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Efficient Maximum Entropy Reconstruction of
Nuclear Magnetic Resonance T1-T2 Spectra

Emilie Chouzenoux, Said Moussaoui, Jerome Idiéember, IEEEand Francois Mariette

Abstract—This paper deals with the reconstruction of T1-T2
correlation spectra in Nuclear Magnetic Resonance relaxoetry.
The ill-posed character and the large size of this inverse mblem
are the main difficulties to tackle. While maximum entropy is
retained as an adequate regularization approach, the chog of
an efficient optimization algorithm remains a challenging fsk.
Our proposal is to apply a truncated Newton algorithm with
two original features. Firstly, a theoretically sound line search
strategy suitable for the entropy function is applied to ensre
the convergence of the algorithm. Secondly, an appropriat@re-
conditioning structure based on a singular value decompogon
of the forward model matrix is used to speed up the algorithm
convergence. Furthermore, we exploit the specific structws of
the observation model and the Hessian of the criterion to redce
the computation cost of the algorithm. The performances of e
proposed strategy are illustrated by means of synthetic andeal
data processing.

Index Terms—Nuclear magnetic resonance, T1-T2 spectrum,
Laplace inversion, Maximum entropy, truncated Newton, line
search, SVD preconditioning.
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I. INTRODUCTION

terms of longitudinal or transverse relaxation, leadin@ne-
dimensional (1D) distributions [4,5]. On the contrary,npi
measurements with respect to the two relaxation parameters
allow to build two-dimensional (2D)I';-7> spectra. Such
spectra reveal couplings betwe&h and T, relaxations that

are very useful for structure determination [6-8].

The physical model behind NMR relaxometry states that
the measured NMR datd (r;,72) are related to thd;-Ts
spectrumS(T4,Tz), according to a 2D Fredholm integral of
the first kind

X(Tl,TQ) ://k?l(Tl,Tl)S(Tl,Tg)kjg(Tg,TQ)dTldTQ (1)
where k; and ko are kernels modeling the longitudinal and

transverse relaxations
ki(m,Th)
ko(12,T5)

with ~ 1 — cos®. In practice, an uncertainty in this
observation model can occur if the pulse anglés not set

— 7’;'6 71/717
—=e 2/727

)

UCLEAR magnetic resonance (NMR) relaxometry is §Xactly to its desired value. S

of matter in order to determine its molecular structure arf§e continuous distributio (71, T3) is known to be an ill-
dynamics. After the immersion of the matter in a strong0Sed problem [9].

magnetic field, all the nuclear spins align to an equilibrium Experimental data are collectedsat x m; discrete values
state along the field orientation. The application of a shdft the mi-7> domain. Thus, the data functioX (r;, ) is

magnetic pulse in resonance with the spin motion pertusbaféPlaced by a data matrbX < R™ ™. Similarly, the

the spin orientation with a predefined andlecalled flip angle

kernelsk; andk, are discretized as matricds; € R *M

or pulse angle. The NMR experiment aims at analyzing t@d Kz € {Rm”Nz- Equation (1) takes a discrete form
relaxation process which corresponds to the re-estabtishmX = K1SK;, where the spectrur§' is a real-valued matrix

of the spin into its equilibrium state.

This movement is decomposed into longitudinal and trans-

verse dynamics, characterized by relaxation tinfigsand

of size N1 x Ns. In practice, measurements are modeled by

Y = K,\SK. + E A3)

T, respectively. In practice, the longitudinal magnetizatiowith E a noise term assumed white Gaussian. 2D NMR

after r; seconds of relaxation is measured by applyingpa

reconstruction amounts to estimatitffj given Y subject to

impulsion in the transverse plane. The transverse magnefi-— 0 (in the senseS;; > 0 Vi, j). Attention must be paid to
zation afterr; + 7, seconds of relaxation is obtained by dhe size of the 2D NMR problem. Indeed, when converted to
series of dephasing impulsions in the transverse plane (flstandard one-dimensional representation, (3) reads

Chap.4], [2, Chap.4], [3]). Classical NMR experiments are
conducted to analyze the samples independently, either in
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y=Ks+e (4)

with y vect [Y], s = vect[S], e = vect[E], vect|]
denoting a column vector obtained by stacking all the elémen
of a matrix in lexicographic order and

K=K 2K, (%)

is the Kronecker product between matrid€s and K. Matrix
K is thus of sizen;ms x N1 N>. Typical values aren; = 50,
ma = 10%, N1 x Ny = 200x200, so K is a huge matrix whose
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explicit handling is almost impossible. It is one of the two 1) TSVD: The TSVD approach consists in replacing the in-
main contributions of this paper to make use of the factoreg@rse (or the generalized inverse)Hfby a matrix of reduced

form (3) to solve this issue without any approximation. rank, in order to avoid the amplification of noise due to the
Adopting the well-known least-squares approach would leduersion of small nonzero singular values [14]. In pragtic
to define a spectrum estimate as the minimizer of computing the TSVD requires the explicit decomposition of
1 - K in terms of singular elements, which can be numerically
c(s) = §||Y ~ KiSK;|F, ®)  burdensome.

where||-||, denotes the Frobenius norm, under the positivity 2) Tikhonov penalization:While TSVD tackles the ill-

constraintS > 0. However, K; and K, are rank-deficient Posed character by control of dimensionality, Tikhonov

and very badly conditioned matrices [10]. Therefore, sudRethod follows a penalization approach by which a trade-off

a solution is numerically unstable and regularized sohstio is sought between fidelity-to-data and regularity. It letxithe

must be sought instead. Given that the maximum entrofjnimization of a mixed objective function

qpproach _provid_es acknowledged m_ethods for conventional L(S) = C(S) + AR(S) @)

