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A Majorize-Minimize Strategy for Subspace
Optimization Applied to Image Restoration

Emilie Chouzenoux, Jerdme Idier and Said Moussaoui

Abstract—This paper proposes accelerated subspace optimiza- From the mathematical point a view, problems (1) and (2)
tion methods in the context of image restoration. Subspace share a common structure. In this paper, we will focus on the
optimization methods belong to the class of iterative desoé resolution of the first problem (1), but we will also provide
algorithms for unconstrained optimization. At each iteration . . '
of such methods, a stepsize vector allowing the best combina numerlcgl results regarding the §ec_ond one. On the othet, han
tion of several search directions is computed through a muit We restrict ourselves to regularization terms of the form

dimensional search. It is usually obtained by an inner itergéive c

second-order method ruled by a stopping criterion that guaan- .

tees the convergence of the outer algorithm. As an alternate, V(z) = Zw(HVLw —wel)

we propose an original multi-dimensional search strategy ased e=1

on the majorize-minimize principle. It leads to a closed-fom whereV, € RP*N | w. e RP fore¢=1,...,C and ||| stands

stepsize formula that ensures the convergence of the subsma L ;
algorithm whatever the number of inner iterations. The practical [0f the Euclidian norm. In the analysis-based approdch,

efficiency of the proposed scheme is illustrated in the conte of IS typically a linear operator yielding either the diffecas
edge-preserving image restoration. between neighboring pixele@.,in the Markovian regular-
Index Terms—Subspace optimization, memory gradient, con- ization approach), or the local spatial gradient vectg(
jugate gradient, quadratic majorization, stepsize stratgy, image in the total variation framework), or wavelet decompositio
restoration. coefficients in some recent works such as [1]. In the synshesi
based approach/. usually identifies with the identity matrix.
. INTRODUCTION The strategy used for solving the penalized least squares

HIS work addresses a wide class of problems where §aLS) optimization problem (1) strongly depends on the ob-
T input imagez® € RY is estimated from degraded datdective function properties (differentiability, convéy). More-
over, these mathematical properties contribute to theitgual

of the reconstructed image. In that respect, we partigularl
y=Hz"+e focus on differentiable, coercive, edge-preserving fiomst

where H is a linear operator, described ag’ax N matrix, ¥+ €9~ ¢ norm with 1 < p < 2, Huber, hyperbolic, or
that models the image degradation process, an an Geman and McClure functions [8-10], since they give rise to

additive noise vector. This simple formalism covers mar§Cally smooth images [11-13]. In contrast, some restomati

real situations such as deblurring, denoising, inversgeRa methods rely on non differentiable regularizing functidos

transform in tomography and signal interpolation. introduce priors such as sparsity of the decompositionficoef
Two main strategies emerge in the literature for the restod€NtS [5] and piecewise constant patterns in the imagels [14

tion of 2° [1]. The first one uses aanalysis-basedpproach, As emphasized in [6], the non differentiable penalizatiemt
solving the following problem [2, 3]: can be replaced by a smoothed version without altering the

reconstruction quality. Moreover, the use of a smootheajtgn
min (F(x) = [|Hz — y||> + \¥(x)) . (1) can reduce the staircase effect that appears in the castbf to
. . . ) . variation regularization [15].
In section V, we will consider an image deconvolution prob- |, e case of large scale non linear optimization problems

lem that calls for the minimization of this criterion form. .o ancountered in image restoration, direct resolutiomis i

_ The second one employssgnthesis-basedpproach, 100k- ,«qihje. Instead, iterative optimization algorithms ased to

ing forTa gecomposnmrz of the image in some dlct|0naryso|ve (1). Starting from an initial guess, they generate a
X .

KeR [4,5]: sequence of updated estimatas,) until sufficient accuracy
min (F(z) = |[HKz — y[|* + A\¥(2)) . (2) is obtained. A fundamental update strategy is to produce a
zeRA decrease of the objective function at each iteration: frbm t

This method is applied to a set of image reconstructi@urrent valuer;, x,1 is obtained according to

problems [6] in section IV.

In both cases, the penalization teim whose weight is set Tt1 = Ty + apdy, @)
through the regularization parameteraims at guaranteeing yheren,;, > 0 is thestepsizeanddy, is adescent direction i.e.
the robustness of the solution to the observation noise &8nd,a,ector such thay?d; < 0, whereg), = VF(x)) denotes
favorizing its fidelity toa priori assumptions [7]. the gradient off” atz;,. The determination ofy;, is called the

The authors are with IRCCyN (CNRS UMR 6597), Ecole Centrajetiis, line search |t is Usua"y obtained by partlally mlnlleIng the
44321 Nantes Cedex 03, France. scalar functionf*) (o) = F(x), + ady) until the fulfillment

y € RT. A typical model of image degradation is
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of some sufficient conditions related to the overall algonit  The rest of the paper is organized as follows: Section Il
convergence [16]. gives an overview of existing subspace constructions and
In the context of the minimization of PLS criteria, themulti-dimensional search procedures. In Section I, we in
determination of the descent directialy is customarily ad- troduce the proposed HQ/MM strategy for the stepsize cal-
dressed using a half-quadratic (HQ) approach that exploislation and we establish general convergence propedies f
the PLS structure [11,12,17,18]. A constant stepsize ia ththe overall subspace algorithm. Finally, SectionslV and V
used whiledy, results from the minimization of a quadraticgive some illustrations and a discussion of the algorithm
majorizing approximation of the criterion [13], either uéting performances by means of a set of experiments in image

from Geman and Reynolds (GR) or from Geman and Yanigstoration.
(GY) constructions [2, 3].

