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Abstract—In this paper, a methodology is investigated for
signal recovery in the presence of non-Gaussian noise. In contrast
with regularized minimization approaches often adopted in
the literature, in our algorithm the regularization parameter
is reliably estimated from the observations. As the posterior
density of the unknown parameters is analytically intractable,
the estimation problem is derived in a variational Bayesian
framework where the goal is to provide a good approximation
to the posterior distribution in order to compute posterior mean
estimates. Moreover, a majorization technique is employed to
circumvent the difficulties raised by the intricate forms of the
non-Gaussian likelihood and of the prior density. We demonstrate
the potential of the proposed approach through comparisons
with state-of-the-art techniques that are specifically tailored
to signal recovery in the presence of mixed Poisson-Gaussian
noise. Results show that the proposed approach is efficient and
achieves performance comparable with other methods where the
regularization parameter is manually tuned from the ground
truth.

Index Terms—inverse problems, restoration, Variational
Bayesian methods, parameter estimation, non-Gaussian noise,
majorization, minimization.

I. I NTRODUCTION

ONE of the most challenging tasks in signal processing
is restoration, where one aims at providing an accurate

estimate of the original signal from degraded observations.
These degradations may arise due to various phenomena which
are often unavoidable in practical situations. Undesirable
blurring may be introduced by the atmosphere or may also
stem from the intrinsic limitations of the acquisition system
characterized by its point spread function. Furthermore, data
can be perturbed by noise which can be viewed as a parasite
signal added to the information of interest, hence altering
the extraction of this information. Noise may originate from
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various sources. On the one hand, sensors generally suffer
from internal fluctuations referred to electrical or thermal
noise. This type of noise is additive, independent of the signal
of interest, and it can be modeled by a Gaussian distribution.
On the other hand, it has been experimentally proven that in
many situations, the signal of interest may suffer from noise
with more complex characteristics. In fact, many devices lead
to measurements distorted by heteroscedastic noise i.e. the
characteristics of the noise depend on the characteristics of
the unknown signal [1]–[7]. For example, to better reflect
the physical properties of optical communication, the noise
remains additive Gaussian but its variance is assumed to be
dependent on the unknown signal [8]. Signals can also be cor-
rupted with multiplicative noise [9]–[12] such as the speckle
noise which commonly affects synthetic aperture radar (SAR),
medical ultrasound and optical coherence tomography images
[13], as well as with impulsive noise [14]. A mixture of Gaus-
sian and impulsive noise has also been studied in [15], [16].
Furthermore, in applications such as astronomy, medicine, and
fluorescence microscopy where signals are acquired via photon
counting devices, like CMOS and CCD cameras, the number
of collected photons is related to some non-additive counting
errors resulting in a shot noise [1]–[3], [17], [18]. The latter
is non-additive, signal-dependent and it can be modeled by
a Poisson distribution [19]–[33]. In this case, when the noise
is assumed to be Poisson distributed, the implicit assumption
is that Poisson noise dominates over all other noise kinds.
Otherwise, the involved noise is a combination of Poisson and
Gaussian (PG) components [34]–[47]. Most of the existing
denoising methods only consider this noise as independent
Gaussian, mainly because of the difficulties raised in handling
other noise sources than the Gaussian one. In this paper,
we focus on signal recovery beyond the standard additive
independent Gaussian noise assumption.

A. State-of-the-art

Existing strategies for solving inverse problems often define
the estimate as a minimizer of an appropriate cost function.
The latter is composed of two terms: the so-called data fidelity
term whose role is to make the solution consistent with the
observation and the regularization term that incorporates prior
information about the target signal so as to ensure the stability
of the solution [48]. Several algorithms have been proposed
to tackle the problem of restoration for signals corrupted with
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non-Gaussian noise by using minimization approaches. For
example, in [49], a method is proposed to restore signals
degraded by a linear operator and corrupted with an additive
Gaussian noise having a signal-dependent variance. An early
work in [50] and more recent developments in [35], [40]–
[42], [45], [51], [52] have proposed to restore signals corrupted
with mixed PG noise using different approximations of the PG
data fidelity term. In all these approaches, the regularization
parameter allows a tradeoff to be performed between fidelity
to the observations and the prior information. Too small
values of this parameter may lead to noisy estimates while
too large values yield oversmoothed solutions. Consequently,
the problem of setting a proper value of the regularization
parameter should be addressed carefully and may depend on
both the properties of the observations and the statistics of
the target signal. When ground truth is available, one can
choose the value of the regularization parameter that gives
the minimal residual error evaluated through some suitable
metric. However, in real applications where no ground truth is
available, the problem of selecting the regularization parameter
remains an open issue especially in situations where the
images are acquired under poor conditions i.e. when the
noise level is very high. Among existing approaches dealing
with regularization parameter estimation, the works in [53]–
[59] have to be mentioned. However, most of the mentioned
methods were developed under the assumption of a Gaussian
noise and their extension to the context of non-Gaussian
noise is not easy. One can however cite the works in [37],
[39] proposing efficient estimators in the context of denoising
i.e. problems that do not involve linear degradation. Other
approaches can be found in [60], [61] proposing efficient
estimates in the specific case of a Poisson likelihood.

To address the shortcomings of these methods, one can
adopt the Bayesian framework. In particular, Bayesian estima-
tion methods based on Markov Chain Monte Carlo (MCMC)
sampling algorithms have been recently extended to inverse
problems involving non-Gaussian noise [62]–[65]. However,
despite good estimation performance that has been obtained,
such methods remain computationally expensive for large scale
problems. Another alternative approach is to rely on variational
Bayesian approximation (VBA) [66]–[70]. Instead of simulat-
ing from the true posterior distribution, VBA approaches aim
at approximating the intractable true posterior distribution with
a tractable one from which the posterior mean can be easily
computed. These methods can lead generally to a relatively
low computational complexity when compared with sampling
based algorithms.

B. Contributions

In this paper, we propose a VBA estimation approach for
signals degraded by an arbitrary linear operator and corrupted
with non-Gaussian noise. One of the main advantages of the
proposed method is that it allows us to jointly estimate the
original signal and the required regularization parameter from
the observed data by providing good approximations of the
Minimum Mean Square Estimator (MMSE) for the problem
of interest. While using VBA, the main difficulty arising in the

non-Gaussian case is that the involved likelihood and the prior
density may have a complicated form and are not necessarily
conjugate. To address this problem, a majorization technique is
adopted providing a tractable VBA solution for non-conjugate
distributions. Our approach allows us to employ a wide class
of a priori distributions accounting for the possible sparsity of
the target signal after some appropriate linear transformation.
Moreover, it can be easily applied to several non Gaussian
likelihoods that have been widely used [35], [45], [71], [72].
In particular, experiments in the case of images corrupted by
PG noise showcase the good performance of our approach
compared with methods using the discrepancy principle for
estimating the regularization parameter [73]. Moreover, we
propose variants of our method leading to a significant reduc-
tion of the computational cost while maintaining a satisfactory
restoration quality.

C. Outline

This paper is organized as follows. In Section II, we formu-
late the considered signal recovery problem in the Bayesian
framework and we present a short overview on the variational
Bayesian principle. In Section III, we present our proposed
estimation method based on VBA. In Section V, we provide
simulation results together with comparisons with state-of-
the-art methods in terms of image restoration performance
and computation time. Finally, some conclusions are drawn
in Section VI.

