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Abstract—This paper proposes accelerated subspace optimiza-
tion methods in the context of image restoration. Subspace
optimization methods belong to the class of iterative descent
algorithms for unconstrained optimization. At each iteration
of such methods, a stepsize vector allowing the best combina-
tion of several search directions is computed through a multi-
dimensional search. It is usually obtained by an inner iterative
second-order method ruled by a stopping criterion that guaran-
tees the convergence of the outer algorithm. As an alternative,
we propose an original multi-dimensional search strategy based
on the majorize-minimize principle. It leads to a closed-form
stepsize formula that ensures the convergence of the subspace
algorithm whatever the number of inner iterations. The practical
efficiency of the proposed scheme is illustrated in the context of
edge-preserving image restoration.

Index Terms—Subspace optimization, memory gradient, con-
jugate gradient, quadratic majorization, stepsize strategy, image
restoration.

I. I NTRODUCTION

T HIS work addresses a wide class of problems where an
input imagexo ∈ R

N is estimated from degraded data
y ∈ R

T . A typical model of image degradation is

y = Hxo + ǫ

whereH is a linear operator, described as aT × N matrix,
that models the image degradation process, andǫ is an
additive noise vector. This simple formalism covers many
real situations such as deblurring, denoising, inverse-Radon
transform in tomography and signal interpolation.

Two main strategies emerge in the literature for the restora-
tion of xo [1]. The first one uses ananalysis-basedapproach,
solving the following problem [2, 3]:

min
x∈RN

(

F (x) = ‖Hx− y‖2 + λΨ(x)
)

. (1)

In section V, we will consider an image deconvolution prob-
lem that calls for the minimization of this criterion form.

The second one employs asynthesis-basedapproach, look-
ing for a decompositionz of the image in some dictionary
K ∈ R

T×R [4, 5]:

min
z∈RR

(

F (z) = ‖HKz − y‖2 + λΨ(z)
)

. (2)

This method is applied to a set of image reconstruction
problems [6] in section IV.

In both cases, the penalization termΨ, whose weight is set
through the regularization parameterλ, aims at guaranteeing
the robustness of the solution to the observation noise and at
favorizing its fidelity toa priori assumptions [7].
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From the mathematical point a view, problems (1) and (2)
share a common structure. In this paper, we will focus on the
resolution of the first problem (1), but we will also provide
numerical results regarding the second one. On the other hand,
we restrict ourselves to regularization terms of the form

Ψ(x) =

C
∑

c=1

ψ(‖Vcx− ωc‖)

whereVc ∈ R
P×N , ωc ∈ R

P for c = 1, ..., C and‖.‖ stands
for the Euclidian norm. In the analysis-based approach,Vc

is typically a linear operator yielding either the differences
between neighboring pixels (e.g., in the Markovian regular-
ization approach), or the local spatial gradient vector (e.g.,
in the total variation framework), or wavelet decomposition
coefficients in some recent works such as [1]. In the synthesis-
based approach,Vc usually identifies with the identity matrix.

The strategy used for solving the penalized least squares
(PLS) optimization problem (1) strongly depends on the ob-
jective function properties (differentiability, convexity). More-
over, these mathematical properties contribute to the quality
of the reconstructed image. In that respect, we particularly
focus on differentiable, coercive, edge-preserving functions
ψ, e.g., ℓp norm with 1 < p < 2, Huber, hyperbolic, or
Geman and McClure functions [8–10], since they give rise to
locally smooth images [11–13]. In contrast, some restoration
methods rely on non differentiable regularizing functionsto
introduce priors such as sparsity of the decomposition coeffi-
cients [5] and piecewise constant patterns in the images [14].
As emphasized in [6], the non differentiable penalization term
can be replaced by a smoothed version without altering the
reconstruction quality. Moreover, the use of a smoother penalty
can reduce the staircase effect that appears in the case of total
variation regularization [15].

In the case of large scale non linear optimization problems
as encountered in image restoration, direct resolution is im-
possible. Instead, iterative optimization algorithms areused to
solve (1). Starting from an initial guessx0, they generate a
sequence of updated estimates(xk) until sufficient accuracy
is obtained. A fundamental update strategy is to produce a
decrease of the objective function at each iteration: from the
current valuexk, xk+1 is obtained according to

xk+1 = xk + αkdk, (3)

whereαk > 0 is thestepsizeanddk is adescent direction i.e.,
a vector such thatgT

k dk < 0, wheregk = ∇F (xk) denotes
the gradient ofF atxk. The determination ofαk is called the
line search. It is usually obtained by partially minimizing the
scalar functionf (k)(α) = F (xk + αdk) until the fulfillment
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of some sufficient conditions related to the overall algorithm
convergence [16].

In the context of the minimization of PLS criteria, the
determination of the descent directiondk is customarily ad-
dressed using a half-quadratic (HQ) approach that exploits
the PLS structure [11, 12, 17, 18]. A constant stepsize is then
used whiledk results from the minimization of a quadratic
majorizing approximation of the criterion [13], either resulting
from Geman and Reynolds (GR) or from Geman and Yang
(GY) constructions [2, 3].

Another effective approach for solving (1) is to consider
subspace acceleration [6, 19]. As emphasized in [20], some
descent algorithms (3) have a specific subspace feature: they
produce search directions spanned in a low dimension sub-
space. For example,

• the nonlinear conjugate gradient (NLCG) method [21]
uses a search direction in a two-dimensional (2D) space
spanned by the opposite gradient and the previous direc-
tion.

• the L-BFGS quasi-Newton method [22] generates updates
in a subspace of size2m + 1, wherem is the limited
memory parameter.

