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Original image Degraded image
x € RN z =D(Hx) € RM

» H e RM*N: matrix associated with the degradation operator.
» D: RM — RM: noise degradation.

Inverse problem:
Find a good estimate of X from the observations z, using some
a priori. knowledge on X and on the | noise characteristics .
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Inverse problems and large scale optimization

Inverse problem:

Find an estimate X close to X from the observations _

> Inverse filtering (if M = N and H is invertible)

X=H1z
= H Y (HX+b) <« if b€ RM is an additive noise
=X+ H'b

— Closed form expression, but _ if His

ill-conditioned (ill-posed problem).
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Inverse problems and large scale optimization

Inverse problem:

Find an estimate X close to X from the observations _
> Inversefittering

» Variational approach
X € Argmin f(x) + f(x)
XERN SN~ SN~

[Data fidelity term
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Inverse problems and large scale optimization

Inverse problem:

Find an estimate X close to X from the observations _
> Inversefittering

» Variational approach

X € Argmin f(x) + f(x)
XERN SN~ SN~

[Data fidelity term

Examples of data fidelity term

» Gaussian noise 1
(vx eRY)  A(x)= allAx = z||?

» Poisson noise M

(xeRY)  A(x)=Y ([Hx](’") — z(m |og([Hx](m)))

m=1
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Examples of regularization terms (1)

» Admissibility constraints
M
Find xeC=[)Cn

m=1

where (Ym € {1,...,M}) C,, C RV.
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Examples of regularization terms (1)

> Admissibility constraints
M
Find xeC=[)Cn

m=1

where (Ym e {1,...,M}) C,, C RV,

» Variational formulation
M
(vxeRY)  H() =) e, (%)
m=1

where, for all m e {1,..., M}, ¢, is the _

of Cp:
0 if x e Cp,

+00 otherwise.

(Vx € RV) te,(x) = {
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Examples of regularization terms (2)

» (1 norm (analysis approach)

K
(vx e RY)  hx) =D [IAID] = 1Al
k=1

F € R¥*N: Frame decomposition operator (K > N)

signal x frame coefficients
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Examples of regularization terms (2)
» (1 norm (analysis approach)
K
(rx e RY)  B(x) =3 |IAD| = 1Al
k=1
» Total variation
(Vx = (x"2))1 i oy 1<ien, € RMM2)
Nl N2 P
Bl = () = > 3 [Vx)a
i1=1ih=1

Vx(i:2) - discrete gradient at pixel (i1, i2).
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Inverse problems and large scale optimization

Inverse problem:

Find an estimate X close to X from the observations _
» Inversefittering

» Variational approach (more general context)

where f; may denote a data fidelity term / a (hybrid) regularization
term / constraint.
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Inverse problems and large scale optimization

Inverse problem:

Find an estimate X close to X from the observations _
» Inversefittering

» Variational approach (more general context)

where f; may denote a data fidelity term / a (hybrid) regularization
term / constraint.

— Often no closed form expression or solution expensive to
compute (especially in large scale context).

» Need for an efficient iterative minimization strategy !
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1. Proximal-based algorithms

> Proximity operator
Forward-Backward algorithm
Acceleration via metric change
Acceleration via block alternation

v vy

2. Applications
» Parallel magnetic resonance imaging
> Phase retrieval
» Blind deconvolution of television video
» Multi-channel image restoration
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Proximal-based algorithms
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Gradient and subgradient algorithms

‘ Optimization problem: Minimization of function f € I'o(RV) on RV, ‘

» If f has a S-Lipschitz gradient with 3 €]0, +o0]

(VEEN)  xpp1 = x — %V F(x)

with 0 < infyen v and supyey ve < 2671
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Gradient and subgradient algorithms

‘ Optimization problem: Minimization of function f € I'o(RV) on RV, ‘

» If f has a S-Lipschitz gradient with 3 €]0, +o0]

(VEEN)  xpp1 = x — %V F(x)

with 0 < infyen v and supyey ve < 2671
» When f is nonsmooth, replace gradient with _
of(x) = {teRY|(vy € RY) f(y) = F(x) + (tly = x) |

t € Of(x): subgradient at x € RV
df : RN — 2R". sybdifferential
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Subdifferential

t € 9 (x)
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Example of subdifferential

Example:
» If f is differentiable at x € RN then 0f(x) = {Vf(x)}.
> If £ = |- | then

{sign(x)} ifx#0

(Vx € R) 8f(x):{[_1’1] S
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From the subgradient algorithm ...

