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ABSTRACT
Complex-valued data are encountered in many application areas of
signal and image processing. In the context of optimization of func-
tions of real variables, subspace algorithms have recently attracted
much interest, due to their efficiency in solving large-size problems
while simultaneously offering theoretical convergence guarantees.
The goal of this paper is to show how some of these methods can
be successfully extended to the complex case. More precisely, we
investigate the properties of the proposed complex-valued Majorize-
Minimize Memory Gradient (3MG) algorithm. An important prac-
tical application of these results arises for image reconstruction in
Parallel Magnetic Resonance Imaging (PMRI). Comparisons with
existing optimization methods confirm the good performance of our
approach for PMRI reconstruction.

Index Terms— complex-valued signals, optimization, sub-
space algorithms, descent methods, majorization-minimization, im-
age reconstruction, inverse problems, magnetic resonance imaging,
sampling

1. INTRODUCTION

Complex-valued data are ubiquitous in signal and image pro-
cessing. As emphasized in [1], dealing with complex-valued
signals raises a number of challenging theoretical issues, in
particular owing to their existing relations with the theory of
analytic functions. Problems involving complex-valued sig-
nals are often formulated as the search for a solution satisfy-
ing some optimality conditions. Since the related optimiza-
tion problems usually do not have closed form solutions, ef-
forts have been dedicated to the development of specific itera-
tive algorithms for minimizing real-valued functions of com-
plex variables [2, 3]. However, one shortcoming of existing
approaches (e.g. interior point methods) is that they may not
be very efficient to deal with large-size problems. Another
weakness lies in the lack of theoretical convergence guaran-
tees. For example, popular methods such as the nonlinear
conjugate gradient algorithm, which may be quite effective
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in practice, have only been proved to converge under restric-
tive assumptions. Proximal splitting [4] and augmented La-
grangian [5] methods offer more flexibility for minimizing
possibly nonsmooth objective functions, but they may suffer
from slow convergence. In the case of functions of real vari-
ables, a recent majorize-minimize (MM) subspace algorithm
has been proposed which overcomes these limitations [6, 7].
Note that MM strategies for functions of complex variables
were already investigated in [8, 9] but they were restricted to
half-quadratic algorithms requiring the inversion of a large-
size linear operator, which is not tractable for any acquisition
model.

Complex-valued data are involved in several imaging sys-
tems such as in Magnetic Resonance Imaging (MRI). Many
recent works were directed to the proposal of reconstruction
methods for parallel MRI (PMRI) [10, 11, 12, 13, 14]. The
objective of PMRI is to reduce the acquisition time while
maintaining a good image quality. This is achieved by com-
bining subsampling strategies in the k-space with the use of
an array of coils so as to compensate spectral decimation with
spatial diversity. Let us emphasize that the design of an appro-
priate subsampling scheme is strongly related to compressive
sensing issues [15, 16]. Among the existing reconstruction
approaches based on variational formulations and optimiza-
tion algorithms, we can mention methods based on iterative
soft-thresholding [17] or more elaborate proximal algorithms
[11], and augmented Lagrangian techniques [13, 18]. Note
that, to the best of our knowledge, MM subspace algorithms
have never been used in the context of PMRI.

The organization of the paper is as follows: in Section 2,
the addressed optimization problem is formulated in a general
manner and our notation is introduced. In Section 3, we recall
some classical results about the derivative of real-valued func-
tions of complex variables, which are relevant to this work.
Section 4 describes the employed MM strategy in the com-
plex case. The proposed complex-valued 3MG (Majorize-
Minimize Memory Gradient) algorithm is studied. In particu-
lar, its connections with the algorithm in [6, 7] for minimizing
functions of real variables are discussed. Section 5 presents
the application of our algorithm to PMRI reconstruction.



2. PROBLEM STATEMENT

In this work, we will consider the following penalized opti-
mization problem:

minimize
x∈CN

(
F (x) = Φ(Hx− y) + Ψ(x)

)
, (1)

whereH 6= 0 is a matrix in CQ×N , y is an observation vector
in CQ, Φ: CQ → R, and Ψ: CN → R. In inverse problems,
function Φ usually corresponds to a data-fidelity term and Ψ
to a regularization function. We focus on the case when the
latter function takes the following form:

(∀x ∈ CN ) Ψ(x) =

S∑
s=1

ψs(|vHs x|) (2)

where | · | denotes the complex modulus, (·)H is the matrix
trans-conjugate operation, and, for every s ∈ {1, . . . , S},
ψs : R→ R, and vs ∈ CN . Note that (2) includes anisotropic
total variation and frame analysis penalties as special cases.
Notation: For every vector x ∈ CN , xR ∈ RN (resp. xI ∈
RN ) denotes the vector of real (resp. imaginary) parts of the
components of x. Let x̃ ∈ R2N be the “concatenated” vector
x̃ = [x>R x>I ]>. We define Ψ̃ the function of real variables
associated with Ψ, i.e. (∀x ∈ CN ) Ψ̃(x̃) = Ψ(x). A similar
notation will be employed for complex-valued matrices and
other functions of complex variables.

