fully
connected layer (Fig. 2). Further, this is connected to another linear
fully connected layer and finally, there is a softmax function. The

Emilie Chouzenoux
Note
change = 100 |CP[n+1]-CP[n]|/CP[n]

Emilie Chouzenoux
Texte surligné 
in italic style

Emilie Chouzenoux
Texte surligné 
in italic style



P. Gupta et al.
Table 2
Hyperparameters for the different instances of the proposed SDFC network (see Fig. 2 for the general
overview) used in the experimental section.
softmax function gives the classification output which consists of the
class probabilities for the three classes (BUY, HOLD and SELL).

We extend the architecture by adding CTL layers to 4 layers deep
SDCF architectures. The details for all the four architectures are briefed
in Table 2. Maxpooling halves the input sequence length/window
size/Time Steps with its every operation. Thus, after 3 layers, the size is
reduced to the value that it cannot be employed after the 4th CTL layer;
and, hence, the architecture with 4 CTL layers of SDCF will not have
maxpooling operation after layer 4. This is due to the small window
size. Also, for making predictions on any day, the past 10 days will be
analyzed through the model which are labeled as Time Steps shown in
Fig. 2. Additionally, to avoid the data leak, we do not predict the stock
trading signal for the first 10 days of every test year. The predictions
from every year totaling to 11 years will be saved and further, the
metrics will be computed to analyze the performance of our model. We
will compute two sets of metrics here, namely (i) classification metrics
and (ii) financial metrics.



P. Gupta et al.

l

m
s
2
a
N
g
t
p
e

Fig. 4. Confusion matrices corresponding to the different number of CTL layers of the architecture: (a) 1 layer of CTL (shallow version), (b) 2 layers of CTL (deep version), (c) 3
ayers of CTL (deep version) and (d) 4 layers of CTL (deep version) where 0 - BUY, 1 - HOLD, 2 - SELL signals.
(i) Classification Metrics - This set of metrics includes class-wise
F1 score, Precision and Recall to assess the performance from
a classification point of view. We also calculate the weighted F1
Score, Precision and Recall to account for the class imbalance
for every stock. Note that, in such case, the F1 score is not
equivalent to the harmonic mean of Precision and Recall since
it is weighted.

(ii) Financial Metrics - We also evaluate the performance of our
framework and state-of-the-art from the financial point of view.
We calculate, in specific, the Annualized Returns(AR) which is
calculated using the predictions from all the models. The AR
value will be calculated as mentioned in (Sezer & Ozbayogl,
2018). The starting capital will be Rs 10,00,00,000.0 and trans-
action charges will be Rs 10. We will use Indian currency to
calculate the AR values since we have used all the Indian stocks.
Note, however, that our metric is versatile and could be used
to evaluate the model in any currency depending on the stocks
analyzed.

We compare with three state-of-the-art time series based analysis
odels, out of which two techniques present the models proposed

pecifically for financial stock trading - CNN-TA (Sezer & Ozbayogl,
018) and MFNN (Long et al., 2019); and the last technique presents
generic model for time-series based data - FCN(Fully Convolutional
etwork) (Wang et al.). The latter is used as it helps understand how
eneric the proposed model is if compared against both specific stock
rading based and general time-series models. In all the techniques,
rocessing pipelines are based on CNN. Other than CNN, MFNN (Long
t al., 2019) is also based on the RNN type of network - LSTM. In (Sezer
& Ozbayogl, 2018), the data is not used raw but processed as technical
indicator values and passed as an image, hence uses 2D CNN whereas,
in FCN (Wang et al.), the data is processed via 2D CNN. The same
hyperparameters for the benchmark techniques are used as given in
the study except for FCN which is best tuned for our data. We have
also compared our model to the simple CNN with the architecture same
as that of our framework i.e. 3 convolutional layers deep architecture
and used the same hyperparameters too except the kernel sizes of
𝑃1 = 11, 𝑃2 = 9 and 𝑃3 = 7 for the convolutional layers 𝓁 = 1, 2 and
3 (padding size is 𝑃𝓁∕2). The difference lies in the objective function
of the convolutional learning in both the techniques i.e. our 3 layers
deep SDCF and 3 layers deep simple 1D CNN. This is done to ana-
lyze the performance difference between the two supervised learning
techniques. Additionally, we chose the architecture for CNN having 3
convolutional layers, since the results depleted after 3 convolutional
layers for our framework and were best with 3 layers.

5.1. Classification analysis

As mentioned previously, we first look at the Classification perfor-
mance of our models. We test the framework for shallow - 1 CTL layer
and deeper versions - 2, 3 and 4 CTL layers. The generated features
from the fully connected layers are passed to the softmax and we get the
probabilities for all the classes. The one with the maximum probability
is selected as the predicted label. The performance is calculated for
every class. Specifically, metrics - F1 Score, Precision and Recall are
calculated for BUY, HOLD and SELL classes. The results are detailed in
Tables A.9, A.10, A.11 in Appendix A.

Emilie Chouzenoux
Note
improve resolution quality of graphics

Emilie Chouzenoux
Barrer 

Emilie Chouzenoux
Texte inséré 
c

Emilie Chouzenoux
Texte inséré 
add space



P. Gupta et al.

r

i
t
f
g
f
t
p
7
c
a
p
s
C
m
H
r

w

Fig. 5. Visualization of channel-wise features 𝑋𝑐 for SDCF versus a standard CNN, for one sample of stock BSELINFRA.BO (with 16x1 as the shape of the features obtained and
esized to 8 × 2 for better visualization).
p
o
w
s
t
r
a
C
s
f
t
f

m
w
p
a
i

Certain results are highlighted in bold or red. The first set of results
n bold are the ones where one or more techniques for each metric give
he best/greater than or equal performance. Analyzing it in detail, we
ind that there are 8 stocks for which our proposed model performs
reater than or equal to when compared with benchmark techniques
or F1 score in case of the BUY class. Following the same, we find that
he SDCF gives greater than or equal to performance for 13 stocks for
recision and 5 stocks for recall metrics under the BUY class. Similarly,
stocks for F1 score, 7 stocks for precision and 5 stocks for recall in

ase of HOLD class and 7 stocks for F1 score, 11 stocks for precision
nd 6 stocks for recall in case of SELL class. Since we analyze our
erformance difference to understand the technique that has better
upervised learning, we specifically look at the performance with CNN.
NN gives greater than or equal to performance for 2 stocks for each
etric under BUY class. Similarly, there are 6, 1 and 9 stocks for the
OLD class and 2 stocks each for the metrics F1 score, precision and

ecall under SELL class.

Additionally, the other set of results in red indicate the performance
here one of our proposed model versions gives the similar/next best
 t
erformance under 0.02 error difference - err_dif (let us say) after one
f the benchmarks i.e. 0.0 < err_dif ≤ 0.02. Adhering to the same,
e observed that for BUY class, there is 1 stock each for metrics F1

core, precision and recall respectively. Likewise, for the HOLD class,
here are 7, 4 and 5 stocks for F1 score, precision and recall metrics
espectively; and for SELL class, we have 1 stock each for F1 score
nd recall metrics. We have not, although, highlighted the results for
NN when it gives similar/next best performance but we present the
tatistics for the same here. Analyzing for CNN, there are 2 and 3 stocks
or F1 score and precision under HOLD class. Observing these statistics,
hey indicate that the performance with our model is better than CNN
or all three BUY, HOLD and SELL classes.

The summary results for individual classes corresponding to every
etric are given in Tables 3, 4, 5 above. The average metric values for
hich the model gives the best performance are average F1 score and
recision for BUY class, average F1 score and recall for HOLD class,
verage F1 score and precision for SELL class; where F1 score being
mportant metric, as it is the harmonic mean of precision and recall, is
he best with our model for all three classes.

Emilie Chouzenoux
Note
improve resolution quality of graphics

Emilie Chouzenoux
Barrer 

Emilie Chouzenoux
Note
very unclear sentence and formula.



P. Gupta et al.

i
s
p
l

Fig. 6. Evolution of the loss during training for few stock examples, of our proposed model with (a) CTL 1 layer, (b) CTL 2 layers, (c) CTL 3 layers and (d) CTL 4 layers.
As we can observe, the performance for HOLD class decrease when
ncreasing the number of layers for our model. However, we can also
ee that there is an increase in correct identification for BUY and SELL
oints despite the fact that BUY and SELL points appear extremely
ess in case of every stock as compared to HOLD points. The latter
identification capacity is actually more crucial for the financial system
as it directly influences the financial gains or loss. Moreover, the overall
individual class performance indicate that the model captures all three
classes i.e. BUY, HOLD and SELL well. This is also indicated in the
confusion matrices, given for each of the shallow and deeper versions of

Emilie Chouzenoux
Note
improve resolution quality of graphics



P. Gupta et al.
Table 3
Summary of BUY class classification results for stock trading.

Method Avg. BUY Avg. BUY Avg. BUY
F1 Score Precision Recall

SDCFL 1L 0.0645 0.2182 0.0475
SDCFL 2L 0.0916 0.2356 0.0683
SDCFL 3L 0.1091 0.2205 0.0854
SDCFL 4L 0.1566 0.3242 0.1355
CNN 0.0688 0.1179 0.0551
FCN 0.0758 0.1446 0.0617
CNN-TA 0.1205 0.1611 0.1263
MFNN 0.0881 0.1672 0.2401

Table 4
Summary of HOLD class classification results for stock trading.

Method Avg. HOLD Avg. HOLD Avg. HOLD
F1 Score Precision Recall

SDCFL 1L 0.7983 0.7091 0.9446
SDCFL 2L 0.7912 0.7113 0.9164
SDCFL 3L 0.7813 0.7113 0.8842
SDCFL 4L 0.6684 0.5950 0.7960
CNN 0.7909 0.7090 0.9239
FCN 0.7825 0.7119 0.9051
CNN-TA 0.7686 0.7142 0.8557
MFNN 0.5161 0.6425 0.5718

Table 5
Summary of SELL class classification results for stock trading.