‘ Optimization problem: Minimization of function f € Io(RV) on RV. ‘

Subgradient algorithm [Shor,1979]
(Vf S N) Xp+1 = Xg — Yete, T € af(Xg)

where (V¢ € N) v, €]0, +oo[ such that 3°,/% 2 < 400 and
+o00 _
=0 V¢ = “+00.
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From the subgradient algorithm ...

‘ Optimization problem: Minimization of function f € Io(RV) on RV. ‘

Subgradient algorithm [Shor,1979]
(Vf S N) Xp+1 = Xg — Yete, T € 8f(Xg)

where (V¢ € N) v, €]0, +oo[ such that 3°,/% 2 < 400 and
+o00 _
=0 V¢ = “+00.

Implicit form

(V€ e N) Xer1 = X¢ — Yety,  ty € Of(xpy1)
& xp— Xey1 € 10f (xp41)
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... to the origins of the proximity operator!

Property

Let ¢ € To(RN). For all x € RV, there exists a unique vector
x € RN such that x — X € 9p(X).

> Let X = prox,(x).
Proximal point algorithm

(VE S N) Xp — Xp+1 € "}/gaf(Xg_H)

S Xep1 = prox,¢(xe)

where infyen v¢ > 0 such that 22;08 Y¢ = +oo.
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Another definition of the proximity operator

Property

Let f € To(RM).
For all x € RN, proxs(x) is the unique minimizer of

1
y = f(y) + 5lx =yl

Example:
Let C a closed non empty subset of RN. Then, prox, . reduces to



Introduction Proximal-based algorithms Applications Conclusion
0000000 0000000 @00000000000 00000 [o]e]

Proximal methods: tools for solving inverse problems on a large scale 17/35

Some other examples

» Explicit form for objective functions associated to the usual
log-concave probability densities

O Laplace 0 Gaussian

O Generalized gaussian O Huber

0 maximum entropy 0 Smoothed Laplace
0 gamma O chi

O uniform O triangular

0 Weibull 0 Pearson type |

[0 Generalized inverse gaussian

» And many other functions !
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Forward-backward algorithm

Optimization problem:
Minimization of f + g on RN, assuming that g has a j-Lipschitz
gradient.

Forward-backward algorithm

(V¢ € N) Xo+1 = X¢ — ’)/g(té + Vg(x)), té € Of (xp+1)
& xpp1 = proxy, s(xe — Ve (xe))
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Forward-backward algorithm

Optimization problem:
Minimization of f + g on RN, assuming that g has a j3-Lipschitz
gradient.

Forward-backward algorithm

(V¢ € N) X1 = X¢ + )\g( proxwf(Xg — 7 Vg(x)) — Xg)

Convergence of (x¢)een if 0 < infpen e, SUPgen e < 2871,
0 < infreny Ar and supyey Ar < 1.
» f and g convex [Chen,Rockafellar,1997][Combettes, Wajs,2005]

» f and g nonconvex (under Kurdyka-tojasiewicz assumption)
[Attouch et al. - 2011]
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How to make the forward-backward algorithm
efficient for big data optimization ?
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First trick: Majoration-Minimization strategy
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MM point of view

Majorize-Minimize Assumption

e For every £ € N, there exists a symmetric positive definite (SPD)
matrix Ag(x;) € RV*N such that for every x € RV

1
Q(x, xe) = g(x) + (x — x¢) " Vig(x) + Sx— x¢) " Ae(xe) (x — xe),
is a majorant function of g at x; on domf, i.e.,

g(xe) = Q(xe,x¢) and (¥x €domf) g(x) < Q(x,xp).
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MM point of view

Majorize-Minimize Assumption

e For every £ € N, there exists a symmetric positive definite (SPD)
matrix Ag(x;) € RV*N such that for every x € RV

