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Efficient Maximum Entropy Reconstruction of
Nuclear Magnetic Resonance T1-T2 Spectra
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Abstract—This paper deals with the reconstruction of T1-T2
correlation spectra in Nuclear Magnetic Resonance relaxometry.
The ill-posed character and the large size of this inverse problem
are the main difficulties to tackle. While maximum entropy is
retained as an adequate regularization approach, the choice of
an efficient optimization algorithm remains a challenging task.
Our proposal is to apply a truncated Newton algorithm with
two original features. Firstly, a theoretically sound line search
strategy suitable for the entropy function is applied to ensure
the convergence of the algorithm. Secondly, an appropriatepre-
conditioning structure based on a singular value decomposition
of the forward model matrix is used to speed up the algorithm
convergence. Furthermore, we exploit the specific structures of
the observation model and the Hessian of the criterion to reduce
the computation cost of the algorithm. The performances of the
proposed strategy are illustrated by means of synthetic andreal
data processing.

Index Terms—Nuclear magnetic resonance, T1-T2 spectrum,
Laplace inversion, Maximum entropy, truncated Newton, line
search, SVD preconditioning.

I. I NTRODUCTION

NUCLEAR magnetic resonance (NMR) relaxometry is a
measurement technique used to analyze the properties

of matter in order to determine its molecular structure and
dynamics. After the immersion of the matter in a strong
magnetic field, all the nuclear spins align to an equilibrium
state along the field orientation. The application of a short
magnetic pulse in resonance with the spin motion perturbates
the spin orientation with a predefined angleΦ, called flip angle
or pulse angle. The NMR experiment aims at analyzing the
relaxation process which corresponds to the re-establishment
of the spin into its equilibrium state.

This movement is decomposed into longitudinal and trans-
verse dynamics, characterized by relaxation timesT1 and
T2 respectively. In practice, the longitudinal magnetization
after τ1 seconds of relaxation is measured by applying a90◦

impulsion in the transverse plane. The transverse magneti-
zation afterτ1 + τ2 seconds of relaxation is obtained by a
series of dephasing impulsions in the transverse plane ([1,
Chap.4], [2, Chap.4], [3]). Classical NMR experiments are
conducted to analyze the samples independently, either in
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terms of longitudinal or transverse relaxation, leading toone-
dimensional (1D) distributions [4, 5]. On the contrary, joint
measurements with respect to the two relaxation parameters
allow to build two-dimensional (2D)T1-T2 spectra. Such
spectra reveal couplings betweenT1 and T2 relaxations that
are very useful for structure determination [6–8].

The physical model behind NMR relaxometry states that
the measured NMR dataX(τ1, τ2) are related to theT1-T2

spectrumS(T1, T2), according to a 2D Fredholm integral of
the first kind

X(τ1, τ2) =

∫∫

k1(τ1, T1)S(T1, T2)k2(τ2, T2)dT1dT2 (1)

wherek1 and k2 are kernels modeling the longitudinal and
transverse relaxations

k1(τ1, T1) = 1− γe−τ1/T1 ,

k2(τ2, T2) = e−τ2/T2 ,
(2)

with γ = 1 − cosΦ. In practice, an uncertainty in this
observation model can occur if the pulse angleΦ is not set
exactly to its desired value.

The associated inverse problem involving the recovery of
the continuous distributionS(T1, T2) is known to be an ill-
posed problem [9].

Experimental data are collected atm1 ×m2 discrete values
in the τ1-τ2 domain. Thus, the data functionX(τ1, τ2) is
replaced by a data matrixX ∈ R

m1×m2 . Similarly, the
kernelsk1 andk2 are discretized as matricesK1 ∈ R

m1×N1

and K2 ∈ R
m2×N2 . Equation (1) takes a discrete form

X = K1SK
t
2, where the spectrumS is a real-valued matrix

of sizeN1 ×N2. In practice, measurements are modeled by

Y = K1SK
t
2 +E (3)

with E a noise term assumed white Gaussian. 2D NMR
reconstruction amounts to estimatingS given Y subject to
S � 0 (in the senseSij > 0 ∀i, j). Attention must be paid to
the size of the 2D NMR problem. Indeed, when converted to
a standard one-dimensional representation, (3) reads

y = Ks+ e (4)

with y = vect [Y ], s = vect [S], e = vect [E], vect[·]
denoting a column vector obtained by stacking all the elements
of a matrix in lexicographic order and

K = K1 ⊗K2 (5)

is the Kronecker product between matricesK1 andK2. Matrix
K is thus of sizem1m2×N1N2. Typical values arem1 = 50,
m2 = 104, N1×N2 = 200×200, soK is a huge matrix whose
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explicit handling is almost impossible. It is one of the two
main contributions of this paper to make use of the factored
form (3) to solve this issue without any approximation.

Adopting the well-known least-squares approach would lead
to define a spectrum estimate as the minimizer of

C(S) =
1

2
‖Y −K1SK

t
2‖2F , (6)

where‖·‖F denotes the Frobenius norm, under the positivity
constraintS � 0. However,K1 and K2 are rank-deficient
and very badly conditioned matrices [10]. Therefore, such
a solution is numerically unstable and regularized solutions
must be sought instead. Given that the maximum entropy
approach provides acknowledged methods for conventional
(i.e., one-dimensional) NMR [4, 11], this paper exploresT1-T2

spectrum estimation based on maximum entropy regularization
and proposes a specific descent algorithm. According to our
experience, the barrier shape of the entropy function makes
the minimization problem quite specific. In particular, general-
purpose non-linear programming algorithms can be extremely
inefficient in terms of convergence speed. More surprisingly,
the more specific scheme adapted from [12] also turns out
to be very slow to converge. This motivated us to devise an
alternative optimization strategy that is provably convergent
and shows a good trade-off between simplicity and efficiency.
The proposed algorithm belongs to the truncated Newton
algorithm family but possesses original features regarding the
line search and the preconditioning strategy.

