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Abstract Optimization methods play a central role in the
solution of a wide array of problems encountered in various
application fields, such as signal and image processing. Espe-
cially when the problems are highly dimensional, proximal
methods have shown their efficiency through their capability
to deal with composite, possibly nonsmooth objective func-
tions. The cornerstone of these approaches is the proximity
operator, which has become a quite popular tool in optimiza-
tion. In this work, we propose new dual forward-backward
formulations for computing the proximity operator of a sum
of convex functions involving linear operators. The pro-
posed algorithms are accelerated thanks to the introduction of
a block-coordinate strategy combined with a precondition-
ing technique. Numerical simulations emphasize the good
performance of our approach for the problem of jointly
deconvoluting and deinterlacing video sequences.
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1 Introduction

A large number of problems in image processing can be
expressed as inverse problems whose solution is defined
as the minimizer of a cost function which combines a
data fidelity term, that describes the processing leading to
the observed data, with some regularization terms account-
ing for prior information. In image and video restoration
problems, optimal solutions are usually reached using mod-
els that involve nonsmooth functions, for which proximity
operators appear as the most suitable tools [12]. Proxi-
mal methods indeed allow to consider the minimization
of a sum of functions, the differentiable ones being dealt
with through their gradient, whereas the nonsmooth func-
tions are processed by evaluating their proximity operator
[15]. Among the existing proximal methods, the class of
primal–dual algorithms provides appealing strategies mak-
ing it possible to split the considered objective function into
simpler terms that are handled separately, without requiring
any linear operator inversion. This allows the computational
complexity to be reduced, especially when the processed
data and linear operators are of high dimensions. How-
ever, some of these methods encounter several limitations
due to slow convergence and high memory requirements
issues. These effects are especially critical when one has to
deal with huge datasets as in the case of video processing
[35,36].

This paper addresses the problem of computing the prox-
imity operator of a sum of convex possibly nonsmooth
functions composed with arbitrary linear operators, in the
context of large-scale optimization problems. This problem
has attracted a large interest and has beenwidely investigated
in the literature via deterministic and stochastic approaches.
Among deterministic methods, one canmention the dual par-
allel algorithm in [10], that converges strongly to the sought
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proximity operator, in the case of convex proper lower-
semicontinuous functions composed with bounded linear
operators. Its particular case is the Dykstra-like algorithm
[2] when the problem reduces to evaluating the proxim-
ity operator of a sum of two convex functions. It is also
worth mentioning the work in [18] which proposes a par-
allel splitting version of the Alternating Direction Method of
Multipliers [6].

An appealing idea in the context of optimization is to adopt
a block-coordinate strategy [9], in such a way that two suc-
cessive iterations deal with different blocks of variables. The
block selection rule can be either deterministic (e.g., cyclic,
quasi-cyclic, greedy) [30,31] or random [13,20,28]. Based
on this idea, various stochastic algorithms have been initially
proposed in machine learning area, usually known as dual
ascent algorithms. One canmention the stochastic dual coor-
dinate ascent algorithm [33]where the functions are assumed
to be Lipschitz continuous or smooth with a Lipschitz gradi-
ent, and its variant [29] where the selection rule of the blocks
is arbitrary and the smoothness of the objective function is
required. Another stochastic algorithm is the communica-
tion efficient distributed dual coordinate ascent algorithm
[20] which has been designed in order to distribute block
processing over multiple cores or remote machines. Nev-
ertheless, the convergence guaranties shown for these dual
ascent algorithms only concern decay properties on the dual
of the objective function, the variables being assumed to be
scalar. In the deterministic case, an accelerated FISTA-like
method is proposed in [7], where the authors investigate a
similar problem. They provide convergence guaranties for
primal iterates as well, when each involved function deals
with a variable belonging to R

2.
The main contribution of this paper is the proposal of

new primal–dual algorithms, based on the forward-backward
iterations similarly to [10,11], and combined with a block-
coordinate strategywhere preconditioningmatrices are intro-
duced. The proposed algorithms can be used for computing
the proximity operator of a sumof convex functions involving
linear operators. In addition, we show that they benefit from
convergence guaranties on both primal and dual sequences
for arbitrary linear operators. Finally, the effectiveness of our
algorithms in dealingwith large-scale optimization problems
is demonstrated for the deconvolution and deinterlacing of
video sequences.

The paper is structured as follows: Sect. 2 introduces
some optimization tools that will be needed throughout the
paper as well as the considered optimization problem. In
Sect. 3, we derive new algorithms by introducing a block-
coordinate strategy. Section4 investigates the convergence
properties of our algorithms, andSect. 5 addresses their appli-
cation to deconvolution and super-resolution of interlaced
video sequences. Finally, some conclusions are drawn in
Sect. 6.

2 Problem Statement

2.1 Optimization Background

Let us first introduce some defns and notations that will be
used throughout this paper.

Definition 1 Let ψ be a function from R
N to ] − ∞,+∞].

The domain of ψ is domψ = {x ∈ R
N : ψ(x) < +∞}.

The function ψ is said proper if and only if its domain dom
ψ is nonempty.

Definition 2 Let E be a subset ofRN . The indicator function
ιE of set E is given by

ιE (x) =
{
0 if x ∈ E,

+∞ otherwise.
(1)

Definition 3 Let Γ0(R
N ) denote the set of convex proper

lower-semicontinuous functions from R
N to ] − ∞,+∞].

Let ψ ∈ Γ0(R
N ) and B ∈ R

N×N be a symmetric positive
definite matrix. The proximity operator of ψ at x̃ ∈ R

N

relative to the metric induced by B is denoted by proxB,ψ (̃x)
and defined as [12]:

proxB,ψ (̃x) = argmin
x∈RN

ψ(x) + 1

2
‖x − x̃‖2B, (2)

where the weighted norm ‖·‖B = 〈 · | B · 〉1/2 is used, 〈 · | · 〉
being the usual scalar product of R

N . When B is equal to the
identity matrix of R

N , one retrieves the classical proximity
operator.

Definition 4 Let ψ and ϕ be functions from R
N to ] −

∞,+∞]. The infimal convolution of ψ and ϕ is

ψ � ϕ : R
N →[−∞,+∞] : x→ inf

y∈RN
(ψ(y) + ϕ(x − y)) .