II. PROBLEM STATEMENT

A. Bayesian formulation

In this paper, we consider a wide range of applications
where the degradation model can be formulated as an inverse
possibly ill-posed problem as follows:

(∀i ∈ {1, . . . ,M}) , yi = D([Hx]i), (1)

where x ∈ R
N is the signal of interest,H ∈ R

M×N is
the linear operator typically modeling a blur, a projection, or
a combination of both degradations,[Hx]i denotes thei-th
component ofHx , y = (yi)16i6M ∈ R

M is the measured
data andD is the noise model that may depend on the target
data. The objective is to find an estimatorx̂ of x from H and
y. The neg-log-likelihoodφ of the observations reads

(∀x ∈ R
N ) φ(x;y) = − ln p(y|x) =

M∑

i=1

φi([Hx]i ; yi).

(2)
Depending on the noise statistical modelD, φi may take
various forms [3], [14], [16], [37]. In particular, it reduces
to a least squares function for additive Gaussian noise. In the
Bayesian framework, we apply regularization by assigning a
prior distribution to the datax to be recovered. In this paper,
we adopt the following flexible expression of the prior density
of x:

p(x | γ) = τγ
N
2κ exp

(
− γ

J∑

j=1

‖Djx‖2κ
)
, (3)
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whereκ is a constant in(0, 1], ‖ · ‖ denotes theℓ2-norm and
(Dj)16j6J ∈ (RS×N )J where D = [D⊤

1 , . . . ,D
⊤
J ]

⊤ is a
linear operator. For instance,D may be a matrix computing the
horizontal and vertical discrete difference between neighboring
pixels so thatJ = N andS = 2. A sparsity prior in an analysis
frame can also be modeled by settingJ = 1 andD equals to
a frame operator with decomposition sizeS ≥ N [74]. Other
examples will be given in Section V. Note that the constant
γ ∈ (0,+∞) can be viewed as a regularization parameter
that plays a prominent role in the restoration process and
τ ∈ (0,+∞) is a constant independent ofγ. The form of
the partition function for such a prior distribution, i.e. the
normalizing factorτγN/2k, follows from the fact that the
associated potential is2κ-homogeneous [75].

In this paper, the noise shape parameterκ is chosen to be
fixed through empirical methods and we aim at estimating
parameterγ together withx. To this end, we choose a Gamma
prior for γ, i.e. p(γ) ∝ γα−1 exp(−βγ) whereα and β are
positive constants (set in practice to small values to ensure a
weakly informative prior).

Using the Bayes’ rule, we can obtain the posterior distri-
bution of the set of unknown variablesΘ = (x, γ) given the
vector of observationsy:

p(Θ | y) ∝ p(y | x)p(x | γ)p(γ). (4)

However, this distribution has an intricate form. In particular,
its normalization constant does not have a closed form expres-
sion. To cope with this problem, we resort to the variational
Bayesian framework. The rationale of this work is to find a
simple approximation to the true posterior distortion, leading
to a tractable computation of the posterior mean estimate.

B. Variational Bayes principle

The variational Bayes approach has been first introduced in
physics [76]. The idea behind it is to approximate the posterior
distribution p(Θ | y) with another distribution denoted by
q(Θ) which is as close as possible top(Θ | y), by minimizing
the Kullback-Leibler divergence between them [66], [74], [77]:

qopt = argmin
q

KL
(
q(Θ)‖p(Θ | y)

)
, (5)

where

KL
(
q(Θ)‖p(Θ | y)

)
=

∫
q(Θ) ln

q(Θ)

p(Θ | y)dΘ. (6)

This minimization becomes tractable if a suitable factorization
structure ofq(Θ) is assumed. In particular, we assume that
q(Θ) =

∏R
r=1 qr(Θr). Hence, the optimal density approxima-

tion qoptr (Θr) for each variableΘr, is obtained by minimizing
the KL divergence while holding the remaining densities for
the rest of variables fixed. In this case, there exists an optimal
solution to the optimization problem (5) for each density
(qr)16r6R, given by the exponential of the expectation of the
joint density with respect to the distribution of all the unknown
parameters except the one of interest i.e. (see [66], [78] for
details of calculus)

(∀r∈{1, . . . , R}) qoptr (Θr)∝exp
(
〈ln p(y,Θ)〉∏

i6=r qopt
i

(Θi)

)

(7)

where 〈 · 〉∏
i6=r qi(Θi) =

∫
·∏i6=r qi(Θi)dΘi. Due to the im-

plicit relations existing between(qoptr (Θr))16r6R, an analyti-
cal expression ofqopt(Θ) generally does not exist. Usually,
these distributions are determined in an iterative way, by
updating one of the separable components(qr(Θr))16r6R

while fixing the others [66]. Applications of classical VBA ap-
proaches can be found in [68]–[70], [79], [80] while improved
VBA algorithms have been proposed in [67], [81]. Once
the approximate distributions are computed, the unknown
parameters are then estimated by the means of the obtained
distributions.

III. PROPOSED APPROACH

In this work, we assume the following separable form forq:

q(Θ) = qX(x)qΓ(γ). (8)

Unfortunately, by using directly (7), we cannot obtain an
explicit expression ofqX(x) due to the intricate form of both
the prior distribution and the likelihood when the statistics of
the noise are no longer Gaussian. In this paper, we propose to
use deterministic methods to construct quadratic upper bounds
for the negative logarithms of both the likelihood and the
prior density [85]. This allows us to derive an upper bound
of the desired cost function in (5) as will be described in the
following.

A. Construction of the majorizing approximation

1) Likelihood: One popular approach in signal recovery
is the half-quadratic formulation [86]. Under some mild as-
sumptions and by introducing some auxiliary variables, a
complicated criterion can be written as the infimum of a
surrogate half-quadratic function i.e. the latter is quadratic with
respect to the original variables and the auxiliary variables
appear decoupled. This half-quadratic criterion can be then
efficiently minimized using classical optimization algorithms.
This formulation has been widely used in energy-minimization
approaches [87]–[89] where the initial optimization problem
is replaced by the minimization of the constructed surrogate
function. Furthermore, this technique has been recently ex-
tended to sampling algorithms [90]. The initial intractable pos-
terior distribution to sample from is replaced by the conditional
distribution of the target signal given the auxiliary variables.
The obtained distribution has been shown to be much simpler
to explore by using standard sampling algorithms. In this pa-
per, we propose to use half-quadratic approaches to construct
an upper bound for the objective function in (5).

We assume that the likelihood satisfies the following prop-
erty:

Assumption III.1. For everyi ∈ {1, . . . ,M}, φi is differen-
tiable onR and there existsµi(yi) > 0 such that the function
defined byv 7→ v2

2 − φi(v;yi)
µi(yi)

is convex onR.
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Name φi(v; yi) φ′

i(v; yi) βi(yi) Domain of validity Noise model

Gaussian
1

2σ2
(v − yi)

2 1

σ2
(v − yi)

1

σ2
yi ∈ R, σ > 0 Gaussian

Cauchy ln

(

1 +
(v − yi)

2

σ2

)

2(v − yi)

σ2 + (v − yi)2
2

σ2
yi ∈ R, σ > 0 Cauchy

Anscombe transform 2
(√

yi +
3

8
−

√

v + 3

8

)2

2−
2
√

yi +
3

8
√

v + 3

8

(

3

8

)

−3/2 √

yi +
3

8
yi > −

3

8
Poisson

Generalized Anscombe
transform 2

(
√

yi + σ2 + 3

8
−

√

v + σ2 + 3

8

)2

2−
2
√

yi +
3

8
+ σ2

√

v + 3

8
+ σ2

(

3

8
+ σ2

)

−3/2
√

yi +
3

8
+ σ2 yi > −

3

8
− σ2 Poisson-Gaussian

Shifted Poisson (v + σ2)− (yi + σ2) ln(v + σ2) 1−
yi + σ2

v + σ2

yi + σ2

σ4
yi > −σ2, σ > 0 Poisson-Gaussian

Weighted least squares
(yi − v)2

2(σ2 + v)
+

1

2
ln(σ2 + v)

1

2
−

(yi + σ2)2

2(v + σ2)2
+

1

2(σ2 + v)
max

{

(yi + σ2)2

σ6
−

1

2σ4
,

1

54(yi + σ2)4

}

yi ∈ R\{−σ2}, σ > 0 Poisson-Gaussian

TABLE I: Examples of differentiable functions satisfying Assumption III.1. The Anscombe transform provides a differentiable approximation
of the exact Poisson data fidelity term, while the three last functions can be employed to approximate the exact mixed Poisson-Gaussian
log-likelihood. Note that alternative expressions for the Anscombe-based approaches can be found in [82], [83].φ′

i denotes the first derivative
of functionφi andβi(yi) is the Lipschitz constant ofφ′

i (for functions in lines 3-6, we assume thatφi is replaced onR− by its quadratic
extension (10).) The expression for the Lipschitz constant of the gradient of the weighted least squares likelihood was established in [84,
Chap. IV].