The rest of the paper is organized as follows: Section II
gives an overview of different regularization strategies that
can be applied to solve this problem. Section III proposes an
efficient reconstruction method for maximum entropy regular-
ization, based on a truncated Newton algorithm associated with
an original line search strategy well suited to the form of the
criterion. The computation cost of the algorithm is reduced
by working directly with the factored form (6) to calculate
quantities such as gradient and Hessian-vector products. In
section IV, the efficiency of the proposed scheme is illustrated
by means of synthetic and real data examples.

II. PROBLEM STATEMENT AND EXISTING SOLUTIONS

The mathematical methods developed to solve (1) can be
classified into two groups. The first approach is to fit the
decay curves with a minimal number of discrete exponentials
terms. The parametric minimization is usually handled with
the Levenberg-Marquardt algorithm [13]. In this paper, we
rather focus on the second approach which analyzes the data
in terms of a continuous distribution of relaxation components
S(T1, T2). This model gives rise to the linear equation (3).
In this section, we give an overview of different inversion
strategies for this problem.

A. Direct Resolution: TSVD and Tikhonov Methods

NMR reconstruction is a linear ill-posed problem. To
tackle it, truncated singular value decomposition (TSVD) and
Tikhonov penalization (TIK) are commonly used methods [9].
Each of them calls for its own regularization principle to
compensate the ill-conditioned character of the observation
matrix.

1) TSVD: The TSVD approach consists in replacing the in-
verse (or the generalized inverse) ofK by a matrix of reduced
rank, in order to avoid the amplification of noise due to the
inversion of small nonzero singular values [14]. In practice,
computing the TSVD requires the explicit decomposition of
K in terms of singular elements, which can be numerically
burdensome.

2) Tikhonov penalization:While TSVD tackles the ill-
posed character by control of dimensionality, Tikhonov
method follows a penalization approach by which a trade-off
is sought between fidelity-to-data and regularity. It leadsto the
minimization of a mixed objective function

L(S) = C(S) + λR(S) (7)

where the regularization parameterλ > 0 controls the respec-
tive weight of the two terms,C is a least-square term

C(S) =
1

2
‖y −Ks‖2 =

1

2

∥

∥Y −K1SK
t
2

∥

∥

2

F
(8)

and the additional termR is also a quadratic term. In the
context of NMR reconstruction, the regularization functionnal
R is usually chosen as the squaredℓ2-norm of the spectrum
([5, 10, 15, 16])

R(S) =
1

2
‖s‖2 =

1

2
‖S‖2F . (9)

Tikhonov solution is then obtained by solving the linear system
(KtK + λI)s = Kty.

B. Iterative Minimization

Both TSVD and TIK solutions provide results of limited
resolution. Moreover, they tend to exhibit oscillatory excur-
sions, especially in the peripheral regions of the recovered
peaks, which usually violate the positivity of the spectrum
components [17]. Enforcing the positivity of the spectrum is
obviously desirable from the viewpoint of physical interpreta-
tion, but it has also a favorable effect on the resolution of the
estimated spectrum.

1) Tikhonov under positivity constraint (TIK+): The posi-
tivity constraintS � 0 is naturally incorporated into Tikhonov
approach by constraining the minimization ofL to the positive
orthant. However, there is no closed-form expression for
the minimizer anymore, so the solution must be computed
iteratively using a fixed-point algorithm.

Butler-Reeds-Dawson algorithm (BRD) [10] is a rather
simple and efficient technique based on the resolution of
the Karush-Kuhn-Tucker conditions [18]. Although commonly
used in materials science, it is scarcely referenced in the
quadratic programming literature. For the sake of clarification,
Appendix A proposes a very simple interpretation of the
BRD scheme as iteratively minimizing a dual function of the
criterion in the sense of Legendre-Fenchel duality [19].

However, the BRD scheme requires the inversion of a
system of sizem×m at each iteration, wherem is the number
of measurements. In the case of 2D NMR problems,m =
m1m2, and usual values ofm1 andm2 lead to a prohibitive
computation cost. To solve this issue, a data compression step
is proposed in [15], prior to the application of BRD. It relies on
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strongly truncated singular value decompositions ofK1 and
K2, Ki ≈ UiΣiV

t
i , i = 1, 2, with m̃i = rank(Ki) ≪ mi.

The fidelity to data term is then approximated by

C̃(S) =
1

2
‖Ỹ − K̃1SK̃

t
2‖2F (10)

whereK̃1 = Σ1V
t
1 , K̃2 = Σ2V

t
2 and Ỹ = U t

1Y U2 are of
sizem̃1 ×N1, m̃2 ×N2 andm̃1 × m̃2, respectively.

2) Maximum entropy:A different regularization approach
will be considered here, based on Shannon entropy penaliza-
tion φ(s) = −s log s. Maximum entropy (ME) [12, 20] is an
acknowledged approach in the context of 1D NMR relaxome-
try [4, 11]. An interesting feature of entropy penalizationis
that it implicitly handles the positivity constraint sincethe
norm of the gradient of the entropy term is unbounded at
the boundary of the positive orthant. Thus, the minimizer
of the resulting penalized least-square criterion cancelsits
gradient, and computing it is essentially similar to solving an
unconstrained optimization problem.

Formally, the extension to the 2D case is easily obtained by
minimization of

L(S) =
1

2
‖Y −K1SK

t
2‖2F + λ

N1
∑

i=1

N2
∑

j=1

Sij logSij . (11)

However, the practical computation of the solution is clearly
more difficult in the 2D case because the optimization problem
is much larger-scale. The choice of a specific minimization
scheme suited to maximum entropy 2D NMR reconstruction
is a challenging task.

In the context of maximum entropy, [21] proposed the
fixed-point multiplicative algebraic reconstruction technique
(MART) that maximizes the entropy term subject toKs = y.
The simplicity of MART is attractive. However, as emphasized
in [22], the presence of inherent noise in projection data makes
this method less effective than an approach based on the min-
imization of the penalized criterion (11). In [12], an iterative
minimization algorithm based on a quadratic approximation
of the criterion over a low-dimension subspace is developped.
However, according to [23, p. 1022], the convergence of this
algorithm is not established. We have tested its behavior in
the 2D NMR context. Our conclusions are that this algorithm
does not ensure a monotonic decrease of the criterion, and that
its convergence is very slow [24]. Finally, in a preliminary
version of the present work, we have proposed to make use of
a preconditioned nonlinear conjugate gradient algorithm [25].
Although the latter shows a good practical behavior, its theo-
retical convergence is not ensured, since the preconditioner is
a variable matrix.