(3)

The Moreau envelope of ψ of parameter γ > 0 is

γ ψ = ψ �
(

1

2γ
‖ · ‖2

)
. (4)

Definition 5 The conjugate of a function ψ is denoted by
ψ∗ and defined as follows:

ψ∗ : R
N → [−∞,+∞] : x → sup

ν∈RN
(〈ν|x〉 − ψ(ν)) . (5)

Definition 6 Let A ∈ R
N×N and B ∈ R

N×N be symmetric
matrices. A 	 B (resp. A 
 B) if, for every x ∈ R

N \ {0},

x�Ax � x�Bx (resp. x�Ax > x�Bx). (6)
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Definition 7 Let ψ ∈ Γ0(R
N ). The Moreau subdifferential

of ψ at x ∈ domψ is defined as

∂ψ(x)=
{
t ∈R

N : ∀y∈R
N , ψ(y)−〈y−x |t〉 � ψ(x)

}
.

(7)

Definition 8 Afunctionψ satisfies theKurdyka–Łojasiewicz
inequality if for every ξ ∈ R and for every bounded subset
E ∈ R

N , there exist three constants κ > 0, ζ > 0 and θ ∈
[0, 1[ such that [25]

(∀t ∈ ∂ψ(y)
) ‖t‖ ≥ κ|ψ(y) − ξ |θ , (8)

for every y ∈ E such that |ψ(y) − ξ | � ζ (with the conven-
tion 00 = 0).

2.2 Minimization Problem

In this paper, similarly to the work in [10], we are interested
in computing the proximity operator of g at x̃ ∈ R

N , where
g is defined as

(
∀x ∈ R

N
)

g(x) = f (x) + h(Ax), (9)

with f ∈ Γ0(R
N ), h ∈ Γ0(R

M ) and A ∈ R
M×N is a linear

operator. This reads:

Find x̂ = proxg (̃x),

= argmin
x∈RN

f (x) + h(Ax) + 1

2
‖x − x̃‖2. (10)

Let us assume that

Assumption 1 ri
(
A(dom f)

) ∩ ri (dom h) �= ∅,

where ri (S) denotes the relative interior of a set S. Then, the
dual problem of (10) can be expressed as:

Find ŷ = argmin
y∈RM

ϕ(−A�y + x̃) + h∗(y), (11)

where ϕ = f ∗ � 1
2 ‖ . ‖2 is the Moreau envelope of param-

eter 1 of f ∗ in the standard Euclidean metric. The latter
function has a nonexpansive (i.e., 1-Lipschitzian) gradient.
One can apply the preconditioned forward-backward algo-
rithm to the dual problem (11) by performing at each iteration
n ∈ N a gradient step on the smooth function ϕ at yn and
a proximal step on the convex function h∗, as described in

Algorithm (12):

Let y0 ∈ R
M .

For n = 0, 1, . . .⌊
ỹn = yn − γn B−1∇(ϕ ◦ (−A� · + x̃)

)
(yn)

yn+1 = prox
γ −1
n B,h∗(ỹn)

(12)

where B ∈ R
M×M is a symmetric positive definite matrix

with B 	 AA� and

∀n ∈ N, γn ∈ [ε, 2 − ε] with ε ∈]0, 1]. (13)

Note that

∇(ϕ ◦ (−A� · + x̃)
) = −A∇ϕ(−A� · +x̃)

= −A prox f (−A� · +x̃). (14)

Then, by setting

(∀n ∈ N) xn = prox f (̃x − A�yn), (15)

and using the Moreau decomposition

proxB,h∗
j
= Id − B−1proxB−1,h j

(B ·), (16)

the gradient of ϕ can be expressed by means of xn using (14)
and (15), whereas the proximity operator of h∗ can be rewrit-
ten in terms of h thanks to Moreau decomposition formula
(16). This leads to the following algorithm:

Dual Forward-Backward Algorithm

Let y0 ∈ R
M .

For n = 0, 1, . . .
⎢⎢⎢⎢⎢⎣
xn = prox f (̃x − A�yn)

ỹn = yn + γn B
−1Axn

yn+1 = ỹn − γn B
−1proxγn B−1,h(γ

−1
n B ỹn)

(17a)

(17b)

(17c)

It can be shown that the sequences (xn)n∈N and (yn)n∈N
generated by Algorithm (17) converge to the solutions to
the primal and dual problems x̂ and ŷ, respectively, [11].
Moreover the following relation is satisfied

x̂ = prox f (̃x − A� ŷ). (18)

Remark 1 Let us introduce the variables

(∀n ∈ N) pn = proxγn B−1,h(γ
−1
n B ỹn), (19)
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qn = −A�yn+1 + x̃ − γn B
−1A� pn,

= x̃ − A�(γn B
−1Axn + yn), (20)

and let us notice that, if γn ≡ γ satisfies (13) , then the
following recursive relation is fulfilled:

qn+1 = qn + γ B−1A�(pn − Axn+1). (21)

Algorithm (17) can then be rewritten as

Dykstra-like formulation of (17)
Let⎢⎢⎢⎢⎢⎣
y0 ∈ R

M ,

x0 = prox f (̃x − A�y0),

q0 = x̃ − A�(γ B−1Ax0 + y0).

(22a)

(22b)

For n = 0, 1, . . .⎢⎢⎢⎢⎢⎢⎢⎢⎣

pn = proxγ B−1,h(γ
−1Byn + Axn)

yn+1 = yn + γ B−1(Axn − pn)

xn+1 = prox f (qn + γ B−1A� pn)

qn+1 = qn + γ B−1A�(pn − Axn+1)

(22c)

(22d)

In particular, as pointed out in [11], if A = IN and
γ B−1 = IM we retrieve the same iterative structure as the
Dykstra-like algorithmwhich was proposed in [2] andwhose
convergence was proved for another initialization strategy.

Note that Algorithm (17) does not exploit the potential sep-
arability of the function h; thereby, one has to deal with the
full linear operator A at each iteration, which may be very
costly when the size of A is large.

3 Proposed Optimization Method

Now, wewill derive new algorithms based onAlgorithm (17)
when h in (9) is a separable function:

(∀x ∈ R
N ) h(Ax) =

J∑
j=1

h j (A j x), (23)

where, for every j ∈ {1, . . . , J }, A j is a nonnull matrix in

R
Mj×N with

J∑
j=1

Mj = M , h j ∈ Γ0(R
Mj ), and

A =
⎡
⎢⎣
A1
...