Method Avg. SELL Avg. SELL Avg. SELL
F1 Score Precision Recall

SDCFL 1L 0.0423 0.1778 0.0285
SDCFL 2L 0.0650 0.1752 0.0503
SDCFL 3L 0.0759 0.1574 0.0635
SDCFL 4L 0.1410 0.2139 0.1250
CNN 0.0481 0.0946 0.0379
FCN 0.0742 0.1658 0.0802
CNN-TA 0.0679 0.1768 0.0487
MFNN 0.0633 0.1034 0.1734

our framework in Fig. 4. With an increase in layers, the model starts to
more correctly identify the BUY and SELL points. The HOLD signal has
more false positives with shallow architecture (SDCF 1L) that decreases
with the increase in layer number, which is important for the system in
order to correctly classify other class points. Additionally, the overall
performance with our model is better than the CNN.

To better analyze the framework performance, we calculate the
weighted F1 score, precision and recall metric values for all the stocks
under consideration. We calculate the weighted values to incorporate
the class imbalance for every stock. The detailed and summary results
are given in Table A.12 in Appendix A and Table 6. Again, the results
comprise two sets of values marked in bold or red with the same err_dif
of 0.02. There are 6, 9, and 5 stocks with respect to the metrics F1 score,
precision and recall for which the model performs greater than or equal
to the performance given by the state-of-the-arts. Also, there are 6, 3
and 6 stocks for the metrics F1 score, precision and recall respectively
for which the model gives the next best performance under 0.02 err_dif.
Although the BUY and SELL classes performance with the 4 CTL Layers
deep architecture is better than the benchmarks compared against, but
the overall performance from the average weighted metric is suggestive
of the good performance with the 3 layers deep architecture classifica-
tion wisely. This is also suggested from the financial results explained
later.
Table 6
Summary of weighted classification results for stock trading.

Method Avg. Avg. Avg.
F1 Score Precision Recall

SDCFL 1L 0.6169 0.6216 0.6941
SDCFL 2L 0.6229 0.6207 0.6867
SDCFL 3L 0.6250 0.6146 0.6784
SDCFL 4L 0.5345 0.5464 0.5890
CNN 0.6182 0.5907 0.6898
FCN 0.6090 0.6079 0.6725
CNN-TA 0.6148 0.6161 0.6575
MFNN 0.4162 0.5509 0.4676

Again analyzing explicitly for CNN, we have 4, 2 and 7 stocks
with greater than or equal performance; and 3, 2 and 3 stocks under
similar/next best performance for the metrics F1 score, precision and
recall respectively. As can be referenced from the statistics presented
here, our model is giving better results with greater than or equal and
the next best/similar performances except for the number of stocks
for recall metric are slightly more with CNN under greater than or
equal to performance. However, the next best performance statistic
for the recall metric is much better than CNN. Overall performance
on an average is good with our proposed model as compared to the
benchmarks and CNN which can be also referred from Table 6. For a
deeper understanding of the aforementioned statistics, please refer to
Table C.14 in Appendix C.

5.2. Financial analysis

It is very important to analyze the performance from a financial
perspective to understand the quality of predictions made by our
model. For this, as explained earlier, we have calculated the AR values
with the predictions generated by each of the techniques for every
stock over 11 years. We also calculate the AR values with the True
labels for every stock over the same period. Finally, we calculate the
absolute difference/error between the AR values from Predictions and
the AR values from True labels. We average the absolute difference
values for all stocks yielding the so-called Mean Absolute Error. The
detailed results are given in Table B.13. With our proposed model 5
stocks have the best performance whereas with CNN-TA there is 1 stock
and 2 stocks under MFNN and FCN. On the whole, the performance is
good with our proposed model as also evident from the summary results
in Table 7 where we have a mean of the absolute difference/error(MAE)
between the True AR and Predicted AR. Also, there are 3 stocks for
which the proposed model gives an equal performance as the other
benchmark techniques. Here, this set of results is illustrating that,
despite the higher capability of identifying the BUY and SELL points
with 4 layers deep CTL, the AR values are better predicted with the 3
layers deep CTL framework.

With respect to CNN, there are only 2 stocks for which CNN per-
forms better than any benchmarks and our proposed models, and
3 stocks for which it gives an equal performance. Thus, from the
combined (greater than or equal to and next best/similar), average
and the financial results, the CNN results are less performant than our
model. This also indicates that the quality of predictions made with
our model is better than CNN as the identified class labels give AR
values quite close to the True AR values. This remains true for all
the benchmarks. The statistics presented here can be deduced from
Table C.14 in Appendix C for complete understanding.

To further understand the better supervised learning for both reg-
ular CNN and our SDCF framework, we visualize channel-wise 𝑋𝑐
features for both the frameworks which are obtained after the last
maxpool layer for the 3 convolutional layers deep framework. The

Emilie Chouzenoux
Barrer 

Emilie Chouzenoux
Barrer 

Emilie Chouzenoux
Texte inséré 
,



P. Gupta et al.

m

D

c
i

A

N

A

Table 7
Summary of financial results for stock trading.

Method MAE AR

SDCFL 1L 22.5613
SDCFL 2L 20.7227
SDCFL 3L 20.5067
SDCFL 4L 22.8287
CNN 21.1140
FCN 23.7720
CNN-TA 22.1380
MFNN 22.3040

Table 8
Comparative summary results for stock trading for window sizes 5,10,20.

Method Window size 5 Window size 10 Window size 10

F1 MAE AR F1 MAE AR F1 MAE AR

SDCFL 1L 0.6141 22.4947 0.6169 22.5613 0.6194 22.4453
SDCFL 2L 0.6148 24.3820 0.6229 20.7227 0.6242 25.0200
SDCFL 3L 0.6207 20.9193 0.6250 20.5067 0.6262 25.7667
SDCFL 4L 0.6157 21.5427 0.5345 22.8287 0.6254 26.1007
CNN 0.6095 22.0113 0.6182 21.1140 0.6217 22.9560
FCN 0.6131 23.3107 0.6090 23.7720 0.6120 24.2233
CNN-TAa – – 0.6148 22.1380 0.6246 20.3820
MFNN 0.4105 23.4820 0.4162 22.3040 0.4869 23.2620

aCNN-TA cannot be run for window size 5 due to its inherent structure.

following Fig. 5 shows the visualizations of the features for one sample
of the stock ‘BSELINFRA.BO’.

As can be seen from Fig. 5, heatmap for each channel corresponding
to the prices(Close, Open, High and Low) show no variation in the case
of CNN as compared to the SDCF architecture. While it shows some
variations for the features learnt corresponding to NAV, however, the
features are still better learnt with SDCF. Also, darker the color in the
heatmap, more it is indicative of the larger negative exponent values.
In the case of CNN, hence, the values are very small that are almost
diminishing to zero. This also corroborates the fact that the filters
learnt with our model are distinct due to the ‘‘log-det’’ term added
which further gives different features with very less redundancy. Thus,
the visualizations of these channel-wise features are also supportive of
better supervised training with our framework than CNN.

In order to test our architecture’s capability further, we have per-
formed experiments for two additional window sizes, namely 5 and
20. In order to avoid extensive space utilization, we present here only
the comparative summary results — Weighted F1 Score(Classification
Metric) and MAE AR(Financial metric) in Table 8 for window sizes 5
and 20 along with the summarized results for window size 10. Our
method yields the best results on an aggregate. Even though CNN-TA
yields better AR for a solo case (window size 20), it does not reach
better results in terms of weighted F1 for the same scenario. Further-
more, CNN-TA cannot be run for all small window sizes (such as 5),
hence cannot be deemed as an all-purpose go-to method. Small window
sizes are crucial for highly non-stationary stocks and the inability of
a method to handle such stocks is a major shortcoming. Overall, our
model performs better than benchmarks and CNN both classification-
wise and financially, specifically, it gives the best performance with 3
CTL layers deep SDCF framework of all the 4 SDCF architectures. We
also display the empirical convergence plots for a few stocks, namely
INDRAMEDCO.BO and NATIONALUM.BO in Fig. 6 for both shallow
and deeper versions. We can see that the training loss decreases to a
point of stability for each example considered.
 r
6. Conclusion

In this work, we propose SDCF, a deep fusion end-to-end framework
for the processing of stock trading data. Unlike other deep learning
models, our framework is a fusion supervised framework. It relies on
a novel deep version of our recently proposed CTL model. We have
applied the proposed model for stock trading leading to very good per-
formance. In particular, the classification results are better with the pro-
posed SDCF model, than with the 1-D CNN approach. Also, the features
𝑋𝑐 visualized for each channel and each method indicate the better fea-
ture learning with SDCF. The results show that the proposed solution is
superior to CNN and other state-of-the arts techniques in this problem.

We believe that the framework is generic enough to handle other
multi-channel fusion problems as well. In the future, we plan to
extend the application to other fusion 1-D as well as 2-D multi-channel
problems to test its generality. For example, we plan to implement
it in the biomedical domain to analyze PPG and ECG signals for the
blood pressure estimation pertaining to the 1-D multi-channel problem.
In case of 2-D problems, we would like to do multi-spectral image
classification using this technique. Currently, the shortcoming with our
model is that it takes slightly more time than CNN, for its training.
Thus, we will investigate on the reduction of the time complexity of
our framework in order to make it more efficient from this viewpoint.