Another effective approach for solving (1) is to consider Il. SUBSPACE OPTIMIZATION METHODS
subspace acceleration [6,19]. As emphasized in [20], some

descent algorithms (3) have a specific subspace featung: the! N€ first subspace optimization algorithm is the memory

produce search directions spanned in a low dimension s@adient method, proposed in the late 1960's by Miele and
space. For example, Cantrell [23]. It corresponds to

« the nonlinear conjugate gradient (NLCG) method [21] Dy, = [~g, di_1]
uses a search direction in a two-dimensional (2D) space
spanned by the opposite gradient and the previous diréfld the stepsizes; results from the exact minimization
tion. of f*¥)(s). When F is quadratic, it is equivalent to the
« the L-BFGS quasi-Newton method [22] generates updat@@nlinear conjugate gradient algorithm [31].
in a subspace of sizem + 1, wherem is the limited More recently, several other subspace algorithms have been
memory parameter. proposed. Some of them are briefly reviewed in this section.
ANe first focus on the subspace construction, and then we

Subspace acceleration consists in relying on iterationseem . - . i
describe several existing stepsize strategies.

explicitly aimed at solving the optimization problem withi
such low dimension subspaces [23-27]. The acceleration is
obtained by defining:, 1, as the approximate minimizer of theA. Subspace construction

criterion over the subspace spanned by a setoflirections Choosing subspace®;, of dimensions larger than one

Dy =[d},...,dV] may allow faster convergence in terms of iteration number.
However, it requires a multi-dimensional stepsize stigteg
with 1 < M < N. More precisely, the iterates are given by which can be substantially more complex (and computational
costly) than the usual line search. Therefore, the choidbeof
Tit1 = Tp + Dysy, 4) subspace must achieve a tradeoff between the iterationeumb
wheres;, is a multi-dimensional stepsize that aims at partiall{® réach convergence and the cost per iteration. Let uswevie
minimizing Some existing iterative subspace optimization algorittamd
f(k)(s) — F(z, + Dys). (5) the!r ass_omated set of dlrectlons_. For_ the sake of comp_a_stn
their main features are summarized in Tab. I. Two families of
The prototype scheme (4) defines iterative subspace opti- algorithms are distinguished.
mizationalgorithm that can be viewed as an extension of (3) 1) Memory gradient algorithmsin the first seven algo-
to a search subspace of dimension larger than one. Titems, D; mainly gathers successive gradient and direction
subspace algorithm has been shown to outperforms standegdtors.
descent algorithms, such as NLCG and L-BFGS, in terms of The third one, introduced in [32] as supermemory descent
computational cost and iteration number before convergen(SMD) method, generalizes SMG by replacing the steepest
over a set of PLS minimization problems [6, 19]. descent direction by any directign, non orthogonal tagy
The implementation of subspace algorithms requiresi@., gipr # 0. PCD-SESOP and SSF-SESOP algorithms
strategy to determine the stepsizg that guarantees thefrom [6,19] identify with SMD algorithm, wherp;, equals
convergence of the recurrence (4). However, it is difficalt trespectively the parallel coordinate descent (PCD) doact
design a practical multi-dimensional stepsize searchrithgo and the separable surrogate functional (SSF) directioth bo
gathering suitable convergence properties and low computscribed in [19].
tional time [26, 28]. Recently, GY and GR HQ approximations Although the fourth algorithm was introduced in [33-35]
have led to an efficient majorization-minimization (MM) éin as a supermemory gradient method, we rather refer to it as
search strategy for the computation @f when d;, is the a gradient subspacgGS) algorithm in order to make the
NLCG direction [29] (see also [30] for a general reference atistinction with the supermemory gradient (SMG) algorithm
MM algorithms). In this paper, we generalize this strategy introduced in [24].
define the multi-dimensional stepsizg in (4). We prove the  The orthogonal subspace (ORTH) algorithm was introduced
mathematical convergence of the resulting subspace #igori in [36] with the aim to obtain a first order algorithm with
under mild conditions orD;. We illustrate its efficiency on an optimal worst case convergence rate. The ORTH subspace
four image restoration problems. corresponds to the opposite gradient augmented with the two
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so-called Nemirovski directionsg, — o and Zf:o w;g;, Stopped before convergence. In SESOP and SESOP-TN, the
wherew; are pre-specified, recursively defined weights:  minimization is performed by a Newton method. However,
o unless the minimizer is found exactly, the resulting subspa
W — 1 ifi =0, ©6) algorithms are not proved to converge. In the QNS and GS
' % + \/i +w? ; otherwise. algorithms, the stepsize results from a trust region recuoe

on f¥). It is shown to ensure the convergence of the iterates

In [26], the Nemirovski subspace is aug.mented with periO%der mild conditions onD;, [25, 34, 35]. However, except
directions, leading to the SESOP algorithm whose efficienGyhen the quadratic approximation of the criterion in thestru
over ORTH is illustrated on a set of image reconstructioygion is separable [34], the trust region search requies t
problems. Moreover, experimental tests showed that the ugfe a non-trivial constrained quadratic programmingbpro
of Nemirovski directions in SESOP does not improve pragsm at each inner iteration.

tical convergence speed. Therefore, in their recent paler [ | the particular case of modern SMG algorithms [41-44],
Zibulevskyet al. do not use these additionnal vectors so that g computed in two steps. First, a descent direction is

their modified SESOP algorithm actually reduces to the SMGstructed by combining the vectat with some predefined
algorithm from [24]. weights. Then a scalar stepsize is calculated through an

~2) Newton type subspace algorithm$he last two algo- jierative line search. This strategy leads to the recugenc
rithms introduce additional directions of the Newton type.

In the Quasi-Newton subspace (QNS) algorithm proposed B 0 o
in [25], Dy, is augmented with Tht1 = Tk + o | —Brgr + Z;Bkdk_,- )
Ok—i = Gh—it1 = Gr—i 1 = L, (7)  Different expressions for the weigh@ have been proposed.