AJ

⎤
⎥⎦ . (24)

Then, Problem (10) becomes:

Find x̂ = proxg (̃x),

= argmin
x∈RN

f (x) +
J∑

j=1

h j (A j x) + 1

2
‖x − x̃‖2.

(25)

According to (24), the dual problem reads:

Find ŷ = argmin
y=(y j )1≤ j≤J∈RM

ϕ
(
x̃ −

J∑
j=1

A�
j y

j
)

+
J∑

j=1

h∗
j (y

j ).

(26)

Note that the dual variable y is nowdecomposed into J blocks
of variables (y j )1≤ j≤J . The application of the variablemetric
block-coordinate forward-backward algorithm in [9] to the
dual problem (26) yields the new algorithm (27) where, at
each iteration n ∈ N, a block of index jn is activated and
its associated dual variable y jn

n is updated by performing a
proximal step on the function h jn , in the metric induced by
a preconditioning matrix Bjn satisfying (28). Note that the

dual variable y jn
n is the only one to be processed at the nth

iteration, whereas the other dual variables of index j �= jn
are kept intact during this iteration.

Let (y j
0 )1≤ j≤J ∈ R

M .

For n = 0, 1, . . .⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xn = prox f (̃x − A�yn)

jn ∈ {1, . . . , J }
ỹ jn
n = y jn

n + γn B
−1
jn

A jn xn

y jn
n+1 = ỹ jn

n − γn B
−1
jn
prox

γn B
−1
jn

,h jn

(
γ −1
n B jn ỹ

jn
n
)

y j
n+1 = y j

n j ∈ {1, . . . , J } \ { jn}

(27a)

(27b)

(27c)

where γn fulfills (13), and

(∀ j ∈ {1, . . . , J }) Bj 
 OMj with Bj 	 A j A
�
j . (28)

The simplest (non-preconditioned) version ofAlgorithm (27)
is obtained by choosing

(∀ j ∈ {1, . . . , J }) Bj = β j IM j , (29)

whereβ j is the squared normof the associated linear operator
A j , i.e., β j = ‖A j‖2.
Remark 2

1. The pair
(̂
x, (ŷ j )1≤ j≤J

)
is a solution to the primal and

dual problems if and only if
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
J∑

j=1

A�
j ŷ

j ∈ ∂ f (̂x) + x̂ − x̃

⇔ x̂ = prox f

(
x̃ −

J∑
j=1

A�
j ŷ

j
)
,

(∀ j ∈ {1, . . . , J }) ŷ j ∈ ∂h j (A j x̂).

(30)

(31)

When the functions (h j )1≤ j≤J are differentiable, the
second optimality condition can be used to define a dual
residue, which is exploited for the blocks selection rule
in some recent dual coordinate ascent strategies [17].

2. If relation (29) is satisfied, f = θ‖·‖1 with θ ∈ ]0,+∞[,
and (∀ j ∈ {1, . . . , J }) h j = ι{b j } with b j ∈ R

Mj , we
recover an algorithm similar to the one studied in [26].

3.1 Simplified Form of Preconditioned Dual Block
Forward-Backward

In (27a), the update of the primal variable xn involves all
the dual variables (y jn

n )1� j�J and the whole matrix A�,
whereas only one block jn is being processed. To overcome
this limitation,we introduce a newvariable (zn)n∈N that takes
into account only the updated dual variable.
To do so, let us define (zn)n∈N such that

zn = −A�yn = −
J∑

i=1

A�
i y

i
n . (32)

Then we have

zn+1 = −
J∑

i=1

A�
i y

i
n+1 = −

J∑
i=1
i �= jn

A�
i y

i
n+1 − A�

jn y
jn
n+1,

= −
J∑

i=1

A�
i y

i
n − A�

jn y
jn
n+1 + A�

jn y
jn
n ,

= zn − A�
jn (y

jn
n+1 − y jn

n ). (33)

Hence, Algorithm (27) becomes:

Dual Block FB Algorithm

Let (y j
0 )1≤ j≤J ∈ R

M .

For n = 0, 1, . . .⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xn = prox f (̃x + zn)

jn ∈ {1, . . . , J }
ỹ jn
n = y jn

n + γn B
−1
jn

A jn xn

y jn
n+1 = ỹ jn

n − γn B
−1
jn
prox

γn B
−1
jn

,h jn

(
γ −1
n B jn ỹ

jn
n

)

y j
n+1 = y j

n , j ∈ {1, . . . , J } \ { jn}
zn+1 = zn − A�

jn (y
jn
n+1 − y jn

n )

(34a)

(34b)

where

z0 = −
J∑

j=1

A�
j y

j
0 . (35)

This simplified form of Algorithm (27) is more efficient in
the sense that the updating step involves only the selected
block jn ; thereby, this version reduces the complexity and
memory requirements.

3.2 Particular Case When f = 0

A special interesting case is obtained when f is the null
function. Then, (34a) reduces to

xn = x̃ + zn . (36)

Thus, by changing the initialization (35) to x0 = x̃ −∑J
j=1 A

�
j y

j
0 and after some simplifications, Algorithm (34)

becomes:

Dual Block FB Algorithm when f = 0f = 0f = 0

Let (y j
0 )1≤ j≤J ∈ R

M .

For n = 0, 1, . . .⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

jn ∈ {1, . . . , J }
ỹ jn
n = y jn

n + γn B
−1
jn

A jn xn

y jn
n+1 = ỹ jn

n − γn B
−1
jn
prox

γn B
−1
jn

,h jn

(
γ −1
n B jn ỹ

jn
n
)

y j
n+1 = y j

n , j ∈ {1, . . . , J } \ { jn}
xn+1 = xn − A�

jn
(y jn

n+1 − y jn
n ).

(37)

3.3 Parallel Dual Block Forward-Backward

Algorithm (34) can be compared with its parallel variant pro-
posed in [14, Example 5.6] given by:

Parallel Dual Block FB Algorithm [14]

Let (y j
0 )1≤ j≤J ∈ R

M .