The goal of the next section is to derive an optimization
algorithm that would benefit from stronger theoretical proper-
ties and sufficiently low computational cost to avoid any data
compression step.

III. PROPOSED TRUNCATEDNEWTON ALGORITHM

A. Minimization Strategy

The truncated Newton (TN) algorithm [26, 27] is based on
iteratively decreasing the objective functionL(s) by moving

the current solutionsk along a descent directiondk

sk+1 = sk + αkdk, (12)

whereαk > 0 is the stepsize anddk is a search direction
computed by solving approximately the Newton equations

Hkdk = −gk (13)

with Hk , ∇2L(sk) and gk , ∇L(sk). The TN algorithm
has been widely used in the context of interior point algorithms
with logarithmic [28, 29] and entropic [22] barrier functions.

In practice, the TN method consists in alternating the
construction ofdk and the computation of the stepsizeαk

by a line search procedure. The directiondk results from
preconditioned conjugate gradient (PCG) iterations on (13)
stopped before convergence. The stepsizeαk is obtained by
iteratively minimizing the scalar functionℓ(α) = L(sk+αdk)
until some convergence conditions are met [18, Chap.3].
Typically, the strong Wolfe conditions are considered

ℓ(αk) 6 ℓ(0) + c1αk ℓ̇(0) (14)

|ℓ̇(αk)| 6 c2|ℓ̇(0)| (15)

where (c1, c2) ∈ (0, 1) are tuning parameters that do not
depend onk. There exist several procedures to find an ac-
ceptable stepsize: exact minimization ofℓ(.), backtracking,
approximation ofℓ(.) using cubic interpolations [18, 30] or
quadratic majorizations [31, 32]. However, the entropic penalty
term implies that the derivative ofℓ(α) takes the value−∞ as
soon as any of the components of the vectorsk+αdk vanishes,
hence whenα is equal to one of the two limit values

α− = max
i, dk,i>0

(−si
dk,i

)

, α+ = min
i, dk,i<0

(−si
dk,i

)

. (16)

The functionℓ is undefined outside(α−, α+), therefore, we
must ensure that during the line search, the stepsize values
remain in the interval(α−, α+). Moreover, because of the
vertical asymptotes atα− and α+, standard methods using
cubic interpolations or quadratic majorizations are not well
suited. Our proposal is to adopt the specific majorization-
based line search proposed in [33, 34] for barrier function
optimization. Using an adequate form of majorization, we
now derive an analytical stepsize formula preserving strong
convergence properties.

B. Line Search Strategy

The minimization of ℓ(·) using the Majorization-
Minimization (MM) principle [35] is performed by successive
minimizations of majorant functions forℓ(.). Function
h(α, α′) is said to be majorant forℓ(α) at α′ if for all α,

{

h(α, α′) > ℓ(α)

h(α′, α′) = ℓ(α′)
(17)

As illustrated in Fig.1, the initial minimization ofℓ(α) is then
replaced by a sequence of easier subproblems, corresponding
to the MM update rule











α0
k = 0,

αj
k = argminα hj(α, αj−1

k ), j = 1, . . . , Jk,

αk = αJk

k .

(18)
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Following [34], we propose a majorant functionhj(., αj
k)

that incorporates barriers to account for the entropy term.
It is piecewise defined under the following form (whenever
unambiguous, the iteration indexk will be dropped for the
sake of simplicity)

hj(α, αj) =



















p−0 + p−1 α+ p−2 α
2 − p−3 log (α− α−)

for all α ∈ (α−;α
j ]

p+0 + p+1 α+ p+2 α
2 − p+3 log (α+ − α)

for all α ∈ [αj ;α+)

(19)

The parametersp±n , n = 0, . . . , 3 must be defined to ensure
thathj(., αj) is actually a majorant ofℓ(·) atαj (see Fig. 1(a)
for an illustration). A direct application of [34, Prop. 2] allows
to establish expressions for these parameters. The resulting
form of hj(., αj) is rather simple, though lengthy to express,
so it is reported in Appendix B. According to [34, Lemma 2], it
corresponds to a strictly convex, twice differentiable function
in the set(α−, α+). Moreover, its unique minimizer takes an
explicit form, the latter being also found in Appendix B.

Finally, (18) produces monotonically decreasing values
{ℓ(αj)} and the series{αj} converges to a stationary point
of ℓ(α) [36].

α
−

α+αj

α > αjα < αj

αj+1

(a) Caseα− andα+ finite

α+αj

α < αj α > αj

αj+1

(b) Caseα− = −∞ andα+ finite

Fig. 1. Schematic principle of the MM line search procedure.The tangent
majorant functionhj(α, αj) (dashed line) forℓ(α) (solid line) at αj is
piecewise defined on the sets(α−, αj ] and [αj , α+). The new iterateαj+1

is taken as the minimizer ofhj(., αj). Two cases are illustrated. The third
and last case whereα− is finite andα+ = +∞ is the mirror image of
case (b).

C. Convergence Result

Let us focus on the convergence of the truncated Newton
algorithm whenαk is chosen according to the proposed

MM strategy. A detailed analysis can be found in [34] in a
more general framework. According to [34], the proposed line
search procedure ensures that

∑

k

(gt
kdk)

2

‖dk‖2
< ∞ (20)

and that the directions generated by the TN algorithm are
gradient related in the sense of [37]. According to [38],
inequality (20), known asZoutendijk condition, is sufficient
to prove the convergence of the algorithm in the sense
limk→∞ ‖gk‖ = 0. Finally, the objective function being
strictly convex, the proposed algorithm converges to its unique
minimizer.

