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ABSTRACT

In multichannel imaging, several observations of the same scene ac-
quired in different spectral ranges are available. Very often, the spec-
tral components are degraded by a blur modelled by a linear operator
and an additive noise. In this paper, we address the problem of re-
covering the image components in a wavelet domain by adopting a
variational approach. Our contribution is twofold. First, an appropri-
ate multivariate penalty function is derived from a novel joint prior
model of the probability distribution of the wavelet coefficients lo-
cated at the same spatial position in a given subband through all the
channels. Secondly, we address the challenging issue of computing
the Maximum A Posteriori estimate by using a Majorize-Minimize
optimization strategy. Simulation tests carried out on multispectral
satellite images show that the proposed method outperforms conven-
tional techniques.

Index Terms— Multiscale decomposition, multicomponent im-
age, MAP criterion, Majorize-Minimize algorithm

1. INTRODUCTION

Multichannel Images (MCI) are widely used in many application
areas such as medical imaging and remote sensing. The multiple
components are obtained by imaging a single scene by sensors op-
erating in different spectral ranges. For instance, about a dozen of
radiometers may be on-board of remote sensing satellites. Most of
the time, MCI are corrupted with noise and blurred during the acqui-
sition process and transmission steps. Therefore, restoring MCI is
of primary importance for several applications such as classification,
segmentation and object recognition [1]. Several works have been
dedicated to MCI denoising especially by using wavelet-based ap-
proaches. The challenge is to design efficient multivariate methods
that jointly process the spectral components [2, 3, 4, 5]. In this paper,
we adopt a Bayesian framework for recovering the wavelet coeffi-
cients. The challenge is twofold. At first, it consists of developping
a multivariate prior probability distribution that reflects the sparsity
of the employed multiscale representation. The second challenge
is to design an efficient algorithm in order to optimize the resulting
regularized criterion. In this work, we propose a novel multivari-
ate prior model for the distribution of vectors composed of wavelet
coefficients at the same spatial position in a given subband through
all the channels. Secondly, we propose an algorithm based on re-
cent developments concerning Majorize-Minimize methods in order
to derive the optimal estimate.
The paper is organized as follows. In Section 2, we present the ob-
servation model and we formulate the problem. In Section 3, we

introduce the adopted regularization criterion. In Section 4, experi-
mental results are given and finally, in Section 5, some concluding
remarks are drawn.

2. PROBLEM STATEMENT

We are interested in recovering a multicomponent signal with B
components ȳ1, . . . , ȳB in R

N (the images being columnwise re-
shaped) from some observations z1, . . . , zB which have been de-
graded by linear operatorsH1, . . . ,HB and corrupted by an additive
noise:

∀b ∈ {1, . . . , B}, zb = Hbȳb + wb. (1)

Very often, the target images are assumed to have a sparse represen-
tation on a set of frame synthesis operators F ∗

1 , . . . , F
∗
b :

∀b ∈ {1, . . . , B}, ȳb = F ∗
b x̄b (2)

where F ∗
b is a linear operator from R

Q to R
N with Q ≥ N . Conse-

quently, the problem amounts to first building estimates x̂1, . . . , x̂B

of the unknown coefficients x̄1, . . . , x̄B , and then recovering the es-
timates ŷ1, . . . , ŷB as follows

∀b ∈ {1, . . . , B}, ŷb = F ∗
b x̂b. (3)

It is worth noting that the Q coefficients are generally grouped into
M subbands of size Qm (corresponding to specific orientations and
scales) with Q =

∑M
m=1Qm. Hence, we have:

∀b ∈ {1, . . . , B}, x̄b = (x̄b,1,1, . . . , x̄b,1,Q1 , . . . ,
x̄b,m,1, . . . , x̄b,m,Qm , . . . ,
x̄b,M,1, . . . , x̄b,M,QM )T.

(4)

In this work, we aim at exploiting the cross-component similarities
by estimating jointly the coefficients of the different subbands of
all the components. In this respect, we define the following vec-
tor of multichannel coefficients of dimension B, for every m ∈
{1, . . . ,M} and q ∈ {1, . . . , Qm},

x̄m,q = (x̄1,m,q, . . . , x̄B,m,q)
T. (5)

It can be noticed that such vectors can be easily obtained as follows:

x̄m,q = Pm,qx̄ with x̄ = (x̄T
1, . . . , x̄

T
B)T, (6)

where Pm,q is a B × QB sparse matrix containing B lines of a
permutation matrix. In this paper, we focus on the solution to the
following penalized optimization problem:

minimize
x∈R

QB
(φ(HF ∗x − z) + Ψ(x)) , (7)



where z = (zT
1, . . . , z

T
B)T, φ : R

QB −→ R is a data-fidelity term,
and Ψ : R

QB −→ R is a regularization term. The operators F and
H are defined as follows:

F∗ =

⎛
⎜⎜⎜⎝

F∗
1 0 . . . 0

0 F∗
2 0 0

. . .
. . .