For n = 0, 1, . . .⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xn = prox f (̃x + zn)

For j = 1, . . . , J⎢⎢⎢⎣ ỹ j
n = y j

n + γn B
−1
j A j xn

y j
n+1 = ỹ j

n − γn B
−1
j prox

γn B
−1
j ,h j

(
γ −1
n B j ỹ

j
n
)

zn+1 = zn −
J∑

j=1
A�
j (y j

n+1 − y j
n )

(38)
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where z0 is given by (35) and

∀ j ∈ {1, . . . , J } Bj 	 β IM j and β =
J∑

j=1

‖A j‖2. (39)

Some similarities existing between Algorithms (34) and (38)
can be observed. However, in Algorithm (38), the dual vari-
ables (y j

n )1≤ j≤J are updated in parallel and the update of
xn has to be performed from all these dual variables. Con-
versely, in Algorithm (34), the dual variables are updated
sequentially, and after any update of each of them, the primal
variable is also updated. When no parallel implementation is
used, this second solution can be expected to be more effi-
cient. In addition, conditions (39) imposed on the matrices
(Bj )1≤ j≤J in Algorithm (38) appear to be more restrictive
than those imposed in Algorithm (34). Since the precondi-
tioning matrices (Bj )1≤ j≤J usually play an important role in
the convergence speed, more freedom in their choice should
also be beneficial to the algorithm performance.

A variant of the above parallel algorithm dealing with the
case when f = 0 can be derived from the parallel block
forward-backward algorithm proposed in [10] which, in the
absence of error terms and relaxation factor, reads:

Parallel Dual Block FBAlgorithmwhen f = 0 [10]

Let (y j
0 )1≤ j≤J ∈ R

M .

For n = 0, 1, . . .⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

For j = 1, . . . , J⎢⎢⎢⎣ ỹ j
n = y j

n + γn B
−1
j A j xn

y j
n+1 = ỹ j

n − γn B
−1
j prox

γn B
−1
j ,h j

(
γ −1
n B j ỹ

j
n
)

xn+1 = xn −
J∑

j=1
A�
j (y j

n+1 − y j
n )

(40)

where

∀ j ∈ {1, . . . , J } Bj = βω−1
j IM j , with β = max

j∈{1,...,J } ‖A j‖2,

and (ω j )1≤ j≤J ∈]0, 1]J are such that
J∑

j=1

ω j = 1.

Algorithms (37) and (40) exhibit several similarities; how-
ever, as mentioned hereabove, the main difference lies in the
update rule of the dual variables. Another advantage of Algo-
rithm (37) is that it leads to less restrictive conditions on the
matrices (Bj )1≤ j≤J . Indeed, for Algorithm (40), we have

(∀ j ∈{1, . . . , J }) Bj 	ω j B j =β IM j 	‖A j‖2 IM j 	 A j A
�
j .

3.4 Proximity Operator in a General Metric

In practice, one may be interested in more general problems
of the form [8]:

Find x̂ = argmin
x∈RN

f (x)+
J∑

j=1

h j (A j x)+ 1

2
‖x − x̃‖2C . (41)

where C ∈ R
N×N is a symmetric strictly positive definite

matrix.Algorithms can be deduced fromAlgorithms (34) and
(37) by simply replacing the Euclidean metric of R

N by the
metric induced by C (while keeping the standard Euclidean
metric for the spaces R

Mj with j ∈ {1, . . . , J }). By noticing
that in the new metric, the adjoints of operators (A j )1≤ j≤J

are replaced by (C−1A�
j )1≤ j≤J , Algorithm (34) yields:

Dual Block FB Algorithm in a General Metric

Let (y j
0 )1≤ j≤J ∈ R

M .

For n = 0, 1, . . .⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xn = proxC, f (̃x + zn)

jn ∈ {1, . . . , J }
ỹ jn
n = y jn

n + γn B
−1
jn

A jn xn

y jn
n+1 = ỹ jn

n − γn B
−1
jn
prox

γn B
−1
jn

,h jn

(
γ −1
n B jn ỹ

jn
n
)

y j
n+1 = y j

n , j ∈ {1, . . . , J } \ { jn}
zn+1 = zn − C−1A�

jn
(y jn

n+1 − y jn
n )

(42)

where

z0 = −C−1
J∑

j=1

A�
j y

j
0 and ∀ j ∈ {1, . . . , J } Bj 	 A jC

−1A�
j .

Similarly, a new algorithm can be derived from Algo-
rithm (37) for computing the sought proximity operator in
the metric induced by the matrix C when f = 0, by sim-
ply substituting the adjoints operators of (A j )1≤ j≤J with
(C−1A�

j )1≤ j≤J .

4 Convergence Analysis

We will need some additional assumptions in order to
establish the convergence of the preconditioned dual block
forward-backward algorithm (34):

Assumption 2

1. For every j ∈ {1, . . . , J }, the restriction of h∗
j on its

domain is continuous.
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2. The sequence ( jn)n∈N follows a quasi-cyclic rule, i.e.,
there exists K ≥ J such that, for every n ∈ N,
{1, . . . , J } ⊂ { jn, . . . , jn+K−1}.

3. The functions f and (h j )1≤ j≤J are semi-algebraic.

The following result can then be established:

Proposition 1 Suppose that Assumptions 1 and 2 hold. Let
(xn)n∈N and

(
yn = (y j

n )1≤ j≤J
)
n≥1 be sequences generated

by Algorithm (34). If (yn)n≥1 is bounded, then (xn)n∈N con-
verges to the solution to the primal problem (25) and (yn)n≥1

converges to a solution to the dual one (26).

Proof We have seen that our algorithm amounts to applying
a block-coordinate forward-backward approach to the func-
tion:

� : (y j )1≤ j≤J �→ ϕ
(

−
J∑

j=1

A�
j y

j + x̃
)

+
J∑

j=1

h∗
j (y

j ). (43)

Since ‖·‖2 is a semi-algebraic function and semi-algebraicity
is preserved under standard operations such as sum, infi-
mum, conjugate, and inf-convolution, it can be deduced from
Assumption 2.2 that � is semi-algebraic. It follows from [9,
Theorem 3.1] that the sequence

(
yn
)
n≥1 generated by Algo-

rithm (34) converges to a critical point ŷ of �. Since � is a
convex function, such a critical point is a (global) minimizer
of�. By using now (27a) and the continuity of the proximity
operator, it follows that the sequence (xn)n∈N converges to
a solution x̂ satisfying (18). As already mentioned, x̂ is then
the solution to (25). ��
Remark 3 1. The boundedness of sequence (yn)n≥1 is sat-

isfied if � is a coercive function. This happens, in
particular, if all the functions (h∗

j )1≤ j≤J are coercive,
that is when, for every j ∈ {1, . . . , J }, 0 ∈ int(dom hj)
[3, Proposition 14.16].