D. Preconditioning

As emphasized in [39], the Hessian of the Shannon entropy
regularization term is very ill-conditioned for points that are
close to the boundary of the positive orthant since some of
its eigenvalues tend to infinity. Furthermore, the exponential
decays in kernelsk1 and k2 imply that K1 and K2 are
also very ill-conditioned. Preconditioning is a well-known
technique to obtain more clustered eigenvalues of the Hessian
of the criterion and to accelerate the convergence of descent
algorithms. The principle is to transform the space of original
variables into a space in which the Hessian has more clustered
eigenvalues by using a preconditioning matrixPk that approx-
imates the inverseH−1

k of the Hessian. A good preconditioner
achieves a trade-off between the approximation quality andthe
computation cost. General-purpose preconditioning strategies
have been proposed in the literature including symmetric
successive overrelaxation and incomplete LU or Cholesky
factorizations ([40, Chap.10], [41]). In the context of ME
optimization, [22] takesPk as a diagonal matrix defined using
the Hessian diagonal elements

Pk =
[

diag
(

diag(KtK)
)

+ λdiag(sk)
−1

]−1
(21)

We rather propose a more specific preconditioner. It is based
on the fact that, as a consequence of (5), the singular value
decomposition ofK is given byK = UΣV t, with U =
U1 ⊗U2, V = V1 ⊗ V2, Σ = Σ1 ⊗Σ2, UiΣiV

t
i being the

singular value decomposition ofKi, i = 1, 2. Then, let us
define

Pk =
[

Ṽ Σ̃
2Ṽ t + λdiag(sk)

−1

]−1

(22)

where Ṽ and Σ̃ correspond to truncated versions ofV and
Σ. In the non-truncated case,̃V = V and Σ̃ = Σ, andPk

then is equal to the Hessian ofL at sk. It remains to define
the way we truncate the singular value decomposition ofK.
Akin to [15, 42], we separately truncate the decompositionsof
K1 andK2 at ranksv1, v2 and we definẽV andΣ̃ according
to

Ṽ = Ṽ1 ⊗ Ṽ2, (23)

Σ̃ = Σ̃1 ⊗ Σ̃2. (24)

Let us remark that the resulting approximation ofK may
slightly differ from the TSVD ofK. The reason is simple:
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although Σ̃1 and Σ̃2 separately gather the largest singular
values ofΣ1 andΣ2, Σ̃ does not necessarily gather the largest
singular values ofΣ. As a consequence, our approximation
may be suboptimal compared to the TSVD, the latter being
optimal in the least-square sense [43], but the fact that we
maintain factored expressions for matricesṼ andΣ̃ is essen-
tial in terms of computation cost.

E. Memory Storage and Computation Cost Reduction

The computation cost can be reduced by exploiting the
factored form of the observation model. Three main operations
are involved in the iterative optimization algorithm: the com-
putation of the gradient vectorgk = ∇L(sk), and the products
of Pk andHk with a vector. The three resulting quantities can
be calculated using low cost operations, as described below.

1) Gradient: The gradient of the criterion can be computed
without explicitly handling matrixK, according to

gk = −vect
[

Kt
1(Y −K1SkK

t
2)K2

]

+λ(1+ log sk). (25)

2) Hessian: In the same manner, products between the
Hessian matrix and any vectorw = vect [W ] can be computed
as follows

Hkw = vect
[

Kt
1K1WKt

2K2

]

+ λ(w./sk), (26)

where./ denotes componentwise division.
3) Preconditioner:In order to compute products involving

Pk, the matrix inversion lemma is applied to (22). Thus,

Pk = Ak −AkṼ (Σ̃−2 + Ṽ tAkṼ )−1Ṽ tAk, (27)

with Ak = λ−1diag(sk). Moreover, the following factored
expression can be deduced from (23) for the entries of matrix
M = Ṽ tAkṼ ∈ R

v1v2×v1v2

Mij =
1

λ

N1
∑

m=1

N2
∑

n=1

(Sk)mn (Ṽ1)ma (Ṽ2)nb (Ṽ1)mc (Ṽ2)nd,

where (a, b) and (c, d) are row and column subscripts that
correspond to the linear indexesi and j, respectively. Thus,
the productPkw can be efficiently computed according to

Pkw = bk −AkṼ (Σ̃−2 +M)−1Ṽ tbk,

= bk −Akvect
[

Ṽ1QkṼ
t
2

]

(28)

wherebk = Akw, qk = (Σ̃−2 +M)−1 vect
[

Ṽ t
1 BkṼ2

]

and
Qk, Bk denote the equivalent square matrix representations
of qk andbk respectively.

F. Resulting algorithm

The resulting TN algorithm is given in Alg. 1. The algo-
rithm convergence is checked using the following stopping
rule ([18])

‖gk‖∞ < ǫ(1 + |L(sk)|), (29)

and the PCG iterations in Alg. 2 are stopped when ([27])

‖gk +Hkdk‖ 6 η‖∇L(sk)‖. (30)

Typical values of(ǫ, η) are(10−8, 10−4).

Require: Initial value s0 � 0, parametersv1, v2, λ,
J and accuraciesǫ, η.

Ensure: Resolution of (11)
Compute the TSVD ofK1 andK2 at ranksv1, v2.
while (29) does not holddo

Computegk,Pk and Hk using (25), (26) and
(27).
Computedk using PCG algorithm (Table 2).
Setαk after J iterations of (18).
Updatesk according to (12).

end while

Algorithm 1: TN algorithm for ME optimization

Require: gk,Hk,Pk, η
Ensure: Approximate solutiondk of (13)

u0 ← 0

r0 ← −gk −Hku0

p0 ← Pkr0

while (30) does not holddo
θi ← (rt

iPkri)/(p
t
iHkpi)

ui+1 ← ui + θipi

ri+1 ← ri − θiHkpi

βi ← (rt
i+1Pkri+1)/(r

t
iPkri)

pi+1 ← Pkri+1 + βipi

dk ← ui+1

end while

Algorithm 2: PCG algorithm

IV. EXPERIMENTAL RESULTS

This section discusses the performances of the proposed
method and illustrates its applicability. First, we consider
synthetic data in order to discuss the influence of the tuning
parameters on the algorithm behaviour. Then, the proposed
method applicability is illustrated through the processing of
real NMR data.