(i.e., one-dimensional) NMR [4, 11], this paper explo#gsT,

spectrum estimation based on maximum entropy regulasizatiwhere the regularization parameter- 0 controls the respec-

and proposes a specific descent algorithm. According to dive weight of the two terms(’ is a least-square term

experience, the barrier shape of the entropy function makes 1 , 1 5

the minimization problem quite specific. In particular, geai- (S)=5lly-Ks|" =3 |Y - KiSK|,.  (8)

E]Lgfrf)igiseen??nn t'(';:ﬁg g;%%?\ggggé%%t:?SMcgg Zir%ﬁ;rgelnd the additional ternR is also a quadrz_mc_term. In_ the
co{ntext of NMR reconstruction, the regularization funotial

the more specific scheme adapted from [12] also turns o is usually chosen as the squaridnorm of the spectrum
to be very slow to converge. This motivated us to devise :H;j 10,15, 16))

alternative optimization strategy that is provably cogestt
and shows a good trade-off between simplicity and efficiency R(S) = 1 Is|> = 1 I1S|1% . ©)
The proposed algorithm belongs to the truncated Newton 2 2 F
algorithm family but possesses original features regarthie Tikhonov solution is then obtained by solving the lineartsys
line search and the preconditioning strategy. (K'K + \)s = K'y.

The rest of the paper is organized as follows: Section Il
gives an overview of different regularization strategibatt B. Iterati S

: : : . Iterative Minimization

can be applied to solve this problem. Section Il proposes an _ _ o
efficient reconstruction method for maximum entropy regula Both TSVD and TIK solutions provide results of limited
ization, based on a truncated Newton algorithm associaitid wesolution. Moreover, they tend to exhibit oscillatory exc
an original line search strategy well suited to the form af thSions, especially in the peripheral regions of the recavere
criterion. The computation cost of the algorithm is reduce@faks, which usually violate the positivity of the spectrum
by working directly with the factored form (6) to calculatecOmponents [17]. Enforcing the positivity of the spectrisn i
quantities such as gradient and Hessian-vector products.OPviously desirable from the viewpoint of physical intestar-
section 1V, the efficiency of the proposed scheme is illustta tion, but it has also a favorable effect on the resolutionhef t

by means of synthetic and real data examples. estimated spectrum. o _ _
1) Tikhonov under positivity constraint (Tt: The posi-

Il. PROBLEM STATEMENT AND EXISTING SOLUTIONS tjvity constraintS > 0 is naturally incorporated into Tikhonov

The mathematical methods developed to solve (1) can @pproach by constraining the minimizationfoto the positive
classified into two groups. The first approach is to fit therthant. However, there is no closed-form expression for
decay curves with a minimal number of discrete exponentidl® minimizer anymore, so the solution must be computed
terms. The parametric minimization is usually handled wititeratively using a fixed-point algorithm.
the Levenberg-Marquardt algorithm [13]. In this paper, we Butler-Reeds-Dawson algorithm (BRD) [10] is a rather
rather focus on the second approach which analyzes the dstaple and efficient technique based on the resolution of
in terms of a continuous distribution of relaxation compuaise the Karush-Kuhn-Tucker conditions [18]. Although commyonl
S(T1,T>). This model gives rise to the linear equation (3used in materials science, it is scarcely referenced in the
In this section, we give an overview of different inversiomuadratic programming literature. For the sake of clatiiicg

strategies for this problem. Appendix A proposes a very simple interpretation of the
_ ) ) BRD scheme as iteratively minimizing a dual function of the
A. Direct Resolution: TSVD and Tikhonov Methods criterion in the sense of Legendre-Fenchel duality [19].

NMR reconstruction is a linear ill-posed problem. To However, the BRD scheme requires the inversion of a
tackle it, truncated singular value decomposition (TSVDYl a system of sizen x m at each iteration, whene is the number
Tikhonov penalization (TIK) are commonly used methods [9bf measurements. In the case of 2D NMR problems =
Each of them calls for its own regularization principle ton;ms, and usual values af.; andms lead to a prohibitive
compensate the ill-conditioned character of the obsematicomputation cost. To solve this issue, a data compressign st
matrix. is proposed in [15], prior to the application of BRD. It redien
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strongly truncated singular value decompositionsfof and the current solutiors; along a descent directiod,
K K, ~ UiE,-Vt, 1 =1,2, with m; = rank(Ki) < m;.

o i : . = dy., 12

The fidelity to data term is then approximated by Sk+1 = Sk (12)
R 1o where oy, > 0 is the stepsize and,, is a search direction
c(S) = §||Y — K\SKi|% (10) computed by solving approximately the Newton equations

where K, = ¥V}, K, = %,V andY = Ul'YU, are of Hpydi = —gi (13)
sizem; x Ny, ma X Ny andm, x ma, respectively. with Hj, = V2L(s;) andgy = VL(sy). The TN algorithm

2) Maximum entropy:A different regularization approachhas been widely used in the context of interior point aldyonis
will be considered here, based on Shannon entropy penaliwdth logarithmic [28,29] and entropic [22] barrier funatis.
tion ¢(s) = —slogs. Maximum entropy (ME) [12,20] is an In practice, the TN method consists in alternating the
acknowledged approach in the context of 1D NMR relaxomeenstruction ofd, and the computation of the stepsiag
try [4,11]. An interesting feature of entropy penalizatisn by a line search procedure. The directidp results from
that it implicitly handles the positivity constraint sintee preconditioned conjugate gradient (PCG) iterations on) (13
norm of the gradient of the entropy term is unbounded atopped before convergence. The stepsizes obtained by
the boundary of the positive orthant. Thus, the minimizeteratively minimizing the scalar functiof{cr) = L(sy +ady,)
of the resulting penalized least-square criterion candsls untii some convergence conditions are met [18, Chap.3].
gradient, and computing it is essentially similar to sofyem Typically, the strong Wolfe conditions are considered
unconstrained optimization problem.