This proposal is reminiscent from the L-BFGS algorithm [22]T0 Our knowledge, their extension to the preconditioned ver
since the latter produces directions in the space spannedSig! Of SMG or to other subspaces is an open issue. Moreover,
the resulting seDj. since the computation dty, 5;,) does not aim at minimizing

SESOP-TN has been proposed in [27] to solve the problef i the SMG subspace, the resulting schemes are not true
of sensitivity to an early break of conjugate gradient (C@UPspace algorithms.

iterations in the truncated Newton (TN) algorithm. Léf In the next section, we propose an original strategy to
denote the current value @fafter ¢ iterations of CG to solve define the multi-dimensional stepsizg in (4). The proposed
the Gauss-Newton syste@;,(d) = 0, where stepsize search is proved to ensure the convergence of the
whole algorithm, under low assumptions on the subspace, and
Gi(d) = V2F(x) d + gi. (8) to require low computationnal cost.

In the standard TN algorithmd;, defines the search direc-

tion [39]. In SESOP-TN, it is only the first component b, [1l. PROPOSED MULTFDIMENSIONAL STEPSIZE STRATEGY
while the second and third componentslaf also result from A, GR and GY majorizing approximations

the CG iterations.

Finally, to accelerate optimization algorithms, a commog
practice is to use a preconditioning matrix. The princigléa
introduce a linear transform on the original variables, fsat t )
the new variables have a Hessian matrix with more clusterggper'

Let us first introduce Geman & Yang [3] and Geman &
eynolds [2] matricesAgy and Aggr, Which play a central
role in the multi-dimensional stepsize strategy propogsdtiis

eigenva_lues. _Preconditi(_)ned v_ersions of Sl_Jbspace di_gmit ALy =2HTH + AVT‘/’ 9)
are easily defined by usinB gy, instead ofg;, in the previous a
direction sets [26]. Acr(z) =2H"H 4+ \V'Diag {b(x)} V,  (10)
_ . where VT = [V{T|..|[VZ], a > 0 is a free parameter, and

B. Stepsize strategies b(x) is aCP x 1 vector with entries

The aim of the multi-dimensional stepsize search is to d([| Ve — wel])
determines;, that ensures a sufficient decrease of function bep(x) = ﬁ

c — We

) defined by (5) in order to guarantee the convergence of
recurrence (4). In the scalar case, typical line searcheproc Both GY and GR matrices allow the construction of ma-
dures generate a series of stepsize values until the fudfiltm jorizing approximation forF". More precisely, let us introduce
of sufficient convergence conditions such as Armijo, Wolfthe following second order approximation 6fin the neigh-
and Goldstein [40]. An extension of these conditions to tHeorhood ofxz;,
multi-dimensional case can easily be obtained(the multi- T
dimensional Goldstein rule in [28]). However, it is diffitub Qz, mp) = Flay) + VE(xy)" (x — 24)
design practical multi-dimensional stepsize search élyos + l($ —xp) T A(zp) (2 —xp).  (11)
allowing to check these conditions [28]. 2

Instead, in several subspace algorithms, the stepsizéésresuet us also introduce the following assumptions on the func-
from an iterative descent algorithm applied to functipfi), tion
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Acronym Algorithm | Set of directionsD), Subspace sizq
MG Memory gradient [23, 31] [—gk. di—1] 2
SMG Supermemory gradient [24] [—gk - dp—1,---,dk_m] m41
SMD Supermemory descent [32] [Pr-di—1,---,dk_m] m+1
GS Gradient subspace [33, 34, 37] [—9k: —Gk—1,- -+ —Gk—m] m+1
ORTH Orthogonal subspace [36] [—gk. @ — @0, 7o wigi] 3
SESOP | Sequential Subspace Optimization [26][—gy,, zi — o, Zf:o wigi, dg—1, .- A m+3
ONS Quasi-Newton subspace [20,25,38]  [—gk,0k—1,--->Ok—m>dk—1,---, Ak—m] 2m + 1
SESOP-TN Truncated Newton subspace [27] [df,Gr(dy), df — di_l, di_1,. . di_pm] m+3
TABLE |

SET OF DIRECTIONS CORRESPONDING TO THE MAIN EXISTING ITERAVE SUBSPACE ALGORITHMS THE WEIGHTSw; AND THE VECTORSd; ARE
DEFINED BY (6) AND (7), RESPECTIVELY G, IS DEFINED BY (8), AND di IS THE/TH OUTPUT OF ACG ALGORITHM TO SOLVE G (d) = 0.

(H1) + is C' and coercive, and the stepsizey, corresponds to the last value/. The
¥ is L-Lipschitz. distinctive feature of the MM line search is to yield the
(H2) + is C', even and coercive, convergence of standard descent algorithms without arpy sto
¥(/-) is concave oRT, ping condition whatever the number of MM sub-iteratiohs
0< z/}(t)/t < oo, VteR. and relaxation parametér € (0,2) [29]. Here, we propose
Then, the following lemma holds. to extend this strategy to the determination of the multi-
dimensional stepsize;., and we prove the convergence of the
Lemma 1. [13] resulting family of subspace algorithms.

Let F defined by(1) and z;, € RY. If Assumption H1 holds
and A = A witha € (0,1/L) (resp. Assumption H2 holds o .
and A = Agg), then for allz, (11)is atangent majorarfor C- MM multi-dimensional search

F atxy i.e., for all z € R", Let us define thél/ x M symmetric positive definite (SPD)
matrix
> . .
Q@,zp) = F(z), (12) B] = DI A} Dy,
Q(mk, mk) = F(:Bk)

with A7 2 A(z), + Dys]) and A is either the GY matrix or
The majorizing property (12) ensures that the MM recuf’® GR matrix. According to Lemma 1,

rence B) (o o) — f(R) (i 8) (VT (o ad VL (o I YT R (ol
Tp+1 = argmin Q(x, T) @a3) 1 (8:8) = FEs0)+V I (s1)" (s Sk)+2(s ) ?1%()3 5)
T
produces a nonincreasing sequetiEéx;)) that converges to iS quadratic tangent majorant fgi)(s) at ;. Then, let us
a stationnary point of” [30, 45]. Half-quadratic algorithms [2, define the MM multi-dimensional stepsize by = s;;, with

3] are based on the relaxed form JRN
k — Y

Tp1 = Tk + O(@pt1 — Tk), (14) éfj—l = argmin, ¢¥ (s, si)7 j=0,....,.J—1. (17)

where#,,; is obtained by (13). The convergence properties (s, = s, +6(3,7" — s])
of recurrence (14) are analysed in [12,13, 46]. Given (16), we obtain an explicit stepsize formula
B. Majorize-Minimize line search sith = 5] —0(B])" VR (s)).