Subspace acceleration consists in relying on iterations more
explicitly aimed at solving the optimization problem within
such low dimension subspaces [23–27]. The acceleration is
obtained by definingxk+1 as the approximate minimizer of the
criterion over the subspace spanned by a set ofM directions

Dk = [d1
k, . . . ,d

M
k ]

with 1 ≤M ≪ N . More precisely, the iterates are given by

xk+1 = xk +Dksk (4)

wheresk is a multi-dimensional stepsize that aims at partially
minimizing

f (k)(s) = F (xk +Dks). (5)

The prototype scheme (4) defines aniterative subspace opti-
mizationalgorithm that can be viewed as an extension of (3)
to a search subspace of dimension larger than one. The
subspace algorithm has been shown to outperforms standard
descent algorithms, such as NLCG and L-BFGS, in terms of
computational cost and iteration number before convergence,
over a set of PLS minimization problems [6, 19].

The implementation of subspace algorithms requires a
strategy to determine the stepsizesk that guarantees the
convergence of the recurrence (4). However, it is difficult to
design a practical multi-dimensional stepsize search algorithm
gathering suitable convergence properties and low computa-
tional time [26, 28]. Recently, GY and GR HQ approximations
have led to an efficient majorization-minimization (MM) line
search strategy for the computation ofαk when dk is the
NLCG direction [29] (see also [30] for a general reference on
MM algorithms). In this paper, we generalize this strategy to
define the multi-dimensional stepsizesk in (4). We prove the
mathematical convergence of the resulting subspace algorithm
under mild conditions onDk. We illustrate its efficiency on
four image restoration problems.

The rest of the paper is organized as follows: Section II
gives an overview of existing subspace constructions and
multi-dimensional search procedures. In Section III, we in-
troduce the proposed HQ/MM strategy for the stepsize cal-
culation and we establish general convergence properties for
the overall subspace algorithm. Finally, Sections IV and V
give some illustrations and a discussion of the algorithm
performances by means of a set of experiments in image
restoration.

II. SUBSPACE OPTIMIZATION METHODS

The first subspace optimization algorithm is the memory
gradient method, proposed in the late 1960’s by Miele and
Cantrell [23]. It corresponds to

Dk = [−gk,dk−1]

and the stepsizesk results from the exact minimization
of f (k)(s). When F is quadratic, it is equivalent to the
nonlinear conjugate gradient algorithm [31].

More recently, several other subspace algorithms have been
proposed. Some of them are briefly reviewed in this section.
We first focus on the subspace construction, and then we
describe several existing stepsize strategies.

A. Subspace construction

Choosing subspacesDk of dimensions larger than one
may allow faster convergence in terms of iteration number.
However, it requires a multi-dimensional stepsize strategy,
which can be substantially more complex (and computationaly
costly) than the usual line search. Therefore, the choice ofthe
subspace must achieve a tradeoff between the iteration number
to reach convergence and the cost per iteration. Let us review
some existing iterative subspace optimization algorithmsand
their associated set of directions. For the sake of compactness,
their main features are summarized in Tab. I. Two families of
algorithms are distinguished.

1) Memory gradient algorithms:In the first seven algo-
rithms,Dk mainly gathers successive gradient and direction
vectors.

The third one, introduced in [32] as supermemory descent
(SMD) method, generalizes SMG by replacing the steepest
descent direction by any directionpk non orthogonal togk
i.e., gT

k pk 6= 0. PCD-SESOP and SSF-SESOP algorithms
from [6, 19] identify with SMD algorithm, whenpk equals
respectively the parallel coordinate descent (PCD) direction
and the separable surrogate functional (SSF) direction, both
described in [19].

Although the fourth algorithm was introduced in [33–35]
as a supermemory gradient method, we rather refer to it as
a gradient subspace(GS) algorithm in order to make the
distinction with the supermemory gradient (SMG) algorithm
introduced in [24].

The orthogonal subspace (ORTH) algorithm was introduced
in [36] with the aim to obtain a first order algorithm with
an optimal worst case convergence rate. The ORTH subspace
corresponds to the opposite gradient augmented with the two
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so-called Nemirovski directions,xk − x0 and
∑k

i=0 wigi,
wherewi are pre-specified, recursively defined weights:

wi =

{

1 if i = 0,

1
2 +

√

1
4 + w2

i−1 otherwise.
(6)

In [26], the Nemirovski subspace is augmented with previous
directions, leading to the SESOP algorithm whose efficiency
over ORTH is illustrated on a set of image reconstruction
problems. Moreover, experimental tests showed that the use
of Nemirovski directions in SESOP does not improve prac-
tical convergence speed. Therefore, in their recent paper [6],
Zibulevskyet al. do not use these additionnal vectors so that
their modified SESOP algorithm actually reduces to the SMG
algorithm from [24].

2) Newton type subspace algorithms:The last two algo-
rithms introduce additional directions of the Newton type.

In the Quasi-Newton subspace (QNS) algorithm proposed
in [25], Dk is augmented with

δk−i = gk−i+1 − gk−i, i = 1, . . . ,m. (7)

This proposal is reminiscent from the L-BFGS algorithm [22],
since the latter produces directions in the space spanned by
the resulting setDk.

SESOP-TN has been proposed in [27] to solve the problem
of sensitivity to an early break of conjugate gradient (CG)
iterations in the truncated Newton (TN) algorithm. Letdℓ

k

denote the current value ofd after ℓ iterations of CG to solve
the Gauss-Newton systemGk(d) = 0, where

Gk(d) = ∇2F (xk)d+ gk. (8)

In the standard TN algorithm,dℓ
k defines the search direc-

tion [39]. In SESOP-TN, it is only the first component ofDk,
while the second and third components ofDk also result from
the CG iterations.

Finally, to accelerate optimization algorithms, a common
practice is to use a preconditioning matrix. The principle is to
introduce a linear transform on the original variables, so that
the new variables have a Hessian matrix with more clustered
eigenvalues. Preconditioned versions of subspace algorithms
are easily defined by usingPkgk instead ofgk in the previous
direction sets [26].

B. Stepsize strategies

The aim of the multi-dimensional stepsize search is to
determinesk that ensures a sufficient decrease of function
f (k) defined by (5) in order to guarantee the convergence of
recurrence (4). In the scalar case, typical line search proce-
dures generate a series of stepsize values until the fulfillment
of sufficient convergence conditions such as Armijo, Wolfe
and Goldstein [40]. An extension of these conditions to the
multi-dimensional case can easily be obtained (e.g.,the multi-
dimensional Goldstein rule in [28]). However, it is difficult to
design practical multi-dimensional stepsize search algorithms
allowing to check these conditions [28].