_ :
Formally, the extension to the 2D case is easily obtained by ,g(ak) = 6(0? +eraxl(0) (14)
minimization of [€(cuk)| < c2[€(0))] (15)

1 N1 N where (¢1,¢2) € (0,1) are tuning parameters that do not

L(S) = §||Y — K1 SK|[3 +A> ) SijlogSi;. (11) depend onk. There exist several procedures to find an ac-
i=1j=1 ceptable stepsize: exact minimization €f), backtracking,

However, the practical computation of the solution is diear@PProximation off(.) using cubic interpolations [18,30] or
more difficult in the 2D case because the optimization problequadratic majorizations [31, 32]. However, the entropiogity
is much larger-scale. The choice of a specific minimizatid§™m implies that the derivative df«) takes the value-oo as
scheme suited to maximum entropy 2D NMR reconstructidiP@n as any of the components of the vesfor ady, vanishes,

is a challenging task. hence whenx is equal to one of the two limit values
In the context of maximum entropy, [21] proposed the B —8; ) —8; 16
fixed-point multiplicative algebraic reconstruction teiue TS0 \dps T o \d, ) (16)

(MART) that maximizes the entropy term subjecthids = y. The function? is undefined outsidé«_, oy ), therefore, we

The simplicity of MART is afiractive. However, as emphaglzemust ensure that during the line search, the stepsize values

in [22], the presence of inherent noise in projection datkasa remain in the intervala_, o). Moreover, because of the

this method less effective than an approach based on the min-.. .
oo . o " ical m _an , ndard meth sin
imization of the penalized criterion (11). In [12], an itéva vertical asymptotes at— and a, standard methods using

R . ; .~ . cubic interpolations or quadratic majorizations are notl we
m|n|m|z§t|01_‘| algorithm basgd on a quadratic e_lpprommatlosnuited Our proposal is to adopt the specific majorization-
of the criterion over a low-dimension subspace is develdppeDased line search proposed in [33,34] for barrier function
However, according to [23, p. 1022], the convergence of this . ~_ . . ' T

o S ’ . .~ Optimization. Using an adequate form of majorization, we
algorithm is not established. We have tested its behavior | 9 a ]

the 2D NMR context. Our conclusions are that this algorith flow derive an analy_tlcal stepsize formula preserving gtron
. N onvergence properties.

does not ensure a monotonic decrease of the criterion, amd t
its convergence is very slow [24]. Finally, in a preliminarys |ine search Strategy
version of the present work, we have proposed to make use o
a preconditioned nonlinear conjugate gradient algorit@bi.[
Although the latter shows a good practical behavior, it®the
retical convergence is not ensured, since the preconditiisn
a variable matrix.

The goal of the next section is to derive an optimization h(a, ') = 0(a)
algorithm that would benefit from stronger theoretical mep h(a,a') = £(a’)

ties and sufficiently low computational cost to avoid anyadat o S .
compression step. As illustrated in Fig.1, the initial minimization df(«) is then

replaced by a sequence of easier subproblems, corresjgondin
to the MM update rule

he minimization of ¢(-) using the Majorization-
Minimization (MM) principle [35] is performed by successiv
minimizations of majorant functions for/(.). Function

h(a, ') is said to be majorant fof(«) at o’ if for all «,

(17)

I1l. PROPOSED TRUNCATEDNEWTON ALGORITHM
0 __
A. Minimization Strategy oy, =0,

i i o) = argming hi (o, al "), j=1,...,J (18)
The truncated Newton (TN) algorithm [26, 27] is based on k g o )] v Jhy
iteratively decreasing the objective functidris) by moving ap = a',fk.
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Following [34], we propose a majorant functidﬂ(.,ai) MM strategy. A detailed analysis can be found in [34] in a
that incorporates barriers to account for the entropy termmore general framework. According to [34], the proposed lin
It is piecewise defined under the following form (whenevesearch procedure ensures that

unambiguous, the iteration index will be dropped for the

sake of simplicity) 3 (gide)* _ (20)
c — i ]]?
Py +pia+py,a” —pgloga—a-) . . .
for all a € (a_; o] and that the directions generated by the TN algorithm are
Wla,o)=9 . PP - (19) gradient relatedin the sense of [37]. According to [38],
Po +pia+tpya” —p;log (0‘+_ —a) inequality (20), known agoutendijk conditionis sufficient
for all o € [o/; ay) to prove the convergence of the algorithm in the sense
The parameters™, n = 0, ..., 3 must be defined to ensurehm’HOO lgk[l = 0. Finally, the preCt'Ve funcnon_belng
strictly convex, the proposed algorithm converges to itgjua

thath?(.,a’) is actually a majorant of(-) ata’ (see Fig. 1(a)
for an illustration). A direct application of [34, Prop. 2l@avs
to establish expressions for these parameters. The regulti

form of h7(.,a’) is rather simple, though lengthy to expresd). Preconditioning

so itis reported in Appendix B. According to [34, LemmaZ], it As emphasized in [39], the Hessian of the Shannon entropy
corresponds to a strictly convex, twice differentiabledion  yeqy|arization term is very ill-conditioned for points thare
in the set(a, a.y). Moreover, its unique minimizer takes angjose to the boundary of the positive orthant since some of
explicit form, the latter being also found in Appendix B. s ejgenvalues tend to infinity. Furthermore, the expoiaént
Finally, (18) produces monotonically decreasing Va'“%%cays in kernelss; and k. imply that K, and K, are
{¢(a’)} and the serieqa’} converges to a stationary pointy|so very ill-conditioned. Preconditioning is a well-know
of {(a) [36]. technique to obtain more clustered eigenvalues of the Biessi
of the criterion and to accelerate the convergence of déscen
algorithms. The principle is to transform the space of o
variables into a space in which the Hessian has more clastere
eigenvalues by using a preconditioning matFx that approx-
imates the inverséZ, ' of the Hessian. A good preconditioner
achieves a trade-off between the approximation qualitythad
computation cost. General-purpose preconditioning egias
have been proposed in the literature including symmetric
successive overrelaxation and incomplete LU or Cholesky
factorizations ([40, Chap.10], [41]). In the context of ME
optimization, [22] taked?; as a diagonal matrix defined using
the Hessian diagonal elements

minimizer.