The current purpose of our paper is to introduce our new algorithm
and to show by means of several experiments that it is an effective tool
for predicting stocks. However, stock price prediction may be seen as
a too rudimentary problem in financial analytics. As a next step, we
would like to investigate the use of our algorithm to study if it can
emulate (human) expert-like suggestions. For example, fund managers
suggest ‘buy stock XYZ at a price ABC’ or ‘sell stock ZYX at price CBA’.
We would like to see if our algorithm can make such predictions given
a time horizon. If possible, we would like to extend the algorithm to
emulate more abstract financial operations such as ‘hedging (longs and
shorts)’.

CRediT authorship contribution statement

Pooja Gupta: Data curation, Methodology, Validation, Visualiza-
tion, Software, Writing - original draft, Formal analysis, Writing -
review & editing, Investigation. Angshul Majumdar: Conceptualiza-
tion, Supervision, Project administration, Methodology, Formal anal-
ysis, Writing - review & editing, Resources. Emilie Chouzenoux: Con-
ceptualization, Project administration, Formal analysis, Writing - re-
view & editing. Giovanni Chierchia: Conceptualization, Project ad-

inistration, Formal analysis, Writing - review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

cknowledgment

This work was supported by the CNRS-CEFIPRA project under grant
extGenBP PRC2017.

ppendix A. Class-wise classification results for stock trading

This section displays all the tables with the Classification Metrics

esults, both class-wise and weighted, for stock trading.

Emilie Chouzenoux
Texte inséré 
add space

Emilie Chouzenoux
Texte inséré 
add space

Emilie Chouzenoux
Barrer 

Emilie Chouzenoux
Barrer 

Emilie Chouzenoux
Barrer 

Emilie Chouzenoux
Texte inséré 
c

Emilie Chouzenoux
Barrer 

Emilie Chouzenoux
Texte inséré 
m



P. Gupta et al.
Table A.9
Classification results for BUY class for stock trading.

SYMBOL Method BUY BUY BUY
F1 Score Precision Recall

ALKYLAMINE.BO SDCFL 1L 0.1022 0.2450 0.0646
SDCFL 2L 0.1708 0.2222 0.1387
SDCFL 3L 0.1670 0.2056 0.1407
SDCF 4L 0.1880 0.2500 0.1507
CNN 0.1678 0.2458 0.1274
FCN 0.1131 0.2484 0.0732
CNN-TA 0.0924 0.2308 0.0578
MFNN 0.1205 0.1974 0.0867

AUROPHARMA.NS SDCFL 1L 0.0000 0.0000 0.0000
SDCFL 2L 0.0000 0.0000 0.0000
SDCFL 3L 0.0048 0.3333 0.0024
SDCF 4L 0.0299 0.5000 0.0154
CNN 0.0000 0.0000 0.0000
FCN 0.0000 0.0000 0.0000
CNN-TA 0.0814 0.2121 0.0504
MFNN 0.0046 0.0625 0.0024

BPCL.NS SDCFL 1L 0.0238 0.3125 0.0124
SDCFL 2L 0.0318 0.3333 0.0167
SDCFL 3L 0.0054 0.1250 0.0028
SDCF 4L 0.0988 0.4000 0.0563
CNN 0.0000 0.0000 0.0000
FCN 0.2275 0.2628 0.2006
CNN-TA 0.0000 0.0000 0.0000
MFNN 0.0107 0.1250 0.0056

BSELINFRA.BO SDCFL 1L 0.0000 0.0000 0.0000
SDCFL 2L 0.0000 0.0000 0.0000
SDCFL 3L 0.0000 0.0000 0.0000
SDCF 4L 0.0000 0.0000 0.0000
CNN 0.0000 0.0000 0.0000
FCN 0.0000 0.0000 0.0000
CNN-TA 0.0000 0.0000 0.0000
MFNN 0.0000 0.0000 0.0000

CAIRN.NS SDCFL 1L 0.0744 0.3523 0.0416
SDCFL 2L 0.2201 0.3646 0.1577
SDCFL 3L 0.2348 0.3371 0.1802
SDCF 4L 0.3179 0.4068 0.2609
CNN 0.1212 0.3699 0.0725
FCN 0.0313 0.2895 0.0165
CNN-TA 0.2405 0.3023 0.1997
MFNN 0.0453 0.4000 0.0240

DEEPAKSP.BO SDCFL 1L 0.1106 0.2293 0.0729
SDCFL 2L 0.1280 0.2213 0.0900
SDCFL 3L 0.1427 0.2305 0.1033
SDCF 4L 0.1818 0.2895 0.1325
CNN 0.1300 0.2243 0.0915
FCN 0.1437 0.2450 0.1017
CNN-TA 0.2590 0.2319 0.2933
MFNN 0.0457 0.2679 0.0250

DRREDDY.NS SDCFL 1L 0.0134 0.1053 0.0072
SDCFL 2L 0.0227 0.3750 0.0117
SDCFL 3L 0.0148 0.1429 0.0078
SDCF 4L 0.0755 0.5000 0.0408
CNN 0.0000 0.0000 0.0000
FCN 0.0148 0.1429 0.0078
CNN-TA 0.1192 0.1769 0.0898
MFNN 0.1790 0.0985 0.9805

HCC.NS SDCFL 1L 0.0238 0.0556 0.0152
SDCFL 2L 0.0274 0.1000 0.0159
SDCFL 3L 0.0290 0.1667 0.0159
SDCF 4L 0.0800 1.0000 0.0417
CNN 0.0000 0.0000 0.0000
FCN 0.0471 0.0909 0.0317
CNN-TA 0.0370 0.0197 0.3016
MFNN 0.0392 0.0203 0.6032

HINDPETRO.NS SDCFL 1L 0.0000 0.0000 0.0000
SDCFL 2L 0.0000 0.0000 0.0000
SDCFL 3L 0.0000 0.0000 0.0000
SDCF 4L 0.0000 0.0000 0.0000

(continued on next page)



P. Gupta et al.
Table A.9 (continued).
SYMBOL Method BUY BUY BUY

F1 Score Precision Recall

CNN 0.0000 0.0000 0.0000
FCN 0.0377 0.0500 0.0303
CNN-TA 0.0000 0.0000 0.0000
MFNN 0.0543 0.0319 0.1818

INDRAMEDCO.BO SDCFL 1L 0.0744 0.3523 0.0416
SDCFL 2L 0.2201 0.3646 0.1577
SDCFL 3L 0.2474 0.3377 0.1952
SDCF 4L 0.3358 0.5111 0.2500
CNN 0.1212 0.3699 0.0725
FCN 0.0313 0.2895 0.0165
CNN-TA 0.2972 0.3446 0.2613
MFNN 0.0143 0.4167 0.0073

IOC.BO SDCFL 1L 0.0976 0.5000 0.0541
SDCFL 2L 0.1026 0.5000 0.0571
SDCFL 3L 0.1026 0.5000 0.0571
SDCF 4L 0.0000 0.0000 0.0000
CNN 0.0000 0.0000 0.0000
FCN 0.0533 0.0500 0.0571
CNN-TA 0.0000 0.0000 0.0000
MFNN 0.0267 0.0250 0.0286

KENNAMET.BO SDCFL 1L 0.3173 0.3137 0.3210
SDCFL 2L 0.2771 0.3303 0.2387
SDCFL 3L 0.2857 0.3160 0.2607
SDCF 4L 0.3662 0.3611 0.3714
CNN 0.3236 0.3131 0.3349
FCN 0.2792 0.3078 0.2555
CNN-TA 0.3558 0.3224 0.3969
MFNN 0.0269 0.3667 0.0140

NATIONALUM.BO SDCFL 1L 0.0000 0.0000 0.0000
SDCFL 2L 0.0000 0.0000 0.0000
SDCFL 3L 0.0000 0.0000 0.0000
SDCF 4L 0.0000 0.0000 0.0000
CNN 0.0000 0.0000 0.0000
FCN 0.0000 0.0000 0.0000
CNN-TA 0.0000 0.0000 0.0000
MFNN 0.0000 0.0000 0.0000

NATIONALUM.NS SDCFL 1L 0.0025 0.5000 0.0013
SDCFL 2L 0.0026 0.5000 0.0013
SDCFL 3L 0.1775 0.3516 0.1187
SDCF 4L 0.3576 0.3253 0.3971
CNN 0.0000 0.0000 0.0000
FCN 0.0000 0.0000 0.0000
CNN-TA 0.2471 0.3286 0.1980
MFNN 0.4342 0.2987 0.7949

NITINALOY.BO SDCFL 1L 0.1272 0.3067 0.0803
SDCFL 2L 0.1708 0.2222 0.1387
SDCFL 3L 0.2242 0.2609 0.1965
SDCF 4L 0.3172 0.3194 0.3151
CNN 0.1678 0.2458 0.1274
FCN 0.1587 0.1928 0.1349
CNN-TA 0.0779 0.2474 0.0462
MFNN 0.3208 0.1978 0.8478
Table A.10
Classification results for HOLD class for stock trading.