In particular, this assumption is satisfied when, for every
i ∈ {1, . . . ,M}, φi is βi(yi)-Lipschitz differentiable onR,
i.e.,

(∀u ∈ R) (∀v ∈ R) |φ′

i(v; yi)− φ
′

i(u; yi)| 6 βi(yi)|v − u|,
(9)

as soon asµi(yi) > βi(yi).
Table I shows some examples of useful functions satisfying

the desired property (up to an additive constant). Note that,
since the functions in lines 3-6 of Table I areβi(yi)-Lipschitz
differentiable only onR+, we propose to use onR− a
quadratic extension of them defined as follows:

(∀v ∈ R−) φi(v; yi) = φi(0; yi) + φ
′

i(0; yi)v +
1

2
βi(yi)v

2,

(10)
so that the extended version ofφi(.; yi) is now differentiable

on R with βi(yi)-Lipschitzian gradient.
For every i ∈ {1, . . . ,M} and v ∈ R, let us define the

following function:

ςi(v; yi) = sup
t∈R

(
−1

2
(v − t)

2
+

φi(t; yi)

µi(yi)

)
. (11)

Then, the following property holds:

Proposition III.1. For everyi ∈ {1, . . . ,M},

(∀v ∈ R) φi(v; yi) = inf
wi∈R

Ti(v, wi; yi). (12)

where, for everyv ∈ R,

Ti(v, wi; yi) = µi(yi)

(
1

2
(v − wi)

2 + ςi(wi; yi)

)
. (13)

Moreover, the unique minimizer ofwi 7→ Ti(v, wi; yi) reads

ŵi(v) = v − 1

µi(yi)
φ′
i(v; yi). (14)

Proof. See Appendix A.

It follows from this result that
(
∀x ∈ R

N
)

φ(x;y) = inf
w∈RM

T (x,w;y), (15)

whereT (x,w;y) =
M∑
i=1

Ti([Hx]i , wi; yi).

Note that (12) shows that, for everyi ∈ {1, . . . ,M},
φi(·; yi) is a so-called Moreau envelope of the function
µi(yi)ςi(·; yi). A more direct proof of Proposition III.1 can
thus be derived from the properties of the proximity operator
[91] when the functions(φi)1≤i≤M are convex. The proof
we provide in the appendix however does not make such a
restrictive assumption.

2) Prior: Similarly, we construct a surrogate function for
the prior distribution. More precisely, we follow the same idea
as in [69] and we use the following convexity inequality to
derive a majorant for theℓκ-norm with κ ∈ (0, 1]:

(∀ν > 0)(∀υ > 0) υκ ≤ (1− κ)νκ + κνκ−1υ.

Hence, we obtain the following majorant function for the
negative logarithm of the prior distribution:

γ

J∑

j=1

‖Djx‖2κ 6 γ

J∑

j=1

κ‖Djx‖2 + (1− κ)λj

λ1−κ
j

. (16)

where(λj)16j6J are positive variables. In the following, we

will denote byQ(x,λ; γ)=
J∑

j=1

Qj(Djx, λj ; γ), the function

in the right-hand side of the above inequality where, for every
j∈{1, . . . , J},

Qj(Djx, λj ; γ) = γ
κ‖Djx‖2 + (1− κ)λj

λ1−κ
j

. (17)

3) Proposed majorant:Thus, we can derive the following
lower bound for the posterior distribution:

p(Θ | y) > L(Θ|y;w,λ), (18)

where functionL is defined as

L(Θ|y;w,λ) = C(y) exp [−T (x,w;y)−Q(x,λ; γ)] p(γ)

with C(y) = p(y)−1(2π)−M/2τγ
N
2κ . The minorization of the

distribution leads to an upper bound for theKL divergence:

KL(q(Θ)‖p(Θ | y)) 6 KL(q(Θ)‖L(Θ|y;w,λ)). (19)
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Note that, although the constructed lower bound in (18) is
tangent to the posterior distribution i.e.

p(Θ | y) = sup
w∈RM ,λ∈RJ

L(Θ|y;w,λ),

the tangency property may not be generally satisfied in
(19). Thus, the tightness of the constructed majorant of the
KL divergence may have a significant impact on the accu-
racy of the method. By minimizing the constructed bound
(19) with respect tow and λ, we make this bound as
tight as possible. Note that, for everyi ∈ {1, . . . ,M}
and j ∈ {1, . . . , J}, λj 7→ KL(q(Θ)‖L(Θ|y;w,λ)) and
wi 7→ KL(q(Θ)‖L(Θ|y;w,λ)) can be minimized separately.
Hence, Problem (5) can be solved by the following four-step
alternating optimization scheme:

• Minimizing the upper bound in (19) w.r.t.qX(x);
• Updating the auxiliary variableswi in order to minimize

KL(q(Θ)‖L(Θ|y;w,λ)), for everyi ∈ {1, . . . ,M};
• Updating the auxiliary variableλj in order to minimize

KL(q(Θ)‖L(Θ|y;w,λ)), for everyj ∈ {1, . . . , J};
• Mimimizing the upper bound in (19) w.r.t.qΓ(γ).

The main benefit of this majorization strategy is to guaran-
tee that the optimal approximate posterior distribution forx

belongs to the Gaussian family and the optimal approximate
posterior distribution forγ belongs to the Gamma one, i.e.

qX(x) ≡ N (m,Σ), qΓ(γ) ≡ G(a, b).
Therefore, the distribution updates can be performed by up-
dating their parameters, namelym, Σ, a, andb.

IV. I TERATIVE ALGORITHM

Subsequently, at a given iterationk of the proposed algo-
rithm, the corresponding estimated variables will be indexed
by k.

A. UpdatingqX(x)

Because of the majorization step, we need to minimize the
upper bound on theKL divergence. The standard solution (7)
can still be used by replacing the joint distribution by a lower
boundL(Θ,y;w,λ) chosen proportional toL(Θ|y;w,λ):

qk+1
X (x) ∝ exp

(〈
lnL(x, γ,y;wk,λk)

〉
qk
Γ
(γ)

)

∝ exp

(∫
lnL(x, γ,y;wk,λk)qkΓ(γ)dγ

)

∝ exp

(
−

M∑

i=1

1

2
µi(yi)

(
[Hx]i − wk

i

)2

− ak
bk

J∑

j=1

κ‖Djx‖2 + (1− κ)λk
j

(λk
j )

1−κ

)
. (20)

The above distribution can be identified as a multivariate
Gaussian distribution whose covariance matrix and mean pa-
rameter are given by

Σ−1
k+1 = H⊤Diag(µ(y))H+ 2

ak
bk

D⊤ΛkD, (21)

mk+1 = Σk+1H
⊤u, (22)

where µ(y) = [µ1(y1), . . . , µM (yM )]
⊤, u is a M × 1

vector whosei-th component is given byui = µi(yi)w
k
i

and Λ is the diagonal matrix whose diagonal elements are(
κ(λk

j )
κ−1IS

)
1≤j≤J

.