Instead, in several subspace algorithms, the stepsize results
from an iterative descent algorithm applied to functionf (k),

stopped before convergence. In SESOP and SESOP-TN, the
minimization is performed by a Newton method. However,
unless the minimizer is found exactly, the resulting subspace
algorithms are not proved to converge. In the QNS and GS
algorithms, the stepsize results from a trust region recurrence
on f (k). It is shown to ensure the convergence of the iterates
under mild conditions onDk [25, 34, 35]. However, except
when the quadratic approximation of the criterion in the trust
region is separable [34], the trust region search requires to
solve a non-trivial constrained quadratic programming prob-
lem at each inner iteration.

In the particular case of modern SMG algorithms [41–44],
sk is computed in two steps. First, a descent direction is
constructed by combining the vectorsdi

k with some predefined
weights. Then a scalar stepsize is calculated through an
iterative line search. This strategy leads to the recurrence

xk+1 = xk + αk

(

−β0
kgk +

m
∑

i=1

βi
kdk−i

)

.

Different expressions for the weightsβi
k have been proposed.

To our knowledge, their extension to the preconditioned ver-
sion of SMG or to other subspaces is an open issue. Moreover,
since the computation of(αk, β

i
k) does not aim at minimizing

f (k) in the SMG subspace, the resulting schemes are not true
subspace algorithms.

In the next section, we propose an original strategy to
define the multi-dimensional stepsizesk in (4). The proposed
stepsize search is proved to ensure the convergence of the
whole algorithm, under low assumptions on the subspace, and
to require low computationnal cost.

III. PROPOSED MULTI-DIMENSIONAL STEPSIZE STRATEGY

A. GR and GY majorizing approximations

Let us first introduce Geman & Yang [3] and Geman &
Reynolds [2] matricesAGY andAGR, which play a central
role in the multi-dimensional stepsize strategy proposed in this
paper:

Aa
GY = 2HTH +

λ

a
V TV , (9)

AGR(x) = 2HTH + λV TDiag {b(x)}V , (10)

whereV T =
[

V T
1 |...|V T

C

]

, a > 0 is a free parameter, and
b(x) is aCP × 1 vector with entries

bcp(x) =
ψ̇(‖Vcx− ωc‖)
‖Vcx− ωc‖

.

Both GY and GR matrices allow the construction of ma-
jorizing approximation forF . More precisely, let us introduce
the following second order approximation ofF in the neigh-
borhood ofxk

Q(x,xk) = F (xk) +∇F (xk)
T (x− xk)

+
1

2
(x− xk)

TA(xk)(x− xk). (11)

Let us also introduce the following assumptions on the func-
tion ψ:
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Acronym Algorithm Set of directionsDk Subspace size

MG Memory gradient [23, 31]
[

−gk ,dk−1

]

2

SMG Supermemory gradient [24]
[

−gk ,dk−1, . . . ,dk−m

]

m+ 1

SMD Supermemory descent [32]
[

pk,dk−1, . . . ,dk−m

]

m+ 1

GS Gradient subspace [33, 34, 37]
[

−gk,−gk−1, . . . ,−gk−m

]

m+ 1

ORTH Orthogonal subspace [36]
[

−gk,xk − x0,
∑k

i=0
wigi

]

3

SESOP Sequential Subspace Optimization [26]
[

−gk ,xk − x0,
∑k

i=0
wigi,dk−1, . . . ,dk−m

]

m+ 3

QNS Quasi-Newton subspace [20, 25, 38]
[

−gk , δk−1, . . . , δk−m,dk−1, . . . ,dk−m

]

2m + 1

SESOP-TN Truncated Newton subspace [27]
[

dℓ
k
,Gk(d

ℓ
k
),dℓ

k
− dℓ−1

k
,dk−1, . . . ,dk−m

]

m+ 3

TABLE I
SET OF DIRECTIONS CORRESPONDING TO THE MAIN EXISTING ITERATIVE SUBSPACE ALGORITHMS. THE WEIGHTSwi AND THE VECTORSδi ARE

DEFINED BY (6) AND (7), RESPECTIVELY.Gk IS DEFINED BY (8), AND dℓ
k

IS THE ℓTH OUTPUT OF A CG ALGORITHM TO SOLVEGk(d) = 0.

(H1) ψ is C1 and coercive,
ψ̇ is L-Lipschitz.

(H2) ψ is C1, even and coercive,
ψ(

√
.) is concave onR+,

0 < ψ̇(t)/t <∞, ∀t ∈ R.
Then, the following lemma holds.

Lemma 1. [13]
Let F defined by(1) and xk ∈ R

N . If Assumption H1 holds
andA = Aa

GY with a ∈ (0, 1/L) (resp. Assumption H2 holds
andA = AGR), then for allx, (11) is a tangent majorantfor
F at xk i.e., for all x ∈ R

n,
{

Q(x,xk) ≥ F (x),

Q(xk,xk) = F (xk).
(12)

The majorizing property (12) ensures that the MM recur-
rence

xk+1 = argmin
x

Q(x,xk) (13)

produces a nonincreasing sequence(F (xk)) that converges to
a stationnary point ofF [30, 45]. Half-quadratic algorithms [2,
3] are based on the relaxed form

xk+1 = xk + θ(x̂k+1 − xk), (14)

wherex̂k+1 is obtained by (13). The convergence properties
of recurrence (14) are analysed in [12, 13, 46].