In[29], 141 is defined as (3) wherdy, is the NLCG direc-
tion and the stepsize valug, results fromJ > 1 successive
minimizations of quadratic tangent majorant functionstfoe
scalar functionf*) (a) = F(x), + ad},), expressed as

Moreover, according to [13], the update rule (17) produces
monotonically decreasing valugg® (s])) if 6 € (0,2). Let
us emphasize that this stepsize procedure identifies wih th
HQ/MM iteration (14) whenspan(D;) = RY, and to the

j : )y Ly : - _
q® (,0l) = ) () + (o — Ongf(k) (o) + 5bgv(oé _ ai)Q HQ/MM line search (15) wheD), = dj.

at o). The scalar parametéy, is defined as D. Convergence analysis

bi = dj Az + Oéidk)dk- This section establishes the convergence of the iterative

where A(.) is either the GY or the GR matrix, respectively>uospace algorithm (4) whes). is chosen according to the

defined by (9) and (10). The stepsize values are produced'\ﬂ strategy (17). . . o
the relaxed MM recurrence e introduce the following assumption, which is a nec-

0 essary condition to ensure that the penalization tdrfr)
%H = 0; o (15) regularizes the problem of estimating from y in a proper
a  =af, —0f(a)/br, j=0,...,0—-1 way
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(H3) H andV are such that algorithm usingDy, = [— Pigs, di—1] and the proposed MM
T Ter stepsize is guaranteed to converge for bounded SPD matrices
ker(H" H) Nker(V7V) = {0} P, according to Theorem 1.
Lemma 2. [13]

Let F' be defined by(1), where H and V' satisfy Assump- £ |mplementation issues
tion H3. If Assumption H1 or H2 holdgs is continuously
differentiable and bounded below. Moreover, if for &llj,

A= A%y, with0 <a <1/L (resp.,A = Agr), then (A7)

has apositive bounded spectruyme., there exists; € R such
that

In the proposed MM multi-dimensional search, the main
computational burden originates from the need to multipby t
spanning directions with linear operatd@&andV/, in order to
computeV f*) (s7) and B]. When the problem is large scale,
these products become expensive and may counterbalance the

0 < vl Alv < |v||% Vk, j € N,Vv € RY. efficiency obtained when using a subset of larger dimension.
In this section, we give a strategy to reduce the computation
cost of the productM, £ AD, when A = H or V.
Let us also assume that the set of directidds fulfills the  This generalizes the strategy proposed in [26, Sec. 3] fer th
following condition: computation ofV f*)(s) and V2 f(*)(s) during the Newton
(H4) for all k > 0, the matrix of directionsD}, is of size Search of the SESOP algorithm.

N x M with 1 < M < N and the first subspace direction For all subspace algorithms, the 984, can be expressed
d! fulfills as the sum of a new matrix and a weighted version of the

previous set:

g di < —vollgrll’, (18)
L] < lignl (19) D = [Nel0] + 101D Wi )
with -0 The obtained expressions fo¥, andW), are given in Tab. Il.
70,71 > T According to (21),M,, can be obtained by the recurrence
Then, the convergence of the MM subspace scheme holds
according to the following theorem. M, = [AN|0] + [0|M},_ 1 Wy].

Theorem 1. Let I defined by(1), where H and V satisfy Assuming thatM, is stored at each iteration, the computa-
Assumption H3. Let;, defined by(4)-(17) where D, satisfies tionnal burden reduces to the produltN,. This strategy
Assumption H4,J > 1, § € (0,2) and B;, = DA%, D, is efficient as far asV, has a small number of columns.
with 0 < a < 1/L (resp.,Bj = DI Agr(z), + Dys},)Dy). Moreover, the cost of the latter product does not dependen th

If Assumption H1 (resp., Assumption H2) holds, then subspace dimension, by contrast with the direct computatio
of M.
F(zpi1) < Flxg). (20)
Moreover, we have convergence in the following sense: IV. APPLICATION TO THE SET OF IMAGE PROCESSING

PROBLEMS FROM[6]

In this section, we consider three image processing prob-
lems, namely image deblurring, tomography and compressive
sensing, generated with M. Zibulevsky’s code availabletat h
/liew3.technion.ac.itfmcib. For all problems, the synthesis-
Remark 1. Assumption H4 is fulfilled by a large family ofbased approach is used for the reconstruction. The image is
descent directions. In particular, the following resultsldh assumed to be well described a8 = K z° with a known

o Let (P;) be a series of SPD matrices with eigenvaluedictionary K and a sparse vecte®. The restored image is

that are bounded below and above, respectivelybgnd then defined ase* = Kz* where z* minimizes the PLS
~o > 0. Then, according to [16, Sec. 1.2], Assumption Hdriterion

lim ||gx| = 0.
k—o0

Proof: See Appendix A.

holds IfdllC = —Pygy. N

« According to [47], Assumption H4 also holdsdf results F(z)=||[HKz —y|> + ) _ ¥(=z),
from any fixed positive humber of CG iterations on the i=1
linear systemM;d = —gy, provided that(My) is & \yith 4 the logarithmic smooth version of the norm
matrix series with a positive bounded spectrum.