SYMBOL Method HOLD HOLD HOLD
F1 Score Precision Recall

ALKYLAMINE.BO SDCFL 1L 0.7216 0.6062 0.8912
SDCFL 2L 0.6932 0.6137 0.7963
SDCFL 3L 0.6762 0.6113 0.7565
SDCF 4L 0.5761 0.5072 0.6667
CNN 0.7214 0.6196 0.8632
FCN 0.7318 0.6060 0.9236
CNN-TA 0.7298 0.5951 0.9432
MFNN 0.0906 0.6048 0.0490

(continued on next page)



P. Gupta et al.
Table A.10 (continued).
SYMBOL Method HOLD HOLD HOLD

F1 Score Precision Recall

AUROPHARMA.NS SDCFL 1L 0.7887 0.6523 0.9973
SDCFL 2L 0.7849 0.6474 0.9964
SDCFL 3L 0.7850 0.6473 0.9970
SDCF 4L 0.7024 0.5458 0.9850
CNN 0.7878 0.6499 1.0000
FCN 0.7815 0.6480 0.9845
CNN-TA 0.7722 0.6524 0.9457
MFNN 0.0661 0.5463 0.0352

BPCL.NS SDCFL 1L 0.8136 0.6891 0.9930
SDCFL 2L 0.8158 0.6927 0.9922
SDCFL 3L 0.8153 0.6912 0.9939
SDCF 4L 0.5982 0.4322 0.9714
CNN 0.8152 0.6880 1.0000
FCN 0.8085 0.7169 0.9271
CNN-TA 0.8138 0.6914 0.9889
MFNN 0.8068 0.6904 0.9705

BSELINFRA.BO SDCFL 1L 0.9860 0.9723 1.0000
SDCFL 2L 0.9881 0.9765 1.0000
SDCFL 3L 0.9881 0.9765 1.0000
SDCF 4L 0.9918 0.9837 1.0000
CNN 0.9860 0.9723 1.0000
FCN 0.9782 0.9761 0.9803
CNN-TA 0.9840 0.9763 0.9917
MFNN 0.4514 0.9751 0.2937

CAIRN.NS SDCFL 1L 0.6850 0.5274 0.9768
SDCFL 2L 0.6738 0.5364 0.9060
SDCFL 3L 0.6698 0.5390 0.8845
SDCF 4L 0.5019 0.3860 0.7174
CNN 0.6812 0.5299 0.9535
FCN 0.6804 0.5217 0.9778
CNN-TA 0.6613 0.5567 0.8142
MFNN 0.6806 0.5249 0.9674

DEEPAKSP.BO SDCFL 1L 0.6771 0.5564 0.8648
SDCFL 2L 0.6426 0.5380 0.7977
SDCFL 3L 0.6261 0.5395 0.7460
SDCF 4L 0.4925 0.3837 0.6875
CNN 0.6517 0.5497 0.8000
FCN 0.6463 0.5488 0.7860
CNN-TA 0.5636 0.5404 0.5888
MFNN 0.6872 0.5338 0.9643

DRREDDY.NS SDCFL 1L 0.8810 0.7920 0.9926
SDCFL 2L 0.8799 0.7879 0.9961
SDCFL 3L 0.8761 0.7893 0.9843
SDCF 4L 0.7558 0.6176 0.9735
CNN 0.8833 0.7910 1.0000
FCN 0.8771 0.7872 0.9902
CNN-TA 0.8548 0.7970 0.9217
MFNN 0.0000 0.0000 0.0000

HCC.NS SDCFL 1L 0.9660 0.9417 0.9915
SDCFL 2L 0.9667 0.9411 0.9939
SDCFL 3L 0.9668 0.9404 0.9947
SDCF 4L 0.8989 0.8163 1.0000
CNN 0.9697 0.9412 1.0000
FCN 0.9254 0.9535 0.8989
CNN-TA 0.7497 0.9368 0.6249
MFNN 0.4091 0.9263 0.2625

HINDPETRO.NS SDCFL 1L 0.9688 0.9401 0.9993
SDCFL 2L 0.9690 0.9407 0.9992
SDCFL 3L 0.9690 0.9407 0.9992
SDCF 4L 0.9135 0.8408 1.0000
CNN 0.9691 0.9401 1.0000
FCN 0.8844 0.9545 0.8240
CNN-TA 0.9686 0.9406 0.9984
MFNN 0.8979 0.9428 0.8571

INDRAMEDCO.BO SDCFL 1L 0.6850 0.5274 0.9768
SDCFL 2L 0.6738 0.5364 0.9060
SDCFL 3L 0.6678 0.5403 0.8742
SDCF 4L 0.5196 0.3862 0.7935

(continued on next page)



P. Gupta et al.
Table A.10 (continued).
SYMBOL Method HOLD HOLD HOLD

F1 Score Precision Recall

CNN 0.6812 0.5299 0.9535
FCN 0.6804 0.5217 0.9778
CNN-TA 0.6569 0.5665 0.7816
MFNN 0.6755 0.5202 0.9630

IOC.BO SDCFL 1L 0.9817 0.9647 0.9993
SDCFL 2L 0.9810 0.9634 0.9992
SDCFL 3L 0.9810 0.9634 0.9992
SDCF 4L 0.9325 0.8735 1.0000
CNN 0.9817 0.9640 1.0000
FCN 0.9737 0.9628 0.9848
CNN-TA 0.9808 0.9624 1.0000
MFNN 0.9737 0.9628 0.9848

KENNAMET.BO SDCFL 1L 0.5067 0.4475 0.5840
SDCFL 2L 0.5201 0.4664 0.5878
SDCFL 3L 0.4585 0.4407 0.4779
SDCF 4L 0.2419 0.2459 0.2381
CNN 0.4243 0.4236 0.4250
FCN 0.5202 0.4568 0.6040
CNN-TA 0.5381 0.4619 0.6445
MFNN 0.6001 0.4297 0.9947

NATIONALUM.BO SDCFL 1L 0.9983 0.9966 1.0000
SDCFL 2L 0.9984 0.9968 1.0000
SDCFL 3L 0.9984 0.9968 1.0000
SDCF 4L 0.9959 0.9918 1.0000
CNN 0.9983 0.9966 1.0000
FCN 0.9888 0.9968 0.9810
CNN-TA 0.9983 0.9966 1.0000
MFNN 0.9775 0.9965 0.9592

NATIONALUM.NS SDCFL 1L 0.5892 0.4188 0.9937
SDCFL 2L 0.5869 0.4190 0.9792
SDCFL 3L 0.5525 0.4242 0.7919
SDCF 4L 0.4000 0.4429 0.3647
CNN 0.5905 0.4189 1.0000
FCN 0.5857 0.4171 0.9830
CNN-TA 0.5258 0.4463 0.6397
MFNN 0.2237 0.4171 0.1528

NITINALOY.BO SDCFL 1L 0.7252 0.6036 0.9082
SDCFL 2L 0.6932 0.6137 0.7963
SDCFL 3L 0.6891 0.6282 0.7631
SDCF 4L 0.5044 0.4711 0.5429
CNN 0.7214 0.6196 0.8632
FCN 0.6746 0.6105 0.7539
CNN-TA 0.7305 0.5927 0.9517
MFNN 0.2017 0.5663 0.1227
Table A.11
Classification results for sell class for stock trading.

SYMBOL Method SELL SELL SELL
F1 Score Precision Recall

ALKYLAMINE.BO SDCFL 1L 0.1207 0.2279 0.0821
SDCFL 2L 0.1820 0.2681 0.1378
SDCFL 3L 0.1945 0.2522 0.1583
SDCF 4L 0.3594 0.3710 0.3485
CNN 0.1278 0.2537 0.0854
FCN 0.0879 0.2800 0.0521
CNN-TA 0.0282 0.2667 0.0149
MFNN 0.3347 0.2075 0.8641

AUROPHARMA.NS SDCFL 1L 0.0178 0.3333 0.0092
SDCFL 2L 0.0193 0.3571 0.0099
SDCFL 3L 0.0194 0.4167 0.0099
SDCF 4L 0.0385 0.2500 0.0208
CNN 0.0000 0.0000 0.0000
FCN 0.0510 0.3111 0.0278
CNN-TA 0.0524 0.2206 0.0298
MFNN 0.3210 0.1932 0.9484

BPCL.NS SDCFL 1L 0.0039 0.1111 0.0020
SDCFL 2L 0.0000 0.0000 0.0000
SDCFL 3L 0.0000 0.0000 0.0000

(continued on next page)



P. Gupta et al.
Table A.11 (continued).
SYMBOL Method SELL SELL SELL

F1 Score Precision Recall

SDCF 4L 0.0000 0.0000 0.0000
CNN 0.0000 0.0000 0.0000
FCN 0.0000 0.0000 0.0000
CNN-TA 0.0213 0.1786 0.0113
MFNN 0.0321 0.1429 0.0181

BSELINFRA.BO SDCFL 1L 0.0000 0.0000 0.0000
SDCFL 2L 0.0000 0.0000 0.0000
SDCFL 3L 0.0000 0.0000 0.0000
SDCF 4L 0.0000 0.0000 0.0000
CNN 0.0000 0.0000 0.0000
FCN 0.0000 0.0000 0.0000
CNN-TA 0.0000 0.0000 0.0000
MFNN 0.0319 0.0164 0.6383

CAIRN.NS SDCFL 1L 0.0183 0.4286 0.0094
SDCFL 2L 0.0230 0.2500 0.0120
SDCFL 3L 0.0231 0.2800 0.0120
SDCF 4L 0.1282 0.3125 0.0806
CNN 0.0207 0.2000 0.0109
FCN 0.0197 0.2143 0.0103
CNN-TA 0.1337 0.2800 0.0879
MFNN 0.0431 0.2059 0.0241

DEEPAKSP.BO SDCFL 1L 0.1140 0.2252 0.0763
SDCFL 2L 0.1914 0.2890 0.1431
SDCFL 3L 0.2174 0.2688 0.1826
SDCF 4L 0.2772 0.4000 0.2121
CNN 0.1436 0.2188 0.1069
FCN 0.2302 0.3068 0.1842
CNN-TA 0.1799 0.2577 0.1382
MFNN 0.0245 0.1818 0.0132

DRREDDY.NS SDCFL 1L 0.0060 0.1667 0.0031
SDCFL 2L 0.0066 0.2000 0.0034
SDCFL 3L 0.0363 0.1765 0.0202
SDCF 4L 0.0417 0.3333 0.0222
CNN 0.0000 0.0000 0.0000
FCN 0.0129 0.1667 0.0067
CNN-TA 0.0700 0.1359 0.0471
MFNN 0.0116 0.0417 0.0067

