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ABSTRACT corresponding respectively to the spin evolution lengthtan

This paper deals with the reconstruction of T1-T2 correfati the recording time of the echo.

spectra in Nuclear Magnetic Resonance (NMR) spectroscopy. Experimental data, notetd (1, 72), consist of a series of
The ill-posed character of this inverse problem and itsdarg discrete noisy samplég € R™**™2 modeled by

size are the main difficulties of the reconstruction. While

maximum entropy is retained as an adequate regularization Y = K\SK; +E (2)
approach, the choice of an efficient optimization algorithm XN o N e
remains a challenging task. Our proposal is to apply a norf’-"'}ffh I§1 € R™M*W, Ky € R™7%2, Y € R™M7™2, S €
linear conjugate gradient algorithm with two original femts. X ' ° andE a noise term assumed white Gaussian.

Firstly, a theoretically well stated line search strategjjable 2D NMR reconstruction amounts to estimase given
for the entropy function is applied to ensure a monotonic deY - Direct inversion is numerically unstable because of the
crease of the criterion. Secondly, an appropriate pretiondi  ll-conditioning of matricesK, and K [2]. The second

ing structure based on a truncated singular value decompodfifficulty is related to the large scale nature of the problem
tion of the forward model matrix is used to speed up the alWhich excludes the use of a large family of reconstruction
gorithm convergence. The resulting method reveals far mor@PProaches. _

efficient than the classical Skilling and Bryan method asd it ~ 10 handle this difficulty, [3] proposes a reconstruction

applicability is illustrated through real NMR data prodegs ~ Method based on a matrix-vector formulation of the obser-

) ) ] vation model
Index Terms— Maximum entropy, conjugate gradient,

. o y=Ks+e 3)
line search, preconditioning, NMR, T1-T2 spectrum.
with y = vect(Y), s = vect(S), e = vect(E) and K =
1. INTRODUCTION K; ® K>. The operatorect corresponds to lexicographi-

cally reordering matrix elements into a vector ahdlenotes

Nuclear magnetic resonance (NMR) spectroscopy is a me#e Kronecker product. The implementation of (3) being com-
surement technique used to analyze the properties of mattBgtationally expensive a data compression using low-rank
in order to determine its molecular structure and dynamicssingular value decompositions of matrick§ and K, is per-
In conventional NMR, the data are recorded independentijormed. Nonetheless, this pre-processing step can caigse a s
either in terms of |0ngitudina[1"1’ or transversa|T2’ relax- nificant loss of information and one can expect sub-optimal
ation times. Measurements based on a joint observation witf¢sults. In fact, the storage of matri, and thus the data
respect to these two parameters have proved to provide mofémpression, can be avoided by exploiting the separability
robust results [1] since a T1-T2 spectrum reveals any codhe observation model kernels andk, to calculate quanti-
pling betweerl; andT; relaxations, which is very useful for ties such as gradient and Hessian-vector products.
structure determination. As aregularization operator, maximum entropy (MEM) [4]
The physical model behind NMR spectroscopy states thdtas given satisfying results in the context of 1D NMR spec-
the NMR decayX (1, 72) is related to the continuous distri- troscopy [5], which motivates its application in the 2D case
bution S(T7, T5), also called T1-T2 spectrum, according to aMaximum entropy reconstruction can be formulated as the

Fredholm integral of the first kind problem of minimizing
X(m1,72) = [[ k1(m1, T1)S(Th, To)ka (72, To)dThd Ty (1) L(S) = C(S) + AR(S) (4)
with ki (71, T1) = 1 — e /T andky(re, To) = e /2. Typical values aren; = 50, ma = 104, N1 x Nz = 200 x 200, S0