. . .
. . .

0 0 0 F∗
B

⎞
⎟⎟⎟⎠ , (8)

H =

⎛
⎜⎜⎜⎝

H1 0 . . . 0
0 H2 0 0
. . .

. . .
. . .

. . .
0 0 0 HB

⎞
⎟⎟⎟⎠ (9)

where the size of the involved matricesF∗
b ,H

∗
b and 0 isQ×Q. Note

that the data-fidelity term is related to the statistical properties of the
noise whereas the regularization term depends on the prior knowl-
edge and the constraints on the signal to be recovered. Therefore,
the choice of Ψ is of main importance. In the next section, we will
address this issue.

3. PROPOSED OPTIMISATION CRITERION

3.1. MEP prior

Recently, it has been observed [6, 7, 8] that a suitable model for the
distribution of zero-mean vectors x̄m,q composed of frame coeffi-
cients through multiple channels in a given subband m is the Mul-
tivariate Exponential Power (MEP) distribution (also known as the
multivariate generalized Gaussian) whose parameters are the shape
parameter βm > 0, and a symmetric positive matrix Σm (the scale
matrix). The generic expression of a MEP probability density func-
tion (pdf) is defined for every u in R

B as follows:

fMEP(u) = CB |Σm|−1/2g
(
uTΣ−1

m u;βm

)
, (10)

where CB is a normalization constant expressed as

CB =
Γ(B

2
)

π
B
2 Γ( B

2βm
)2

B
2βm

|Σm|−1/2, (11)

Γ(·) being the gamma function, and where, for every t ∈ R+,
g(t;βm) = exp

( − 1
2
tβm

)
.

In this work, it appeared useful to consider the following General-
ized MEP (GMEP) model, which is defined in the zero-mean case
by the following pdf:

∀u ∈ R
B , fGMEP(u) = C′

B |Σm|−1/2g
(
uTΣ−1

m u + δm;βm

)
where Σm and βm are defined as previously, δm is an additional
positive constant, and C′

B is the associated normalization constant.

3.2. Regularization term related to GMEP prior

If we assume that the vectors (x̄m,q)1≤m≤M,1≤q≤Qm are realiza-
tions of mutually independent random vectors, for every x ∈ R

QB ,
the regularization term is given by

Ψ(x) =
M∑

m=1

Qm∑
q=1

(
xT

m,qΣ
−1
m xm,q + δm

)βm
. (12)

According to (6), this function can be re-expressed as

Ψ(x) =

M∑
m=1

Qm∑
q=1

(
(Pm,qx)TΣ−1

m (Pm,qx) + δm

)βm
. (13)

3.3. Penalized least squares problem

Let us assume that the noise vectorw = [wT
1, . . . ,w

T
B ]T is a realiza-

tion of a zero-mean Gaussian random vector with covariance matrix
Λ. The problem then reduces to a penalized least squares problem
and the Maximum A Posteriori solution minimizes the following cri-
terion:

JGMEP(x) = (HF ∗x − z)TΛ−1(HF ∗x − z)

+
∑M

m=1

∑Qm
q=1 ψβm,δm(‖ Sm,qx ‖), (14)

where

• ψβm,δm : R −→ R is the function defined as

∀t ∈ R+, ψβm,δm(t) = (t2 + δm)βm ; (15)

• Sm,q is the matrix Σ
−1/2
m Pm,q .

Obviously, the functionψβm,δm is differentiable, and t �→ ψβm,δm(
√
t)

is concave on R+ provided that βm ≤ 1. Moreover, ψβm,δm is con-
vex if βm ≥ 1/2.
Note that in the case of an additive Gaussian noise, JGMEP is an
extension of the criterion investigated only in the denoising context
(i.e. H = I) in [9].

3.4. Majorize-Minimize memory gradient algorithm

Iterative methods need to be employed in order to minimize JGMEP.
Basically, they start from an initial guess and build a sequence of up-
dated estimates until an acceptable accuracy is reached. In the case
of MCI restoration, we are faced to large scale optimization prob-
lems and, consequently, a major concern is to design a fast itera-
tive optimization algorithm providing reliable numerical solutions.
In this work, we employ the Majorize-Minimize Memory Gradi-
ent (3MG) algorithm [10, 11] which aims at building a sequence
(xk)k∈N of R

QB such that

∀k ∈ N, JGMEP(xk+1) ≤ JGMEP(xk). (16)