2. The quasi-cyclic rule (also sometimes called essentially
cyclic rule) providesmuchmore flexibility than the cyclic
one. In particular, some of the (blocks of) variables may
be activated more frequently than others, and the order in
which the variables are swept can be randomly chosen.

Some more accurate convergence rate results can also be
provided. In particular, we give below conditions for which
the linear convergence of the proposed algorithm is secured.

Proposition 2 Suppose that Assumptions 1 and 2 hold and
that x̂ and ŷ are the limits of the sequences (xn)n∈N and(
yn = (y j

n )1≤ j≤J
)
n≥1, respectively. assuming that (yn)n∈N

is bounded, there exist α ∈]0,+∞[ and λ ∈]0,+∞[ such
that, for every n ≥ 1,

‖xn − x̂‖ ≤ λ‖A‖n−α (44)

‖yn − ŷ‖ ≤ λn−α. (45)

In addition, if one of the following conditions is met:

1. �, as defined by (43), is strongly convex,
2. f is Lipschitz differentiable and A is surjective,1

3. for every j ∈ {1, . . . , J }, h j is Lipschitz differentiable,
4. � is a piecewise polynomial function of degree 2,
5. f is a quadratic function and, for every j ∈ {1, . . . , J },

h∗
j is a piecewise polynomial function of degree 2,

then, there exist τ ∈ [0, 1[ and λ′ ∈]0,+∞[ such that, for
every n ≥ 1,

‖xn − x̂‖ ≤ λ′‖A‖τ n (46)

‖yn − ŷ‖ ≤ λ′τ n . (47)

Proof As shown by [9, Theorem 3.2], the convergence rate
of the dual forward-backward algorithm depends on the Ło-
jasiewicz exponent of function � defined by (43) at ŷ. Then,
(45) corresponds to the worst case upper bound. It then
follows from (27a), (18), and the nonexpansiveness of the
proximity operator [3] that, for every n ≥ 1,

‖xn − x̂‖ = ‖prox f (̃x − A�yn) − prox f (̃x − A� ŷ)‖
≤ ‖A�(yn − ŷ)‖
≤ ‖A‖‖yn − ŷ‖, (48)

which yields (44).
If � is a strongly convex function [4] or � is a piecewise

polynomial function of degree 2 [4], the Łojasiewicz expo-
nent of function � is equal to 1/2. It then follows from [9,
Theorem 3.2] that (47) holds. The decay behavior of (xn)n≥1

in (46) is then deduced as previously.
If f is Lipschitz differentiable, then f + 1

2‖ · ‖2 is also
Lipschitz differentiable, and its conjugate ϕ is thus strongly
convex [3]. Since A is surjective,

(y j )1≤ j≤J �→ ϕ
(

−
J∑

j=1

A�
j y

j + x̃
)

is strongly convex. The strong convexity of � is then guar-
anteed.
Similarly, if Condition 3 holds, then, for every j ∈
{1, . . . , J }, h∗

j is strongly convex, hence �.

Finally, if Condition 5 holds, f + 1
2‖ · ‖2 is a quadratic func-

tion and so is its conjugate ϕ. Since functions (h∗
j )1≤ j≤J are

assumed to be piecewise polynomial functions of degree 2,
� is a piecewise polynomial function of degree 2. ��
1 It is sometimes said that A is full row rank.
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5 Application to Video Restoration

5.1 Observation Model

In this section, we consider the problem of jointly deblur-
ring and deinterlacing video sequences. Interlacing scan has
been the main format for TV recording, broadcasting, and
displaying [27], where each frame is formed by merging two
successive fields resulting from even (resp. odd) horizon-
tal lines of the first (resp. second) image. However, with the
increased popularity ofHDflat LCD and plasma screens, that
benefit from high brightness and contrast, the human visual
system becomes more sensitive to interlacing artefacts [22].
Hence, the need for high image quality has become essential
to meet the actual customer’s demand [21].
The degradation model is expressed as

(∀t ∈ {1, . . . , T }) yt = St (h ∗ xt ) + wt , (49)

where (yt )1≤t≤T ∈ R
T L denotes the interlaced frame se-

quence, (xt )1≤t≤T ∈ R
T N is the sought progressive video

sequence with T the number of time frames, and L (resp. N )
the number of pixels in each image of the interlaced (resp.
progressive) sequence. The operator St is a row decimation
operator where St = So for odd frames and St = Se for even
frames. h ∈ R

P corresponds to a convolution kernel account-
ing for spatial blur, and (wt )1≤t≤T ∈ R

T L is an unknown
additive noise.

Note that in deinterlacing problems, the number of rows
in the progressive video sequence (xt )1≤t≤T is equal to twice
that of the fields in the interlaced video sequence (yt )1≤t≤T ;
thereby, we have N = 2L .

5.2 Optimization Problem

An estimate of the original sequence can be obtained by
finding a solution to the following penalized least squares
problem:

minimize
x∈RT N

F(x) = �(x) + �(x), (50)

where � denotes the data fidelity term given by

(∀x ∈ R
T N ) �(x) = 1

2

T∑
t=1

‖St (h ∗ xt ) − yt‖2, (51)

and� is a regularization function introducing prior informa-
tion on the sought video sequence defined as

(
∀x ∈ R

T N
)

�(x)=
T∑
t=1

�t (xt )+ι[xmin,xmax]T N (x)+M(x).

(52)

Fig. 1 Shift operators
(V�)�∈{1,...,6} applied to a given
pixel position n ∈ {1, . . . , N }

zn(V1z)n(V3z)n

(V2z)n

(V4z)n

(V5z)n

(V6z)n

The indicator function ι[xmin,xmax]T N imposes a range [xmin,

xmax] on the pixel values of the images composing the video
sequence. �t is a spatial regularization term that manages
each image xt ∈ R

N independently, while M accounts for a
temporal regularization function.