This decay also depends on time variables, notednd s,  thatK has2 - 10'° elements



where the first term is a fidelity to data term conditions [9, Chap.3]. It can be checked that the derieativ
of ¢(«) tends to—oo whena is equal to the smallest positive
C(S) = 1||Y - K|SK}|% stepa canceling some component of the vectqr + ad;
2 (due to Shannon entropy penalization). Consequently, we
according to the Gaussian noise statistics, With- denoting ~ Must ensure that during the line search, the step values re-
the Frobenius norm. The second term is the Shannon entropj@in in the interval0; @) since the functiori(a) is undefined

measure for o > a. Moreover, because of the vertical asymptote at
@, standard methods using cubic interpolations or quadratic
R(S) = Z S(Ty,Ty)log S(Ty, Ty), approximations are not suited. Thus, a line search strategy
Ty, Ts based on the Majorization-Minimization (MM) principle [[LO

o is proposed. The minimization &{«) is replaced by suc-
that plays the role of a regularization term. Moreover, suchessive minimizations of majorant functidrier £(a). The

the norm of the gradient o is unbounded at the boundary easjer subproblems, corresponding to the MM update rule
of the positive orthant. In the context of maximum entropy,

[4] proposed an iterative minimization algorithm based on a aj =0,
guadratic approximation of th_e criterion over a Iqw-ranb-su o™ = argmin,, hy(a, ai), i=0,...,J—1, (7)
space. However, we have noticed that this algorithm does not J

ensure a monotonic decrease of the criterion and a slow con- Ak = X

vergence rate when processing 2D NMR data [6]. Moreoveryith a majorant function having the following form
according to [7, p. 1022], the convergence proof of this algo

rithm is not established. hi(, ) = £(0)) + (@ — o' )i(a’) + 2mp(a — a’)?
In this paper, we propose an efficient iterative algorithm B ?
allowing to optimize the maximum entropy criterion with a + 7 [(@ —a) 1og(of —@ ) —a+ o/}. (8)
o —

reduced computation cost in the case of 2D NMR reconstruc-
tion. In fact, recent results concerning the iterative mizg-  Functionhy(«, o) is strictly convex and has a unique mini-
tion of criteria containing barrier functions [8], such as i mizer, which takes an explicit form

maximum entropy, Poissonian likelihood models and interio

. L : i —As + \/m
point methods, allow us to minimize (4) using a non-linear o + 2 , (9)
conjugate gradient algorithm that benefits from stronger th 24,
oretical properties. with A; = —my, Ay =y — £(o/) + my(a — o/) and Az =
(@ — o)f(a’). Property 1 [8] gives a procedure for finding
2. PROPOSED OPTIMIZATION APPROACH (M, i)

The standard non linear conjugate gradient algorithm isdas Property 1. f(a) has a barrier located at

on iteratively decreasing the objective funciof(s) by a = min —s;/d;. (10)
moving the current solutios;, along a directiord;, ildi<0

Letm; = deTde.—}—)\mb and~; = Ay, withm,, = 61 (0)

Skl = S+ axdy, ®) and~, = by (0)a if oafc = 0. Otherwise, let
whereay, > 0 is the stepsize andy, is a search direction b (0) — br (0 i (o)
defined by my = 210 1(6§k)2+ak 1(ag)
(a)?/2 (11)
do=—go, dp=—gk+0Bkdk—1,Vk>21.  (6) _ ba(0) — ba(ad) + afbo(ad)
whereg,, £ VL(s;) andf; is the conjugacy parameter. In (@ — op)log(l — ag /@) + oy

practice, the method consists in alternating the constmict whereb, (o) = Zi\dv>0(si+adi) log(s; +ad;) andby(a) =
of d;, and the computation of the stepsizg by a line search ’

orocedure. 15, <0(si + adi) log(s; + ad;). Then, functioriu, (-, a7,) is

a majorant of((-) at o,

2.1. Line search strategy The convergence to the minimizer of (4) when using the
NLCG algorithm and the stepsize strategy (7) is also estab-

An acceptable value ofy, is obtained by minimizing the |ished for several conjugacy formulas.

scalar functiof(«) = L(sy + ady) under some convergence

o) is said majorant fof(a) ato’ if hy(a/,a’) =

3A function Ay (c,
") = £(a) for all a.