B. Updatingw

The auxiliary variablew is determined by minimizing the
upper bound ofKL divergence with respect to this variable:

wk+1 = argmin
w

∫
qk+1
X (x)qkΓ(γ) ln

qk+1
X (x)qkΓ(γ)

L(Θ|y;w,λk)
dxdγ

= argmin
w

∫
qk+1
X (x)qkΓ(γ)

(
− lnL(Θ|y;w,λk)

)
dxdγ

= argmin
w

∫
qk+1
X (x)

M∑

i=1

Ti([Hx]i , wi; yi)dx (23)

= argmin
w

M∑

i=1

Ti([Hmk+1]i , wi; yi), (24)

where the equality in (23) follows from the expression in (13).
Interestingly, it follows from Property III.1 that

wk+1
i = argmin

wi

Ti([Hmk+1]i , wi; yi)

= [Hmk+1]i −
1

µi(yi)
φ

′

i([Hmk+1]i ; yi). (25)

C. Updatingλ

The variableλ is determined in a similar way: for every
j ∈ {1, . . . , J},

λk+1
j = argmin

λj∈[0,+∞)

KL(qk+1
X

(
x)qkΓ(γ)‖L(Θ|y;wk+1,λ)

)

= argmin
λj∈[0,+∞)

Q∑

i=1

∫
qk+1
X (x)qkΓ(γ)Qi(Dix, λi; γ)dxdγ

= argmin
λj∈[0,+∞)

∫
qk+1
X (x)qkΓ(γ)Qj(Djx, λj ; γ)dxdγ

= argmin
λj∈[0,+∞)

∫
qk+1
X (x)qkΓ(γ)

× γ
κ‖Djx‖2 + (1− κ)λj

λ1−κ
j

dxdγ

= argmin
λj∈[0,+∞)

κEqk+1

X
(x)

[
‖Djx‖2

]
+ (1− κ)λj

λ1−κ
j

. (26)

The minimum is attained at

λk+1
j =Eqk+1

X
(x)

[
‖Djx‖2

]

= ‖Djmk+1‖2 + trace
[
D⊤

j DjΣk+1

]
. (27)
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D. UpdatingqΓ(γ)

Using (7) where the joint distribution is replaced by its lower
bound function, we obtain

qΓ(γ) ∝ exp

(〈
lnL(x, γ,y;wk+1,λk+1)

〉
qk+1

X
(x)

)

∝ exp

(∫
lnL(x, γ,y;wk+1,λk+1)qk+1

X (x)dx

)

∝γ
N
2κ

+α−1 exp(−βγ)

× exp

(
− γ

J∑

j=1

κEqk+1

X
(x)

[
‖Djx‖2

]
+ (1− κ)λk+1

j

(λk+1
j )1−κ

)

≡G(ak+1, bk+1). (28)

Using (27), one can recognize that the above distribution is
a Gamma one with parameters

ak+1 =
N

2κ
+ α = a, bk+1 =

J∑

j=1

(λk+1
j )κ + β. (29)

E. Resulting algorithm

The proposed method is outlined in Algorithm 2. It alter-
nates between the update of the auxiliary variables and the
distribution of the unknown parameters.

Algorithm 1 VBA approach for recovery of signals corrupted
with non-Gaussian noise.

1) Set initial values:w0,λ0, b0. Computea with (29).
2) For k = 0, 1, . . .

a) Update parametersΣk+1 and mk+1 of qk+1
X (x)

using (21) and (22).
b) Updatewk+1 using (25).
c) Updateλk+1 using (27).
d) Update parameterbk+1 of qk+1

Γ (γ) using (29).

F. Implementation issues

An additional difficulty arising in the implementation of
Algorithm 2 is that the determination ofΣk+1 requires in-
verting the matrix given by (21), which is computationally
expensive in high dimension. To bypass this operation, we
propose to compare two approaches. The first one follows the
idea in [68]: we make use of the linear conjugate gradient
method to approximatemk+1 iteratively and in (27), where
an explicit form ofΣk+1 cannot be sidestepped, this matrix
is approximated by a diagonal one whose diagonal entries
are equal to the inverse of the diagonal elements ofΣ−1

k+1.
The second technique uses Monte-Carlo sample averaging
to approximatemk+1 and λk+1

j : specifically, we generate
samples(ns)1≤s≤Ns

from Gaussian distribution with mean
mk+1 and covariance matrixΣk+1 using [92], as summarized
in Algorithm 2. This estimator has two desirable properties.
First, its accuracy is independent of the problem size, its
relative error only depends on the number of samples and
it decays as

√
2/Ns (only Ns = 2/ρ2 samples are required

to reach a desired relative errorρ) [93]. Second, for the

simulation ofNs independent Gaussian samples, one can take
advantage of a multiprocessor architecture by resorting to
parallel implementation allowing us to reduce the computation
time.

Algorithm 2 Stochastic approach for computing the parame-
ters ofq(x).

1) For s = 1, 2, . . . , Ns

a) Perturbation : Generate

νs ∼ N
(
u,
(
Diag

(
µ(y)

))1/2)

ηs ∼ N
(
0,
√
2γkΛ

1/2
k

)

with γk = ak/bk.
b) Optimization : Computens as the minimizer of

J (v) = ‖νs − Diag
(
µ(y)

)
Hv‖2

(Diag(µ(y)))−1 +
1

2γk ‖ηs − 2γkΛkDv‖2
Λ

−1

k

, which is equivalent to

minimize J̃ (v) = v⊤Σ−1
k+1v − 2v⊤zs where

zs = H⊤νs +D⊤ηs. The minimizer is computed
using the conjugate gradient algorithm.

2) Update

mk+1 =
1

Ns

Ns∑

s=1

ns

(∀j ∈ {1, . . . , J}) λk+1
j =

1

Ns

Ns∑

s=1

‖Djns‖2.

V. A PPLICATION TO POISSON-GAUSSIAN IMAGE

RESTORATION

Let us now illustrate the usefulness of our algorithm via
experiments in the context of image restoration when the
noise follows a mixed PG model. Recently, there has been
a growing interest for the PG noise model as it arises in
many real imaging systems in astronomy [50], [51], medicine
[94], photography [34], and biology [95]. Numerous efficient
restoration methods exist in the limit case when one neglects
either the Poisson or the Gaussian component. However, such
approximation may be rough, and lead to poor restoration
results, especially in the context of low count imaging and/or
high level electronic noise. On the opposite, restoration meth-
ods that specifically address mixed PG noise remain scarce,
especially when the observation operatorH differs from
identity. The aim of this section is to show the applicability
of the proposed VBA method in this context.

A. Problem formulation

The vector of observationsy=(yi)1≤i≤M ∈ R
M is related

to the original imagex through

y = z+ b, (30)

where z and b are assumed to be mutually independent
random vectors and

z | x ∼ P(Hx), b ∼ N (0, σ2IM ),
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P denoting the independent Poisson distribution, andσ > 0.
The associated likelihood function reads [45]:

p(y | x) =
M∏

i=1

(
+∞∑

n=1

e−[Hx]i ([Hx]i)
n

n!

e−
1

2σ2 (yi−n)2

√
2πσ2

)
.