« Finally, Lemma 3 in Appendix B ensures that Assumption Y(u) = |u| — §log(1 + |ul/d)

H4 holds ifd}, is the PCD direction, provided thaf' is

strongly convex and has a Lipschitz gradient. that aims at sparsifying the solution.

In [6], several subspace algorithms are compared in order
Remark 2. For a preconditioned NLCG algorithm with ato minimize F'. In all cases, the multi-dimensional stepsize
variable preconditionerP;, the generated iterates belong toresults from a fixed number of Newton iterations. The aim of
the subspace spanned byP.g; and di,_i. Whereas the this section is to test the convergence speed of the algusith
convergence of the PNLCG scheme with a variable precondihen the Newton procedure is replaced by the proposed MM
tioner is still an open problem [21, 48], the preconditiond&  stepsize strategy.
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Acronym Recursive form ofD;, N, | W, |
MG [—9gk, Dp—15k—1] —9k Sp—1
SMG [—gk, Drp—15k—1, Dp_1(2: m)] —gk [8—1, T2:m]
GS [~gk, Dr—1(1 : m)] —gk I,
ORTH [~gk>xr — 20, WGk + Dr_1(3)] [—gr> Tk — T0, WrGk] I3
QNS [=gk:gk + Di_1(1), Dp_1(2: m), Dy_18_1, Dj_1(m + 2 : 2m)] [—gk>gk] (I, I2:m, Sj—1, Im+-2:2m)]
SESOP-TN [df, Gr(ds), df —di ', Dy_1(4:m+2)] [df, Gr(dL), di —di '] J A
TABLE Il

RECURSIVE MEMORY FEATURE AND DECOMPOSITIOI(Z].) OF SEVERAL ITERATIVE SUBSPACE ALGORITHMSHERE, D(Z : j) DENOTES THE SUBMATRIX
OF D MADE OF COLUMNS? TO j, AND Ii;]' DENOTES THE MATRIX SUCH THATD Ii;]' = D(Z : ])

A. Subspace algorithm settings 2) Choice between stepsize strategid$ie impact of the

SESOP [26] and PCD-SESOP [19] direction sets are CO:ﬁ_epsi_ze strategy i; the central iss_,ue in thi_s paper._Ab@rd
sidered here. The latter uses SMD vectors withdefined as © @ visual comparison between thin and thick plots in Figs. 1

the PCD direction 2 and 3, the MM stepsize strategy always leads to signifigantl
faster algorithms compared to the original versions based o
pik = argmin F(xy + ae;), i =1, ..., N, (22) Newton search, mainly because of a reduced computational
«

time per iteration.

wheree; stands for theith elementary unit vector. Follow-  Moreover, let us emphasize that the theoretical convergenc
ing [6], the memory parameter is tuned to = 7 (i.e, of SESOP-MM and PCD-SESOP-MM is ensured according to
M = 8). Moreover, the Nemirovski directions are discardedtheorem 1. In contrast, unless the Newton search reaches the
so that SESOP identifies with the SMG subspace. exact minimizer off(*)(s), the convergence of SESOP and

Let us define SESOP-MM and PCD-SESOP-MM alggeCD-SESOP is not guaranteed theoretically.
rithms by associating SESOP and PCD-SESOP subspaces with
the multi-dimensional MM stepsize strategy (17). The latte
is fully specified by the curvature matrid?, the number V. APPLICATION TO EDGE-PRESERVINGIMAGE
of MM sub-iterationsJ and the relaxation parametér For RESTORATION

all k,j, we defineA? = Aqg(zr + Dis’) where Agr(. , , _
J ; GR(2 kSy) GR(-) The problem considered here is the restoration of the well-

is given by (10), and/ = # = 1. Function is strictly ' !
convex and fulfills both Assumptions H1 and H2. Therefor&§M0Wn imageoat , | ena andpepper s of sizeV = 512

Lemma 1 applies. Matri%’ identifies with the identity matrix, 512. These images are firstly convolved with a Gaussian point

so Assumption H3 holds and Lemma 2 applies. Moreovépread function of standard deviatidr24 and of sizel7 x 17.
according to Lemma 3, Assumption H4 holds and Theorems_l‘?condly’ a white Gaussian noise is added with a variance

ensures the convergence of SESOP-MM and PCD-SESGIusted to get a signal-to-noise ratio (SNR)40fdB. The
MM schemes. following analysis-based PLS criterion is considered

MM versions of SESOP and PCD-SESOP are compared to 9 5
the original algorithms from [6], where the inner minimizet F(z) = ||Hz —y|” + AZ 6 + [Va]2

uses Newton iterations with backtracking line search,| timéi
tight stopping criterion where V is the first-order difference matrix. This criterion
va(k) (8)]| < 10-1° depgnds on the par.ameteksar.\d 0. 'I_'hey are assessed to
maximize the peak signal to noise ratio (PSNR) between each
is met, or seven Newton updates are achieved. image x° and its reconstruction versiom. Tab. Ill gives
For each test problem, the results were plotted as functidh§ resulting values of PSNR and relative mean square error
of either iteration numbers, or of computational times ifRMSE), defined by
seconds, on an Intel Pentium 4 PC (3.2 GHz CPU and 3 GB
RAM). PSNR(z, x°) = 201log;, ( max; () )
VN (i — 27)°

B. Results and discussion

1) Choice between subspace strategidscording to Figs. . |z — x°||?
1, 2 and 3, the PCD-SESOP subspace leads to the best RMSE(z, 2°) = B
results in terms of objective function decrease per iterati
while the SESOP subspace leads to the largest decrease die purpose of this section is to test the convergence speed
the gradient norm, independently from the stepsize styategf the multi-dimensional MM stepsize strategy (17) for elitf
Moreover, when considering the computational time, it @ppe ent subspace constructions. Furthermore, these perfagaan
that SESOP and PCD-SESOP algorithms have quite simikre compared with standard iterative descent algorithiss-as
performances. ciated with the MM line search described in Subsection LlI-B

and
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A. Subspace algorithm settings

H3 holds [29] so Lemma 2 applies.