In NMR experiments, the pulse angleΦ may not be set
exactly to its desired value. Therefore, we analyze the effect
of a potential error in the value ofγ in the observation model
and propose an original strategy allowing to estimated this
parameter.

The different results are obtained with Matlab7.5 running
on an Intel Pentium 4 3.2 GHz, 3 GB RAM.

A. Synthetic Data

We consider two spectra A and B (Fig. 2) and the corre-
sponding decays (Fig. 3) according to the observation model
(4) with a signal to noise ratio (SNR) of10 dB, m1 = 100,
m2 = 1000 and γ = 1 (i.e, Φ = 90◦). The synthetic
spectrum A has a symmetric Gaussian shape located at
[T1, T2] = [0.5 s, 1 s] while spectrum B is the sum of two
Gaussian patterns. The first one is symmetric and located at
[T1, T2] = [0.5 s, 0.5 s]. The second pattern is located at
[T1, T2] = [1.5 s, 1.5 s] and simulates a positiveT1-T2 corre-
lation. The reconstruction is performed forN1 = N2 = 100
and the algorithm is initialized with a uniform positive 2D
spectrum. The regularization parameterλ is set to minimize
the normalized quadratic error

Q = 100 ‖s(λ)− so‖22/‖so‖22, (31)
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and the preconditioner truncation parametersv1, v2 are set to
the same valuev.
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Fig. 2. Simulated 2D spectra
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Fig. 3. NMR decays

1) PCG subiterations:The parameterη controls the accu-
racy of the PCG minimization. The smaller it is, the more
accurate the solving of (13). Here, several values are tested
within the range[10−7, 10−1]. Let Ik denotes the number of
PCG subiterations (inner loop) at iterationk. As expected,
the average value ofIk generally increases withη (Fig. 4(a))
while the number of TN iterationsK (outer loop) decreases
(Fig. 4(b)). The number of PCG subiterations depends also
on the truncation rankv of the SVD preconditioner, it can be
noted thatIk decreases as this rank increases, corresponding to
a more accurate approximation of the inverse Hessian matrix.
The smallest overall minimization time is achieved when a
tradeoff is reached between the number of outer iterations and
the number of inner iterations (Fig. 4(c)). In this example,the
best compromise is(v, η) = (4, 10−4). This setting will be
retained in the sequel.

2) Preconditioning:Fig. 4(d) illustrates the criterion evolu-
tion for different preconditioners: the proposed approximation
Pk(v) given by (22) withv1 = v2 = v = 0, 1, 4 and the
diagonal preconditionerP d

k resulting from (21). The stopping
criterion (29) is fulfilled after93 and80 iterations forPk(1)
and Pk(4) whereas it is not fulfilled after1000 iterations
neither forPk(0) nor forP d

k . Moreover, according to Fig. 4(a),
the TN iteration number decreases as the SVD truncation rank
v increases. However, the choice ofv involves a compromise
between an acceleration of the algorithm and an increase of
the computational cost (Fig. 4(b-c)).

3) Line search: Let us compare the performances of the
algorithm when the stepsize is obtained either by the proposed
MM line search or by Moré and Thuente’s cubic interpolation
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Fig. 4. Dataset A: Analysis of the TN algorithm performancesfor different
PCG strategies. The SVD preconditioner with truncature parameterv was used
for (a)-(c) while the truncature parameterη is set to10−4 for (d). Moreover,
in all cases, the stepsize results fromJ = 1 subiteration of MM line search.

procedure (MT) [30]. The latter performs an iterative mini-
mization ofℓ(.) based on cubic interpolation until identifying
αk that fulfills the strong Wolfe conditions (14) and (15).

M
T

c1 c2 K T (s)
10−1 0.5 93 19.84
10−1 0.9 90 15.64
10−1 0.99 170 25.72
10−3 0.5 93 16.98
10−3 0.9 90 15.36
10−3 0.99 170 25.14

M
M

J K T (s)
1 79 13.56
2 85 15.09
3 84 15.06
4 84 15.11
5 85 15.31

TABLE I
DATASET A: COMPARISON BETWEENMM AND MT LINE SEARCH

STRATEGIES IN TERMS OF ITERATION NUMBER AND TIME BEFORE
CONVERGENCE FOR THETN ALGORITHM .

According to Table I, the TN algorithm with the MM line
search performs better than with the MT line search with
the best settings forc1 and c2. Concerning the choice of the
sub-iteration number, it appears thatJ = 1 leads to the best
results in terms of computation time which shows that an exact
minimization of the scalar functionℓ(α) during line search is
not necessary.

4) Regularization term:As explained in the introduction,
the application of BRD algorithm to 2D NMR reconstruction
requires data compression. This preprocessing step calls for
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the tuning of two additional parameters,m̃1 andm̃2. Table II
illustrates the reconstruction quality and algorithmic properties
of BRD method for different values of̃mi. As expected, the
computation cost decreases with̃mi. However, according to
Fig. 5, below a certain compression valuem̃min

1 , the recon-
struction error fastly grows. We observe thatm̃min

1 = 3 for
dataset A and̃mmin

1 = 5 for dataset B. The same behavior was
observed when varying̃m2. This shows that the compression
tuning not only depends on spectral properties of matricesKi

[15], but also on the spectra shape. Therefore, the setting of
these parameters may be problematic when processing real
data.

m̃1 10 10 10 5 2 1
m̃2 100 50 10 5 5 1

Q 4.53 4.66 4.79 3.92 81.6 97.9
A K 31 30 20 22 13 12

T (s) 43 29 4 2 < 1 < 1

Q 12.8 12.8 12.6 10.7 84.4 94.3
B K 19 18 18 20 11 2

T (s) 50 27 3 < 1 < 1 < 1

TABLE II
RECONSTRUCTION QUALITYQ, ITERATION NUMBER K AND TIME

BEFORE CONVERGENCET FOR TIK+-BRD RECONSTRUCTION WITH

DIFFERENT LEVELS OF DATA COMPRESSION.