B. Majorize-Minimize line search

In [29], xk+1 is defined as (3) wheredk is the NLCG direc-
tion and the stepsize valueαk results fromJ ≥ 1 successive
minimizations of quadratic tangent majorant functions forthe
scalar functionf (k)(α) = F (xk + αdk), expressed as

q(k)(α, αj
k) = f (k)(αj

k) + (α− αj
k)ḟ

(k)(αj
k) +

1

2
bjk(α− αj

k)
2

at αj
k. The scalar parameterbjk is defined as

bjk = dT
kA(xk + αj

kdk)dk.

whereA(.) is either the GY or the GR matrix, respectively
defined by (9) and (10). The stepsize values are produced by
the relaxed MM recurrence

{

α0
k = 0

αj+1
k = αj

k − θḟ(αj
k)/b

j
k, j = 0, . . . , J − 1

(15)

and the stepsizeαk corresponds to the last valueαJ
k . The

distinctive feature of the MM line search is to yield the
convergence of standard descent algorithms without any stop-
ping condition whatever the number of MM sub-iterationsJ
and relaxation parameterθ ∈ (0, 2) [29]. Here, we propose
to extend this strategy to the determination of the multi-
dimensional stepsizesk, and we prove the convergence of the
resulting family of subspace algorithms.

C. MM multi-dimensional search

Let us define theM×M symmetric positive definite (SPD)
matrix

Bj
k = DT

k A
j
kDk

with A
j
k , A(xk +Dks

j
k) andA is either the GY matrix or

the GR matrix. According to Lemma 1,

q(k)(s, sjk) = f (k)(sjk)+∇f (k)(sjk)
T (s−s

j
k)+

1

2
(s−s

j
k)

TB
j
k(s−s

j
k)

(16)
is quadratic tangent majorant forf (k)(s) at sjk. Then, let us
define the MM multi-dimensional stepsize bysk = sJk , with










s0k = 0,

ŝ
j+1
k = argmin

s
q(k)(s, sjk), j = 0, . . . , J − 1.

s
j+1
k = s

j
k + θ(ŝj+1

k − s
j
k)

(17)

Given (16), we obtain an explicit stepsize formula

s
j+1
k = s

j
k − θ (Bj

k)
−1∇f (k)(sjk).

Moreover, according to [13], the update rule (17) produces
monotonically decreasing values(f (k)(sjk)) if θ ∈ (0, 2). Let
us emphasize that this stepsize procedure identifies with the
HQ/MM iteration (14) whenspan(Dk) = R

N , and to the
HQ/MM line search (15) whenDk = dk.

D. Convergence analysis

This section establishes the convergence of the iterative
subspace algorithm (4) whensk is chosen according to the
MM strategy (17).

We introduce the following assumption, which is a nec-
essary condition to ensure that the penalization termΨ(x)
regularizes the problem of estimatingx from y in a proper
way
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(H3) H andV are such that

ker(HTH) ∩ ker(V TV ) = {0} .

Lemma 2. [13]
Let F be defined by(1), whereH and V satisfy Assump-
tion H3. If Assumption H1 or H2 holds,F is continuously
differentiable and bounded below. Moreover, if for allk, j,
A = Aa

GY with 0 < a < 1/L (resp.,A = AGR), then(Aj
k)

has apositive bounded spectrum, i.e., there existsν1 ∈ R such
that

0 < vTA
j
kv ≤ ν1‖v‖2, ∀k, j ∈ N, ∀v ∈ R

N .

Let us also assume that the set of directionsDk fulfills the
following condition:

(H4) for all k ≥ 0, the matrix of directionsDk is of size
N×M with 1 ≤M ≤ N and the first subspace direction
d1
k fulfills

gT
k d

1
k ≤ −γ0‖gk‖2, (18)

‖d1
k‖ ≤ γ1‖gk‖, (19)

with γ0, γ1 > 0.

Then, the convergence of the MM subspace scheme holds
according to the following theorem.

Theorem 1. Let F defined by(1), whereH and V satisfy
Assumption H3. Letxk defined by(4)-(17) whereDk satisfies
Assumption H4,J ≥ 1, θ ∈ (0, 2) and B

j
k = DT

k A
a
GYDk

with 0 < a < 1/L (resp.,Bj
k = DT

k AGR(xk +Dks
j
k)Dk).

If Assumption H1 (resp., Assumption H2) holds, then

F (xk+1) ≤ F (xk). (20)

Moreover, we have convergence in the following sense:

lim
k→∞

‖gk‖ = 0.

Proof: See Appendix A.

Remark 1. Assumption H4 is fulfilled by a large family of
descent directions. In particular, the following results hold.

• Let (Pk) be a series of SPD matrices with eigenvalues
that are bounded below and above, respectively byγ1 and
γ0 > 0. Then, according to [16, Sec. 1.2], Assumption H4
holds ifd1

k = −Pkgk.
• According to [47], Assumption H4 also holds ifd1

k results
from any fixed positive number of CG iterations on the
linear systemMkd = −gk, provided that(Mk) is a
matrix series with a positive bounded spectrum.

• Finally, Lemma 3 in Appendix B ensures that Assumption
H4 holds ifd1

k is the PCD direction, provided thatF is
strongly convex and has a Lipschitz gradient.

Remark 2. For a preconditioned NLCG algorithm with a
variable preconditionerPk, the generated iterates belong to
the subspace spanned by−Pkgk and dk−1. Whereas the
convergence of the PNLCG scheme with a variable precondi-
tioner is still an open problem [21, 48], the preconditionedMG

algorithm usingDk = [−Pkgk,dk−1] and the proposed MM
stepsize is guaranteed to converge for bounded SPD matrices
Pk, according to Theorem 1.

E. Implementation issues

In the proposed MM multi-dimensional search, the main
computational burden originates from the need to multiply the
spanning directions with linear operatorsH andV , in order to
compute∇f (k)(sjk) andBj

k. When the problem is large scale,
these products become expensive and may counterbalance the
efficiency obtained when using a subset of larger dimension.
In this section, we give a strategy to reduce the computational
cost of the productMk , ∆Dk when ∆ = H or V .
This generalizes the strategy proposed in [26, Sec. 3] for the
computation of∇f (k)(s) and∇2f (k)(s) during the Newton
search of the SESOP algorithm.