HCC.NS SDCFL 1L 0.0000 0.0000 0.0000
SDCFL 2L 0.0392 0.2222 0.0215
SDCFL 3L 0.0000 0.0000 0.0000
SDCF 4L 0.0000 0.0000 0.0000
CNN 0.0000 0.0000 0.0000
FCN 0.1090 0.0730 0.2151
CNN-TA 0.0204 0.2000 0.0108
MFNN 0.0000 0.0000 0.0000

HINDPETRO.NS SDCFL 1L 0.0000 0.0000 0.0000
SDCFL 2L 0.0000 0.0000 0.0000
SDCFL 3L 0.0000 0.0000 0.0000
SDCF 4L 0.0000 0.0000 0.0000
CNN 0.0000 0.0000 0.0000
FCN 0.1007 0.0603 0.3068
CNN-TA 0.0000 0.0000 0.0000
MFNN 0.0000 0.0000 0.0000

INDRAMEDCO.BO SDCFL 1L 0.0183 0.4286 0.0094
SDCFL 2L 0.0230 0.2500 0.0120
SDCFL 3L 0.0164 0.1852 0.0086
SDCF 4L 0.1081 0.3333 0.0645
CNN 0.0207 0.2000 0.0109
FCN 0.0197 0.2143 0.0103
CNN-TA 0.1506 0.2664 0.1050
MFNN 0.0587 0.2174 0.0339

IOC.BO SDCFL 1L 0.0000 0.0000 0.0000
SDCFL 2L 0.0000 0.0000 0.0000
SDCFL 3L 0.0000 0.0000 0.0000
SDCF 4L 0.0000 0.0000 0.0000
CNN 0.0000 0.0000 0.0000
FCN 0.0000 0.0000 0.0000
CNN-TA 0.0000 0.0000 0.0000
MFNN 0.0000 0.0000 0.0000

(continued on next page)



P. Gupta et al.
Table A.11 (continued).
SYMBOL Method SELL SELL SELL

F1 Score Precision Recall

KENNAMET.BO SDCFL 1L 0.2050 0.3039 0.1546
SDCFL 2L 0.2697 0.2855 0.2556
SDCFL 3L 0.2960 0.2880 0.3045
SDCF 4L 0.4387 0.4416 0.4359
CNN 0.2805 0.2927 0.2693
FCN 0.2739 0.3374 0.2304
CNN-TA 0.0883 0.3636 0.0503
MFNN 0.0000 0.0000 0.0000

NATIONALUM.BO SDCFL 1L 0.0000 0.0000 0.0000
SDCFL 2L 0.0000 0.0000 0.0000
SDCFL 3L 0.0000 0.0000 0.0000
SDCF 4L 0.0000 0.0000 0.0000
CNN 0.0000 0.0000 0.0000
FCN 0.0000 0.0000 0.0000
CNN-TA 0.0000 0.0000 0.0000
MFNN 0.0000 0.0000 0.0000

NATIONALUM.NS SDCFL 1L 0.0053 0.1429 0.0027
SDCFL 2L 0.0383 0.2381 0.0208
SDCFL 3L 0.1540 0.2582 0.1097
SDCF 4L 0.4333 0.4333 0.4333
CNN 0.0000 0.0000 0.0000
FCN 0.0340 0.2955 0.0181
CNN-TA 0.2527 0.2887 0.2247
MFNN 0.0821 0.2500 0.0491

NITINALOY.BO SDCFL 1L 0.1247 0.2994 0.0787
SDCFL 2L 0.1820 0.2681 0.1378
SDCFL 3L 0.1810 0.2351 0.1471
SDCF 4L 0.2906 0.3333 0.2576
CNN 0.1278 0.2537 0.0854
FCN 0.1747 0.2282 0.1415
CNN-TA 0.0211 0.1935 0.0112
MFNN 0.0105 0.0938 0.0056
Table A.12
Weighted classification results for stock trading.

SYMBOL Method F1 Score Precision Recall

ALKYLAMINE.BO SDCFL 1L 0.4738 0.4559 0.5590
SDCFL 2L 0.4824 0.4635 0.5278
SDCFL 3L 0.4741 0.4554 0.5089
SDCF 4L 0.4014 0.3934 0.4262
CNN 0.4882 0.4694 0.5556
FCN 0.4741 0.4666 0.5723
CNN-TA 0.4564 0.4539 0.5730
MFNN 0.1472 0.4407 0.2257

AUROPHARMA.NS SDCFL 1L 0.5160 0.4869 0.6499
SDCFL 2L 0.5104 0.4872 0.6451
SDCFL 3L 0.5112 0.5522 0.6459
SDCF 4L 0.3952 0.4760 0.5407
CNN 0.5121 0.4224 0.6499
FCN 0.5144 0.4786 0.6409
CNN-TA 0.5217 0.4980 0.6243
MFNN 0.1057 0.4001 0.2071

BPCL.NS SDCFL 1L 0.5638 0.5369 0.6852
SDCFL 2L 0.5687 0.5252 0.6886
SDCFL 3L 0.5647 0.4953 0.6878
SDCF 4L 0.2839 0.2999 0.4309
CNN 0.5608 0.4733 0.6880
FCN 0.5907 0.5322 0.6690
CNN-TA 0.5665 0.5086 0.6859
MFNN 0.5650 0.5191 0.6751

BSELINFRA.BO SDCFL 1L 0.9587 0.9454 0.9723
SDCFL 2L 0.9649 0.9536 0.9765
SDCFL 3L 0.9649 0.9536 0.9765
SDCF 4L 0.9757 0.9677 0.9837
CNN 0.9587 0.9454 0.9723
FCN 0.9552 0.9531 0.9573
CNN-TA 0.9609 0.9534 0.9684
MFNN 0.4414 0.9525 0.2983

(continued on next page)



P. Gupta et al.
Table A.12 (continued).
SYMBOL Method F1 Score Precision Recall

CAIRN.NS SDCFL 1L 0.3801 0.4604 0.5216
SDCFL 2L 0.4120 0.4283 0.5142
SDCFL 3L 0.4137 0.4293 0.5089
SDCF 4L 0.3389 0.3752 0.3862
CNN 0.3907 0.4156 0.5178
FCN 0.3662 0.3934 0.5150
CNN-TA 0.4354 0.4296 0.4942
MFNN 0.3752 0.4215 0.5146

DEEPAKSP.BO SDCFL 1L 0.4217 0.4075 0.5075
SDCFL 2L 0.4168 0.4058 0.4791
SDCFL 3L 0.4176 0.4039 0.4640
SDCF 4L 0.3293 0.3562 0.3714
CNN 0.4189 0.4013 0.4831
FCN 0.4315 0.4212 0.4853
CNN-TA 0.4024 0.4021 0.4140
MFNN 0.3821 0.3891 0.5221

DRREDDY.NS SDCFL 1L 0.6988 0.6554 0.7862
SDCFL 2L 0.6955 0.6800 0.7855
SDCFL 3L 0.6952 0.6555 0.7778
SDCF 4L 0.4886 0.5419 0.6122
CNN 0.6987 0.6257 0.7910
FCN 0.6933 0.6528 0.7809
CNN-TA 0.6925 0.6602 0.7397
MFNN 0.0190 0.0145 0.0974

HCC.NS SDCFL 1L 0.9097 0.8876 0.9336
SDCFL 2L 0.9108 0.8949 0.9353
SDCFL 3L 0.9094 0.8880 0.9353
SDCF 4L 0.7386 0.7612 0.8171
CNN 0.9127 0.8859 0.9412
FCN 0.8749 0.9011 0.8533
CNN-TA 0.7063 0.8882 0.5951
MFNN 0.3855 0.8712 0.2614

HINDPETRO.NS SDCFL 1L 0.9108 0.8838 0.9394
SDCFL 2L 0.9116 0.8849 0.9399
SDCFL 3L 0.9116 0.8849 0.9399
SDCF 4L 0.7681 0.7070 0.8408
CNN 0.9111 0.8839 0.9401
FCN 0.8364 0.9012 0.7863
CNN-TA 0.9112 0.8848 0.9392
MFNN 0.8461 0.8877 0.8109

INDRAMEDCO.BO SDCFL 1L 0.3801 0.4604 0.5216
SDCFL 2L 0.4120 0.4283 0.5142
SDCFL 3L 0.4144 0.4089 0.5065
SDCF 4L 0.3471 0.4196 0.4065
CNN 0.4316 0.4621 0.5223
FCN 0.3662 0.3934 0.5150
CNN-TA 0.4517 0.4425 0.4969
MFNN 0.3681 0.4259 0.5102

IOC.BO SDCFL 1L 0.9476 0.9363 0.9640
SDCFL 2L 0.9457 0.9341 0.9626
SDCFL 3L 0.9457 0.9341 0.9626
SDCF 4L 0.8145 0.7629 0.8735
CNN 0.9456 0.9293 0.9634
FCN 0.9381 0.9276 0.9488
CNN-TA 0.9443 0.9267 0.9626
MFNN 0.9377 0.9272 0.9484

KENNAMET.BO SDCFL 1L 0.3665 0.3677 0.3864
SDCFL 2L 0.3790 0.3762 0.3926
SDCFL 3L 0.3625 0.3616 0.3657
SDCF 4L 0.3574 0.3571 0.3577
CNN 0.3705 0.3709 0.3715
FCN 0.3808 0.3797 0.3976
CNN-TA 0.3601 0.3934 0.4072
MFNN 0.2646 0.2926 0.4295

NATIONALUM.BO SDCFL 1L 0.9949 0.9932 0.9966
SDCFL 2L 0.9953 0.9937 0.9968
SDCFL 3L 0.9953 0.9937 0.9968
SDCF 4L 0.9877 0.9836 0.9918
CNN 0.9949 0.9932 0.9966
FCN 0.9857 0.9936 0.9779
CNN-TA 0.9949 0.9932 0.9966
MFNN 0.9742 0.9931 0.9560

(continued on next page)



P. Gupta et al.
Table A.12 (continued).
SYMBOL Method F1 Score Precision Recall

NATIONALUM.NS SDCFL 1L 0.2491 0.3655 0.4174
SDCFL 2L 0.2564 0.3919 0.4146
SDCFL 3L 0.3272 0.3553 0.3968
SDCF 4L 0.4005 0.4064 0.3992
CNN 0.2473 0.1755 0.4189
FCN 0.2539 0.2578 0.4150
CNN-TA 0.3653 0.3665 0.3903
MFNN 0.2460 0.3344 0.3141

NITINALOY.BO SDCFL 1L 0.4817 0.4814 0.5715
SDCFL 2L 0.4824 0.4635 0.5278
SDCFL 3L 0.4675 0.4474 0.5027
SDCF 4L 0.3906 0.3885 0.3975
CNN 0.4956 0.4786 0.5455
FCN 0.4741 0.4666 0.5723
CNN-TA 0.4524 0.4406 0.5750
MFNN 0.1859 0.3943 0.2438
Table B.13
Financial results for stock trading.