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

m̃1

Q

 

 

Dataset A
Dataset B

m̃2 = 5

Fig. 5. TIK+-BRD reconstruction quality of dataset A and B with different
level of data compression. In both cases, the compression parameterm̃2 is
equal to5 while m̃1 is varying. (SNR =10 dB)

In order to compare the ME and TIK+ regularizations,
we apply the same compression levelm̃1 = m̃2 = 5. We
have tested different noise realizations with SNR= 5, 10
and 15 dB. According to Fig. 6, the minimum value of
Q(λ) decreases with the noise level, for both ME and TIK+

regularizations, as expected. Moreover, the two strategies lead
to similar reconstruction minimum errors for the three noise
levels. Furthermore, their sensitivity toλ is similar. However,
as illustrated in Fig. 7 and Fig. 8, the entropy penalization
leads to spectra whose shape is closer to the simulated one.
More precisely, the ME spectra are smoother. This regularity
is evaluated in Table III which compares the reconstructions
in terms of the Euclidian norm of the first-order difference
‖∆s‖.

10
−6

10
−5

10
−4

10
−3

10
−2

0

0.2

0.4

0.6

0.8

1

λ

Q

 

 

5 dB
10 dB
15 dB

10
−7

10
−6

10
−5

10
−4

10
−3

0

0.2

0.4

0.6

0.8

1

λ

Q

 

 

5 dB
10 dB
15 dB

Fig. 6. Dataset A: Similarity error for ME (left) and TIK+ (right) recon-
structions. Average of Monte Carlo simulations with100 random realizations
for SNR = 5, 10 and15 dB (m̃i = 5)

Dataset A Dataset B
ME TIK+ ME TIK+

‖∆s‖ 51.9 57.8 23.6 26.1

‖∆s‖/‖s‖ 0.5484 0.5891 0.5256 0.5324

TABLE III
REGULARITY OF RECONSTRUCTED SPECTRA FORME AND TIK+

RECONSTRUCTIONS(SNR =10 DB AND m̃i = 5). ∆ IS THE FIRST ORDER

DIFFERENCE MATRIX.
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Fig. 7. Dataset A: Reconstructed spectra with optimal setting of λ for ME
(left) and TIK+ (right) regularization (SNR =10 dB andm̃i = 5).
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Fig. 8. Dataset B: Reconstructed spectra with optimal setting of λ for ME
(left) and TIK (right) regularization (SNR =10 dB andm̃i = 5).

5) Hyperparameter estimation:In the previous experi-
ments, the regularization parameterλ is tuned by minimizing
a quadratic error whose evaluation requires the knowledge
of the reference spectrum. This strategy is impractical in
an experimental context but it can be replaced by different
procedures proposed in the literature. In NMR reconstruction
[4, 10, 15] and ME optimization [12, 44], a frequently used
strategy is the Chi-square approach.

Given measurementsY and an estimate of the noise stan-
dard deviation̂σ, statistical considerations state that the error

χ2(S) = ‖K1SK
t
2 − Y ‖2F /σ̂2 (32)

follows a Chi-square distribution [45, 46]. In the limit of a
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large number of independent measurementsm1m2, the latter
tends to a standard normal distribution with expected value
m1m2 and variance2m1m2.

Thus, a classical method for setting the regularization pa-
rameter and avoiding over-smoothed reconstructions ([44,46])
is to find the value ofλ allowing to reach

χ2
aim = m1m2 −

√
2m1m2 (33)

However, when the noise level is high or when the estimation
of σ is too rough, one can haveχ2(λ) > χ2

aim for all values of
the regularization parameter so that the Chi-square test cannot
be achieved.

An alternative approach, based on the S-curve [47], consists
in choosingλ such that its reduction does not lead to a
significant decrease inχ2(λ)

∂ log10 χ
2(λ)

∂ log10 λ
≪ 1. (34)

Here, we suggest to combine the two latter strategies for
the determination ofλ, as detailed in Alg. 3 and Fig. 9. We
emphasize that the minimizations (35) can be performed at
very low cost by initializing the TN algorithm of Alg. 1 with
the solution at previousλ. Table IV illustrates the efficiency
of the proposed scheme for findingλ.

Require: Initial values s0 � 0, λ0, parameterθ ∈
(0, 1) and accuracyη

Ensure: ME resolution with Chi-square tunedλ
while (33) and (34) do not holddo

Using Table 1, compute

Ŝ = argminL(S) + λnR(S). (35)

Computeχ2(Ŝ) using (32).
λn+1 ← θλn

end while

Algorithm 3: Chi-square method for regularization parameter
estimation

−6 −4 −2 0 2 4 6
−1

0

1

2

3

4

5

6

log10 λ

lo
g
1
0
(χ

2
/m

1
m

2
)

Fig. 9. Dataset A (SNR= 10 dB and m̃i = 5): Estimation of the
regularization parameter for ME reconstruction. The fulfillment of the Chi-
square test (33) and the S-curve test (34) are illustrated byblack and white
dots respectively. According to Alg. 3, the result of the Chi-square test is
retained.

− log10 λQ − log10 λS Q(λQ) Q(λS)

ME 4.92 5.05 2.05 2.43

TIK+ 6.19 5.91 3.92 4.67
(a) Dataset A

− log10 λQ − log10 λS Q(λQ) Q(λS)

ME 5.32 5.59 13.8 22.9

TIK+ 5.92 5.92 10.7 10.7
(b) Dataset B

TABLE IV
REGULARIZATION PARAMETER ESTIMATES(λQ, λS) OBTAINED

RESPECTIVELY BY MINIMIZING Q AND BY APPLYING THE ALGORITHM
SUMMARIZED IN ALG. 3. (SNR =10 DB AND m̃i = 5)

6) Pulse angle effect:In NMR experiments, the pulse
angle Φ may not be set exactly to its desired value. This
uncertainty introduces a potential error in the value ofγ in
the observation model. Let us first discuss the effect of an
inexact value of this parameter on the reconstruction results.
Several reconstructions using an observation model withγ 6= 1
have been performed. Fig. 10 shows the optimal value of
the regularization parameterλ and the reconstruction error
Q for different values ofγ, for ME and TIK+ algorithms.
As expected, an error on the value ofγ leads to a larger
reconstruction error. Moreover, a larger value ofλ has to
be chosen to compensate the increase of the modelization
error. We can conclude that the pulse angle parameter has an
influence on the reconstruction results whatever the employed
inversion algorithm.
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Fig. 10. Dataset A (SNR= 10 dB, γ = 1, m̃i = 5): Sensitivity to a
wrong estimation ofγ in terms of reconstruction errorQ (left) and optimal
regularization parameterλ (right).