For all subspace algorithms, the setDk can be expressed
as the sum of a new matrix and a weighted version of the
previous set:

Dk = [Nk|0] + [0|Dk−1Wk] . (21)

The obtained expressions forNk andWk are given in Tab. II.
According to (21),Mk can be obtained by the recurrence

Mk = [∆Nk|0] + [0|Mk−1Wk] .

Assuming thatMk is stored at each iteration, the computa-
tionnal burden reduces to the product∆Nk. This strategy
is efficient as far asNk has a small number of columns.
Moreover, the cost of the latter product does not depend on the
subspace dimension, by contrast with the direct computation
of Mk.

IV. A PPLICATION TO THE SET OF IMAGE PROCESSING

PROBLEMS FROM[6]

In this section, we consider three image processing prob-
lems, namely image deblurring, tomography and compressive
sensing, generated with M. Zibulevsky’s code available at http:
//iew3.technion.ac.il/∼mcib. For all problems, the synthesis-
based approach is used for the reconstruction. The image is
assumed to be well described asxo = Kzo with a known
dictionaryK and a sparse vectorzo. The restored image is
then defined asx∗ = Kz∗ where z∗ minimizes the PLS
criterion

F (z) = ‖HKz − y‖2 + λ

N
∑

i=1

ψ(zi),

with ψ the logarithmic smooth version of theℓ1 norm

ψ(u) = |u| − δ log(1 + |u|/δ)

that aims at sparsifying the solution.
In [6], several subspace algorithms are compared in order

to minimize F . In all cases, the multi-dimensional stepsize
results from a fixed number of Newton iterations. The aim of
this section is to test the convergence speed of the algorithms
when the Newton procedure is replaced by the proposed MM
stepsize strategy.
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Acronym Recursive form ofDk Nk Wk

MG [−gk,Dk−1sk−1] −gk sk−1

SMG [−gk,Dk−1sk−1,Dk−1(2 : m)] −gk [sk−1, I2:m]

GS [−gk,Dk−1(1 : m)] −gk I1:m

ORTH [−gk,xk − x0, ωkgk +Dk−1(3)] [−gk,xk − x0, ωkgk ] I3

QNS [−gk,gk +Dk−1(1),Dk−1(2 : m),Dk−1sk−1,Dk−1(m+ 2 : 2m)] [−gk ,gk] [I1, I2:m, sk−1, Im+2:2m]

SESOP-TN [dℓ
k
,Gk(d

ℓ
k
),dℓ

k
− dℓ−1

k
,Dk−1(4 : m+ 2)] [dℓ

k
,Gk(d

ℓ
k
),dℓ

k
− dℓ−1

k
] I4:m+2

TABLE II
RECURSIVE MEMORY FEATURE AND DECOMPOSITION(21) OF SEVERAL ITERATIVE SUBSPACE ALGORITHMS. HERE, D(i : j) DENOTES THE SUBMATRIX

OFD MADE OF COLUMNSi TO j , AND Ii:j DENOTES THE MATRIX SUCH THATDIi:j = D(i : j).

A. Subspace algorithm settings

SESOP [26] and PCD-SESOP [19] direction sets are con-
sidered here. The latter uses SMD vectors withpk defined as
the PCD direction

pi,k = argmin
α

F (xk + αei), i = 1, ..., N, (22)

whereei stands for theith elementary unit vector. Follow-
ing [6], the memory parameter is tuned tom = 7 (i.e.,
M = 8). Moreover, the Nemirovski directions are discarded,
so that SESOP identifies with the SMG subspace.

Let us define SESOP-MM and PCD-SESOP-MM algo-
rithms by associating SESOP and PCD-SESOP subspaces with
the multi-dimensional MM stepsize strategy (17). The latter
is fully specified by the curvature matrixAj

k, the number
of MM sub-iterationsJ and the relaxation parameterθ. For
all k, j, we defineAj

k = AGR(xk + Dks
j
k) whereAGR(.)

is given by (10), andJ = θ = 1. Functionψ is strictly
convex and fulfills both Assumptions H1 and H2. Therefore,
Lemma 1 applies. MatrixV identifies with the identity matrix,
so Assumption H3 holds and Lemma 2 applies. Moreover,
according to Lemma 3, Assumption H4 holds and Theorem 1
ensures the convergence of SESOP-MM and PCD-SESOP-
MM schemes.

MM versions of SESOP and PCD-SESOP are compared to
the original algorithms from [6], where the inner minimization
uses Newton iterations with backtracking line search, until the
tight stopping criterion

‖∇f (k)(s)‖ < 10−10

is met, or seven Newton updates are achieved.
For each test problem, the results were plotted as functions

of either iteration numbers, or of computational times in
seconds, on an Intel Pentium 4 PC (3.2 GHz CPU and 3 GB
RAM).

B. Results and discussion

1) Choice between subspace strategies:According to Figs.
1, 2 and 3, the PCD-SESOP subspace leads to the best
results in terms of objective function decrease per iteration,
while the SESOP subspace leads to the largest decrease of
the gradient norm, independently from the stepsize strategy.
Moreover, when considering the computational time, it appears
that SESOP and PCD-SESOP algorithms have quite similar
performances.

2) Choice between stepsize strategies:The impact of the
stepsize strategy is the central issue in this paper. According
to a visual comparison between thin and thick plots in Figs. 1,
2 and 3, the MM stepsize strategy always leads to significantly
faster algorithms compared to the original versions based on
Newton search, mainly because of a reduced computational
time per iteration.

Moreover, let us emphasize that the theoretical convergence
of SESOP-MM and PCD-SESOP-MM is ensured according to
Theorem 1. In contrast, unless the Newton search reaches the
exact minimizer off (k)(s), the convergence of SESOP and
PCD-SESOP is not guaranteed theoretically.