P, = [diag (diag(K'K)) + Adiag(sy) ] (21)

We rather propose a more specific preconditioner. It is based
on the fact that, as a consequence of (5), the singular value
decomposition ofK is given by K = UXV?, with U =

U U, V=VeVX=3 X, ULE,-V} being the
singular value decomposition dk;, ¢ = 1,2. Then, let us
define

P, = [VSQW + )\diag(sk)_l} (22)

whereV and ¥ correspond to truncated versions Bt and
(b) Casear— = —oo anda. finite 3. In the non-truncated cas®, = V andX¥ = %, and P,
Fig. 1. Schematic principle of the MM line search proceddige tangent then is equal to the Hessuf:m &f at s. It remains tq .defme
majorant functionk? (o, o) (dashed line) foré(a) (solid line) at«; is thef way we truncate the singular value decomposmo_rf_{of
piecewise defined on the sdis_, o] and [y, a1 ). The new iteratev; 1 AKin to [15, 42], we separately truncate the decompositmins

is taken as the minimizgr qij(.,aj). Two cases are iIIust_rated_. The third K, and K, at ranksm, vo and we definé7 andi according
and last case whera_ is finite anda4 = +oco is the mirror image of

case (b). t
V=V, (23)

C. Convergence Result % =3 © X, (24)

Let us focus on the convergence of the truncated Newtaet us remark that the resulting approximation &f may
algorithm when «;, is chosen according to the proposedlightly differ from the TSVD of K. The reason is simple:
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although%; and %, separately gather the largest singular | Require: Initial value so = 0, parametersi, vz, A,

; J and accuracies, 7.
values of¥; andX,, ¥ does not necessarily gather the largest Ensure: Resolution of (11)

singular values_oE. As a consequence, our approximatic_)n Compute the TSVD of; and K at ranksu:, vs.
may be suboptimal compared to the TSVD, the latter being while (29) does not holdio

optimal in the least-square sense [43], but the fact that we Computegy, P, and H;, using (25), (26) and
maintain factored expressions for matridésand X is essen- (27).

Computed,. using PCG algorithm (Table 2).
Setay, after J iterations of (18).
Updates; according to (12).

E. Memory Storage and Computation Cost Reduction end while

The computation cost can be reduced by exploiting the  Algorithm 1: TN algorithm for ME optimization
factored form of the observation model. Three main openatio

tial in terms of computation cost.

are involved in the iterative optimization algorithm: thent- Require: gk, Hy, Po,n
putation of the gradient vectgs, = VL(s;), and the products Ensure: Approximate solutiond;, of (13)
of P, and H, with a vector. The three resulting quantities can gg’ : ng ~ Hiuo
be calculated using low cost operations, as described below po < Puro
1) Gradient: The gradient of the criterion can be computed while (30) does not holdio
without explicitly handling matrixk', according to 0; < (v Pyr:)/(pi Hypi)
Uit1 < Ui +0:p;
gr = —vect [K{(Y — K18, K3) K] + A(1+1log si). (25) Tiy1 < 7 — 0;Hip;
ﬁi < (7‘:5+1Pk7‘¢+1)/(7‘:fp)@1’i)
2) Hessian: In the same manner, products between the Dit1 < Pyriy1 + Bipi
Hessian matrix and any vectar = vect [W] can be computed dp, < Uit
as follows end while

Algorithm 2: PCG algorithm
Hiw = vect [K|KiW K3 Ks| + Aw./s), (26)
where./ denotes componentwise division.
3) Preconditioner:In order to compute products involving
P, the matrix inversion lemma is applied to (22). Thus, This section discusses the performances of the proposed
G2 L Yt A T —lvrt method and illustrates its applicability. First, we comsid
Py = A - A V(ET+ VIALY) VA, (27) synthetic data in order to disgﬁ)ss the i{muence of the tuning
with A, = M\~ !diag(sy). Moreover, the following factored parameters on the algorithm behaviour. Then, the proposed
expression can be deduced from (23) for the entries of mattiethod applicability is illustrated through the procegsof
M =V'A,V € Rviv2xvivz real NMR data.
N Ny In NMR experiments, the pulse angfe may not be set
1 Y Y Y Y exactly to its desired value. Therefore, we analyze theceffe
Mij =3 2 2 (Sk)mn (V)ma (Va)us (Vi)me (Ve)ua of a potential error in the value of in the observation model
and propose an original strategy allowing to estimated this
barameter.
The different results are obtained with Matl@ly running
on an Intel Pentium 4 3.2 GHz, 3 GB RAM.

IV. EXPERIMENTAL RESULTS

m=1n=1

where (a,b) and (¢,d) are row and column subscripts tha
correspond to the linear indexésand j, respectively. Thus,
the productP,w can be efficiently computed according to

Pow = b — AkV(272 + M)*lf/'tbk,
= by, — Apvect[ViQ V5| (28) A. Synthetic Data

whereb, = A,w, q; = (5)*2 + M)~ vect [ﬁtBsz] and We consider two spectra A and B (Fig. 2) and the corre-