(31)
The expression of the PG likelihood (31) involves an infinite
sum which makes its exact computation impossible in practice.
In [45], the infinite sum was replaced by a finite summation
with bounds depending on the current estimate ofx̄. However,
this strategy implies a higher computational burden in the
reconstruction process when compared with other likelihoods
proposed in the literature as accurate approximations of (31).
In [79], VBA inference techniques have been successfully
applied to the restoration of data corrupted with PG noise using
the generalized Anscombe transform (GAST) likelihood [37],
[38], [71], [72]. Following these promising preliminary results,
we will consider here the GAST approximation, as well as
the shifted Poisson (SPoiss) [6] and the weighted least squares
(WL2) [40], [49], [51] approximations, defined respectively in
lines 4, 5 and 6 of Table I. In order to satisfy Assumption III.1,
we will use µi(yi) ≡ max {βi(yi), ε} where ε > 0 for the
GAST and the SPoiss approximations. For the WL2 approx-
imation, we setµi(yi) = max

{
(yi + σ2)2/σ6, ε

}
. Note that

in all our experiments, a data truncation is performed as a pre-
processing step on the observed imagey in order to satisfy
the domain condition given in the fifth column of Table I.

B. Numerical results

We evaluate the performance of the proposed approach for
the restoration of images degraded by both blur and PG noise.
We consider six test images, displayed in Figure 1, whose
intensities have been rescaled so that pixel values belong to
a chosen interval[0, x+]. Imagesx1 and x6 are HST astro-
nomical images while imagesx2, x3, x4 and x5 correspond
to the set of confocal microscopy images considered in [45].
These images are then artificially degraded by an operatorH

modeling spatially invariant blur with point spread functionh
and by PG noise with varianceσ2.

1) Comparison with MAP approaches:In this first set
of experiments, we choose a standard total variation prior,
i.e. κ = 1/2 and for every pixel j ∈ {1, . . . , N},
Djx =

[
[∇hx]j , [∇vx]j

]⊤ ∈ R
2 where∇h and∇v are

the discrete gradients computed in the horizontal and vertical
directions. As a result,J = N and S = 2. The goal of
our experiments is twofold. First, for each likelihood, we
compare the accuracy of the two proposed approximations of
the covariance matrix described in Section IV-F namely the
diagonal approximation (denoted as approximation 1) and the
Monte Carlo averaging strategy (designated as approximation
2) with different number of samplesNs, namelyNs = 160
or 640. Second, the proposed method is compared with state-
of-the-art algorithms that compute the MAP estimate for the
considered likelihoods. More specifically, as GAST and SPoiss
data fidelity terms are convex and Lipschitz differentiable,
we use the method presented in [45] where a primal-dual
splitting algorithm was proposed to minimize convex penalized

(a) Imagex1

(256× 256)
(b) Imagex2

(190× 190)

(c) Imagex3

(257× 256)
(d) Imagex4

(350× 350)

(e) Imagex5

(128× 128)
(f) Imagex6

(256× 256)

Fig. 1: Original images.

criteria in the context of Poisson-Gaussian image restoration.
For the WL2 approximation, the corresponding data fidelity
function is not convex so the previous method could not be ap-
plied anymore. We thus consider the variable metric forward-
backward algorithm proposed in [49] for the minimization
of penalized WL2 functionals. For the aforementioned MAP
approaches, it is necessary to set the regularization parameter
γ that balances the fidelity to the observation model and the
considered prior. In this respect, we test two variants. In the
first variant, we estimate the regularization parameter using an
approach based on the discrepancy principle [60], [61], [73].
In the second variant,γ is adjusted empirically to achieve
the maximum Signal-to-Noise Ratio (SNR) value defined as
SNR= 20 log10

(
‖x‖

‖x−x̂‖

)
, which requires the availability of

the true image.
Tables II-VII report the results obtained with the differ-

ent images in terms of SNR, SSIM [96], and approximate
computation time needed for convergence. For each likeli-
hood, we emphasize in bold the approximation of the co-
variance matrix that achieves the best quantitative result in
the shortest computational time. Simulations were performed
on an Intel(R) Xeon(R) CPU E5-2630, @ 2.40 GHz, using a
Matlab7 implementation. All tested methods were initialized
with the degraded image. Moreover, the initial value of the
regularization parameter results from a maximum likelihood
estimation performed on the degraded image. The Monte Carlo
averaging approximation was computed using parallel imple-
mentation with16 cores by means of the commandPARFOR
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(f) SPoiss - Approx. 2 (Ns = 640)
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(i) WL2 - Approx. 2 (Ns = 640)

Fig. 2: Evolution of SNR with respect to time for imagex̄5 using different data-fidelity terms and covariance approximations.

of the MatlabR© Parallel Computing ToolboxTM . The iterations
of VBA were run until the following stopping criterion is

satisfied:
‖x(t+1) − x(t)‖

‖x(t)‖ 6 ε. We have setε = 10−6, as

it was observed to lead to a practical stabilization in terms
of restoration quality. This can be checked by inspecting
Figure 2 illustrating the evolution of the SNR of the restored
image along time, until the achievement of the stopping
criterion, in the test case from Table VI. For the MAP-based
approaches, the computational time includes the search of the
regularization parameter.

One can observe that in most studied situations (see Ta-
bles IV-VII), the diagonal approximation of the covariance
matrix appears to give satisfactory qualitative results after
a small computation time. However, in few other situations
(see Tables II and III), it fails to capture the real qualita-
tive structures of the covariance matrix leading to a poorer
performance. The latter issue is well alleviated by using the
Monte Carlo approximation where good results, in terms
of image quality, are achieved withinNs = 160 samples
which is equivalent to a relative approximation error equal
to 11%. A few improvements are observed by decreasing the
approximation error to5% usingNs = 640 samples.

We also notice that the GAST approximation does not seem
to be suitable for very low count images (see Tables II and
III), whereas, the other likelihoods lead to competitive results
in all the experiments. The best tradeoff between restoration
quality and small computational time seems to be achieved by
the WL2 approximation.

Finally, it can be observed that, in Tables II and IV, our
VBA method yields comparable performance in terms of SNR
to the MAP estimate when the latter is computed with the
optimal regularization parameter, while our approach requires
less time to converge. In the other experiments, our approach
leads to the best qualitative results. For instance, in Table III,

the gain in terms of SNR reaches up to 0.2 dB compared with
the MAP estimator using the best regularization parameter,
but our approach needs more time to converge. In Tables V,
VI and VII, we achieve both the best quantitative results and
the smallest computational time. It should be noted that for
most tested scenarii, discrepancy based approaches perform
relatively poorly compared with the other methods, especially
in the case of low count images (see Table II).

(a) Degraded image with SNR= -2.55
dB (Uniform kernel5× 5, x+ = 10
andσ2 = 4).

(b) Restored image with VBA ap-
proach using the Monte Carlo ap-
proximation with640 samples: SNR=
10.27 dB

(c) Restored image with discrepancy
principle: SNR= 10.17 dB

(d) Restored image with best param-
eter: SNR= 10.39 dB

Fig. 3: Restoration results for imagēx1 using WL2 approxi-
mation.

In Figures 3 - 8, we show some examples of visual results
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GAST SPoiss WL2

VBA

Approx. 1

SNR 8.13 9.36 9.90

SSIM 0.3987 0.4790 0.5140

Time (s.) 55 62 67

Approx. 2

Ns = 160

SNR 9.57 10.17 10.22

SSIM 0.5260 0.6017 0.6058

Time (s.) 688 601 1011

Approx. 2

Ns = 640

SNR 9.61 10.20 10.27

SSIM 0.5308 0.6088 0.6112

Time (s.) 3606 3507 3510

MAP

Discrepancy

principle

SNR -1.13 5.24 10.17

SSIM 0.0980 0.2961 0.6131

Time (s.) 3326 2215 3053

Best
parameter

SNR 9.46 10.40 10.39

SSIM 0.5078 0.6029 0.5920

Time (s.) 4380 2560 13740

TABLE II: Restoration results for imagex1 with x+ = 10
and σ2 = 4. Uniform kernel with size5 × 5. Initial SNR=
-2.55 dB.