3. COMPLEX-VALUED DIFFERENTIAL CALCULUS

Let Θ be a function from CN to C. According to Wirtinger’s
calculus [1], the derivative of Θ with respect to the conjugate
of its variable is formally defined as

(∀x ∈ CN ) ∇Θ(x) =
1

2

(∂Θ̃(x̃)

∂xR
+ ı

∂Θ̃(x̃)

∂xI

)
. (3)

Throughout this paper, we suppose that:

Assumption 1.

(i) Φ̃ is differentiable.

(ii) For every s ∈ {1, · · · , S}, ψs is a differentiable func-
tion and limt→0

t 6=0
ψ̇s(t)/t ∈ R where ψ̇s denotes the

derivative of ψs.

The definition in (3) implies that the derivative of
Φ(H · −y) at x ∈ CN is HH∇Φ(Hx − y). Let us now
define

(∀a ∈ R) ωs(a) =


ψ̇s(a)

a
if a 6= 0

limt→0
t 6=0

ψ̇s(t)/t otherwise.
(4)

It can be easily shown that the Wirtinger derivative of Ψ is

(∀x ∈ CN ) ∇Ψ(x) =
1

2
V Diag

(
b(x)

)
V Hx (5)

where V = [v1, . . . ,vS ] ∈ CN×S and b(x) =
(ωs(|vHs x|))1≤s≤S . So, the complex-valued derivative of
F is

(∀x ∈ CN ) ∇F (x) = HH∇Φ(Hx−y)+∇Ψ(x) (6)

where the derivative of Ψ is given by (5).

4. QUADRATIC MAJORIZATION

In order to develop an efficient algorithm for solving Prob-
lem (1), we introduce the following additional assumption:

Assumption 2.

(i) Φ has a β-Lipschitz derivative with β ∈ (0,+∞), i.e.

(∀z ∈ CQ)(∀z′ ∈ CQ)

‖∇Φ(z)−∇Φ(z′)‖ 6 β‖z − z′‖. (7)

(ii) For every s ∈ {1, . . . , S}, ψs(
√
.) is concave on

[0,+∞).

(iii) For every s ∈ {1, . . . , S}, there exists ωs ∈ [0,+∞)
such that (∀t ∈ (0,+∞)) 0 ≤ ωs(t) ≤ ωs.

Note that Assumption 2(i) is quite standard and, in partic-
ular, it is satisfied for least squares data fidelity terms. As-
sumptions 2(ii) and 2(iii) hold for a wide class of penalty
functions, e.g. `2–`1 convex functions constituting smooth
approximations of the `1 norm [6], or `2–`0 nonconvex func-
tions providing smooth approximations of the `0 cost [7].

The following property can then be proved:

Proposition 1. Under Assumptions 1 and 2, for every
(x,x′) ∈ (CN )2, F (x) ≤ Θ(x,x′), where

Θ(x,x′) = F (x′)

+ 2Re
{
∇F (x′)H(x− x′)

}
+

1

2
(x− x′)HA(x′)(x− x′)

and A(x′) = µHHH + V Diag
(
b(x′)

)
V H with µ ∈

[2β,+∞).

Subspace algorithms consist of building a sequence
(xk)k∈N according to the following iterative scheme:

(∀k ∈ N) xk+1 = xk +Dkuk, (8)

where Dk ∈ CN×M is a subspace search matrix and uk ∈
CM is a multivariate step-size minimizing u 7→ F (xk +
Dku) over CM . The MM strategy replaces the minimiza-
tion of the original function F over the subspace with suc-
cessive minimizations of quadratic tangent majorants u 7→



Θ(x′ + Dku,x
′) over CM for some vector x′ ∈ CN . The

expression of Θ in Proposition 1 shows that, for a given x′,
an optimal solution is

û = −2(DH
kA(x′)Dk)†DH

k∇F (x′), (9)

where (·)† denotes the pseudo-inverse operation. The re-
sulting complex-valued MM subspace algorithm for solving
Problem (1) reads

x0 ∈ CN ,
For all k = 0, . . .

u0
k = 0,

For all j = 1, . . . , J⌊
Bj−1

k = DH
kA(xk +Dku

j−1
k )Dk,

uj
k = uj−1

k − 2(Bj−1
k )†DH

k∇F (xk +Dku
j−1
k ),

xk+1 = xk +Dku
J
k .