SYMBOL Method True AR Predicted AR Absolute difference AR

ALKYLAMINE.BO SDCFL 1L 86.3000 5.7500 80.5500
SDCFL 2L 12.3000 74.0000
SDCFL 3L 25.9600 60.3400
SDCF 4L 10.3700 75.9300
CNN 8.2300 78.0700
FCN 1.6500 84.6500
CNN-TA 14.6200 71.6800
MFNN 6.4200 79.8800

AUROPHARMA.NS SDCFL 1L −0.8300 9.9400 10.7700
SDCFL 2L 9.9200 10.7500
SDCFL 3L 10.5700 11.4000
SDCF 4L 10.3300 11.1600
CNN 0.0000 0.8300
FCN 9.2100 10.0400
CNN-TA 19.7400 20.5700
MFNN 0.6200 1.4500

BPCL.NS SDCFL 1L 14.1200 0.7800 13.3400
SDCFL 2L 0.3800 13.7400
SDCFL 3L −0.3500 14.4700
SDCF 4L 0.2000 13.9200
CNN 0.0000 14.1200
FCN 0.0000 14.1200
CNN-TA 0.0000 14.1200
MFNN 1.3800 12.7400

BSELINFRA.BO SDCFL 1L 7.5200 0.0000 7.5200
SDCFL 2L 0.0000 7.5200
SDCFL 3L 0.0000 7.5200
SDCF 4L 0.0000 7.5200
CNN 0.0000 7.5200
FCN −0.0700 7.5900
CNN-TA 0.0000 7.5200
MFNN 0.0000 7.5200

CAIRN.NS SDCFL 1L 9.6600 2.6100 7.0500
SDCFL 2L 2.2300 7.4300
SDCFL 3L 1.4400 8.2200
SDCF 4L 0.1100 9.5500
CNN 6.4100 3.2500
FCN 5.4900 4.1700
CNN-TA 1.4400 8.2200
MFNN 4.3300 5.3300

DEEPAKSP.BO SDCFL 1L 55.8800 12.6400 43.2400
SDCFL 2L 19.9200 35.9600
SDCFL 3L 9.0700 46.8100
SDCF 4L −2.2900 58.1700
CNN 18.3800 37.5000
FCN 1.0200 54.8600
CNN-TA 6.9100 48.9700
MFNN 19.8300 36.0500

(continued on next page)



P. Gupta et al.
Table B.13 (continued).
SYMBOL Method True AR Predicted AR Absolute difference AR

DRREDDY.NS SDCFL 1L 10.8200 4.7500 6.0700
SDCFL 2L 16.6000 5.7800
SDCFL 3L 13.2000 2.3800
SDCF 4L 2.5000 8.3200
CNN 0.0000 10.8200
FCN 16.1800 5.3600
CNN-TA 4.3200 6.5000
MFNN 17.5800 6.7600

HCC.NS SDCFL 1L 3.0200 4.39000 1.3700
SDCFL 2L 4.4300 1.4100
SDCFL 3L 5.3900 2.3700
SDCF 4L 5.6200 2.6000
CNN 0.0000 3.0200
FCN 3.7600 0.7400
CNN-TA −1.1800 4.2000
MFNN −19.8300 22.8500

HINDPETRO.NS SDCFL 1L 33.6400 0.0000 33.6400
SDCFL 2L 0.0000 33.6400
SDCFL 3L 0.0000 33.6400
SDCF 4L 0.0000 33.6400
CNN 0.0000 33.6400
FCN 0.3200 33.3200
CNN-TA 0.0000 33.6400
MFNN 0.0000 33.6400

INDRAMEDCO.BO SDCFL 1L 9.6600 2.6100 7.0500
SDCFL 2L 2.2300 7.4300
SDCFL 3L 2.2200 7.4400
SDCF 4L 5.4900 4.1700
CNN 6.4100 3.2500
FCN 5.4900 4.1700
CNN-TA −2.3300 11.9900
MFNN −3.4500 13.1100

IOC.BO SDCFL 1L 26.1000 0.0000 26.1000
SDCFL 2L 0.0000 26.1000
SDCFL 3L 0.0000 26.1000
SDCF 4L 0.0000 26.1000
CNN 0.0000 26.1000
FCN 0.0000 26.1000
CNN-TA 0.0000 26.1000
MFNN 0.0000 26.1000

KENNAMET.BO SDCFL 1L 18.3100 0.6300 17.6800
SDCFL 2L 6.4400 11.8700
SDCFL 3L 3.6600 14.6500
SDCF 4L 9.2800 9.0300
CNN −0.8800 19.1900
FCN −0.8200 19.1300
CNN-TA −1.4000 19.7100
MFNN 0.0000 18.3100

NATIONALUM.BO SDCFL 1L 0.0000 0.0000 0.0000
SDCFL 2L 0.0000 0.0000
SDCFL 3L 0.0000 0.0000
SDCF 4L 0.0000 0.0000
CNN 0.0000 0.0000
FCN 6.3500 6.3500
CNN-TA 0.0000 0.0000
MFNN −1.1100 1.1100

NATIONALUM.NS SDCFL 1L 1.3300 0.1200 1.2100
SDCFL 2L 0.1200 1.2100
SDCFL 3L 0.4300 0.9000
SDCF 4L 5.6900 4.3600
CNN 0.0000 1.3300
FCN 0.0000 1.3300
CNN-TA 4.2400 2.3100
MFNN 9.7500 8.4200

NITINALOY.BO SDCFL 1L 86.3000 3.4700 82.8300
SDCFL 2L 12.3000 74.0000
SDCFL 3L 14.9400 71.3600
SDCF 4L 8.3400 77.9600
CNN 8.2300 78.0700
FCN 1.6500 84.6500
CNN-TA 29.7600 56.5400
MFNN 24.1600 62.1400



P. Gupta et al.

C

E

Table C.14
Comparative performance of SDCF vs. CNN in terms of #stocks.

Model Performance BUY HOLD SELL WEIGHTED AR

F1 P R F1 P R F1 P R F1 P R

SDCF best(>) 6 11 2 6 6 0 5 9 4 6 9 4 5
equal(=) 2 2 3 1 1 5 2 2 2 0 0 1 3

Total >= 8 13 5 7 7 5 7 11 6 6 9 5 8

next best/similar 1 1 1 7 4 5 1 1 1 6 3 6 0

CNN best(>) 0 0 0 5 1 4 0 0 0 4 2 6 2
equal(=) 2 2 2 1 0 5 2 2 2 0 0 1 3

Total >= 2 2 2 6 1 9 2 2 2 4 2 7 5

next best/similar 0 0 0 2 3 0 0 0 0 3 2 3 0

F1 — F1 Score, P — Precision, R — Recall.
W - Weighted.
AR — Annualized Returns.
Appendix B. Financial results for stock trading

This section mentions the table with financial results for stock
trading for all the stocks.

Appendix C. Performance analysis for SDCF vs. CNN

This section mentions the table with the summary of number of
stocks achieving good performance under SDCF and CNN, giving the
comparative analysis of the performance between the two techniques.

References

Antropova, N., Huynh, B., & Giger, M. (2017). A deep feature fusion methodology for
breast cancer diagnosis demonstrated on three imaging modality datasets. Medical
Physics, 44, 10. http://dx.doi.org/10.1002/mp.12453.

Attouch, H., Bolte, J., & Svaiter, B. F. (Feb. 2011). Convergence of descent methods for
semi-algebraic and tame problems: proximal algorithms,forward-backward splitting,
and regularized Gauss-Seidel methods. Mathematical Programming, 137, 91–129.
http://dx.doi.org/10.1007/s10107-011-0484-9.

Ballings, M., Poel, D. V., Hespeels, N., & Gryp, R. (2015). Evaluating multiple
classifiers for stock price direction prediction. Expert Systems with Applications,
42(20), 7046–7056. http://dx.doi.org/10.1016/j.eswa.2015.05.013, URL: http://
www.sciencedirect.com/science/article/pii/S0957417415003334.

Barak, S., Arjmand, A., & Ortobelli, S. (2017). Fusion of multiple diverse predictors
in stock market. Information Fusion, 36, 90–102. http://dx.doi.org/10.1016/j.inffus.
2016.11.006.

Bisoi, R., & Dash, P. (2014). A hybrid evolutionary dynamic neural network for stock
market trend analysis and prediction using unscented Kalman filter. Applied Soft
Computing, 19, 41–56. http://dx.doi.org/10.1016/j.asoc.2014.01.039.