2In the sequel, we use the notatidiis) = L(S) () andhy (o, a



2.2. Preconditioning

Preconditioning allows to speedup the algorithm convergen
by employing a scaling matrix which transforms the space of
original variables into a space in which the Hessian of the
criterion has more clustered eigenvalues. Thus, in the pre-
conditioned version of the NLCG algorithm (PNLCG), the
direction is calculated as

do = —Pygo, di=—Pigi + Grdr—1,Vk =1 (12) , . .
Fig. 1. Simulated 2D spectrum (left) and NMR decay (right).

We proposeP;; as the following approximation of the inverse
Hessian ofL(s) at sy

450) J 80 Zi ié
P, = [UDU” + Adiag(si) '] (13) o = R
350 “-v=8 560 ,
whereUDUT results from a truncated singular value de- 4, 2
composition (TSVD) ofK” K, or more precisely, from the o
TSVD of KT K, and K K, each at rank. 200 9 ,
Table 1 summarizes the proposed algorithm scheme. s o o 30)/9_9,%
1 2 3} 4 5 1 2 3 4 5
Choose parametets A, J and initial valuesg (a) Number of iterations (b) Computational time
Compute the TSVD oK { K; and K K at rankv
Repeat until convergence Fig. 2. Influence of the rank of truncatianand of the number
1. CalculateP;, using (13) of subiterations/ on the speed of convergence

2. Computedy, using (12)
3. Setqy, after J iterations of (7)
4. Updatesy, according to (5)

Table 1. Main steps of the proposed optimization algorithm.

3. EXPERIMENTAL RESULTS

This section discusses the performances of the propost i(5) oo Ts)
method and illustrates its applicability. The algorithmns

tialized with a uniform positive 2D spectrum, the modified rig. 3, Reconstruction of a 2D NMR spectrum using the pro-
Polyak-Ribere-Polak (PRP+) conjugacy is used and the alpgsed algorithm (left) and the approach of [3] (right). Irtbo
gorithm convergence is checked using the following stogpin cases, the normalized mean square error is absit
rule [9]

lgklloe < 1075(1 + [L(sk))). (14)

The regularization parametaris set to get the best result in Noted that increasing the value ofinduces a faster conver-

terms of similarity between the simulated and the estimate§€NCce in terms of iteration number. However, the overallcom
spectra (in the sense of quadratic error). putation time can increase for high valuesvofConcerning

the choice of the sub-iteration number in (7), it appears tha
J =1 leads to the best results in terms of computation time
which shows that an exact minimization of the scalar fumctio
The data set is simulated using the observation model () witduring line search is not necessary.
a signal to noise ratio of0 dB, m; = 200 andmsy = 500. In this simulated example, the PNLCG algorithm with
The synthetic spectruri° is a Gaussian distribution located J = 1 andv = 6 converges in 158 iteration(®6.6s) while
at [Th,Tz] = [2s,1.8s] (Fig. 1). The reconstruction is per- Skilling-Bryan algorithm as well as the multiplicative rhetd
formed forN; = N, = 100 with A = 1076, of [11] fail to give the same solution quality, in terms of gra
Fig. 2(a) and 2(b) summarize the performance results idient norm and similarity between the reconstructed spattr
terms of iteration numbek” and computation tim& in sec- and the original one, after 2000 iterations. Fig. 3 shows the
onds on an Intel Pentium 4 3.2 GHz, 3 GB RAM. It can bereconstructed spectra using the proposed algorithm and the

3.1. Synthetic data



approach of [3], which use& norm penalization and pos- others optimization approaches such as quasi-Newton er sub
itivity constraints. Although the latter performs i)s, the  space methods for which the proposed line search procedure
comparison of the results shows that the entropy penalizati still applies.

leads to a spectrum whose shape is closer to the simulated
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