Q:., By, denote the equivalent square matrix representatiopgonding decays (Fig. 3) according to the observation model

of g andb;, respectively. (4) with a signal to noise ratio (SNR) dfo dB, m; = 100,

mo = 1000 andy = 1 (i.e, ® = 90°). The synthetic

spectrum A has a symmetric Gaussian shape located at

[T1,T5] = [0.5 s,1 s] while spectrum B is the sum of two
The resulting TN algorithm is given in Alg. 1. The algo-Gaussian patterns. The first one is symmetric and located at

rithm convergence is checked using the following stopping,, 7,] = [0.5 s,0.5 s]. The second pattern is located at

rule ([18]) [Ty, Ty] = [1.5 s,1.5 s] and simulates a positivé;-T, corre-

gkl < €(L+|L(sk)]), (29) lation. The reconstruction is performed fof, = N, = 100

and the algorithm is initialized with a uniform positive 2D

spectrum. The regularization paramefers set to minimize

llgr + Hidy|| < nl|VL(sg)||- (30) the normalized quadratic error

F. Resulting algorithm

and the PCG iterations in Alg. 2 are stopped when ([27])

Typical values of(e, ) are (1078, 1074). Q = 100|s(A) — s°[I3/1s°[I3, (31)
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and the preconditioner truncation parameters, are set to -y = i
6 -y =
the same value. —v—5
*p =28
10° 10° 10"
n
(b) Average PCG (b) Iteration number
iteration number for different truncation ranks
0
— g _
(a) Dataset A (b) Dataset B 27 - =10"" 1% v — P (0)
! _ *n=10"° 4 - ---Py(1
Fig. 2. Simulated 2D spectra 24 K ) N [ (1)
= =10 R ; o Py(4)
0\ en=10 R
[ ~ B '
18 N '
[ i E
15 1\
» B
12] 10°
3 4 5 6 7 8 ] 20 40 60 80 100
v Time (s)
(c) Computation time (d) Comparison between four
for different truncation ranks preconditioning strategies

Fig. 4. Dataset A: Analysis of the TN algorithm performanéesdifferent
PCG strategies. The SVD preconditioner with truncaturaipaterv was used
for (a)-(c) while the truncature parameteiis set to10—* for (d). Moreover,
(2) Dataset A (b) Dataset B in all cases, the stepsize results frafn= 1 subiteration of MM line search.

Fig. 3. NMR decays

procedure (MT) [30]. The latter performs an iterative mini-

1) PCG subiterations:The parameter controls the accu- mization of/(.) based on cubic interpolation until identifying
racy of the PCG minimization. The smaller it is, the more that fulfills the strong Wolfe conditions (14) and (15).

accurate the solving of (13). Here, several values aredeste

within the range[10~7,10~!]. Let I;, denotes the number of a_ e | K|TE
PCG subiterations (inner loop) at iteratidn As expected, = 1071 0.5 1 93 | 19.84
the average value af; generally increases with (Fig. 4(a)) = 10_1 0.9 190 ) 15.64

. . : 10 0.99 | 170 | 25.72
while the number of TN iteration&” (outer loop) decreases _3

. . . 10 0.5 93 | 16.98
(Fig. 4(b)). The number of PCG subiterations depends also 10 09 | 90 | 15.36
on the truncation rank of tht_e SVvD preconditioner, it can pe 10-3 0.99 170 25.'14
noted thatl;, decreases as this rank increases, corresponding to 7 K | T
a more accurate approximation of the inverse Hessian matrix 1 79 | 13.56
The smallest overall minimization time is achieved when a = 2 85 | 15.09
tradeoff is reached between the number of outer iteratiods a = 3 84 | 15.06
the number of inner iterations (Fig. 4(c)). In this examjie 4 84 | 15.11
best compromise i$v,n) = (4,107%). This setting will be 5 85 | 15.31

retained in the sequel. TABLE |

2) Preconditioning:Fig. 4(d) illustrates the criterion evolu- ~ DATASET A: COMPARISON BETWEENMM AND MT LINE SEARCH
tion for different preconditioners: the proposed appreation R B o N AL aeR ALD TIME BEFORE
P, (v) given by (22) withv; = v = v = 0,1,4 and the
diagonal preconditionePy resulting from (21). The stopping
criterion (29) is fulfilled after93 and 80 iterations for P (1) According to Table I, the TN algorithm with the MM line
and P;(4) whereas it is not fulfilled afterl000 iterations search performs better than with the MT line search with
neither forP; (0) nor for P;/. Moreover, according to Fig. 4(a), the best settings for, andc,. Concerning the choice of the
the TN iteration number decreases as the SVD truncation rasiko-iteration number, it appears that= 1 leads to the best
v increases. However, the choicewfnvolves a compromise results in terms of computation time which shows that antxac
between an acceleration of the algorithm and an increasengihimization of the scalar functiof(«) during line search is
the computational cost (Fig. 4(b-c)). not necessary.

3) Line search: Let us compare the performances of the 4) Regularization term:As explained in the introduction,
algorithm when the stepsize is obtained either by the preghoghe application of BRD algorithm to 2D NMR reconstruction
MM line search or by Moré and Thuente’s cubic interpolatiorequires data compression. This preprocessing step ealls f



IEEE TRANSACTIONS ON SIGNAL PROCESSING, 12, DECEMBER, 2010

the tuning of two additional parameters, andrms. Table Il
illustrates the reconstruction quality and algorithmiogperties  °8 ,.~°°°! 08
of BRD method for different values af;. As expected, the og = o o6l .°‘°°°°‘
computation cost decreases with;. However, according to @040 % ‘.,° 0’04 B , ‘,w‘
Fig. 5 below a certain compression valgg™'™, _the recon- . ) = s “ﬁu .,.e” S
struction error fastly grows. We observe thag™ = 3 for %%, % % o | o d0de] 02 %", ¢ 1008

. . 9040, - r-1
dataset A andn*™ = 5 for dataset B. The same behaviorwa o . - L, o- - - §