V. A PPLICATION TO EDGE-PRESERVINGIMAGE

RESTORATION

The problem considered here is the restoration of the well-
known imagesboat, lena andpeppers of sizeN = 512×
512. These images are firstly convolved with a Gaussian point
spread function of standard deviation2.24 and of size17×17.
Secondly, a white Gaussian noise is added with a variance
adjusted to get a signal-to-noise ratio (SNR) of40 dB. The
following analysis-based PLS criterion is considered

F (x) = ‖Hx− y‖2 + λ
∑

c

√

δ2 + [V x]2c

whereV is the first-order difference matrix. This criterion
depends on the parametersλ and δ. They are assessed to
maximize the peak signal to noise ratio (PSNR) between each
image xo and its reconstruction versionx. Tab. III gives
the resulting values of PSNR and relative mean square error
(RMSE), defined by

PSNR(x,xo) = 20 log10

(

maxi(xi)
√

1/N
∑

i(xi − xoi )
2

)

and

RMSE(x,xo) =
‖x− xo‖2

‖x‖2 .

The purpose of this section is to test the convergence speed
of the multi-dimensional MM stepsize strategy (17) for differ-
ent subspace constructions. Furthermore, these performances
are compared with standard iterative descent algorithms asso-
ciated with the MM line search described in Subsection III-B.
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A. Subspace algorithm settings

The MM stepsize search is used with the Geman &
Reynolds HQ matrix andθ = 1. Since the hyperbolic function
ψ is a strictly convex function that fulfills both Assump-
tions H1 and H2, Lemma 1 applies. Furthermore, Assumption
H3 holds [29] so Lemma 2 applies.

Our study deals with the preconditioned form of the fol-
lowing direction sets: SMG, GS, QNS and SESOP-TN. The
preconditionerP is a SPD matrix based on the 2D Co-
sine Transform. Thus, Assumption H4 holds and Theorem 1
ensures the convergence of the proposed scheme whatever
the number of MM sub-iterationsJ ≥ 1. Moreover, the
implementation strategy described in Subsection III-E will be
used.

For each subspace, we first consider the reconstruction of
peppers, illustrated in Fig. 4, allowing us to discuss the
tuning of the memory parameterm, related to the size of the
subspaceM as described in Tab. I, and the performances of
the MM search. The latter is again compared with the Newton
search from [6].

Then, we compare the subspace algorithms with iterative
descent methods in association with the MM scalar line search.

The global stopping rule‖gk‖/
√
N < 10−4 is considered.

For this setting, no significant differences between algorithms
have been observed in terms of reconstruction quality. For each
tested scheme, the performance results are displayed underthe
form K/T whereK is the number of global iterations andT
is the global minimization time in seconds.

B. Gradient and memory gradient subspaces

The aim of this section is to analyze the performances of
SMG and GS algorithms.

1) Influence of tuning parameters:According to Tables
IV-V, the algorithms perform better when the stepsize is
obtained with the MM search. Furthermore, it appears that
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Fig. 1. Deblurring problem taken from [6] (128×128 pixels): The objective
function and the gradient norm value as a function of iteration number (left)
and CPU time in seconds (right) for the four tested algorithms.
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Fig. 2. Tomography problem taken from [6] (32×32 pixels): The objective
function and the gradient norm value as a function of iteration number (left)
and CPU time in seconds (right) for the four tested algorithms.
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Fig. 3. Compressed sensing problem taken from [6] (64 × 64 pixels): The
objective function and the gradient norm value as a functionof iteration
number (left) and CPU time in seconds (right) for the four tested algorithms.

J = 1 leads to the best results in terms of computation time
which indicates that the best strategy corresponds to a rough
minimization off (k)(s). Such a conclusion meets that of [29].
In contrast, the MM strategy with high values ofJ leads to
poor performances in term of iteration numberK, comparable

boat lena peppers

λ 0.2 0.2 0.2

δ 13 13 8

PSNR 28.4 30.8 31.6

RMSE 5 · 10−3 3.3 · 10−3 2 · 10−3

TABLE III
VALUES OF HYPERPARAMETERSλ, δ AND RECONSTRUCTION QUALITY IN

TERMS OFPSNRAND RMSE.
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Fig. 4. Noisy, blurredpeppers image,40 dB (left) and restored image
(right).

SMG(m) 1 2 5 10

Newton 76/578 75/630 76/701 74/886

M
M

(J
) 1 67/119 68/125 67/140 67/163

2 66/141 66/147 67/172 67/206
5 74/211 72/225 71/255 72/323
10 76/297 74/319 73/394 74/508

TABLE IV
RECONSTRUCTION OFpeppers: ITERATION NUMBERK / TIME T (SEC.)

BEFORE CONVERGENCE FORMM AND NEWTON STRATEGIES FOR THE

MULTI -DIMENSIONAL SEARCH IN SMG ALGORITHM .

GS(m) 1 5 10 15

Newton 458/3110 150/1304 96/1050 81/1044

M
M

(J
) 1 315/534 128/258 76/180 67/175

2 316/656 134/342 86/257 70/232
5 317/856 137/481 91/400 78/386
10 317/1200 137/709 92/619 78/598

TABLE V
RECONSTRUCTION OFpeppers: ITERATION NUMBERK / TIME T (SEC.)

BEFORE CONVERGENCE FOR THE MULTI-DIMENSIONAL SEARCH IN GS
ALGORITHM .

with those obtained when using Newton search.
The effect of the memory sizem differs according to the

subspace construction. For the SMG algorithm, an increase of
the size of the memorym does not accelerate the convergence.
On the contrary, it appears that the number of iterations forGS
decreases when more gradients are saved and the best tradeoff
is obtained withm = 15.

2) Comparison with conjugate gradient algorithms:Let us
compare the MG algorithm (i.e., SMG withm = 1) with the
NLCG algorithm making use of the MM line search strategy
proposed in [29]. The latter is based on the following descent
recurrence:

xk+1 = xk + αk(−gk + βkdk−1)

whereβk is the conjugacy parameter. Tab. VI summarizes the
performances of NLCG for five different conjugacy strategies
described in [21]. The stepsizeαk in NLCG results fromJ
iterations of (15) withA = AGR and θ = 1. According
to Tab. VI, the convergence speed of the conjugate gradient
method is very sensitive to the conjugacy strategy. The lastline
of Tab. VI reproduces the first column of Tab. IV. The five
tested NLCG methods are outperformed by the MG subspace
algorithm with J = 1, both in terms of iteration numberK

and computational timeT .
The two other caseslena and boat lead to the same

conclusion, as reported in Tab. VII. Finally, Table VIII reports
the results obtained with SNR= 20 dB. While the iteration
numberK and computational timeT before convergence
globally increased due to the higher noise level, the best results
were still observed with MG algorithm.