This is performed by defining, for all k ≥ 0,

xk+1 = xk + Dkuk, (17)

with Dk = [−gk xk − xk−1] ∈ R
QB×2, where gk denotes the

gradient of JGMEP at xk, and uk ∈ R
2 is a two-dimensional stepsize

that aims at partially minimizing ϕk : u �→ JGMEP(xk + Dku).
In this algorithm, the determination of the stepsize uk is based on
the Majorization-Minimization (MM) principle. The minimization
of ϕk is performed by successive minimizations of tangent majorant
functions forϕk. A function qk(·,u′) is said to be a tangent majorant
for ϕk at u′ if for all u ∈ R

2,

qk(u,u′) � ϕk(u) and qk(u′,u′) = ϕk(u′). (18)

Following [11], we propose to employ a convex quadratic tangent
majorant function of the form:

qk(u,u′) = ϕk(u′) + ∇ϕk(u′)T(u − u′)
+ 1

2
(u − u′)TBk,u′(u − u′),

(19)

where ∇ϕk(u′) denotes the gradient of ϕk at u′ and Bk,u′ is a
2 × 2 symmetric positive semi-definite matrix that ensures the ful-
fillment of majorization properties (18). The minimization of ϕk



is thus replaced by a sequence of easier two-dimensional quadratic
subproblems, corresponding to the following MM update rule:

⎧⎪⎪⎨
⎪⎪⎩

u0
k = 0,

For j = 1, . . . , J⌊
uj

k ∈ Argmin
u∈R2

qk(u,uj−1
k ).

(20)

3.5. Construction of the majorizing approximation

For everym ∈ {1, . . . ,M}, let us define

∀t ∈ R
∗, ωβm,δm(t) = ψ̇βm,δm(t)/t, (21)

where ψ̇βm,δm is the derivative of ψβm,δm (the function ωβm,δm is
extended by continuity at 0). Let u′ ∈ R

2, let k ∈ N, and let us
define the following matrices:

A(x) = 2(HF ∗)TΛ−1(HF ∗)
+

∑M
m=1

∑Qm
q=1 ωβm,δm(‖Sm,qx‖)

(
ST

m,qSm,q

)
Bk,u′ = D�

k A(xk + Dku
′)Dk,

= 2(HF ∗Dk)TΛ−1(HF ∗Dk)

+
∑M

m=1

∑Qm
q=1 ωβm,δm(‖Sm,qxk + Sm,qDku

′‖)
(Sm,qDk)T(Sm,qDk).

Then, a convex quadratic tangent majorant qk(·,u′) of ϕk at u′ can
be built according to (19).

3.6. Final algorithm

According to (19) and (20), the optimality condition for the choice
of the stepsize in the MM iteration is given by: for every k ∈ N and
j ∈ {1, . . . , J},

B
k,u

j−1
k

(uj
k − uj−1

k ) + ∇ϕk(uj−1
k ) = 0. (22)

This yields the explicit stepsize formula

uj
k = uj−1

k − B−1

k,u
j−1
k

∇ϕk(uj−1
k ), (23)

where B−1

k,u
j−1
k

is the pseudo-inverse of B
k,u

j−1
k

∈ R
2×2. The

resulting 3MG algorithm reads:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ R
QB ,

For k = 0, . . .⎢⎢⎢⎢⎢⎢⎢⎢⎣

u0
k = 0,

For j = 1, . . . , J⌊
B

k,u
j−1
k

= DT
kA(xk + Dku

j−1
k )Dk,

uj
k = uj−1

k − B−1

k,u
j−1
k

DT
k∇JGMEP(xk + Dku

j−1
k ),

xk+1 = xk + Dku
J
k .

(24)
The convergence of the sequence (xk)k∈N generated by the 3MG
algorithm to a critical point ofJGMEP can be deduced from the results
in [11]. In practice, the algorithm is run until the fulfillment of the
stopping criterion

‖∇JGMEP(xk)‖/
√
N ≤ ε, (25)

where, typically, ε = 10−4.

4. EXPERIMENTAL RESULTS

Synthetic GMEP data We have first generated realizations of
a GMEP random vector thanks to the Metropolis-Hastings algo-
rithm with the following parameters: B = 3, M = 1, Σ1 = I,
β1 = 0.3, and δ1 = 10−4. We have corrupted them by adding
a multivariate i.i.d. Gaussian noise with zero-mean and variance
σ2