The MM stepsize search is used with the Geman
Reynolds HQ matrix and = 1. Since the hyperbolic function
¢ is a strictly convex function that fulfills both Assump-~ 10°
tions H1 and H2, Lemma 1 applies. Furthermore, Assumpti«u

Our study deals with the preconditioned form of the fol
lowing direction sets: SMG, GS, QNS and SESOP-TN. Tt._
preconditionerP is a SPD matrix based on the 2D Co-
sine Transform. Thus, Assumption H4 holds and Theorem
ensures the convergence of the proposed scheme what:
the number of MM sub-iterationg > 1. Moreover, the

implementation strategy described in Subsection IlI-H
used.

For each subspace, we first consider the reconstruction
pepper s, illustrated in Fig. 4, allowing us to discuss the
tuning of the memory parametet, related to the size of the

10° — SESOP 10° — SESOP
SESOP-MM ---SESOP-MM
---PCD-SESOP PCD-SESOP
- ---PCD-SESOP-MM i ---PCD-SESOP-MM
3 %
H £
'-:- 10
w
~ :‘: N
- K 10"
20 40 60 80 100 120 0 2 4 6 8
Iteration CPU time, Sec
10° 10°
——SESOP ——SESOP
SESOP-MM SESOP-MM
---PCD-SESOP ---PCD-SESOP
-1 ---PCD-SESOP-MM -1 ---PCD-SESOP-MM|
10 10
[y w
=) =)
107 107
0 20 40 60 80 100 120 0 2 8

4 6
Iteration CPU time, Sec

subspaceV/ as described in Tab. I, and the performances 69 2. Tomography problem taken from [6]x 32 pixels): The objective

the MM search. The latter is again compared with the Newt

search from [6].

Then, we compare the subspace algorithms with iterati T .
descent methods in association with the MM scalar line $ear:
The global stopping rulég, | /v N < 10~* is considered.

For this setting, no significant differences between athors
have been observed in terms of reconstruction quality. &cin e i
tested scheme, the performance results are displayed thale!
form K/T whereK is the number of global iterations afd

is the global minimization time in seconds.

B. Gradient and memory gradient subspaces

SMG and GS algorithms.

o F

1) Influence of tuning parametersiccording to Tables
IV-V, the algorithms perform better when the stepsize i
obtained with the MM search. Furthermore, it appears th

—SESOP
SESOP-MM
---PCD-SESOP
---PCD-SESOP-MM

40 60 80
Iteration

—SESOP
SESOP-MM

- - - PCD-SESOP
---PCD-SESOP-MM

20

40 60 80
Iteration

100

o F

The aim of this section is to analyze the performances
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SESOP-MM
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0 20

CPU time, Sec

40 60 80

—SESOP
SESOP-MM
---PCD-SESOP
---PCD-SESOP-MM
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function and the gradient norm value as a function of iteratiumber (left)
QHd cPU time in seconds (right) for the four tested algorghm

10
— SESOP —SESOP
SESOP-MM SESOP-MM
- --PCD-SESOP - --PCD-SESOP
10 ---PCD-SESOP-MM 10° ---PCD-SESOP-MM

best

w
I
s - = w _
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Iteration CPU time, Sec
——SESOP ——SESOP
0 SESOP-MM 0 SESOP-MM
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T T
o 10 =4
10"
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Fig. 3. Compressed sensing problem taken from §@] x 64 pixels): The

objective function and the gradient norm value as a functiérteration
number (left) and CPU time in seconds (right) for the foutedsalgorithms.

J =1 leads to the best results in terms of computation time
which indicates that the best strategy corresponds to ahroug
minimization of f(*)(s). Such a conclusion meets that of [29].
In contrast, the MM strategy with high values dfleads to
poor performances in term of iteration numt€r comparable

boat | ena peppers
A 0.2 0.2 0.2
§ 13 13 8
PSNR 28.4 30.8 31.6
RMSE | 5-1073 | 3.3-1072% | 2-1073
TABLE IlI

Fig. 1. Deblurring problem taken from [6] 28 x 128 pixels): The objective ~VALUES OF HYPERPARAMETERS\, § AND RECONSTRUCTION QUALITY IN

function and the gradient norm value as a function of iteratiumber (left)

and CPU time in seconds (right) for the four tested algori¢hm

TERMS OFPSNRAND RMSE.
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and computational timé&".

The two other casesena and boat lead to the same
conclusion, as reported in Tab. VII. Finally, Table VIII @ps
the results obtained with SNR 20 dB. While the iteration
number K and computational timel’ before convergence
globally increased due to the higher noise level, the basiise
were still observed with MG algorithm.

J 1 2 5 10
NLCG-FR | 145/270 | 137/279 | 143/379 | 143/515
NLCG-DY | 234/447 | 159/338 | 144/387 | 143/516
NLCG-PRP | 77/137 69/139 75/202 T7/273

Fig. 4. Noisy, blurredpepper s image, 40 dB (left) and restored image

(right). NLCG-HS 68/122 67/134 75/191 77/289
NLCG-LS 82/149 67/135 74/190 76,/266
SMG(m) 1 2 5 10 MG 67/119 | 66/141 | 74/211 | 76/297
Newton | 76/578 | 75/630 | 76/701 | 74/886 TABLE VI
< 1 67/119 | 68/125 | 67/140 | 67/163 RECONSTRUCTION ORpepper s: ITERATION NUMBER K / TIME T (SEC.)
~ 2 66/141 | 66/147 | 67/172 | 67/206 BEFORE CONVERGENCE FOMG AND NLCG FOR DIFFERENT
= 5 74/211 | 72/225 | 71/255 | 72/323 CONJUGACY STRATEGIESIN ALL CASES, THE STEPSIZE RESULTS FROM
= 10 76/297 | 74/319 | 73/394 | 74/508 ITERATIONS OF THEMM RECURRENCE
TABLE IV