L . . 0 10° 10 10 107 10 10°  10° 10t 10°

observed when varying.. This shows that the compressior A A

tuning not only depends on spectral properties of matrices

[15], but also on the spectra shape. Therefore, the setﬁngzi ljc?ibn

Dataset A: Similarity error for ME (left) and TIK (right) recon-

these parameters may be problematic when processing feasNR =5,10 and15 dB (i; = 5)

s. Average of Monte Carlo simulations with0 random realizations

data.
Dataset A Dataset B
i 10 10 10 R 5 1 ME TIKT ME TIKT
A K 31 30 20 22 13 12 TABLE Il
T (s) 43 29 4 2 <1 <1 REGULARITY OF RECONSTRUCTED SPECTRA FORIE AND TIK ™+
RECONSTRUCTIONYSNR =10 DB AND m; = 5). A IS THE FIRST ORDER
Q 12.8 | 12.8 | 12.6 | 10.7 | 84.4 | 94.3 DIFFERENCE MATRIX.
B K 19 18 18 20 11 2
T(s)| 50 27 3 <l | <1l]| <1
TABLE Il

RECONSTRUCTION QUALITYQ, ITERATION NUMBER K AND TIME
BEFORE CONVERGENCH FORTIK T-BRD RECONSTRUCTION WITH
DIFFERENT LEVELS OF DATA COMPRESSION

Mo =5 [—e—Dataset A
-¢-Dataset B
Fig. 7. Dataset A: Reconstructed spectra with optimal regttif A for ME
(left) and TIK* (right) regularization (SNR 20 dB andrm; = 5).
e gl LR S §
6 7 8 9 10
m1

Fig. 5. TIKT-BRD reconstruction quality of dataset A and B with differen
level of data compression. In both cases, the compressiamegtermsy is

equal to5 while 7, is varying. (SNR =10 dB) Fig. 8.

Dataset B: Reconstructed spectra with optimalrsgttf \ for ME
(left) and TIK (right) regularization (SNR 20 dB andm; = 5).

In order to compare the ME and TiK regularizations,
we apply the same compression level = my = 5. We 5) Hyperparameter estimationin the previous experi-
have tested different noise realizations with SNR 5,10 ments, the regularization parameteis tuned by minimizing
and 15 dB. According to Fig. 6, the minimum value ofa quadratic error whose evaluation requires the knowledge
Q()\) decreases with the noise level, for both ME and TIK of the reference spectrum. This strategy is impractical in
regularizations, as expected. Moreover, the two strasdgd an experimental context but it can be replaced by different
to similar reconstruction minimum errors for the three moigprocedures proposed in the literature. In NMR reconsioucti
levels. Furthermore, their sensitivity fois similar. However, [4,10,15] and ME optimization [12,44], a frequently used
as illustrated in Fig. 7 and Fig. 8, the entropy penalizaticsirategy is the Chi-square approach.
leads to spectra whose shape is closer to the simulated ondsiven measurement®” and an estimate of the noise stan-
More precisely, the ME spectra are smoother. This regylarifard deviations, statistical considerations state that the error
is evaluated in Table Il which compares the reconstrustion 2 " 9 a9
in terms of the Euclidian norm of the first-order difference X(S) = [|1K1SK; — Y[r/o (32)
[|As]]. follows a Chi-square distribution [45,46]. In the limit of a
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large number of independent measurementsn., the latter —logio Ao | —logipAs || QM) | Q(\s)
tends to a standard normal distribution with expected value ME 4.92 5.05 205 243
mamg and variance&m,ms. _ o TIK+ 6.19 5.91 392 | 467
Thus, a classical method for setting the regularization pa- (@ Dataset A
rameter and avoiding over-smoothed reconstructions 4@%
. ) . ! —1 A —1 A A A
is to find the value of\ allowing to reach Blo @ %10 s || QAQ) | QQrs)
ME 5.32 5.59 13.8 22.9
i = M1ma — /2mima (33) TIK* 5.92 5.92 10.7 10.7
(b) Dataset B
However, when the noise level is high or when the estimation TABLE IV

REGULARIZATION PARAMETER ESTIMATES(A@Q, Ag) OBTAINED
RESPECTIVELY BY MINIMIZING @ AND BY APPLYING THE ALGORITHM
SUMMARIZED IN ALG. 3. (SNR =10 DB AND m; = 5)

of o is too rough, one can hawg(\) > x2, . for all values of
the regularization parameter so that the Chi-square testota
be achieved.

An alternative approach, based on the S-curve [47], cansist
in choosing A such that its reduction does not lead to a
significant decrease iR?(\)

dlogy, X2 )
O0logiyp A

6) Pulse angle effect:in NMR experiments, the pulse
angle ® may not be set exactly to its desired value. This
uncertainty introduces a potential error in the valueyoin
the observation model. Let us first discuss the effect of an
) _inexact value of this parameter on the reconstruction t&sul

Here, we suggest to combine the two latter strategies f8Eyeral reconstructions using an observation modelwith1
the determination of\, as detailed in Alg. 3 and Fig. 9. Wepaye been performed. Fig. 10 shows the optimal value of
emphasize that the minimizations (35) can be performed g regularization parameter and the reconstruction error
very low cost by initializing the TN algorithm of Alg. 1 with Q for different values ofy, for ME and TIK* algorithms.
the solution at previous. Table IV illustrates the efficiency pq expected, an error on the value ofleads to a larger
of the proposed scheme for findirg reconstruction error. Moreover, a larger value Jfhas to
be chosen to compensate the increase of the modelization
error. We can conclude that the pulse angle parameter has an
influence on the reconstruction results whatever the enegloy
inversion algorithm.

