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A T1-T2 spectrum is very useful in NMR spectroscopy since it reveals any coupling between T1
and T2 relaxations. The determination of such 2D spectrum is an ill-posed inverse problem. We

propose an efficient iterative reconstruction method based on maximum entropy regularization.
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with K1 ∈ R
m1×N1, K2 ∈ R

m2×N2, Y ∈ Rm1×m2, S ∈ RN1×N2, y = vect(Y ), s = vect(S) and K = K1 ⊗K2.

AIM Reconstruction of S given noisy measurements Y

DIFFICULTIES ⋆ POSITIVITY CONSTRAINT

⋆ HUGE MATRIX K

⋆ K1, K2 ILL-CONDITIONED

PROPOSAL Convergent iterative reconstruction method based on

maximum entropy regularization and exploiting kernel separability

RECONSTRUCTION STRATEGY

MAXIMUM ENTROPY (ME) PENALIZATION
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✓ Accounts for positivity ✓ Good results in 1D NMR [1]

✓ Well suited for distribution recovering

Iterative descent algorithm
At each iteration k , k = 1, ..., K,

1. Compute a descent direction dk

2. Determine the stepsize αk according to a linesearch strategy

aimed at minimizing ℓ(α) = L(sk + αdk).

3. Update sk+1 = sk + αkdk.

• dk results from conjugate gradient (CG) or truncated Newton algorithm

•Entropy is a barrier function for the positive orthant

➫ ℓ̇(α) unbounded for α cancelling a component of sk + αdk
➫ ∇2L ill-conditioned near the boundary of the domain

•K is large and rank-deficient.

Proposed approach

➀ Specific linesearch strategy for barrier function

➁ Convergence acceleration with a new preconditioner

➂ Computational cost reduction by exploiting kernel separability

MAJORIZE-MINIMIZE LINESEARCH STRATEGY
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h(α,αj) > ℓ(α)

h(αj, αj) = ℓ(αj)

Majorize Minimize recurrence

αj+1 = argminα h
j(α,αj), j 6 J

with hj(α,αj) =

p0 + p1α+ p2α
2−p3 log(α− α±).

➫ Ensures theoretical convergence of the descent algorithm [2]

LOW RANK PRECONDITIONER

Preconditioner Pk approximates the inverse Hessian using truncated SVDs

of Kn at rank v (ŨtnΣ̃nṼn), and the matrix inversion lemma:

Pk =
[

Ṽ Σ̃2Ṽ t + λ diag(sk)
−1

]−1
= Ak − AkṼ (Σ̃

−2 + Ṽ tAkṼ )
−1Ṽ tAk

with Ak = λ
−1diag(sk) and

{

Ṽ = Ṽ1 ⊗ Ṽ2
Σ̃ = Σ̃1 ⊗ Σ̃2

.

EXPERIMENTAL RESULTS

SYNTHETIC EXAMPLE (40 dB)

m1 = 200, m2 = 500, N1 = N2 = 100, γ = 1
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(a) Simulated dataset (b) ME reconstruction
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(c) Number of iterations (d) Computational time

PCG direction dk = −Pkgk + βkdk−1
Stopping criterion ‖∇L(sk)‖∞ < 10

−8(1 + |L(sk)|)

MM subiterations in linesearch J ր implies K ց but time ր

Truncation rank in preconditioner v ր implies K ց but time ր

REAL DATA PROCESSING (APPLE)

m1 = 50, m2 = 10000, N1 = N2 = 300, γ = 0.92
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(a) ME reconstruction (b) Song et al. reconstruction
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(c) T1 spectra (d) T2 spectra

•Comparison with Song et al. strategy [3]

Principle: Tikhonov regularization, KKT conditions, data compression

•Similar data fits (82%) but different spectra shapes (false peaks?)

•Correlation between T1 and T2 ⇒ Advantage of 2D spectroscopy

CONCLUSION

•Theoretically convergent algorithm

•Reasonable computational cost and memory requirement

•Does not require data compression

In prospect:

➢ Theoretical analysis of 2D spectra obtained from real data

➢ Deeper comparison with Song et al. algorithm

➢ Other optimization algorithms: Truncated Newton, Subspace

➢ Strategy for setting the regularization parameter λ
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