5.2.1 Spatial Regularization

For every t ∈ {1, . . . , T }, �t incorporates prior informa-
tion on each image xt ∈ R

N and is defined as �t (xt ) =
η sltv(xt ) where η � 0 and “sltv” denotes the semi-local
total variation from [16]:

(∀z ∈ R
N ) sltv(z) =

∑
�∈�

χ (Dz − V�Dz) . (53)

Hereabove, D ∈ R
2N×N is the concatenation of the horizon-

tal and vertical gradient operators:

D =
[∇h

∇v

]
, with ∇h ∈ R

N×N , ∇v ∈ R
N×N , (54)

� = {1, . . . , 6} and (V�)�∈{1,...,6} ∈ R
2N×2N represent shift

operators as illustrated in Fig. 1. Moreover, χ : R
2N → R is

given by

χ

(
z1
z2

)
=

N∑
n=1

√
((z1)n)2 + ((z2)n)2. (55)

Note that (53) can be rewritten as

(∀z∈R
N ) sltv(z)=

∑
�∈�

χ (L�z) with L� =(I2N −V�)D.

(56)

5.2.2 Temporal Regularization

In (52), M represents a nonsmooth temporal regularization
term similar to the one proposed in [1] that takes into account
temporal redundancies. It is given by
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(∀x ∈ R
T N ) M(x) =

T∑
t=1

∑
�∈Vt

β�,t‖xt − M�→t x�‖1, (57)

where ‖ · ‖1 denotes the �1 norm, in addition, for every t
and �, β�,t are positive weights, the index set Vt defines the
neighborhood of the current image xt (i.e., � ∈ Vt is such
that |� − t | is small), and M�→t ∈ R

N×N is a linear operator
modeling the sought motion fields between the current image
xt and the neighboring image x� of the video. The matrices
M�→t are related to some vertical and horizontal shift matri-
ces u�→t ∈ R

N1×N2 and v�→t ∈ R
N1×N2 , respectively, with

N1 (resp. N2) corresponding to the height (resp. width) of
the images (i.e., N1N2 = N ), such a way that

(∀i ∈ {1, . . . , N1}) (∀ j ∈ {1, . . . , N2})
M�→t x�(i, j) ≈ x� (i − u�→t (i, j) , j − v�→t (i, j)) .

(58)

More precisely, we set

u�→t = u�→t + δu�→t and v�→t = v�→t + δv
�→t , (59)

where u�→t and v�→t represent the integer part of u�→t and
v�→t , respectively, and δu�→t , δv

�→t are their decimal part.
We propose to resort to the following bilinear interpolation
in order to approximate (58):

(∀i ∈ {1, . . . , N1}) (∀ j ∈ {1, . . . , N2}) M�→t x�(i, j)

= (1−δu�→t (i, j)
) (
1−δv

�→t (i, j)
)
x� (i−u�→t (i, j) , j − v�→t (i, j))

+ (1 − δu�→t (i, j)
)
δv
�→t (i, j)x� (i − u�→t (i, j) , j − v�→t (i, j) − 1)

+ δu�→t (i, j)
(
1 − δv

�→t (i, j)
)
x� (i − u�→t (i, j) − 1 , j − v�→t (i, j))

+ δu�→t (i, j)δ
v
�→t (i, j) x� (i − u�→t (i, j) − 1 , j − v�→t (i, j) − 1) .

(60)

Thus

M�→t = D1,�→t M1,�→t+D2,�→t M2,�→t + D3,�→t M3,�→t

+ D4,�→t M4,�→t , (61)

where Dk,�→t ∈ R
N×N with k ∈ {1, . . . , 4} are diago-

nal matrices such that, for every y ∈ R
N , for every i ∈

{1, . . . , N1} and for every j ∈ {1, . . . , N2}:
D1,�→t y(i, j) = (1 − δu�→t (i, j)

) (
1 − δv

�→t (i, j)
)
y(i, j),

D2,�→t y(i, j) = (1 − δu�→t (i, j)
)

δv
�→t (i, j) y(i, j),

D3,�→t y(i, j) = δu�→t (i, j)
(
1 − δv

�→t (i, j)
)
y(i, j),

D4,�→t y(i, j) = δu�→t (i, j) δv
�→t (i, j) y(i, j),

and Mk,�→t ∈ {0, 1}N×N , k ∈ {1, . . . , 4}, are defined as

M1,�→t y(i, j) = y (i − u�→t (i, j) , j − v�→t (i, j)) ,

M2,�→t y(i, j) = y (i − u�→t (i, j) , j − v�→t (i, j) − 1) ,

M3,�→t y(i, j) = y (i − u�→t (i, j) − 1 , j − v�→t (i, j)) ,

M4,�→t y(i, j) = y (i−u�→t (i, j)−1 , j−v�→t (i, j) − 1) .

The adjoint operator
(
Mk,�→t

)� is such that, for every n ∈
{1, . . . , N }, the n′th component of

((
Mk,�→t

)�
y
)
with y ∈

R
N , corresponds to the sum of all the pixels located at n ∈

{1, . . . , N } in the image y to which the pixel of index n′ has
been displaced in the resulting image

(
Mk,�→t y

)
. Thereby,

for every n′ ∈ {1, . . . , N }
(
(Mk,�→t )

� (Dk,�→t )
�y
)
n′ =

∑
n∈Sk

n′,�→t

(
Dk,�→t y

)
n , (62)

where, for every i ∈ {1, . . . , N1} and for every j ∈
{1, . . . , N2},

S1
n′,�→t = {n | i = i ′ + u�→t (i, j) ; j = j ′ + v�→t (i, j)},

S2
n′,�→t = {n | i = i ′+u�→t (i, j) ; j= j ′+v�→t (i, j)+1},

S3
n′,�→t = {n | i= i ′+u�→t (i, j)+1 ; j= j ′+v�→t (i, j)},

S4
n′,�→t ={n | i= i ′+u�→t (i, j)+1; j = j ′+v�→t (i, j)+1},

and n (resp. n′) is the index of the pixel located at (i, j) (resp.
(i ′, j ′)) in the corresponding image.
According to (61), the norm of the motion compensation
operator M�→t reads

‖M�→t‖ = ‖
4∑

k=1

Dk,�→t Mk,�→t‖ �
4∑

k=1

‖Dk,�→t Mk,�→t‖.

(63)

Note that, for every k ∈ {1, . . . , 4}, Mk,�→t is an N × N
binary matrix. By definition, for every n′ ∈ {1, . . . , N }, the
n′th column of this matrix has nonzero entries at the row
indices n ∈ Sk

n′,�→t . Therefore, since Dk,�→t is a diagonal
matrix,

(Mk,�→t )
� (Dk,�→t )

�Dk,�→t Mk,�→t

is also diagonal with n′th diagonal entry equals
∑

n∈Sk
n′,�→t

Dk,�→t (n, n)2.