<1 (34)

Require: Initial values so = 0, Ao, parameterd €
(0,1) and accuracy;
Ensure: ME resolution with Chi-square tunekl
while (33) and (34) do not holddo
Using Table 1, compute

0.2 6.5
“ ——ME ——ME oo
S = argmin L(S) + A R(S). (35) . 6 ST e,
Computex?(S) using (32). ; g
Ans1 ¢ Ohn
end while

Algorithm 3: Chi-square method for regularization paraenet

estimation 8oz 1 Tos 385 n Tos
v Y
Fig. 10. Dataset A (SNR= 10 dB, v = 1, m; = 5): Sensitivity to a
6 wrong estimation ofy in terms of reconstruction errap (left) and optimal
regularization parametex (right).
— 5 0.2 0.5
o~ ——ME
§ 0.16 k\ 0.4]
3 ) 0.3
N\ E‘TOlZ( §
=2 © 008 02
(e}
o0 1 0.04 01
_q g
0 0.95 1 1.05 (995
¥
_—16 -4 -2 1 0 A 2 4 6 (a) Dataset A (b) Dataset B
(6]
810 Fig. 11. Sensitivity to a wrong estimation 9fin terms of errorQ ., between
the T> marginalized spectra and the referefiée spectrum.
Fig. 9. Dataset A (SNR= 10 dB andm; = 5): Estimation of the

regularization parameter for ME reconstruction. The fatfédnt of the Chi-
square test (33) and the S-curve test (34) are illustratebldgk and white
dots respectively. According to Alg. 3, the result of the Ghuare test is
retained.

7) Pulse angle estimatiorin [47], some data preprocessing
strategies are proposed to handle systematic errorsdingu
pulse angle inaccuracy, in NMR experiments. An alternative
strategy allowing to assess the pulse angle value is prdpose
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here. The basic idea is to use the reconstru@tedpectrum,
obtained fromT; relaxation data, as a reference spectrum.
Since these data are obtained for high valuesrqf the
underlying spectrum is not affected by the valueyofAfter
performing several 2D reconstructions with different e wf

~, we retain the pulse angle value maximizing the similarity
between the marginalized, spectrum and the referendg
spectrum.

Fig. 11 illustrates the relative euclidian distanQe, be-
tween the 1D recoveréfh, spectrum and the marginalizdd
spectra for several values of The best matching is reached
when~ equals its actual value, i.e.= 1.

B. Application to Experimental Data

Measurements have been performed on a plant matter sam-
ple (apple) to test the applicability of the proposed aldponi
on experimental data. In the experiment, = 50 values ofry,
non-uniformly spaced betweed®) ms and 12 s were retained.
In all casesym, = 10000 echoes with a uniform time spacing
of 800 us betweer600 s and8 s were acquired.

The proposed algorithm was applied to reconstruct a spé&: 12. 2D ME spectra (top) from experimental data and 10ribiistions
- . resulting from7% marginalization (bottom), for different values of the mls
trum with Ny = N, = 200 values of 7} andT; relaxation angie parameter in the intervf).9, 1]. The effect of increasing onto peak

times, equally spaced betweeh ms and3 s. positions and amplitudes is indicated by arrows.
1) Reconstruction algorithm tuningThe lowest compu-
tation time was reached when using only one sub-iteration 0.06

of MM line search and computing the preconditioner with
TSVDs at rankv = 7. The proposed strategy in Alg. 3 was
used to set the regularization parameter.

2) Pulse angle parameter settindtig. 12 summarizes the .
reconstruction results for different valuespbetweer).9 and S* 0.05}
1. It can be noted that the positions and the amplitudes of some
peaks are highly affected by the pulse angle value. Thexefor

0.055¢

the reconstruction of a reliable spectrum requires the dise o 0.045¢

an accurate value of this parameter. The same strategy tas tha

proposed in subsection IV-A7 is used to set the pulse angle 0.04 : ‘ :
value. According to Fig. 13, the retained value correspdads 09 0982 094 v 096 0.98 1

d ~ 85° (i.e.,y = 0.92).

3) Comparison of algorithmsFig. 14 shows the recon-Fig. 13. Error between 1D MH} reconstruction and 2D ME marginalized
structed 2D spectrum foy = 0.92. It can be noted that this spgctr,um. The minimum is reached for= 0.92 which corresponds t@® =
spectrum allows to analyze the correlation betw&emand 75 4
relaxation times. This correlation appears, for examplehe

peak located aroundy = 1.4s, 7> = 0.9s]. Such information 50qrithm requires a computation time bf s for 14 iterations
is very useful to obtain th&" /75 ratio which gives insights 514 the final value of\ = 2 . 10-5. The reconstructed 2D

related to the molecular structure of the analyzed sample [£hectrum and the corresponding 1D distributions are shown i
Concerning the reconstruction algorithm performances, tRijgs 16 and 17. Even if the two reconstruction methods led
computation time was9s for 67 iterations and the final value 1, cimilar measurement data fit (98 %), a visual comparison
of A was1.3-107*. _ reveals significant differences between the two spectrpesha
Since there is no ground truth regarding the7> correla- 4 terms of regularity and amplitude.
tion spectrum of the apple, we compare the 1D distributions
(T, andT3) obtained by 1D inversion with the 1D distributions
deduced by marginalization of the reconstructed 2D distrib
tion. It can be noted from Fig. 15 the similarity between the The reconstruction of &;-73 spectrum in NMR requires a
1D spectra which shows the relevance of the 2D spectrumnumerical inversion of a 2D Laplace transform. This is known
We also compare these results with the ones obtained thybe an ill posed inverse problem. In this paper, we presente
the TIK* algorithm of [47]. This algorithm was tuned withan efficient inversion method based on maximum entropy
a compression rankn; = 10 and the same strategy as irregularization and truncated Newton optimization. A seton
[47] was used to determine the regularization parametes. Ttifficulty is related to the large scale of the 2D model. To

V. CONCLUSION
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compression step that needs the tuning of two parameters. In

contrast, our approach remains fast without data compnessi
The processing of real data measurements allowed us to

point out the difficulty of setting the pulse angle parameter

appearing in the observation model. We have shown that an in-

accurate value of this parameter tends to produce a sigmifica

2 25 3 error in peak positions and amplitudes. Up to our knowledge,

this point is only partially addressed in NMR litterature eve
Fig. 14. Reconstructed spectrum from 2D NMR experiments# dath ME ~ data preprocessing strategies are suggested. There®prow

method. 5 posed an original strategy allowing to estimate this patame

\ Although this strategy seems to give satisfying resultsun o

! 10 tests, further investigations and experiments would belede
2l 5 to validate this approach. Another perspective would be to
G'i J build a criterion allowing to reduce the number of peaks in
o o5 1 Ti-é) 225 30 225 3 the reconstructed spectrum or to propose a strategy basad on
parametric 2D reconstruction where the number of peaks will

(a) T spectrum (b)I» spectrum be imposed.