GAST SPoiss WL2

VBA

Approx. 1

SNR 13.97 15.19 16.41

SSIM 0.3544 0.4167 0.4959

Time (s.) 58 64 70

Approx. 2

Ns = 160

SNR 18.05 19.07 19.11

SSIM 0.6664 0.6930 0.7066

Time (s.) 524 498 491

Approx. 2

Ns = 640

SNR 18.11 19.12 19.13

SSIM 0.6778 0.7034 0.7152

Time (s.) 2048 1828 1735

MAP

Discrepancy

principle

SNR 16.52 17.41 18.09

SSIM 0.5484 0.7570 0.6732

Time (s.) 594 583 2286

Best
parameter

SNR 17.83 18.73 19.09

SSIM 0.6519 0.6646 0.6702

Time (s.) 674 705 4164

TABLE III: Restoration results for the imagex2, x+ = 12
andσ2 = 9. Gaussian kernel with size25×25, std 1.6. Initial
SNR= 2.21 dB.

obtained with the different approaches, when the best approx-
imation strategy for the covariance matrix is retained in the
VBA method. It can be noticed that, unlike the other methods,
the reconstructed images with the proposed VBA algorithm
exhibit very few artifacts, without over-smoothed regions.

It should be emphasized that the problem of setting the
regularization parameter for MAP-based algorithms must be
carefully addressed as it highly impacts the quality of the
restored image. The main advantage of our approach is that
this parameter is tuned automatically without the need of the
ground truth, while also often being the most competitive
in terms of computation time. Furthermore, the performance
of the proposed method could be further improved by using
parallel implementation with more than 16 cores for the Monte
Carlo approximation of the covariance matrix allowing either
generating a higher number of samples (i.e. an improved
estimation error) or a reduction of the computation time.

Comparisons with image deblurring methods dedicated to a

GAST SPoiss WL2

VBA

Approx. 1

SNR 11.42 11.94 12.25

SSIM 0.4184 0.4403 0.4588

Time (s.) 45 47 53

Approx. 2

Ns = 160

SNR 12.04 12.31 12.28

SSIM 0.4555 0.4624 0.4627

Time (s.) 328 332 396

Approx.2

Ns = 640

SNR 12.09 12.36 12.33

SSIM 0.4617 0.4684 0.4683

Time (s.) 1965 2051 2019

MAP

Discrepancy

principle

SNR 12.08 12.38 12.08

SSIM 0.4523 0.4582 0.4314

Time (s.) 6252 3865 1929

Best
parameter

SNR 12.17 12.45 12.37

SSIM 0.4531 0.4576 0.4565

Time (s.) 3348 2441 2525

TABLE IV: Restoration results for the imagex3 with x+ = 15
and σ2 = 9. Uniform kernel with size5 × 5. Initial SNR=
3.14 dB.

GAST SPoiss WL2

VBA

Approx. 1

SNR 13.80 13.90 13.66

SSIM 0.5752 0.5769 0.5582

Time (s.) 29 34 88

Approx. 2

Ns = 160

SNR 13.72 13.76 13.56

SSIM 0.5667 0.5641 0.5491

Time (s.) 555 580 757

Approx. 2

Ns = 640

SNR 13.78 13.81 13.61

SSIM 0.5715 0.5687 0.5534

Time (s.) 1897 2170 2719

MAP

Discrepancy

principle

SNR 13.48 13.60 13.39

SSIM 0.5348 0.5393 0.5103

Time (s.) 3049 769 2644

Best
parameter

SNR 13.60 13.71 13.75

SSIM 0.5568 0.5605 0.5602

Time (s.) 8390 8477 2397

TABLE V: Restoration results for the imagex4 with x+ = 20
and σ2 = 9. Uniform kernel with size5 × 5. Initial SNR=
7.64 dB.

pure Poisson noise model have also been conducted. However,
in our examples, they were observed to lead to poor results
in terms of restoration quality, and to present a high com-
putational time. For instance, the application of the proximal
method from [33] using a TV prior and an empirical search
for the regularization parameter, leads to an image with SNR
equal to12.88 dB (computation time:3489 s.) on the test
problem from Table V, and a SNR of18.37 dB (computation
time: 986 s.) for the example from Table VI. The Plug and
Play ADMM strategy from [29] also leads to unsatisfactory
results with a final SNR of9.11 dB (computation time:1618
s.) and10.31 dB (computation time:204 s.) for the examples
from Table V and Table VI, respectively. These numerical
tests clearly highlight that image restoration in the presence of
Poisson-Gaussian noise is challenging, and should be treated
with specific methods that take into account the mixed noise
model in an explicit manner.
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GAST SPoiss WL2

VBA

Approx. 1

SNR 19.5 20.23 20.71

SSIM 0.6649 0.7135 0.7793

Time (s.) 16 17 34

Approx. 2

Ns = 160

SNR 20.27 20.59 20.56

SSIM 0.7473 0.7660 0.7877

Time (s.) 61 64 94

Approx.2

Ns = 640

SNR 20.35 20.67 20.64

SSIM 0.7563 0.7798 0.7989

Time (s.) 195 197 272

MAP

Discrepancy

principle

SNR 19.39 19.50 18.70

SSIM 0.7458 0.7550 0.7448

Time (s.) 717 1201 1087

Best
parameter

SNR 20.15 20.41 20.44

SSIM 0.7535 0.7594 0.7628

Time (s.) 559 125 253

TABLE VI: Restoration results for imagex5 with x+ = 20
and σ2 = 9. Gaussian kernel with size7 × 7, std 1. Initial
SNR= 8.55 dB.

GAST SPoiss WL2

VBA

Approx. 1

SNR 14.17 14.13 13.90

SSIM 0.7655 0.7647 0.7569

Time (s.) 9 8 26

Approx.2

Ns = 160

SNR 14.1 14.13 14.09

SSIM 0.7605 0.7619 0.7620

Time (s.) 104 148 246

Approx. 2

Ns = 640

SNR 14.16 14.19 14.16

SSIM 0.7639 0.7650 0.7658

Time (s.) 332 479 913

MAP

Discrepancy

principle

SNR 13.23 13.29 13.32

SSIM 0.7104 0.7126 0.7117

Time (s.) 2796 4900 1045

Best
parameter

SNR 13.77 13.79 13.84

SSIM 0.7565 0.7570 0.7591

Time (s.) 10084 10005 821

TABLE VII: Restoration results for the imagex6 with x+ =
100 andσ2 = 36. Uniform kernel with size3×3. Initial SNR=
10.68 dB.

2) Influence of the regularization term:The versatility of
the proposed VBA method allows us to consider a large
variety of regularization strategies, by defining appropriate
prior operatorsD. In the previous experiments, the TV
prior has led to satisfactory results in terms of SNR, but
a visual inspection of the restored versions of imagesx̄4

and x̄6 shows an undesirable starcasing effect. In this new
set of experiments, we propose to compare these TV-based
restoration results to those obtained with priors that have
been recently shown to better preserve the natural features
in images. Namely, we will consider the Hessian-based pe-
nalization [97], the semi-local total variation (SLTV) [98],
and the non-local total variation (NLTV) [99], [100]. The
Hessian prior operator is given, for everyj ∈ {1, . . . , N}, by
Djx =

[
[∇hhx]j ,

√
2[∇hvx]j , [∇vvx]j

]⊤ ∈ R
3 where∇hh,

∇hv and∇vv model the second-order finite difference opera-
tors between neighbooring pixels, so thatS = 3 andJ = N .
The SLTV is based on differences of neighboring gradient

(a) Degraded image with SNR= 2.21
dB (Gaussian kernel25×25, std 1.6,
x+ = 12 andσ2 = 9).