(10)
When the number M of search directions is small, the com-
putation cost of the multivariate step-size û in (9) is reduced,
thus making the complexity of an iteration of the proposed
algorithm quite reasonable. When M = 2, a typical choice
for the search directions is Dk = [−∇F (xk),xk − xk−1]
for every k ∈ N (by setting x−1 = 0), which leads to the
so-called MM Memory Gradient algorithm.

Algorithm (10) takes a form similar to the one developed
in the real case in [6]. Note however that, since, for every
k ∈ N and j ∈ {1, . . . , J}, the multivariate step-size uj

k

is complex-valued, Algorithm (10) can be viewed as a way
of expressing in a concise manner [7, Algorithm (3.16)] for
minimizing F̃ over R2N , when the subspace search matrix

at iteration k reads D̃k =

[
Dk,R −Dk,I

Dk,I Dk,R

]
. Therefore, it

corresponds to 2M search directions in R2N .
Due to this relation between the complex-valued 3MG al-

gorithm and its real-valued counterpart, the following result
can be deduced from [7]:

Proposition 2. Assume that F is a semi-algebraic function
such that lim‖x‖→+∞ F (x) = +∞. Under Assumptions 1
and 2, Algorithm (10) generates a sequence (xk)k∈N con-
verging to a critical point of F . Moreover, this sequence has
a finite length in the sense that

∑+∞
k=0 ‖xk+1 − xk‖ < +∞.

5. APPLICATION TO PARALLEL MRI

5.1. Model

In parallel MRI, a set of measures (d`)1≤`≤L is acquired from
L coils. These measures are related to the original full FOV
(Field Of View) image ρ ∈ CK (the image being columnwise
reshaped as a vector) corresponding to a spin density. More
precisely, the observation model reads:

(∀` ∈ {1, . . . , L}) d` = ΣFS`ρ+w` (11)

where S` ∈ CK×K is a diagonal matrix modelling the sen-
sitivity of the coils, F ∈ CK×K is a 2D discrete Fourier
transform, and Σ ∈ {0, 1}bKR c×K is a subsampling matrix
(here, b·c designates the rounding operation). The bK/Rc
lines of matrix Σ are thus distinct lines of a K ×K identity
matrix, R being the subsampling or acceleration factor. The
noise vectors (w`)1≤`≤L are realizations of random vectors
(W`)1≤`≤L, which can be assumed mutually statistically in-
dependent. In addition, for every ` ∈ {1, . . . , L}, W` is a
circular complex Gaussian vector with zero-mean and covari-
ance matrix Λ`.

In order to provide an estimate of ρ, we propose to solve
the following optimization problem:

minimize
ρ∈E

L∑
`=1

‖ΣFS`ρ− d`‖2Λ−1
`

+

S∑
s=1

ψs(|fH
s ρ|) (12)

where (∀` ∈ {1, . . . , L}) ‖ · ‖2
Λ−1

`

= (·)HΛ−1` (·), (∀s ∈
{1, . . . , S}) ψs : R→ R and fs ∈ CK , and E is a vector sub-
space corresponding to the range of a matrixE ∈ CK×N with
N ≤ K. By choosing for (fs)1≤s≤S a frame of CK (possibly
redundant when S > K) the above function introduces a so-
called frame analysis penalization. The vector space E serves
to incorporate some prior knowledge about the target image.
In our case, E is an interpolation matrix (i.e. the transpose
of a subsampling matrix as defined above) the zero lines of
which are associated with pixels belonging to the background
of the image. Such an area can be identified from the sensi-
tivity matrices.

By setting ρ = Ex (with x ∈ CN ) in Problem (12), this
one appears as an instance of Problem (1) where

H =

H1

...
HL

 =


Λ
−1/2
1 ΣFS1

...
Λ
−1/2
L ΣFSL,

E, y =


Λ
−1/2
1 d1

...
Λ
−1/2
L dL

 ,
(13)

(vs)1≤s≤S = (EHfs)1≤s≤S , and Φ is the squared Hermitian
norm of CQ with Q = LbK/Rc.