Thus, ‖Dk,�→t Mk,�→t‖ can be easily computed according to

‖Dk,�→t Mk,�→t‖= max
n′∈{1,...,N }

⎛
⎜⎜⎝
√√√√
∑

n∈Sk
n′,�→t

Dk,�→t (n, n)2

⎞
⎟⎟⎠ .

(64)
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5.3 Minimization Strategy

A solution to Problem (50) is obtained by making use of
PALM algorithm (67) recently proposed in [5] (see also
[9] for recent extensions) which provides an asymptotically
exact solution to (50). The images (xt )1≤t≤T are processed
sequentially, where at each iteration, an image xt is updated
with a forward-backward iteration that consists of gradient
step on�with respect to xt , and a proximal step on�t which
represents the restriction of � to the t th image defined as:
for every x ∈ R

T N ,

(∀z ∈ R
N ) �t (z|x) = η

∑
�∈�

χ (L�z) + ι[xmin,xmax]N (z)

+
∑
�∈Vt

β�,t‖z − M�→t x�‖1

+
∑
�∈Vt

βt,�‖x� − Mt→�z‖1, (65)

where (β�,t )�∈Vt and (βt,�)�∈Vt are selected proportionally
to the distance |t − �| between the frame index of images xt
and x�. Thus, the number of terms in (65) is equal to

J = |�| + 2 |Vt | + 1, (66)

where |Z| denotes the cardinality of a setZ . PALMalgorithm
reads:

For k = 0, 1, . . .⎢⎢⎢⎢⎢⎢⎢⎢⎣

For t = 1, . . . , T⎢⎢⎢⎢⎢⎣
x̌ t,k =

(
xk+1
1 , . . . , xk+1

t−1 , xkt , xkt+1 . . . , xkT

)
x̃ kt = xkt − σ k

t

(∇xt�(x̌ t,k)
)

xk+1
t = prox(σ k

t )−1 IN ,�t (·|x̌ t,k )
(̃
xkt
)

(67)

where∇xt� denotes the gradient of�with respect to xt and

0 < σ k
t < 2θ−1

t ,

with θt the Lipschitz constant of ∇xt� (i.e., θt = ‖St H‖
with H ∈ R

N×N theHankel-blockHankelmatrix formof the
convolution kernel h). Finally, prox(σ k

t )−1 IN ,�t
represents the

proximity operator of�t in the metric induced by (σ k
t )−1 IN .

Since F is semi-algebraic and � is Lipschitz differentiable,
the sequence (xk)k∈N generated by PALM algorithm is guar-
anteed to converge to the solution to Problem (50) [5].

As the proximity operator of (65) does not have a closed
form expression and involves several linear operators, we
resort to an inner iteration to estimate it by means of
Algorithms (34), (37), and (40). Note that, when implement-
ing Algorithm (34), function f in (25) is chosen equal to
ι[xmin,xmax]N since it does not involve any linear operator,

whereas in Algorithms (37) and (40), the latter function is
regarded as some of the h j functions, the corresponding A j

being the identity matrix. Let us emphasize that PALM algo-
rithm is robust to computational errors in the proximal step
[9], assuming that a sufficient decrease condition is satisfied.
In practice, a rough stopping criterion on the inner loop will
be used in order to avoid numerical instabilities.

5.4 Dataset Benchmark

We evaluate the performance of our methods (Figs. 2, 3, 4,
5, 6, 7, 8, and 9) using a benchmark of four sequences of
images (Figs. 10, 11, 12, 13, 14, and 15):

• Two synthetic video sequences Foreman and Claire of
size N = 352 × 288 (resp. N = 360 × 288) composed
of T = 50 frames. These video sequences were blurred
with the horizontal convolution kernel shown in Fig. 10
which corresponds to a realistic model of the observed
degradations in the context of old television archives, then
interlaced, and finally corrupted with a white Gaussian
noise. The process results in a degraded video sequence
with spatial dimension L = 352×144 (resp. L = 360×
144). The videos are sourced from http://media.xiph.org/
video/derf/.

Frame number
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Fig. 2 Foreman sequence: SNR values per frame : Degraded (blue
diamond), restored (red circle) (Color figure online)

Frame number
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Fig. 3 Claire sequence: SNR values per frame : Degraded (blue dia-
mond), restored (red circle) (Color figure online)
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Frame number
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Fig. 4 Average execution time per frame for computing
prox(σ k

t )−1 IN ,�t
using Algorithm (37) and Foreman sequence:

preconditioning strategy (69) (red diamond), no preconditioning (see
(68)) using exact norms (magenta cross), and no preconditioning
strategy (68) using approximate norms (yellow astrick) (Color figure
online)

Fig. 5 Comparison of the preconditioning strategies in terms of exe-
cution time (s.): preconditioning strategy (69) (solid tick red), no
preconditioning strategy (68) with exact norms (solid thin magenta)
and no preconditioning strategy (68) with approximated norms (dashed
thin yellow) (Color figure online)
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Fig. 6 Foreman sequence: Averaged execution time (in s.) per frame:
Algorithm (34) (blue square), Algorithm (37) (red diamond) and Algo-
rithm (40) (green circle) (Color figure online)

• Two real interlaced sequences of size L = 720 × 288
supplied by INA from French broadcast archive pro-
grammes Au théâtre ce soir and Tachan. We extract
T = 50 fields from each sequence and apply our method
to recover progressive sharp video sequences with reso-
lution N = 720 × 576.
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Fig. 7 Claire sequence: averaged execution time (in s.) per frame:
Algorithm (34) (blue square), Algorithm (37) (red diamond) and Algo-
rithm (40) (green circle) (Color figure online)
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Fig. 8 Tachan sequence: averaged execution time (in s.) per frame:
Algorithm (34) (blue square), Algorithm (37) (red diamond) and Algo-
rithm (40) (green circle) (Color figure online)
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Fig. 9 Au théâtre ce soir sequence: averaged execution time (in s.)
per frame: Algorithm (34) (blue square), Algorithm (37) (red diamond)
and Algorithm (40) (green circle) (Color figure online)

For the deconvolution task, we use spatial convolution
kernels shown in Fig. 13a, b that are obtained using blind
identification methods in [23] and [1].