(b) Restored image with VBA ap-
proach using the Monte Carlo ap-
proximation with640 samples: SNR=
19.12 dB

(c) Restored image with discrepancy
principle: SNR= 17.41 dB

(d) Restored image with best param-
eter: SNR= 18.73 dB

Fig. 4: Restoration results for imagēx2 using SPoiss approx-
imation.

(a) Degraded image with SNR= 3.14
dB (Uniform kernel5× 5, x+ = 15
andσ2 = 9).

(b) Restored image with VBA ap-
proach using the Monte Carlo ap-
proximation with640 samples: SNR=
12.36 dB

(c) Restored image with discrepancy
principle: SNR= 12.38 dB

(d) Restored image with best param-
eter: SNR= 12.45 dB

Fig. 5: Restoration results for imagēx3 using SPoiss approx-
imation.

values and is computed here using a6-pixels neighborhood,
henceS = 12 andJ = N . The NLTV prior operator is defined
at every pixel position by a collection of weighted discrete
gradient differences operators across a large set of directions,
the weights being calculated according to a rough estimate of
the target image. In our experiments,49 different directions are
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(a) Degraded image with SNR=7.64
dB (Uniform kernel5× 5, x+ = 20
andσ2 = 9).

(b) Restored image with VBA ap-
proach using the diagonal approxima-
tion: SNR= 13.80 dB

(c) Restored image with discrepancy
principle: SNR= 13.48 dB

(d) Restored image with best param-
eter: SNR= 13.60 dB

Fig. 6: Restoration results for imagēx4 using GAST approx-
imation.

(a) Degraded image with
SNR= 8.55 dB (Gaussian kernel
7× 7, std1. x+ = 20 andσ2 = 9).

(b) Restored image with VBA ap-
proach using the diagonal approxima-
tion: SNR= 20.71 dB

(c) Restored image with discrepancy
principle: SNR= 18.70 dB

(d) Restored image with best param-
eter: SNR= 20.44 dB

Fig. 7: Restoration results for imagēx5 using WL2 approxi-
mation.

chosen and the corresponding weights are precomputed from
the restored images using VBA with the TV prior and the
diagonal approximation of the covariance matrix. As a result,
S = 98 and J = N in that case. The SPoiss likelihood is
chosen for the data fidelity term as it was observed to lead to
the best tradeoff in terms of image quality and computational
time in the previous set of tests. Table VIII summarizes the
obtained results for all the six test images, using the different

(a) Degraded image with
SNR= 10.68 dB (Uniform kernel
3× 3, x+ = 100 andσ2 = 36).

(b) Restored image with VBA ap-
proach using the Monte Carlo ap-
proximation with640 samples: SNR=
14.16 dB

(c) Restored image with discrepancy
principle: SNR= 13.32 dB

(d) Restored image with best param-
eter: SNR= 13.84 dB

Fig. 8: Restoration results for imagēx6 using WL2 approxi-
mation.

considered priors. Complementary to these numerical results,
Figures 9 and 10 show the visual improvements resulting from
the different priors. One can observe that the NLTV prior gives
in most experiments the best results in terms of SNR while the
other priors perform quite similarly. In particular, for the image
x5, the gain in terms of SNR exceeds2 dB when using the
NLTV prior, compared to the other regularization strategies.
Note that despite small differences in SNR between the results
obtained with the TV, SLTV and the Hessian regularizers,
the Hessian and the SLTV appear to offer good alternatives
in terms of visual quality to the TV prior for images that
consist mostly of ridges and smooth transition of intensities.
Indeed, it can be seen in Figure 10 that the smooth piecewise
constant areas are better reconstructed and the sharpness of
edges is better maintained using these two priors. For textured
images, Figure 9 shows that the NLTV prior gives rise to
less blurry images than the SLTV and Hessian priors and
seems to reduce again the undesired staircase effect arising
from TV regularization. However, as shown in Table VIII, the
approaches based on Hessian, SLTV and NLTV take much
more computation time than the TV based approach in most
test cases. Our suggestion would be to use the VBA approach
with the TV prior and the diagonal approximation of the
covariance matrix to obtain a satisfactory result in a low
computational cost, and to use VBA with NLTV prior, using
the former TV-based result to approximate the NLTV weights,
in order to further improve the visual quality of the restored
image.

VI. CONCLUSION

In this paper, we have proposed a variational Bayesian
approach for solving signal recovery problems in the presence
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x1 x2 x3 x4 x5 x6

TV

SNR 10.20 19.12 12.36 13.90 20.67 14.19

SSIM 0.6088 0.6930 0.4684 0.5769 0.7790 0.7650

Time (s.) 3507 1828 2051 34 184 479

Hessian

SNR 10.17 19.41 12.21 13.56 20.57 14.05

SSIM 0.6016 0.7300 0.4618 0.5501 0.8392 0.7643

Time (s.) 8600 5404 6974 5058 744 1332

SLTV

SNR 10.32 19.26 12.26 13.53 20.62 13.93

SSIM 0.6006 0.7189 0.4656 0.5478 0.8368 0.7578

Time (s.) 6359 2923 3497 1003 375 738

NLTV

SNR 10.35 19.10 12.46 14.09 22.89 13.95

SSIM 0.4644 0.7075 0.4704 0.5812 0.7972 0.7530

Time (s.) 7821 338 4602 8595 807 1547

TABLE VIII: Restoration results for the considered test im-
ages using the Spoiss likelihood and different regularization
functions.

(a) Restored image with a TV prior:
SNR= 13.90 dB

(b) Restored image with a Hessian
prior: SNR= 13.56 dB

(c) Restored image with a SLTV
prior: SNR= 13.53 dB

(d) Restored image with a NLTV
prior: SNR= 14.09 dB

Fig. 9: Restoration results for imagēx4 using SPoiss likeli-
hood and different regularization functions.

of non-Gaussian noise. Our approach has two main advan-
tages. First, the regularization parameter is tuned automatically
during the recovery process. Second, the designed method is
applicable to a wide range of prior distributions and data
fidelity terms. Simulations carried out on various images
corrupted with mixed Poisson-Gaussian noise have shown
that the proposed strategy constitutes a competitive solution
for low computational and high-quality restoration of images
compared with state-of-the art methods.

APPENDIX

PROOF OFPROPOSITIONIII.1

Let i ∈ {1, . . . ,M}. Let us definegi : R → R such that

(∀v ∈ R) gi(v) =
v2

2
− φi(v; yi)

µi(yi)
. (32)

(a) Restored image with a TV prior:
SNR= 20.67 dB

(b) Restored image with a Hessian
prior: SNR= 20.57 dB

(c) Restored image with a SLTV
prior: SNR= 20.62 dB

(d) Restored image with a NLTV
prior: SNR= 22.89 dB

Fig. 10: Restoration results for imagēx5 using SPoiss likeli-
hood and different regularization functions.

According to Assumption III.1,gi is convex, proper and lower
semi-continuous (lsc). Its conjugate function [101, Chapter 13]
reads:

(∀w ∈ R) g∗i (w) = sup
v∈R

(vw − gi(v)) (33)

= sup
v∈R

(
vw +

φi(v; yi)

µi(yi)
− v2

2

)
(34)

= sup
v∈R

(
−1

2
(v − w)2 +

φi(v; yi)

µi(yi)

)
+

w2

2
.