Bolte, J., Sabach, S., & Teboulle, M. (2014). Proximal alternating linearized minimiza-
tion for nonconvex and non-smooth problems. Mathematical Programming, 146(1-2),
459–494. http://dx.doi.org/10.1007/s10107-013-0701-9.

hen, Y., & Hao, Y. (2017). A feature weighted support vector machine and K-nearest
neighbor algorithm for stock market indices prediction. Expert Systems with Ap-
plications, 80, 340–355. http://dx.doi.org/10.1016/j.eswa.2017.02.044, URL: http:
//www.sciencedirect.com/science/article/pii/S0957417417301367.

Chen, Y., Li, C., Ghamisi, P., Jia, X., & Gu, Y. (2017). Deep fusion of remote sensing
data for accurate classification. IEEE Geoscience and Remote Sensing Letters, 14(8),
1253–1257. http://dx.doi.org/10.1109/LGRS.2017.2704625.

Chouzenoux, E., Pesquet, J. C., & Repetti, A. (2016). A block coordinate variable
metric forward-backward algorithm. Journal on Global Optimization, 66(3), 457–485.
http://dx.doi.org/10.1007/s10898-016-0405-9.

Combettes, P., & Pesquet, J. (2011). Proximal splitting methods in signal processing.
In H. Bauschke, R. Burachik, C. P., V. Elser, D. Luke, & W. H. (Eds.), Springer
optimization and its applications: Vol. 49, No. 2011, Fixed-point algorithms for inverse
problems in science and engineering. New York: Springer, http://dx.doi.org/10.1007/
978-1-4419-9569-8_10.

Combettes, P. L., & Pesquet, J.-C. (2018). Deep neural network structures solving
variational inequalities. Set-Valued and Variational Analysis (2018), URL: https:
//arxiv.org/abs/1808.07526.

Daneshvar, S., & Ghassemian, H. (2010). MRI and PET image fusion by combining IHS
and retina-inspired models. Information Fusion, 11(2), 114–123. http://dx.doi.org/
10.1016/j.inffus.2009.05.003.

itel, A., Springenberg, J., Spinello, L., Riedmiller, M., & Burgard, W. (September
2015). Multimodal deep learning for robust RGB-D object recognition. In 2015
IEEE/RSJ international conference on intelligent robots and systems (pp. 681–687).
http://dx.doi.org/10.1109/IROS.2015.7353446.
El Faouzi, N.-E., Leung, H., & Kurian, A. (2011). Data fusion in intelligent transportation
systems: Progress and challenges – A survey. Information Fusion, 12, 4–10. http:
//dx.doi.org/10.1016/j.inffus.2010.06.001.

Fama, E. F., & Malkiel, B. G. (1970). Efficient capital markets: A review of theory and
empirical work. The Journal of Finance, 25(2), 383–417. http://dx.doi.org/10.2307/
2325486.

Feichtenhofer, C., Pinz, A., & Zisserman, A. (2016). Convolutional two-stream network
fusion for video action recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 1933–1941). http://dx.doi.org/10.1109/CVPR.
2016.213.

Garcia, F., Guijarro, F., Oliver, J., & Tamosiuniene, R. (2018). Hybrid fuzzy neural
network to predict price direction in the German DAX-30 index. Technological and
Economic Development of Economy, 24, 2161–2178. http://dx.doi.org/10.3846/tede.
2018.6394.

Gudelek, M. U., Boluk, S. A., & Ozbayoglu, A. M. (November 2017). A deep
learning based stock trading model with 2-D CNN trend detection. 2017 IEEE
symposium series on computational intelligence, 1–8. http://dx.doi.org/10.1109/SSCI.
2017.8285188.

Hiransha, M., Gopalakrishnan, E. A., Menon, V. K., & Soman, K. P. (2018). NSE
stock market prediction using deep-learning models. Procedia computer science, 132,
1351–1362. http://dx.doi.org/10.1016/j.procs.2018.05.050.

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In Proc.
of ICLR (Vol. 2015). URL: https://arxiv.org/abs/1412.6980.

Klambauer, G., Unterthiner, T., Mayr, A., & Hochreiter, S. (2017). Self-normalizing
neural networks. In Proc. of NeurIPS (Vol. 2017). http://dx.doi.org/10.5555/
3294771.3294864.

Kocak, C. (2017). Arma( p,q ) type high order fuzzy time series forecast method based
on fuzzy logic relations. Applied Soft Computing, 58, 92–103. http://dx.doi.org/10.
1016/j.asoc.2017.04.021.

Lin, Z. (2018). Modelling and forecasting the stock market volatility of sse composite
index using garch models. Future Generation Computer Systems, 79, 960–972. http:
//dx.doi.org/10.1016/j.future.2017.08.033.

lk, N., Kuruppuarachchi, D., & Kuzmicheva, O. (2017). Stock market’s response to
real output shocks in eastern European frontier markets: A varwal model. Emerging
Market Review, 33, 140–154. http://dx.doi.org/10.1016/j.ememar.2017.09.004.

Long, W., Lu, Z., & Cui, L. (2019). Deep learning-based feature engineering for
stock price movement prediction. Knowledge-Based Systems, 164, 163–173. http:
//dx.doi.org/10.1016/j.knosys.2018.10.034.

Maggu, J., Chouzenoux, E., Chierchia, G., & Majumdar, A. (Dec 2018). Convolu-
tional transform learning. International conference on neural information processing,
162–174. http://dx.doi.org/10.1007/978-3-030-04182-3_15.

Malkiel, B. G. (1973). A random walk down wall street (Vol. 1973). New York: Norton.
Mass, A., Hannun, A., & Ng, A. (2013). Rectifier nonlinearities improve neural network

acoustic models. In Proc. of ICML (Vol. 2013).
Ming, F., Wong, F., Liu, Z., & Chiang, M. (2014). Stock market prediction from WSJ:

Text mining via sparse matrix factorization. 2014 IEEE international conference on
data mining, Shenzhen, 430–439. http://dx.doi.org/10.1109/ICDM.2014.116.

Nelson, D. M. Q., Pereira, A. C. M., & de Oliveira, R. A. (2017). Stock market’s price
movement prediction with LSTM neural networks. 2017 International joint conference
on neural networks, 1419–1426. http://dx.doi.org/10.1109/IJCNN.2017.7966019.

Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., & Ng, A. (2011). Multimodal
deep learning. Proceedings of the 28th international conference on machine learning,
689–696. http://dx.doi.org/10.5555/3104482.3104569.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmai-
son, A., Antiga, L., & Lerer, A. (2017). Automatic differentiation in PyTorch. In
NIPS autodiff workshop (Vol. 2017).

Patel, J., Shah, S., Thakkar, P., & Kotecha, K. (2015a). Predicting stock and stock price
index movement using trend deterministic data preparation and machine learning
techniques. Expert Systems Applications, 42(1), 259–268. http://dx.doi.org/10.1016/
j.eswa.2014.07.040.

http://dx.doi.org/10.1002/mp.12453
http://dx.doi.org/10.1007/s10107-011-0484-9
http://dx.doi.org/10.1016/j.eswa.2015.05.013
http://www.sciencedirect.com/science/article/pii/S0957417415003334
http://www.sciencedirect.com/science/article/pii/S0957417415003334
http://www.sciencedirect.com/science/article/pii/S0957417415003334
http://dx.doi.org/10.1016/j.inffus.2016.11.006
http://dx.doi.org/10.1016/j.inffus.2016.11.006
http://dx.doi.org/10.1016/j.inffus.2016.11.006
http://dx.doi.org/10.1016/j.asoc.2014.01.039
http://dx.doi.org/10.1007/s10107-013-0701-9
http://dx.doi.org/10.1016/j.eswa.2017.02.044
http://www.sciencedirect.com/science/article/pii/S0957417417301367
http://www.sciencedirect.com/science/article/pii/S0957417417301367
http://www.sciencedirect.com/science/article/pii/S0957417417301367
http://dx.doi.org/10.1109/LGRS.2017.2704625
http://dx.doi.org/10.1007/s10898-016-0405-9
http://dx.doi.org/10.1007/978-1-4419-9569-8_10
http://dx.doi.org/10.1007/978-1-4419-9569-8_10
http://dx.doi.org/10.1007/978-1-4419-9569-8_10
https://arxiv.org/abs/1808.07526
https://arxiv.org/abs/1808.07526
https://arxiv.org/abs/1808.07526
http://dx.doi.org/10.1016/j.inffus.2009.05.003
http://dx.doi.org/10.1016/j.inffus.2009.05.003
http://dx.doi.org/10.1016/j.inffus.2009.05.003
http://dx.doi.org/10.1109/IROS.2015.7353446
http://dx.doi.org/10.1016/j.inffus.2010.06.001
http://dx.doi.org/10.1016/j.inffus.2010.06.001
http://dx.doi.org/10.1016/j.inffus.2010.06.001
http://dx.doi.org/10.2307/2325486
http://dx.doi.org/10.2307/2325486
http://dx.doi.org/10.2307/2325486
http://dx.doi.org/10.1109/CVPR.2016.213
http://dx.doi.org/10.1109/CVPR.2016.213
http://dx.doi.org/10.1109/CVPR.2016.213
http://dx.doi.org/10.3846/tede.2018.6394
http://dx.doi.org/10.3846/tede.2018.6394
http://dx.doi.org/10.3846/tede.2018.6394
http://dx.doi.org/10.1109/SSCI.2017.8285188
http://dx.doi.org/10.1109/SSCI.2017.8285188
http://dx.doi.org/10.1109/SSCI.2017.8285188
http://dx.doi.org/10.1016/j.procs.2018.05.050
https://arxiv.org/abs/1412.6980
http://dx.doi.org/10.5555/3294771.3294864
http://dx.doi.org/10.5555/3294771.3294864
http://dx.doi.org/10.5555/3294771.3294864
http://dx.doi.org/10.1016/j.asoc.2017.04.021
http://dx.doi.org/10.1016/j.asoc.2017.04.021
http://dx.doi.org/10.1016/j.asoc.2017.04.021
http://dx.doi.org/10.1016/j.future.2017.08.033
http://dx.doi.org/10.1016/j.future.2017.08.033
http://dx.doi.org/10.1016/j.future.2017.08.033
http://dx.doi.org/10.1016/j.ememar.2017.09.004
http://dx.doi.org/10.1016/j.knosys.2018.10.034
http://dx.doi.org/10.1016/j.knosys.2018.10.034
http://dx.doi.org/10.1016/j.knosys.2018.10.034
http://dx.doi.org/10.1007/978-3-030-04182-3_15
http://refhub.elsevier.com/S0957-4174(20)30934-9/sb27
http://dx.doi.org/10.1109/ICDM.2014.116
http://dx.doi.org/10.1109/IJCNN.2017.7966019
http://dx.doi.org/10.5555/3104482.3104569
http://dx.doi.org/10.1016/j.eswa.2014.07.040
http://dx.doi.org/10.1016/j.eswa.2014.07.040
http://dx.doi.org/10.1016/j.eswa.2014.07.040