These sequences are provided as RGB videos. We apply our
method on their luminance component only, which repre-
sents a grayscale version of the original images, while the
two chrominance components are processed with a median
filter of size 3 × 3 on each component separately, in order
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Fig. 10 Synthetic spatial convolution kernel, P = 53

to reduce the residual persistent noise. The motion matri-
ces (u�→t , v�→t ) involved in the temporal regularization
term are computed from the luminance component of the

degraded sequences using the method described in [24] and
then spatially interpolated to reach the final resolution. The
neighborhood Vt includes the previous and next frames of
the image xt . Moreover the set � involved in the semi-local
total variation term is of size 6, so that the number of terms
in (65) is equal to J = 10 or 11, namely:

• (∀ j ∈ {1, . . . , 6}) h j = χ and (A j )1≤ j≤6 =
(L�)�∈�,

• (∀ j ∈ {7, 8}) h j = ‖ · ‖1 and A j = IN ,

• (∀ j ∈ {9, 10}) h j = ‖ · ‖1 and (A j )9≤ j≤10 =
(Mt→�)�∈Vt ,

• ForAlgorithm (37) or (40), h11 = ι[xmin,xmax]N and A11 =
IN .

Fig. 11 Foreman sequence: degraded low resolution fields (top), restored high resolution images (bottom)

Fig. 12 Claire sequence: degraded low resolution fields (top), restored high resolution images (bottom)
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Fig. 13 Spatial convolution kernels for real sequences provided by INA, P = 101 (a) Tachan sequence, (b) Au théâtre ce soir sequence

Fig. 14 Tachan sequence: degraded low resolution fields (top), restored high resolution images (bottom)

5.5 Experimental Results

5.5.1 Restoration Quality

Table1 presents the performance of our restoration method
in terms of SNR, averaged SSIM [34], and MOVIE [32].
The latter is a video quality assessor that takes into account
both spatial and temporal aspects in the quality measure-
ment. Moreover, the results in terms of SNR per frame are
displayed in Figs. 2 and 3. The simulations are run using
100 iterations of PALM algorithm, which appears to be suf-
ficient to reach the convergence of the method. Note that
the values related to the degraded sequences are evaluated
on a spatially interpolated version of them, with a final res-
olution equals to N . In addition, it should be mentioned

that all the restoration results we obtained are similar in
terms of visual quality, regardless of the chosen optimization
algorithm.

Our reconstruction method achieves good quality results
for all tested sequences. This can also be assessed by visual
inspection on Figs. 11 and 12, and for the real sequences
on Figs. 14 and 15, for which no ground truth is available.
The motion compensation terms play a central role in the
restoration quality, especially in the deinterlacing process.
This is emphasized in the case of Foreman sequence, where
the motion between two successive images is fast, which
leads to a rough estimation of motion operators, at the price
of a lower improvement of the restoration quality, especially
in terms of MOVIE.
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Fig. 15 Au théâtre ce soir sequence: degraded low resolution fields (top), restored high resolution images (bottom)

Table 1 Quality of our deinterlacing and deconvolution method

Sequences SNR (dB) SSIM MOVIE

Foreman Degraded 25.54 0.78 4.34 × 10−4

Restored 28.95 0.90 3.73 × 10−4

Claire Degraded 25.27 0.85 1.97 × 10−3

Restored 29.21 0.96 1.77 × 10−3

5.5.2 Convergence Speed

Let us analyze the convergence speed of the proposed
algorithms. First, in order to investigate the impact of pre-
conditioning strategies, we have carried out a number of
tests regarding the preconditioning matrices related to the
involved linear operators

(
A j
)
1� j�J . These evaluations

are performed on the synthetic sequence Foreman using
the minimization strategy described in Sect. 5.3, combined
with Algorithm (37). We work with diagonal precondition-
ing matrices in order to achieve a good trade-off between
the convergence acceleration and the computation time. The
tested preconditioning matrices are

• ∀ j ∈ {1, . . . , J } Bj = ‖A j‖2 IMj ,

and

• ∀ j ∈ {1, . . . , J } Bj = Diag
(
|A j | |A�

j | 1Mj

)
,

(68)

(69)

where 1Mj denotes the ones vector of R
Mj .

In the non-preconditioned case (68), we need to supply the
norms of the operators

(
A j
)
1� j�J .When it comes tomotion

compensation operators, this norm is either approximated
using (63) or precomputed using the power iterative method
in [19].

Figure4 presents the average execution time needed for
computing the proximity operator of �t per image, by
means of Algorithm (37). The latter is stopped when the
relative decrease of the criterion gets below 10−5 which
appears sufficient in practice to ensure the stability of the
whole PALM algorithm. A MATLAB 7 implementation is
used with an Intel(R) Xeon(R) E5–2670 CPU @ 2.3 GHz.
We get an acceleration of 50% using the preconditioning
strategy (69) instead of the approximated version of the non-
preconditioned case (68), while the acceleration is of 25%
if the exact norms of the motion operators are used in (68).
Note, however, that the exact computation of these norms is
not a realistic strategy when processing long videos at stan-
dard or high resolution, since it calls upon an iterative and
costly method.
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Figure5 shows the variation of the cost function F(x)−F (̂x)
with respect to the execution time, where F is defined in (50),
and F (̂x) represents the minimum of F obtained at the end
of the corresponding simulations.

Figures 6, 7, 8, and 9 illustrate the averaged time spent
in computing the proximity operator of �t for all the images
composing the video sequences over 100 iterations of PALM
algorithm (67), using eitherAlgorithm (34), (37), or (40). The
preconditioning strategy (69) is used for Algorithms (34) and
(37).

Depending on the video sequence, the best performance in
terms of computation time is obtained either with Algorithm
(34) or Algorithm (37) with small differences between them.
Moreover, the dual FB Algorithm (40) from [10] is up to 18
times slower to reach the stopping criterion. This emphasizes
the gain provided by our algorithms in terms of acceleration.

6 Conclusion

We have proposed several primal–dual splitting algorithms
for computing the proximity operator of convex compos-
ite functions. These algorithms can be applied in various
areas. In our application, we have considered the joint prob-
lem of deconvolution and super-resolution enhancement of
interlaced video sequences. The convergence of our approach
has been theoretically analyzed, and the experimental results
provide an illustration of its good performance in terms of
restoration quality and convergence speed.

In our future work, we intend to develop distributed ver-
sions of the proposed algorithms in order to solve large-scale
optimization problems in a more computationally efficient
manner, by exploiting the multi-core architectures of recent
computer systems.
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