(35)

According to Definition (11),

(∀w ∈ R) g∗i (w) = ςi(w; yi) +
w2

2
. (36)

The conjugate ofg∗i is

(∀v ∈ R) g∗∗i (v) = sup
w∈R

(
vw − g∗i (w)

)
(37)

= sup
w∈R

(
vw − w2

2
− ςi(w; yi)

)

= sup
w∈R

(
−1

2
(v − w)2 − ςi(w; yi)

)
+

v2

2

= − inf
w∈R

(
1

2
(v − w)2 + ςi(w; yi)

)
+

v2

2
.

(38)

Sincegi is convex, proper and lsc [101, Theorem 13.32],gi =
g∗∗i so that

(∀v ∈ R) − φi(v; yi)

µi(yi)
= − inf

w∈R

(
1

2
(v − w)2 + ςi(w; yi)

)

(39)
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which is equivalent to

(∀v ∈ R) φi(v; yi) = µi(yi) inf
w∈R

(
1

2
(v − w)2 + ςi(w; yi)

)
,

(40)
so that (12) holds.

For everyv ∈ R, let

ŵi(v) = g′i(v). (41)

The functiongi being convex, proper and lsc, according to
[101, Corollary 16.24], the above relation can be reexpressed
by making use of the subdifferential∂g∗i of the convex
function g∗i (see [101, Chapter 16] for more details). More
precisely, (41) is equivalent to

v ∈ ∂g∗i
(
ŵi(v)

)
. (42)

According to Fermat’s rule [101, Theorem 16.2], (42) is a
necessary and sufficient condition forŵi(v) to be a minimizer
of the convex functionw 7→ g∗i (w)− vw.

This minimizer is unique sincêwi(v) is uniquely defined
by (41). We have therefore established that

ŵi(v) = argmax
w∈R

(
vw − g∗i (w)

)
. (43)

The definition ofgi in (32) shows that (41) also reads

ŵi(v) = v − 1

µi(yi)
φ′
i(v; yi). (44)

According to (37), it is straightforward that̂wi(v) also reaches
the infimum in (40). Hence the result by using (44) and (13).

REFERENCES

[1] G. E. Healey and R. Kondepudy, “Radiometric CCD camera calibration
and noise estimation,”IEEE Trans. Pattern Anal. Mach. Intell., vol. 16,
no. 3, pp. 267–276, 1994.

[2] H. Tian, B. Fowler, and E. A. Gamal, “Analysis of temporal noise in
CMOS photodiode active pixel sensor,”IEEE J. Solid-State Circuits,
vol. 36, no. 1, pp. 92–101, 2001.

[3] J. R. Janesick,Photon transfer. SPIE press San Jose, 2007.
[4] L. Azzari and A. Foi, “Gaussian-Cauchy mixture modeling for robust

signal-dependent noise estimation,” inProc. IEEE Int. Conf. Acoust.,
Speech Signal Process. (ICASSP 2014), Florance, Italy, 4-9 May 2014,
pp. 5357–5361.

[5] X. Liu, M. Tanaka, and M. Okutomi, “Practical signal-dependent noise
parameter estimation from a single noisy image,”IEEE Trans. Image
Process., vol. 23, no. 10, pp. 4361–4371, 2014.

[6] A. Chakrabarti and T. E. Zickler, “Image restoration with signal-
dependent camera noise,” Research Report, 2012. [Online]. Available:
http://arxiv.org/abs/1204.2994

[7] L. Boubchir, S. Al-Maadeed, and A. Bouridane, “Undecimated wavelet-
based Bayesian denoising in mixed Poisson-Gaussian noise with ap-
plication on medical and biological images,” inProc. Int. Conf. Image
Process. Theory, Tools and Applicat. (IPTA 2014), Paris, France, 14-17
Oct. 2014, pp. 1–5.

[8] S. M. Moser, “Capacity results of an optical intensity channel with
input-dependent Gaussian noise,”IEEE Trans. Inf. Theory, vol. 58,
no. 1, pp. 207–223, 2012.

[9] G. Aubert and J.-F. Aujol, “A variational approach to removing
multiplicative noise,”SIAM J. Appl. Math., vol. 68, no. 4, pp. 925–
946, 2008.

[10] A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image
denoising,” in Proc. IEEE Comput. Soc. Conf. Comput. Vision and
Pattern Recognition (CVPR 2005), vol. 2, San Diego, CA, USA, 20-
25 Jun. 2005, pp. 60–65.

[11] Y. Dong and T. Zeng, “A convex variational model for restoring blurred
images with multiplicative noise,”SIAM J. Imaging Sci., vol. 6, no. 3,
pp. 1598–1625, 2013.

[12] Y.-M. Huang, M. K. Ng, and Y.-W. Wen, “A new total variation method
for multiplicative noise removal,”SIAM J. Imaging Sci., vol. 2, no. 1,
pp. 20–40, 2009.

[13] S. Parrilli, M. Poderico, C. V. Angelino, and L. Verdoliva, “A nonlocal
SAR image denoising algorithm based on LLMMSE wavelet shrink-
age,” IEEE Trans. Geosci. Remote Sens, vol. 50, no. 2, pp. 606–616,
2012.

[14] J.-F. Cai, R. H. Chan, and M. Nikolova, “Fast two-phase image
deblurring under impulse noise,”J. Math. Imaging Vision, vol. 36,
no. 1, pp. 46–53, 2010.

[15] Y. Xiao, T. Zeng, J. Yu, and M. K. Ng, “Restoration of images corrupted
by mixed gaussian-impulse noise viaℓ1 − ℓ0 minimization,” Pattern
Recogn., vol. 44, no. 8, pp. 1708–1720, 2011.

[16] M. Yan, “Restoration of images corrupted by impulse noise and mixed
gaussian impulse noise using blind inpainting,”SIAM J. Imaging Sci.,
vol. 6, no. 3, pp. 1227–1245, 2013.

[17] J. Boulanger, L. Condat, T. Piolot, L. Sengmanivong, and
N. Pustelnik, “Nonsmooth convex optimization for structured
illumination microscopy image reconstruction,” GIPSA-lab, Research
Report, 2015. [Online]. Available: https://hal.archives-ouvertes.fr/hal-
01274259

[18] A. P. Petropulu, J. C. Pesquet, and X. Yang, “Power-law shot noise
and its relationship to long-memoryα-stable processes,”IEEE Trans.
Signal Process., vol. 48, no. 7, pp. 1883–1892, Jul 2000.

[19] J. Salmon, Z. Harmany, C.-A. Deledalle, and R. Willett, “Poisson noise
reduction with non-local PCA,”J. Math. Imaging Vis., vol. 48, no. 2,
pp. 279–294, 2014.

[20] S. Setzer, G. Steidl, and T. Teuber, “Deblurring Poissonian images by
split Bregman techniques,”J. Vis. Comm. Image Repr.,, vol. 21, no. 3,
pp. 193–199, 2010.

[21] T. Jeong, H. Woo, and S. Yun, “Frame-based Poisson image restoration
using a proximal linearized alternating direction method,”Inverse
Probl., vol. 29, no. 7, p. 075007, 2013.

[22] S. Harizanov, J.-C. Pesquet, and G. Steidl, “Epigraphical projection for
solving least squares Anscombe transformed constrained optimization
problems,” inProc. Int. Conf. Scale Space and Variational Methods
Comput. Vision (SSVM 2013), Schloss Seggau, Austria, 2-6 Jun. 2013,
pp. 125–136.
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