0.95 1 1.05
0

0.04

0.08

0.12

0.16

0.2

γ

Q
T
2

 

 

ME

TIK+

0.95 1 1.05
0

0.1

0.2

0.3

0.4

0.5

γ

Q
T
2

 

 

ME

TIK+

(a) Dataset A (b) Dataset B

Fig. 11. Sensitivity to a wrong estimation ofγ in terms of errorQT2
between

the T2 marginalized spectra and the referenceT2 spectrum.

7) Pulse angle estimation:In [47], some data preprocessing
strategies are proposed to handle systematic errors, including
pulse angle inaccuracy, in NMR experiments. An alternative
strategy allowing to assess the pulse angle value is proposed
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here. The basic idea is to use the reconstructedT2 spectrum,
obtained fromT2 relaxation data, as a reference spectrum.
Since these data are obtained for high values ofτ1, the
underlying spectrum is not affected by the value ofγ. After
performing several 2D reconstructions with different values of
γ, we retain the pulse angle value maximizing the similarity
between the marginalizedT2 spectrum and the referenceT2

spectrum.
Fig. 11 illustrates the relative euclidian distanceQT2

be-
tween the 1D recoveredT2 spectrum and the marginalizedT2

spectra for several values ofγ. The best matching is reached
whenγ equals its actual value, i.e.γ = 1.

B. Application to Experimental Data

Measurements have been performed on a plant matter sam-
ple (apple) to test the applicability of the proposed algorithm
on experimental data. In the experiment,m1 = 50 values ofτ1,
non-uniformly spaced between30ms and12 s were retained.
In all cases,m2 = 10000 echoes with a uniform time spacing
of 800µs between600µs and8 s were acquired.

The proposed algorithm was applied to reconstruct a spec-
trum with N1 = N2 = 200 values ofT1 and T2 relaxation
times, equally spaced between25 ms and3 s.

1) Reconstruction algorithm tuning:The lowest compu-
tation time was reached when using only one sub-iteration
of MM line search and computing the preconditioner with
TSVDs at rankv = 7. The proposed strategy in Alg. 3 was
used to set the regularization parameter.

2) Pulse angle parameter setting:Fig. 12 summarizes the
reconstruction results for different values ofγ between0.9 and
1. It can be noted that the positions and the amplitudes of some
peaks are highly affected by the pulse angle value. Therefore,
the reconstruction of a reliable spectrum requires the use of
an accurate value of this parameter. The same strategy as that
proposed in subsection IV-A7 is used to set the pulse angle
value. According to Fig. 13, the retained value correspondsto
Φ ≈ 85◦ (i.e., γ = 0.92).

3) Comparison of algorithms:Fig. 14 shows the recon-
structed 2D spectrum forγ = 0.92. It can be noted that this
spectrum allows to analyze the correlation betweenT1 andT2

relaxation times. This correlation appears, for example, in the
peak located around[T1 = 1.4 s, T2 = 0.9 s]. Such information
is very useful to obtain theT1/T2 ratio which gives insights
related to the molecular structure of the analyzed sample [7].
Concerning the reconstruction algorithm performances, the
computation time was59 s for 67 iterations and the final value
of λ was1.3 · 10−4.

Since there is no ground truth regarding theT1-T2 correla-
tion spectrum of the apple, we compare the 1D distributions
(T1 andT2) obtained by 1D inversion with the 1D distributions
deduced by marginalization of the reconstructed 2D distribu-
tion. It can be noted from Fig. 15 the similarity between the
1D spectra which shows the relevance of the 2D spectrum.

We also compare these results with the ones obtained by
the TIK+ algorithm of [47]. This algorithm was tuned with
a compression rank̃mi = 10 and the same strategy as in
[47] was used to determine the regularization parameter. The
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Fig. 12. 2D ME spectra (top) from experimental data and 1D distributions
resulting fromT2 marginalization (bottom), for different values of the pulse
angle parameter in the interval[0.9, 1]. The effect of increasingγ onto peak
positions and amplitudes is indicated by arrows.

0.9 0.92 0.94 0.96 0.98 1
0.04

0.045

0.05

0.055

0.06

γ

Q
T
2

Fig. 13. Error between 1D MET2 reconstruction and 2D ME marginalized
spectrum. The minimum is reached forγ = 0.92 which corresponds toΦ =
85◦24′.

algorithm requires a computation time of11 s for 14 iterations
and the final value ofλ = 2 · 10−5. The reconstructed 2D
spectrum and the corresponding 1D distributions are shown in
Figs. 16 and 17. Even if the two reconstruction methods led
to similar measurement data fit (98 %), a visual comparison
reveals significant differences between the two spectra shapes
in terms of regularity and amplitude.

V. CONCLUSION

The reconstruction of aT1-T2 spectrum in NMR requires a
numerical inversion of a 2D Laplace transform. This is known
to be an ill posed inverse problem. In this paper, we presented
an efficient inversion method based on maximum entropy
regularization and truncated Newton optimization. A second
difficulty is related to the large scale of the 2D model. To
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Fig. 14. Reconstructed spectrum from 2D NMR experimental data with ME
method.
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Fig. 15. 1D distributions resulting from marginalization of the 2D ME
spectrum (solid line) or 1D ME reconstruction (dashed line).
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Fig. 16. Reconstructed spectrum from 2D NMR experimental data with
TIK+ method.
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Fig. 17. 1D distributions resulting from marginalization of the 2D TIK+

spectrum (solid line) or 1D ME reconstruction (dashed line).

handle this problem, rather than compressing the data matrix,
we rely on an exact data model thanks to an iterative algorithm
exploiting the separability of the convolution kernel. All
required quantities such as gradient, Hessian-vector product
are computed with reduced memory storage and computation
time. Moreover, since the entropy criterion introduces a barrier
in the criterion to minimize, an appropriate line search strategy
is used. This procedure is fast and ensures the theoretical
convergence of the truncated Newton algorithm. Finally, the
convergence speed of the algorithm is increased by applying
an adequate preconditioner using TSVDs of the convolution
kernels. The applicability of the proposed method has been
demonstrated through the processing of simulated and real data
and a comparison with the constrained Tikhonov approach
of [15]. Our conclusion is that the two methods produce
reconstructions of similar quality. The constrained Tikhonov
approach is noticeably faster, at the price of resorting to adata

compression step that needs the tuning of two parameters. In
contrast, our approach remains fast without data compression.