RECONSTRUCTION ORpepper s: ITERATION NUMBER K / TIME T' (SEC.)
BEFORE CONVERGENCE FOMM AND NEWTON STRATEGIES FOR THE
MULTI -DIMENSIONAL SEARCH IN SMG ALGORITHM. boat | ena pepper s

NLCG-FR 77/141 98/179 145/270
NLCG-DY 86/161 127/240 234/447
GS(m) 1 5 10 15 NLCG-PRP | 40/74 | 55/99 77/137
Newtfin 435185//3513T 115208//1235084 9;56//1108500 8617//110?; NLCG-HS | 39/71 | 50/93 68/122
S| 2 | 316/656 | 134/342 | 86/257 | 70/232 NLCG-LS | 42/81 | 57/103 | 82/149
S | 5 | 317/856 | 137/481 | 91/400 | 78/3%6 MG 37/67 | 47/85 | 67/119
= 10 | 317/1200 137/709 92/619 78/598 TABLE VII
TABLE V ITERATION NUMBER K / TIME T' (SEC.) BEFORE CONVERGENCE FORMG
RECONSTRUCTION OFpepper s: ITERATION NUMBER K / TIME T (SEC.) AND NLCG ALGORITHMS. IN ALL CASES, THE NUMBER OFMM
BEFORE CONVERGENCE FOR THE MULFDIMENSIONAL SEARCH INGS SUB-ITERATIONS IS SETTOJ = 1.
ALGORITHM.
boat | ena peppers
with those obtained when using Newton search. NLCG-FR | 120/220 | 171/318 | 383/713
The effect of the memory sizen differs according to the NLCG-DY | 136/255 | 227/430 | 532/1016

NLCG-PRP | 72/133 100/177 191/339
NLCG-HS 71/129 94/171 177/318
NLCG-LS 73/141 106/192 199/361

subspace construction. For the SMG algorithm, an incregse o
the size of the memory: does not accelerate the convergence.
On the contrary, it appears that the number of iteration&f®r

. MG 69/125 | 91/162 | 174/309
decreases when more gradients are saved and the besttradeof / / /
. : . _ TABLE VIl
is obtained W!thm . 15. . . . ITERATION NUMBER K / TIME T' (SEC.) BEFORE CONVERGENCE FOMG
2) Comparison with conjugate gradient algorithmiset us AND NLCG ALGORITHMS FORSNR= 20 DB. IN ALL CASES, THE
compare the MG algorithm.¢., SMG with m = 1) with the NUMBER OF MM SUB-ITERATIONS IS SET TOJ = 1.

NLCG algorithm making use of the MM line search strategy
proposed in [29]. The latter is based on the following descen

recurrence:
C. Quasi-Newton subspace

Dealing with the QNS algorithm, the best results were
wherej;, is the conjugacy parameter. Tab. VI summarizes thabserved with/ = 1 iteration of the MM stepsize strategy and
performances of NLCG for five different conjugacy strategighe memory parameten = 1. For this setting, th@epper s
described in [21]. The stepsize, in NLCG results fromJ image is restored afte#8 iterations, which taked24s. As
iterations of (15) withA = Agr and § = 1. According a comparison, when the Newton search is usedang 1,

to Tab. VI, the convergence speed of the conjugate gradi¢éime QNS algorithm require®s iterations that take more than
method is very sensitive to the conjugacy strategy. Thdilast 1000s.

of Tab. VI reproduces the first column of Tab. IV. The five Letus now compare the QNS algorithm with the standard L-
tested NLCG methods are outperformed by the MG subsp&8EGS algorithm from [22]. Both algorithms require the tumin
algorithm with J = 1, both in terms of iteration numbek  of the memory sizen. Fig. 5 illustrates the performances of

Tht1 = T + o (—gr + Prdi—1)
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the two algorithms. In both cases, the stepsize results fronf SESOP-TNm)| 0 1 2 :
iteration of MM recurrence. Contrary to L-BFGS, QNS is no Ne""tcl’” ﬁg?gig ﬁg?ggz gg?g% ;g%gig
sensitive to the size of the_ memory. Moreover, according S 9 253/532 | 232/506 | 239/525 | 345,731
to Tab. IX, t_he QN_S qlgorlthm outperforms_ the standard L-E 5 158/380 | 132/316 | 143/359 | 139/351
BFGS algorithm with its best memory setting for the three < 10 122/322 | 134/323 | 119/301 | 128/334
restoration problems. 15 114/320 | 134/365 | 117/337 | 127/389
TABLE X
250 500 RECONSTRUCTION OFpepper s: ITERATION NUMBER K / TIME T (SEC.)
BEFORE CONVERGENCE FOMMM AND NEWTON STEPSIZE STRATEGIES IN
-0-QNS —0-QNS SESOP-TNALGORITHM.
200 400
2150 £~ 300
boat | ena peppers
100 200 TN 65/192 | 74/199 | 137/322
SESOP-TN2) | 55/180 | 76/218 | 119/301
50 100,
! S s ! L s TABLE XI
ITERATION NUMBER K / TIME T (SEC.) BEFORE CONVERGENCE FOR
Fig. 5. Reconstruction giepper s: Influence of memoryn for algorithms SESOP-TNaND TN ALGORITHMS FOR7 = 0.5 AND J = 10.

L-BFGS and QNS in terms of iteration numb&f and computation tim&’
in seconds. In all cases, the number of MM sub-iterationsigs.] = 1.

VI. CONCLUSION

This paper explored the minimization of penalized least
squares criteria in the context of image restoration, usieg
subspace algorithm approach. We pointed out that the legisti

boat | ena peppers
L-BFGS (m =3) | 45/94 | 62/119 83/164
QNS (m =1) 38/83 | 48/107 | 68/124

TABLE IX strategies for computing the multi-dimensional stepsiriées
ITERATION NUMBER K / TIME T’ (SEC.) BEFORE CONVERGENCE FORINS .
AND L-BFGSALGORITHMS FORJ — 1. either from a lack of convergence resuksg.,Newton search)

or from a high computational cose.g.,trust region method).