J 1 2 5 10

NLCG-FR 145/270 137/279 143/379 143/515

NLCG-DY 234/447 159/338 144/387 143/516

NLCG-PRP 77/137 69/139 75/202 77/273

NLCG-HS 68/122 67/134 75/191 77/289

NLCG-LS 82/149 67/135 74/190 76/266

MG 67/119 66/141 74/211 76/297

TABLE VI
RECONSTRUCTION OFpeppers: ITERATION NUMBERK / TIME T (SEC.)

BEFORE CONVERGENCE FORMG AND NLCG FOR DIFFERENT

CONJUGACY STRATEGIES. IN ALL CASES, THE STEPSIZE RESULTS FROMJ
ITERATIONS OF THEMM RECURRENCE.

boat lena peppers

NLCG-FR 77/141 98/179 145/270

NLCG-DY 86/161 127/240 234/447

NLCG-PRP 40/74 55/99 77/137

NLCG-HS 39/71 50/93 68/122

NLCG-LS 42/81 57/103 82/149

MG 37/67 47/85 67/119

TABLE VII
ITERATION NUMBERK / TIME T (SEC.) BEFORE CONVERGENCE FORMG

AND NLCG ALGORITHMS. IN ALL CASES, THE NUMBER OFMM
SUB-ITERATIONS IS SET TOJ = 1.

boat lena peppers

NLCG-FR 120/220 171/318 383/713

NLCG-DY 136/255 227/430 532/1016

NLCG-PRP 72/133 100/177 191/339

NLCG-HS 71/129 94/171 177/318

NLCG-LS 73/141 106/192 199/361

MG 69/125 91/162 174/309

TABLE VIII
ITERATION NUMBERK / TIME T (SEC.) BEFORE CONVERGENCE FORMG

AND NLCG ALGORITHMS FORSNR= 20 DB. IN ALL CASES, THE

NUMBER OF MM SUB-ITERATIONS IS SET TOJ = 1.

C. Quasi-Newton subspace

Dealing with the QNS algorithm, the best results were
observed withJ = 1 iteration of the MM stepsize strategy and
the memory parameterm = 1. For this setting, thepeppers
image is restored after68 iterations, which takes124 s. As
a comparison, when the Newton search is used andm = 1,
the QNS algorithm requires75 iterations that take more than
1000 s.

Let us now compare the QNS algorithm with the standard L-
BFGS algorithm from [22]. Both algorithms require the tuning
of the memory sizem. Fig. 5 illustrates the performances of
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the two algorithms. In both cases, the stepsize results from1
iteration of MM recurrence. Contrary to L-BFGS, QNS is not
sensitive to the size of the memorym. Moreover, according
to Tab. IX, the QNS algorithm outperforms the standard L-
BFGS algorithm with its best memory setting for the three
restoration problems.

1 2 3 4 5
50

100

150

200

250

m

K

 

 

L−BFGS
QNS

1 2 3 4 5
100

200

300

400

500

m

T

 

 

L−BFGS
QNS

Fig. 5. Reconstruction ofpeppers: Influence of memorym for algorithms
L-BFGS and QNS in terms of iteration numberK and computation timeT
in seconds. In all cases, the number of MM sub-iterations is set to J = 1.

boat lena peppers
L-BFGS (m = 3) 45/94 62/119 83/164
QNS (m = 1) 38/83 48/107 68/124

TABLE IX
ITERATION NUMBERK / TIME T (SEC.) BEFORE CONVERGENCE FORQNS

AND L-BFGSALGORITHMS FORJ = 1.

D. Truncated Newton subspace

Now, let us focus on the second order subspace method
SESOP-TN. The first component ofDℓ

k, dℓ
k, is computed by

applyingℓ iterations of the preconditioned CG method to the
Newton equations. Akin to the standard TN algorithm,ℓ is
chosen according to the following convergence test

‖gk +Hkd
ℓ
k‖/‖gk‖ < η,

whereη > 0 is a threshold parameter. Here, the settingη = 0.5
has been adopted since it leads to lowest computation time for
the standard TN algorithm.

In Tables X and XI, the results are reported in the form
K/T whereK denotes the total number of CG steps.

According to Tab. X, SESOP-TN-MM behaves differently
from the previous algorithms. A quite large value ofJ is
necessary to obtain the fastest version. In this example, the
MM search is still more efficient than the Newton search,
provided that we chooseJ ≥ 5. Concerning the memory
parameter, the best results are obtained form = 2.

Finally, Tab. XI summarizes the results for the three test
images, in comparison with the standard TN (not fully stan-
dard, though, since the MM line search has been used). Our
conclusion is that the subspace version of TN does not seem
to bring a significant acceleration compared to the standard
version. Again, this contrasts with the results obtained for the
other tested subspace methods.

SESOP-TN(m) 0 1 2 5

Newton 159/436 155/427 128/382 151/423

M
M

(J
) 1 415/870 410/864 482/979 387/840

2 253/532 232/506 239/525 345/731
5 158/380 132/316 143/359 139/351
10 122/322 134/323 119/301 128/334
15 114/320 134/365 117/337 127/389

TABLE X
RECONSTRUCTION OFpeppers: ITERATION NUMBERK / TIME T (SEC.)
BEFORE CONVERGENCE FORMM AND NEWTON STEPSIZE STRATEGIES IN

SESOP-TNALGORITHM .

boat lena peppers
TN 65/192 74/199 137/322
SESOP-TN(2) 55/180 76/218 119/301

TABLE XI
ITERATION NUMBERK / TIME T (SEC.) BEFORE CONVERGENCE FOR

SESOP-TNAND TN ALGORITHMS FORη = 0.5 AND J = 10.