b = 100. The noise variance was adjusted so as to correspond
to an initial SNR = 11.2 dB. We plot in Fig. 1, the variations of
(JGMEP(xk) − JGMEP(x̂))k for various values of J (number of MM
steps), with respect to the computational time, when performing tests
on an Intel Core i3CPU@ 2.39 GHz using a Matlab 7.12 implemen-
tation. Note that the optimal solution x̂ has been precomputed using
a large number of iterations. It appears that the best results in terms
of convergence profile are obtained with J = 1. Consequently, this
setting has been retained in the remaining experiments.
Natural images We have considered several multispectral images.
In this paper, we report the results for two test images of size 512
× 512. The first one is a three-component SPOT multispectral test
image (called “Tunis”) It corresponds to a scene depicting the city
of Tunis (B = 3). The second one is a four-component Quick-
bird image (called “Zaghouan”) corresponding to a rural area in
Tunisia (B = 4). The spectral components have been corrupted
with a multivariate zero-mean Gaussian noise having a diagonal
covariance matrix. The quality of the denoised images is evaluated
in terms of SNR. All the subsequent reported results are related to
the 4-resolution wavelet orthonormal decomposition using symmlet
wavelet of order 8. Note that simulations with other wavelet bases
have led to similar results. The hyperparameters of the priors are
adjusted empirically. The proposed method is compared with state-
of-the-art denoising methods, namely the spatial 2D Wiener filter,
the spectral Wiener filter, the non local means method (NLMeans)
[12], Visushrink [13], SUREshrink [14], the BG-MAP method [16],
and the E-SURE estimate [3]. We have also made a comparison
with the locally bivariate shrinkage method which is a competitive
technique based on the exploitation of the dependence between co-
efficients across scales [15]. Tables 1 and 2 provide the output SNR
achieved by the different denoising techniques for the two test im-
ages. It can be observed that the proposed method outperforms the
other methods. For the tested images,the average gain relatively to
the E-SURE method is around 0.2 dB. Besides, the MM algorithm
converges in no more than 100 iterations (2 iterations/s for B = 3,
and 1 iteration/s for B = 4). Fig. 2 shows the denoised image
corresponding to the first channel of “Tunis”. The GMEP-based
method attenuates the granular effect of the noise. This is confirmed
by the perceptual measures of visual similarity (SSIM) indicated in
the figure caption.

5. CONCLUSION

In this paper, we have proposed a wavelet-based variational method
to restore multichannel images. The novelty of this work firstly re-
lies on the new multivariate model adopted for the prior distribu-
tion. Secondly, an iterative Majorize-Minimize optimization algo-
rithm have been applied to derive the optimal estimator. Experiments
carried out on several multispectral satellite images have shown the
good performance of the proposed approach with respect to state-of-
the-art restoration methods. Several issues could be investigated in
our future work such the ability of the proposed framework to exploit
inter-scale dependencies in addition to the cross-channel ones.



Table 1. “Tunis” image, performance in terms of SNR (in dB) in the presence of a white noise.

Initial Spatial Spectral NLMeans Visu SURE Bivariate BG E-SURE GMEP
Wiener Wiener shrink shrink MAP MAP

[12] [13] [14] [15] [16] [3]
15.08 16.84 16.61 17.13 13.26 17.74 17.96 18.59 19.16 19.36
14.08 16.54 15.75 16.72 12.72 17.07 17.26 17.93 18.50 18.70
13.08 16.19 14.87 16.28 12.21 16.41 16.59 17.30 17.86 18.04
12.08 15.78 14.01 15.83 11.71 15.77 15.94 16.65 17.23 17.41
11.08 15.32 13.14 15.35 11.22 15.17 15.32 16.06 16.61 16.79
10.08 14.79 12.15 14.86 11.18 14.16 14.66 14.89 15.46 16.19
9.074 14.24 11.43 14.36 10.34 13.98 14.13 14.87 15.42 15.60
8.076 13.60 10.58 13.84 9.950 13.47 13.57 14.34 14.87 15.04
7.079 12.90 9.759 13.31 9.572 12.86 13.00 13.80 14.30 14.47
6.079 12.18 8.947 12.83 9.202 12.35 12.47 13.29 13.77 13.91

Table 2. “Zaghouan” Quickbird image, performances in terms of SNR (in dB) when a white noise is added (B = 4).

Initial Spatial Spectral Visu SURE Bivariate BG E-SURE GMEP
Wiener Wiener shrink shrink MAP MAP

[13] [14] [15] [16] [3]
21.64 12.98 22.44 15.87 22.13 22.16 22.58 23.01 23.13
18.65 12.84 19.95 13.53 19.47 19.50 20.25 20.72 20.86
16.64 12.68 18.37 12.15 17.76 17.79 18.79 19.27 19.43
13.64 12.32 16.07 10.35 15.36 15.41 16.68 17.19 17.39
11.64 11.93 14.55 9.33 13.90 13.94 15.33 15.88 16.10
8.65 11.07 12.25 8.03 11.87 11.91 13.37 13.97 14.20
6.64 10.26 10.73 7.31 10.63 10.73 12.20 12.80 13.02
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Fig. 1. Performance of 3MG algorithm in terms of criterion decrease
for different values of J .
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