Fig. 15. 1D distributions resulting from marginalizatiori the 2D ME From the methodological point of view, we restricted our

spectrum (solid line) or 1D ME reconstruction (dashed line) analysis to the case of separable convolution kernels. Memve

in some NMR measurement models [7], the separability is no

longer valid. It would be interesting to generalize our aygmh

by considering the case where the observation model can
- be expressed as a linear superposition of several separable
o kernels.

3

25

o APPENDIX

A. Interpretation of BRD algorithm using Legendre-Fenchel

Fig. 16. Reconstructed spectrum from 2D NMR experimentah deith dua|ity
TIK+ method.

1 Let us consider the constrained minimization problem

. _ 1 o2 A2
win { 2(s) = §1Ks I + 317} @0

|

i 15 2 25 The BRD algorithm [10] is based on the equivalence between

To(s . .
) the KKT conditions of problem (36) and the following uncon-
(@) T1 spectrum (b)I> spectrum strained problem
Fig. 17. 1D distributions resulting from marginalizatio the 2D TIK*
spectrum (solid line) or 1D ME reconstruction (dashed line) %ﬁn {X(C) _ %ct (G(c) + )\I) c— cty} (37)
c m

i H i _ t
handle this problem, rather than compressing the dataxmatit! (€ reparametrization = max(0, K'c) and

we rely on an exact data model thanks to an iterative algarith G(c) = K'Diag(H(K'c)) K (38)
exploiting the separability of the convolution kernel. All ’

required quantities such as gradient, Hessian-vectorugtodwhere H denotes a component-wise unit step function that
are computed with reduced memory storage and computatigRes the value zero for negative or zero arguments and one
time. Moreover, since the entropy criterion introduces@iea  for positive arguments. Let us show that this equivalence ca
in the criterion to minimize, an appropriate line searchtsijy also be obtained from the Legendre-Fenchel conjugacy yheor
is used. This procedure is fast and ensures the theoreti@@e [19] for a reminder on Legendre_Fenche| theory)_
convergence of the truncated Newton algorithm. Finallg, th First et us introduce the Legendre-Fenchel conjugte
convergence speed of the algorithm is increased by applyi§@the quadraticf (u) = Hu—y|? ie,

an adequate preconditioner using TSVDs of the convolution

kernels. The applicability of the proposed method has beenf*(u) — sup (vtu _ le B y||2) _ 1||UH2 +ytu. (39)
demonstrated through the processing of simulated and a¢l d v 2 2

and a comparison with the constrained Tikhonov approagh , .
of [15]. Our conclusion is that the two methods produc%‘ccordlng to the conjugacy theorem [19, Prop. 7.1.1],
reconstructions of similar quality. The constrained Tikbe b oot . Ay 2
approach is noticeably faster, at the price of resortingdata L(s) = useu@” (S Ku—f (u)) + 5”8” ’ (40)
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Moreover, according to the minimax theorem [19, Prop. 2,6.2 2) Casea € [o/;a):

(40) implies
min L(s) = max min | s"K'u — f*(u) + éHsH2
5>0 wER™ §>0 2 ’
= max (¢(u) - f*(u)) (41)
where
N t gt Allar2
p(u) = min (s Klu+Zls|” ). (42)

The minimization problem (42) is convex, separable and théth
following expression of the minimizer is easy to derive

s*(u) = % max (0, — K" u) (43)

where max is to be considered component-wise. Moreover,
we have [

plu) = (5" (w) K'ut ) |s* () m
(44)
(3]

(4

the latter expression being a consequencénefx(0, z))?
xmax(0,z) for all z € R. Finally, given (39), (43) and (44),
(41) also reads

. 1 t (5]
rsp}lgl/(s) :lrbré%);(—ﬁ (max (0, -K'u)) K'u

1 (6]
+ 5 lul? + y'u)
Y

= (7]
where the last identity is obtained using the change of bgia
c —u/A. Thus, (36) and (37) are equivalent throughs]
Legendre-Fenchel duality, ane® minimizes x(c¢) in R™ if
and only if s* = max(0, K*c*) minimizesL(s) in R

El

B. Expression of the majorant functiod (-,a’) and of its [10]

minimizer

The majorant functionh’(-,a’) is piecewise defined, [11]

whethera € (a_;a’] or a € [a?; a4 ). In both cases, it takes

the following form [12]

W (@) = (o?) + (o — a?)i(a?) + Zmi(a — af)? "
T . W — ol ,

++7 (& —a])logoijia a4
Qi

(45) 14

[15]
while the expressions of parametars m?, andy? are specific
to each case. The notatidrrefers to the derivative of, also
defined ad(a) = d} VL(si + ady).

1) Casea € (a_;a]:

[16]

&l =a_
m! = di, K'Kdj, + \ iy <0 Pi(?)
v = Ao — o) Zildk,po pi(a?)

(46) [17]

o’ = 04

m! = di K'Kdj, + \ D ildn >0 Pi()
’Yj = May — aj) Zi\dk,i<0 ¢i(aj)

(47)

where¢; () = di ;/(si + ady ;) in both cases.
The minimizer ofh’(-,a’) can be expressed as follows

; . o 2| Az|
o’ + sign(—4 (o’ , (48)
(FHe)) |Aa| + \/A3 — 44, A3
A1 = 7mj
Ay =~7 —(a?) +mI (@ — o). (49)

Az = (& — ozj)é(aj)
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