VI. CONCLUSION

This paper explored the minimization of penalized least
squares criteria in the context of image restoration, usingthe
subspace algorithm approach. We pointed out that the existing
strategies for computing the multi-dimensional stepsize suffer
either from a lack of convergence results (e.g.,Newton search)
or from a high computational cost (e.g.,trust region method).
As an alternative, we proposed an original stepsize strategy
based on a MM recurrence. The stepsize results from the min-
imization of a half-quadratic approximation over the subspace.
Our method benefits from mathematical convergence results,
whatever the number of MM iterations. Moreover, it can be
implemented efficiently by taking advantage of the recursive
structure of the subspace.

On practical restoration problems, the proposed search is
significantly faster than the Newton minimization used in [6,
26, 27], in terms of computational time before convergence.
Quite remarkably, the best performances have almost always
been obtained when only one MM iteration was performed
(J = 1), and when the size of the memory was reduced
to one stored iterate (m = 1), which means that simplicity
and efficiency meet in our context. In particular, the resulting
algorithmic structure contains no nested iterations.

Finally, among all the tested variants of subspace methods,
the best results were obtained with the memory gradient
subspace (i.e., where the only stored vector is the previous
direction), using a single MM iteration for the stepsize. The
resulting algorithm can be viewed as a new form of precon-
ditioned, nonlinear conjugate gradient algorithm, where the
conjugacy parameter and the step-size are jointly given by
a closed-form formula that amounts to solve a2 × 2 linear
system.

APPENDIX

A. Proof of Theorem 1

Let us introduce the scalar function

h(k)(α) , q(k)([α, 0, . . . , 0]T ,0), ∀α ∈ R. (23)
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According to the expression ofq(.,0), h reads

h(k)(α) = f (k)(0) + αgT
k d

1
k +

1

2
α2d1T

k A0
kd

1
k. (24)

Its minimizer α̂k is given by

α̂k = − gT
k d

1
k

d1T
k A0

kd
1
k

. (25)

Therefore,

h(k)(α̂k) = f (k)(0) +
1

2
α̂kg

T
k d

1
k. (26)

Moreover, according to the expression ofŝ1k,

q(k)(ŝ1k,0) = f (k)(0) +
1

2
∇f (k)(0)T ŝ1k. (27)

ŝ1k minimizesq(k)(s,0) henceq(k)(ŝ1k,0) ≤ h(k)(α̂k). Thus,
using (26)-(27),

α̂kg
T
k d

1
k ≥ ∇f (k)(0)T ŝ1k. (28)

According to (24) and (25), the relaxed stepsizeαk = θα̂k

fulfills

h(k)(αk) = f (k)(0) + δ α̂kg
T
k d

1
k, (29)

whereδ = θ(1− θ/2). Moreover,

q(k)(s1k,0) = f (k)(0) + δ∇f (k)(0)T ŝ1k. (30)

Thus, using (28)-(29)-(30), we obtainq(k)(s1k,0) ≤ h(k)(αk)
and

f (k)(0)− q(k)(s1k,0) ≥ −δα̂kg
T
k d

1
k. (31)

Furthermore,q(k)(s1k,0) ≥ f (k)(s1k) ≥ f (k)(sk) according to
Lemma 1 and [13, Prop.5]. Thus,

f (k)(0)− f (k)(sk) ≥ −δα̂kg
T
k d

1
k. (32)

According to Lemma 2,

α̂k ≥ − gT
k d

1
k

ν1‖d1
k‖2

(33)

Hence, according to (32), (33) and Assumption H4,

f (k)(0)− f (k)(sk) ≥
δγ20
ν1γ21

‖gk‖2, (34)

which also reads

F (xk)− F (xk+1) ≥
δγ20
ν1γ21

‖gk‖2. (35)

Thus, (20) holds. Moreover,F is bounded below according to
Lemma 2. Therefore,limk→∞ F (xk) is finite. Thus,

∞ >

(

δγ20
ν1γ21

)−1(

F (x0)− lim
k→∞

F (xk)

)

≥
∑

k

‖gk‖2,

and finally

lim
k→∞

‖gk‖ = 0.

B. Relations between the PCD and the gradient directions

Lemma 3. Let the PCD direction be defined byp = (pi),
with

pi = argmin
α

F (x+ αei), i = 1, ..., N,

where ei stands for theith elementary unit vector. IfF is
gradient Lipschitz and strongly convex onRN , then there exist
γ0, γ1 > 0 such thatp fulfills

gTp ≤ −γ0‖g‖2, (36)

‖p‖ ≤ γ1‖g‖, (37)

for all x ∈ R
N .

Proof: Let us introduce the scalar functionsfi(α) ,
F (x+ αei), so that

pi = argmin
α

fi(α). (38)

F is gradient Lipschitz, so there existsL > 0 such that for
all i,

|ḟi(a)− ḟi(b)| 6 L|a− b|, ∀a, b ∈ R.

In particular, fora = 0 andb = pi, we obtain

|pi| > |ḟi(0)|/L,

given that ḟi(pi) = 0 according to (38). According to the
expression offi,

gTp =
N
∑

i=1

ḟi(0)pi.

Moreover,pi minimizes the convex functionfi on R so

piḟi(0) 6 0, i = 1, ..., N. (39)

Therefore,

gTp = −
N
∑

i=1

|ḟi(0)||pi| 6 − 1

L
‖g‖2. (40)

F is strongly convex, so there existsν > 0 such that for alli,

(ḟi(a)− ḟi(b))(a− b) > ν(a− b)2, ∀a, b ∈ R.

In particular,a = 0 andb = pi give

−ḟi(0)pi > νp2i , i = 1, ..., N. (41)

Using (39) we obtain

p2i 6 |ḟi(0)|2/ν2, i = 1, ..., N. (42)

Therefore,

‖p‖2 =
N
∑

i=1

p2i 6
1

ν2
‖g‖2 (43)

Thus, (36)-(37) hold forγ0 = 1/L andγ1 = 1/ν.
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