The processing of real data measurements allowed us to
point out the difficulty of setting the pulse angle parameter
appearing in the observation model. We have shown that an in-
accurate value of this parameter tends to produce a significant
error in peak positions and amplitudes. Up to our knowledge,
this point is only partially addressed in NMR litterature where
data preprocessing strategies are suggested. Therefore, we pro-
posed an original strategy allowing to estimate this parameter.
Although this strategy seems to give satisfying results in our
tests, further investigations and experiments would be needed
to validate this approach. Another perspective would be to
build a criterion allowing to reduce the number of peaks in
the reconstructed spectrum or to propose a strategy based ona
parametric 2D reconstruction where the number of peaks will
be imposed.

From the methodological point of view, we restricted our
analysis to the case of separable convolution kernels. However,
in some NMR measurement models [7], the separability is no
longer valid. It would be interesting to generalize our approach
by considering the case where the observation model can
be expressed as a linear superposition of several separable
kernels.

APPENDIX

A. Interpretation of BRD algorithm using Legendre-Fenchel
duality

Let us consider the constrained minimization problem

min
s>0

{

L(s) =
1

2
‖Ks− y‖2 + λ

2
‖s‖2

}

. (36)

The BRD algorithm [10] is based on the equivalence between
the KKT conditions of problem (36) and the following uncon-
strained problem

min
c∈Rm

{

χ(c) =
1

2
ct (G(c) + λI) c− cty

}

(37)

with the reparametrizations = max(0,Ktc) and

G(c) = KtDiag(H(Ktc))K, (38)

whereH denotes a component-wise unit step function that
takes the value zero for negative or zero arguments and one
for positive arguments. Let us show that this equivalence can
also be obtained from the Legendre-Fenchel conjugacy theory
(see [19] for a reminder on Legendre-Fenchel theory).

First, let us introduce the Legendre-Fenchel conjugatef∗

of the quadraticf(u) = 1

2
‖u− y‖2, i.e.,

f∗(u) = sup
v

(

vtu− 1

2
‖v − y‖2

)

=
1

2
‖u‖2 + ytu. (39)

According to the conjugacy theorem [19, Prop. 7.1.1],

L(s) = sup
u∈Rm

(

stKtu− f∗(u)
)

+
λ

2
‖s‖2. (40)



IEEE TRANSACTIONS ON SIGNAL PROCESSING, 12, DECEMBER, 2010 11

Moreover, according to the minimax theorem [19, Prop. 2.6.2],
(40) implies

min
s>0

L(s) = max
u∈Rm

min
s>0

(

stKtu− f∗(u) +
λ

2
‖s‖2

)

,

= max
u∈Rm

(ϕ(u)− f∗(u)) (41)

where

ϕ(u) = min
s>0

(

stKtu+
λ

2
‖s‖2

)

. (42)

The minimization problem (42) is convex, separable and the
following expression of the minimizer is easy to derive

s∗(u) =
1

λ
max

(

0,−Ktu
)

(43)

wheremax is to be considered component-wise. Moreover,
we have

ϕ(u) = (s∗(u))
t
Ktu+

λ

2
‖s∗(u)‖2 =

1

2
(s∗(u))

t
Ktu,

(44)

the latter expression being a consequence of(max(0, x))2 =
xmax(0, x) for all x ∈ R. Finally, given (39), (43) and (44),
(41) also reads

min
s>0

L(s) = max
u∈Rm

(

− 1

2λ

(

max
(

0,−Ktu
))t

Ktu

+
1

2
‖u‖2 + ytu

)

=− λ min
c∈Rm

χ(c)

where the last identity is obtained using the change of variable
c = −u/λ. Thus, (36) and (37) are equivalent through
Legendre-Fenchel duality, andc∗ minimizesχ(c) in R

m if
and only if s∗ = max(0,Ktc∗) minimizesL(s) in R

m
+ .

B. Expression of the majorant functionhj(·, αj) and of its
minimizer

The majorant functionhj(·, αj) is piecewise defined,
whetherα ∈ (α−;α

j ] or α ∈ [αj ;α+). In both cases, it takes
the following form

hj(α, αj) = ℓ(αj) + (α− αj)ℓ̇(αj) +
1

2
mj(α− αj)2

+ γj

[

(ᾱj − αj) log
ᾱj − αj

ᾱj − α
− α+ αj

]

(45)

while the expressions of parametersᾱj ,mj , andγj are specific
to each case. The notationℓ̇ refers to the derivative ofℓ, also
defined asℓ̇(α) = dT

k∇L(sk + αdk).
1) Caseα ∈ (α−;α

j ]:











ᾱj = α−

mj = dt
kK

tKdk + λ
∑

i|dk,i<0
φi(α

j)

γj = λ(α− − αj)
∑

i|dk,i>0
φi(α

j)

(46)

2) Caseα ∈ [αj ;α+):










ᾱj = α+

mj = dt
kK

tKdk + λ
∑

i|dk,i>0
φi(α

j)

γj = λ(α+ − αj)
∑

i|dk,i<0
φi(α

j)

(47)

whereφi(α) = d2k,i/(si + αdk,i) in both cases.
The minimizer ofhj(·, αj) can be expressed as follows

αj + sign(−ℓ̇(αj))
2 |A3|

|A2|+
√

A2
2 − 4A1A3

, (48)

with










A1 = −mj

A2 = γj − ℓ̇(αj) +mj(ᾱj − αj)

A3 = (ᾱj − αj)ℓ̇(αj)

. (49)
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