Q(x, xe) = g(xe) + (x — xe) " Vg (xe) + %(X — x¢) " Ac(xe)(x — xe),

is a majorant function of g at x; on domf, i.e.,

g(xe) = Q(xe,x¢) and (¥x €domf) g(x) < Q(x,xp).

g is differentiable Au(x¢) = B1d
with a S-Lipschitzian gradient = satisfies the above assumption
on a convex subset of RV [Bertsekas - 1999]
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MM algorithm [Jacobson and Fessler - 2007]

MM Algorithm g+ f

xo4+1 € Argmin f(x) + Q(x, x¢)
xRN

Xy X4+1
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MM algorithm [Jacobson and Fessler - 2007]

MM Algorithm g+ f

xo4+1 € Argmin f(x) + Q(x, x¢)
xRN

Xe4+1 X042
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MM algorithm [Jacobson and Fessler - 2007]

MM Algorithm g+ f

xo4+1 € Argmin f(x) + Q(x, x¢)
xeR" Qs Xe42) + £

Xp42X043 - - -
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MM algorithm [Jacobson and Fessler - 2007]

MM Algorithm g+ f

xo4+1 € Argmin f(x) + Q(x, x¢)
xRN

< Forward-backward algorithm

with
> Ai(x) = B1d
» =1
> =1 Xp42X043 - - -

~~ Why not trying more sophisticated matrices (Az),cy 7

» Variable metric forward-backward algorithm !
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Acceleration via metric change

Definition

Let x € RN, Let A be a SPD matrix. The proximity operator
relative to the metric induced by A is defined by

) 1
proxv_lA’f(x) = Argmin f(y) + 2—Hy — XH%.
y€eRN #

Variable metric forward-backward algorithm

(VLeEN)  xpp1 = PFOXW_1:, . (Xe - ’Ye” _1Vg(th)> :

Convergence of (x¢)een
> f and g convex [Combettes et al. - 2012]
» f and g nonconvex |[Chouzenoux et al. - 2013]

» Significant acceleration in practice !
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Second trick: Block alternation
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Acceleration via block alternation

» Assumption: f is an additively block separable function.
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Acceleration via block alternation

» Assumption: f is an additively block separable function.
] xWle RM
x2) e RN

XERN - N:ZNJ

=1
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Acceleration via block alternation

» Assumption: f is an additively block separable function.

f(x0)

1

J
)=
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Acceleration via block alternation

Block coordinate forward-backward algorithm
(V¢ € N), pick a block j; € {1,...,J}, and update:

{ XEQ ProXy, f, ( o) —wVﬂg(Xe)>

) =)

» Convergence of (xp)sen (assuming a cyclic update rule)
established in [Bolte et al. - 2013] for possibly nonconvex
functions f and g verifying Kurdyka-t.ojasiewicz assumption.
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Acceleration via block alternation

Block coordinate forward-backward algorithm
(V¢ € N), pick a block j; € {1,...,J}, and update:

{ Xéﬂ ProXy, f, ( o) —”Wﬂg(Xz)>

) =)

» Convergence of (xp)sen (assuming a cyclic update rule)
established in [Bolte et al. - 2013] for possibly nonconvex
functions f and g verifying Kurdyka-t.ojasiewicz assumption.

» Block alternation presents several advantages:
v" more flexibility,
v reduced computational cost at each iteration,

v reduced memory requirement.
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Combining first and second trick ...
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Acceleration via block alternation and metric change

Block coordinate variable metric forward-backward algorithm
(V¢ € N), pick a block j, € {1,...,J}, and update

(de) _ 5 e) _

8 o (49— *53500)
) (o)

+1 14

» Convergence of (xp)sen (assuming a quasi cyclic update rule)
established in [Chouzenoux et al. - 2013] for nonconvex functions

f and g verifying Kurdyka-tojasiewicz assumption.