5.2. Simulation results

In our experiments, the reconstruction of a sagittal view of a
3D anatomical image is performed from noisy parallel MRI
data generated according to Model (11). The reference im-
age ρ (see Fig. 1 left) is defined as the reconstruction result
from a non-accelerated acquisition (R = 1) obtained with a
3 Tesla Siemens Trio magnet having an L = 32-channel re-
ceiver coil (no parallel transmission has been used). The data
have been acquired using a 3D T1-weighted MP-RAGE pulse
sequence. A resampling has been performed in the k-space by
zero-filling in order to facilitate the use of fast wavelet decom-
positions, so leading to a 256 × 256 image size (K = 2562).



(a) (b)

(c) (d)
Fig. 1. Moduli of original (a) and reconstructed (b) images,
using Poly1 sampling, 3MG algorithm and `2–`1 regularization,
SNR = 19.95 dB. Figs (c) and (d) display corresponding zooms cen-
tered on the cerebellum area.

Estimates of the sensitivity matrices (S`)1≤`≤L are also avail-
able. Different sampling patterns with R = 5, are considered
for Σ, namely regular line subsampling, uniform random, ra-
dial, spiral, with π density [19], and polynomial decay of var-
ious orders [15]. Finally, a circular complex Gaussian white
noise with variance equal to 6× 109 is added to the data.

Problem (12) is solved by using Algorithm (10) with
parameter J = 1. The convex `2–`1 penalization func-
tion ψs : t → λs(

√
1 + t2/δ2 − 1) is employed, for ev-

ery s ∈ {1, · · · , S}. In the presented results, (fs)1≤s≤S
(S = K) corresponds to an orthonormal wavelet basis us-
ing Symmlet filters of length 10, and the decomposition is
carried out over 3 resolution levels. For simplicity, the pa-
rameters (λs)1≤s≤S are equal to the same constant λ for the
detail coefficients, while they have been set to zero for the
approximation ones. The parameters λ and δ are tuned so as
to maximize the Signal-to-Noise Ratio (SNR) between the
reference image and its reconstructed version.

Table 1 allows us to evaluate the reconstruction perfor-
mance of 3MG algorithm in terms of SNR for the different
sampling patterns. One can observe that sampling strategies
based on low-order polynomial distributions as well as on the
uniform or π distributions lead to higher quality reconstructed
images. The modulus of the reconstructed image for Poly1
sampling strategy is displayed in Fig. 1 (right).

We compare the proposed algorithm with state-of-the-

Sampling pattern SNR (dB)
Poly1 19.95

Poly2 19.34

Poly3 18.53

Poly4 17.50

Poly5 16.95

Uniform 19.71

Radial 19.20

Spiral 19.17

Regular 18.13

π 19.31

Table 1. SNR values for various subsampling strategies using 3MG
algorithm with `2–`1 regularization.

Algorithm Penalization SNR (dB)
M+LFBF [20] `1 19.95

CPCV [21, 22] `1 19.95

ADMM `1 19.95

3MG `2–`1 19.95

3MG `2–`0 (G) 20.27

3MG `2–`0 (W) 20.17

3MG `2–`0 (H) 20.05

Table 2. Reconstruction results for several optimization and regu-
larization strategies, for Poly1 subsampling pattern.

art primal-dual convex optimization methods [21, 20, 22] and
the Alternating-Direction Method of Multipliers (ADMM) [5,
18, 13] in terms of computation time for Matlab R2011b
codes running on a single-core Intel i7-2620M CPU@2.7
GHz with 8 Gb of RAM, in the case of Poly1 sampling strat-
egy. Although an `1 penalization is used in the other convex
optimization approaches, it is worth noticing that the resulting
SNR values reported in Table 2 are identical to those provided
by 3MG with `2–`1. Moreover, as illustrated by Fig. 2, the
proposed algorithm benefits from a faster convergence. A fur-
ther advantage of 3MG is that it allows the use of nonconvex
penalizations. In Table 2, we also indicate results obtained
for some `2–`0 penalizations, namely Geman-McClure (G),
Welsh (W) and Hyperbolic tangent (H) potentials (see [7,
Sec.2.2]), for which the local convergence of 3MG algorithm
is guaranteed. One can observe a quantitative improvement
of the reconstruction quality with respect to the convex case.

6. CONCLUSION

In this paper, we have proposed an extension of the 3MG
algorithm for the resolution of large-size optimization prob-
lems involving functions of complex variables. We have
shown that the proposed algorithm is guaranteed to converge
under weak assumptions. Its good numerical performance
has been demonstrated in the context of complex-valued im-



Fig. 2. SNR evolution as a function of computation time using
3MG, M+LFBF [20], CPCV [21, 22] and ADMM.

age reconstruction from real parallel MRI data.
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