P. Gupta et al.

R

R

S

S

S

Z

Z

Patel, J., Shah, S., Thakkar, P., & Kotecha, K. (2015b). Predicting stock market
index using fusion of machine learning techniques. Expert Systems with Applica-
tions, 42(4), 2162–2172. http://dx.doi.org/10.1016/j.eswa.2014.10.031, URL: http:
//www.sciencedirect.com/science/article/pii/S0957417414006551.

Persio, L. D., & Honchar, O. (2016). Artificial neural networks architectures for stock
price prediction: Comparisons and applications. International Journal of Circuits,
Systems and Signal Processing, 10, 403–413.

avishankar, S., & Bresler, Y. (2012). Learning sparsifying transforms. IEEE Transac-
tions on Signal Processing, 61(5), 1072–1086. http://dx.doi.org/10.1109/TSP.2012.
2226449.

oyo, R. C., & Guijarro, F. (2019). Forecasting stock market trend: a comparison of
machine learning algorithms. Finance, Markets and Valuation, 6(1), 37–49. http:
//dx.doi.org/10.46503/NLUF8557.

aadi, I., Farooq, B., Mustafa, A., Teller, J., & Cools, M. (2018). An efficient hierar-
chical model for multi-source information fusion. Expert Systems with Applications,
110, 352–362. http://dx.doi.org/10.1016/j.eswa.2018.06.018, URL: http://www.
sciencedirect.com/science/article/pii/S0957417418303646.

en, J., & Chaudhuri, T. (2017). A robust predictive model for stock price forecasting.
In International conference on business analytics and intelligence (Vol. 42, No. 1) (pp.
259–268). http://dx.doi.org/10.13140/RG.2.2.19130.49603/1.

ezer, O. B., & Ozbayogl, A. M. (2018). Algorithmic financial trading with deep
convolutional neural networks: Time series to image conversion approach. Applied
Soft Computing, 70, 525–538. http://dx.doi.org/10.1016/j.asoc.2018.04.024.

Shynkevich, Y., McGinnity, T., Coleman, S., Belatreche, A., & Li, Y. (2017). Forecasting
price movements using technical indicators: investigating the impact of varying
input window length. Neurocomputing, 164, 163–173. http://dx.doi.org/10.1016/j.
neucom.2016.11.095.

Ticknor, J. L. (2013). A Bayesian regularized artificial neural network for stock market
forecasting. Expert Systems with Applications, 40(14), 5501–5506. http://dx.doi.org/
10.1016/j.eswa.2013.04.013.
Tingwei, G., & Yueting, C. (2018). Improving stock closing price prediction using
recurrent neural network and technical indicators. Neural Computation, 30(10),
2833–2854. http://dx.doi.org/10.1162/neco_a_01124.

Tsantekidis, A., Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M., & Iosifidis, A.
(July 2017). Forecasting stock prices from the limit order book using convolutional
neural networks. In 2017 IEEE 19th conference on business informatics (Vol. 1) (pp.
7–12). http://dx.doi.org/10.1109/CBI.2017.23.

Tsinaslanidis, P., & Guijarro, F. (2020). What makes trading strategies based on
chart pattern recognition profitable? Expert Systems, http://dx.doi.org/10.1111/
exsy.12596.

Wang, Z., Yan, W., & Oates, T. (2017). Time series classification from scratch with
deep neural networks: A strong baseline. In 2017 international joint conference on
neural networks (pp. 1578–1585).

Weng, B., Lu, L., Wang, X., Megahed, F. M., & Martinez, W. (2018). Predicting
short-term stock prices using ensemble methods and online data sources. Expert
Systems with Applications, 112, 258–273. http://dx.doi.org/10.1016/j.eswa.2018.06.
016, URL: http://www.sciencedirect.com/science/article/pii/S0957417418303622.

Yang, J., Nguyen, M., San, P., Li, X., & Krishnaswamy, S. (June 2015). Deep
convolutional neural networks on multichannel time series for human activity
recognition. In Twenty-fourth international joint conference on artificial intelligence
(Vol. 42, No. 1) (pp. 259–268).

Yao, S., Hu, S., Zhao, Y., Zhang, A., & Abdelzaher, T. (April 2017). Deepsense: A
unified deep learning framework for time-series mobile sensing data processing.
(pp. 351–360). http://dx.doi.org/10.1145/3038912.3052577,

Yoon, Y., Cho, J., & Yoon, G. (2009). Non-constrained blood pressure monitoring using
ecg and ppg for personal healthcare. Journal of Medical Systems, 33(4), 261–266.
http://dx.doi.org/10.1007/s10916-008-9186-0.

heng, Y., Liu, Q., Chen, E., Ge, Y., & Zhao, J. (June 2014). Time series classification
using multi-channels deep convolutional neural networks. (pp. 289–310). Cham:
Springer, http://dx.doi.org/10.1007/978-3-319-08010-9_33.

umbach, G., & Fernndez, L. (2014). Option pricing with realistic arch processes.
Quantitative Finance, 14(1), 143–170. http://dx.doi.org/10.1080/14697688.2013.
816437.

http://dx.doi.org/10.1016/j.eswa.2014.10.031
http://www.sciencedirect.com/science/article/pii/S0957417414006551
http://www.sciencedirect.com/science/article/pii/S0957417414006551
http://www.sciencedirect.com/science/article/pii/S0957417414006551
http://refhub.elsevier.com/S0957-4174(20)30934-9/sb35
http://refhub.elsevier.com/S0957-4174(20)30934-9/sb35
http://refhub.elsevier.com/S0957-4174(20)30934-9/sb35
http://refhub.elsevier.com/S0957-4174(20)30934-9/sb35
http://refhub.elsevier.com/S0957-4174(20)30934-9/sb35
http://dx.doi.org/10.1109/TSP.2012.2226449
http://dx.doi.org/10.1109/TSP.2012.2226449
http://dx.doi.org/10.1109/TSP.2012.2226449
http://dx.doi.org/10.46503/NLUF8557
http://dx.doi.org/10.46503/NLUF8557
http://dx.doi.org/10.46503/NLUF8557
http://dx.doi.org/10.1016/j.eswa.2018.06.018
http://www.sciencedirect.com/science/article/pii/S0957417418303646
http://www.sciencedirect.com/science/article/pii/S0957417418303646
http://www.sciencedirect.com/science/article/pii/S0957417418303646
http://dx.doi.org/10.13140/RG.2.2.19130.49603/1
http://dx.doi.org/10.1016/j.asoc.2018.04.024
http://dx.doi.org/10.1016/j.neucom.2016.11.095
http://dx.doi.org/10.1016/j.neucom.2016.11.095
http://dx.doi.org/10.1016/j.neucom.2016.11.095
http://dx.doi.org/10.1016/j.eswa.2013.04.013
http://dx.doi.org/10.1016/j.eswa.2013.04.013
http://dx.doi.org/10.1016/j.eswa.2013.04.013
http://dx.doi.org/10.1162/neco_a_01124
http://dx.doi.org/10.1109/CBI.2017.23
http://dx.doi.org/10.1111/exsy.12596
http://dx.doi.org/10.1111/exsy.12596
http://dx.doi.org/10.1111/exsy.12596
http://dx.doi.org/10.1016/j.eswa.2018.06.016
http://dx.doi.org/10.1016/j.eswa.2018.06.016
http://dx.doi.org/10.1016/j.eswa.2018.06.016
http://www.sciencedirect.com/science/article/pii/S0957417418303622
http://dx.doi.org/10.1145/3038912.3052577
http://dx.doi.org/10.1007/s10916-008-9186-0
http://dx.doi.org/10.1007/978-3-319-08010-9_33
http://dx.doi.org/10.1080/14697688.2013.816437
http://dx.doi.org/10.1080/14697688.2013.816437
http://dx.doi.org/10.1080/14697688.2013.816437

	SuperDeConFuse: A supervised deep convolutional transform based fusion framework for financial trading systems
	Introduction
	Literature review
	Financial stock data analysis
	Information fusion

	Proposed technique
	Convolutional transform learning
	Deep convolutional transform learning
	Our proposed approach — SuperDeConFuse
	Optimization algorithm
	Computational complexity of proposed framework — SuperDeConFuse(SDCF)

	Methodology
	Dataset description
	Labeling
	Training details

	Experimental evaluation 
	Classification analysis
	Financial analysis

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	Appendix A. Class-Wise Classification Results for Stock Trading
	Appendix B. Financial Results for Stock Trading
	Appendix C. Performance Analysis for SDCF vs. CNN
	References