» Benefits from the advantages of both acceleration

techniques!
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Applications
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Challenges:

» Parallel acquisition and compressive sensing

» Complex-valued signals

Results:

Original Proposed method
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Parallel Magnetic Resonance Imaging [Florescu et al. - 2014]

Challenges:

» Parallel acquisition and compressive sensing

» Complex-valued signals

Results:

Original Proposed method
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Parallel Magnetic Resonance Imaging
Challenges:
» Parallel acquisition and compressive sensing
» Complex-valued signals
Results:
ut f
g :
i

Time (seconds)

Convergence speed of several proximal-based algorithms
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Phase retrieval

Challenges:
» Only the modulus of the observed data is available
> Non-Fourier measurements
» Nonconvex data fidelity term

Results:

SparseFienup Proposed method
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Phase retrieval
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» Nonconvex data fidelity term

Results:

SparseFienup Proposed method
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Phase retrieval [Repetti et al. - ICIP 2014]

Challenges:
» Only the modulus of the observed data is available
> Non-Fourier measurements
» Nonconvex data fidelity term

Results:

llz — 2 /|1

0 600 1200 1800 2400 3000 3600
Time (s)

Influence of the variable metric strategy
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Blind deconvolution of video [Abboud et al. - EUSIPCO 2014]

Challenges:
» The degradation blur operator is unknown
> Nonconvex data fidelity term

Results:

Observed Restored
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Blind deconvolution of video [Abboud et al. - EUSIPCO 2014]

Challenges:
» The degradation blur operator is unknown
» Nonconvex data fidelity term

Results:

Observed Restored
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Blind deconvolution of video [Abboud et al. - EUSIPCO 2014]

Challenges:
» The degradation blur operator is unknown
» Nonconvex data fidelity term
Results:
0.3
0.2t 1
0.1r 1
0 ~A

0.1 21 41 61 81 101

Estimated blur kernel
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Multi-channel image restoration [Chierchia et al. - 2014]

Challenges:
» Deal with images having a large number of components
» Circumvent the choice of regularization parameters by
introducing suitable nonlocal constraints
» Develop epigraphical techniques to address these constraints
efficiently

I

Original Observed
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Multi-channel image restoration

Challenges:
» Deal with images having a large number of components
» Circumvent the choice of regularization parameters by
introducing suitable nonlocal constraints
» Develop epigraphical techniques to address these constraints

efficiently
10°
~~SDMM
~~SDMM (epi)
107" --M+LFBF
NS —M+LFBF (epi)|
107 N
107k . H
|
4| \‘
10°F ) | H
| !
I 1
-5l i !

15b0 20‘00 25‘00 30‘00 3500 40‘00 :
Time (s.)
Constrained formulation VS Variational formulation

L L
0 500 1000
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v Proximal-based algorithms: An efficient tool for solving large
scale possibly difficult optimization problem;
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Conclusion

v" Proximal-based algorithms: An efficient tool for solving large
scale possibly difficult optimization problem;
v Two recipes for accelerating the algorithms:

» Majoration-Minimization strategy
> Block alternation

v" No need to invert large size matrices through primal-dual
forward-backward based methods:



Introduction Proximal-based algorithms Applications Conclusion

0000000 000000000000 0000000 00000 e0
Proximal methods: tools for solving inverse problems on a large scale 34/35

v Proximal-based algorithms: An efficient tool for solving large
scale possibly difficult optimization problem;
v Two recipes for accelerating the algorithms:

» Majoration-Minimization strategy
» Block alternation

v" No need to invert large size matrices through primal-dual
forward-backward based methods:

v Parallel implementations possible thanks to splitting
techniques.
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v Proximal-based algorithms: An efficient tool for solving large
scale possibly difficult optimization problem;

v Two recipes for accelerating the algorithms:

» Majoration-Minimization strategy
» Block alternation

v" No need to invert large size matrices through primal-dual
forward-backward based methods:

v Parallel implementations possible thanks to splitting
techniques.

Future challenges: Find more tricks!
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Thank you ! Questions 7

E. Chouzenoux, J.-C. Pesquet and A. Repetti.

Variable Metric Forward-Backward Algortihm for Minimizing the Sum of a
Differentiable Function and a Convex Function.

To appear in J. Optim. Theory Appl, 2013.

E. Chouzenoux, J.-C. Pesquet and A. Repetti.

A Block Coordinate Variable Metric Forward-Backward Algorithm.
Tech. Rep., 2013. Available on
http://www.optimization-online.org/DB_HTML /2013/12/4178.html.
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