As an alternative, we proposed an original stepsize styateg

based on a MM recurrence. The stepsize results from the min-

imization of a half-quadratic approximation over the sidrsp

Our method benefits from mathematical convergence results,

whatever the number of MM iterations. Moreover, it can be
Now, let us focus on the second order subspace methiathlemented efficiently by taking advantage of the recarsiv

SESOP-TN. The first component @, df, is computed by structure of the subspace.

applying/ iterations of the preconditioned CG method to the On practical restoration problems, the proposed search is

Newton equations. Akin to the standard TN algorithinis significantly faster than the Newton minimization used in [6

D. Truncated Newton subspace

chosen according to the following convergence test 26,27], in terms of computational time before convergence.
Quite remarkably, the best performances have almost always
g + Hid%||/|lgrll < 7, been obtained when only one MM iteration was performed

(J = 1), and when the size of the memory was reduced
wheren > 0 is a threshold parameter. Here, the setijng 0.5 to one stored iteraten{ = 1), which means that simplicity
has been adopted since it leads to lowest computation time &nd efficiency meet in our context. In particular, the resglt

the standard TN algorithm. algorithmic structure contains no nested iterations.
In Tables X and Xl, the results are reported in the form Finally, among all the tested variants of subspace methods,
K/T where K denotes the total number of CG steps. the best results were obtained with the memory gradient

According to Tab. X, SESOP-TN-MM behaves differentlypubspaceif., where the only stored vector is the previous
from the previous algorithms. A quite large value #fis direction), using a single MM iteration for the stepsize.eTh
necessary to obtain the fastest version. In this exampte, figsulting algorithm can be viewed as a new form of precon-
MM search is still more efficient than the Newton searcfglitioned, nonlinear conjugate gradient algorithm, wheve t
provided that we choosd > 5. Concerning the memory conjugacy parameter and the step-size are jointly given by
parameter, the best results are obtainednfios 2. a closed-form formula that amounts to solve x 2 linear

Finally, Tab. XI summarizes the results for the three teSyStem.
images, in comparison with the standard TN (not fully stan-
dard, though, since the MM line search has been used). Our APPENDIX
conclusion is that the subspace version of TN does not seemproof of Theorem 1
to bring a signifiqant accelerat!on compared to the standardLet us introduce the scalar function
version. Again, this contrasts with the results obtainedlie
other tested subspace methods. hF) (a) £ ¢ ([a,0,...,0]7,0), Va € R. (23)
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According to the expression af ., 0), h reads

h0 () = f9(0) + agldl + SoldiT AYdL. (24)
Its minimizer &y, is given by
T 1
Therefore,
W9 (@) = FO0) + Sanal d. (26)
Moreover, according to the expression&f,
(M (31,0) = F00) + VD078 (@)

3} minimizesq®) (s, 0) henceq™® (3},0) < h¥)(a;). Thus,
using (26)-(27),

argidi > v ®(0)7 s} (28)

According to (24) and (25), the relaxed stepsizge = 0d;
fulfills

9 (o) = fP(0) + 6 drgi dy., (29)

whered = 0(1 — 0/2). Moreover,
" (s1,0) = f(0) + 6V P(0)T5L. (30)

Thus, using (28)-(29)-(30), we obtaif*) (si,0) < A% (ay,)
and

F®(0) — ¢ (s1,0) > —dangt di. (31)

Furthermoreg®) (s},0) > f®)(st) > f*)(s;,) according to
Lemma 1 and [13, Prop.5]. Thus,

F#0) = f*) (sx) > —dang dj. (32)
According to Lemma 2,
T g1
A 95 4y,
A = — (33)
vi||dy[?
Hence, according to (32), (33) and Assumption H4,
(k) (k) 8 2
F0) = fM(sk) > — g ll*, (34)
"1
which also reads
5'73 2
F(xy) — Feee) = —5 gkl (35)
1

Vl’}/

Thus, (20) holds. MoreoveF is bounded below according to

Lemma 2. Therefordimy,_,~, F () is finite. Thus,

573

1
1 > 2
0> (228)  (Fleo) - Jin Flew) > Yl

and finally

lim ||gx| = 0.
k—o0

10

B. Relations between the PCD and the gradient directions
Lemma 3. Let the PCD direction be defined lpy = (p;),
with

p; = argmin F(x + ae;), i =1, ..., N,

«

where e; stands for theith elementary unit vector. I# is
gradient Lipschitz and strongly convex &, then there exist
70,71 > 0 such thatp fulfills

(36)
(37)

g"p < —llgl,
el <llgll

for all x € RV,

Proof: Let us introduce the scalar functiong(a) =
F(x + «e;), so that

pi = argmin f;(a). (38)

[e%

F is gradient Lipschitz, so there exists > 0 such that for
all 4,

|fi(a) — fi(b)| < Lla -],
In particular, fora = 0 andb = p;, we obtain
Ipi| > |f1(0)|/L7

given thatfi(pi) = 0 according to (38). According to the
expression off;,

Va,b € R.

N
g"'p=>_fi(0)pi.
1=1

Moreover,p; minimizes the convex functiorf; on R so

pifi(0) <0, i=1,..N. (39)
Therefore,
N 1
g"'p=—>_1/:0)lp| < —7llgl*. (40)
=1

F is strongly convex, so there exists> 0 such that for alkl,

(fila) = fi(®))(@=b) = v(a—b)*, Va,beR.
In particular,a = 0 andb = p; give
Using (39) we obtain
pi <Ifi(OF/v?, i=1,..,N. (42)
Therefore,
N 1
Ipl* =" pF < gl (43)
=1

Thus, (36)-(37) hold fory = 1/L and~y; = 1/v. [ |
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