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ABSTRACT

In the field of 3D image recovery, huge amounts of data need
to be processed. Parallel optimization methods are then of
main interest since they allow to overcome memory limita-
tion issues, while benefiting from the intrinsic acceleration
provided by recent multicore computing architectures. In
this context, we propose a Block Parallel Majorize-Minimize
Memory Gradient (BP3MG) algorithm for solving large scale
optimization problems. This algorithm combines a block
coordinate strategy with an efficient parallel update. The pro-
posed method is applied to a 3D microscopy image restora-
tion problem involving a depth-variant blur, where it is shown
to lead to significant computational time savings with respect
to a sequential approach.

Index Terms— Majorization-Minimization ; Block-
alternating optimization ; Parallel algorithm ; Memory gradi-
ent technique ; 3D deconvolution ; Depth-varying blur.

1. INTRODUCTION

In many inverse problems encountered in image processing,
one has to generate an image estimatex̂ ∈ RN by minimiz-
ing an appropriate cost functionF , which has the following
composite form:

(∀x ∈ R
N ) F (x) =

S∑

s=1

fs(Lsx) (1)

where, for everys ∈ {1, . . . , S},Ls ∈ RPs×N ,Ps ∈ N∗, and
fs is a function fromRPs to R. In the context of maximum
a posteriori estimation,L1 is a degradation operator (for in-
stance, a convolution operator) related to the acquisitionpro-
cess andf1 measures the fidelity between the data and the ob-
servation model in accordance with the noise statistics. The
remaining terms(fs)26s6S act as regularization functions in-
corporatinga priori information on the sought solution, or
more generally on a linear transform of it, thanks to matrices
(Ls)26s6S . Iterative optimization methods must generally be
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employed to find a minimizer of (1). In the case of large scale
image recovery problems, a major challenge is to design an
optimization algorithm able to deliver reliable numericalso-
lutions in a reasonable time.

When all the involved functions(fs)16s6S are differen-
tiable onRN (but non necessarily convex), state-of-the art
smooth optimization methods are nonlinear conjugate gradi-
ent (NLCG) and low memory BFGS (L-BFGS) algorithms [1,
2, 3]. The Majorize-Minimize Memory Gradient (3MG) algo-
rithm [4, 5] can be viewed as a special instance of NLCG with
optimal stepsize and optimal conjugacy parameter and, when
more than one previous direction is employed in the subspace,
as a particular L-BFGS algorithm with optimal combination
of memory directions. The main advantage of 3MG algorithm
is its high efficiency since it relies on a Majorize-Minimize
(MM) approach, combined with a subspace acceleration tech-
nique. At each iteration, a quadratic majorizing approxima-
tion of (1) at the current iterate is constructed, and the next it-
erate results from its minimization within a two-dimensional
subspace spanned by the current gradient and the previous
direction. In addition, the 3MG algorithm enjoys nice con-
vergence properties which have been investigated in [4] in
the convex case, and in [6] in the non-convex case. Com-
parisons with graph-cut based discrete optimization methods,
and primal-dual proximal algorithms on a number of image
restoration problems have also shown the good performance
of 3MG in terms of practical convergence speed [6, 7, 8, 9].
However, when the size of the problem becomes increasingly
large, as it may happen in 3D image processing or video pro-
cessing, running this kind of algorithm becomes difficult, due
to memory limitation issues.

An efficient way to overcome difficulties related to mem-
ory requirements in optimization algorithm consists in adopt-
ing a parallel block alternating minimization approach [10,
11, 12]. The target vector is split into non-overlapping blocks
of reduced dimension and, at each iteration of the algorithm,
few blocks are selected, and updated in a parallel manner ac-
cording to a given optimization scheme. This strategy allows
to control the required memory, since the number of blocks
can be set by the user to the number of available processors.

Several works in the context of image restoration, have



shown that MM algorithms benefit from a high potential of
parallelization [13, 14]. These studies are based on the useof
majorant functions having a particular block separable struc-
ture that leads inherently to parallel update schemes which
may be of great interest when the optimization is performed
on multicore systems or GPGPU boards. The usage of block
alternating techniques in MM strategies has also been investi-
gated (see, for instance, [15, 16]). However, up to our knowl-
edge, the resulting methods do not present any parallel struc-
ture, as only one block must be updated per iteration, so that
the gain in terms of memory usage is usually obtained at the
expense of a substantial decrease of the convergence rate [13].

In this work we propose a new Block Parallel 3MG
(BP3MG) algorithm for smooth, possibly nonconvex, opti-
mization problems involving massive datasets. The proposed
method has two key benefits: it takes advantage of recent
technological advances in parallel computing on multicore
architectures and it allows the computation load to be tailored
to the number of available processors. We show that these
new features result in a highly accelerated method for solving
a 3D deblurring problem with depth-variant blur.

The paper is organized as follows: in Section 2 we intro-
duce the proposed BP3MG algorithm. In particular we de-
scribe the block subspace and the block separable majorant
function used for its derivation. Section 3 describes a parallel
implementation of this method for the restoration of 3D mi-
croscopy images and shows its very good performance. Some
conclusions are drawn in Section 4.

2. PROPOSED METHOD

2.1. Notation

In our block-coordinate approach, the vector of unknowns
x = (xn)1≤n≤N ∈ RN is split intoJ vectorsx(j) of reduced
dimensionNj 6= 0 with j ∈ {1, . . . , J} (N1+· · ·+NJ = N ).
We will also need to define subsetsS ⊂ {1, . . . , J} gath-
ering such block indices as illustrated in Fig. 1. The vec-
tor of variables associated with a setS is then denoted by
x(S) =

(
x(j)

)
j∈S

and its components are(xp)p∈S
where

S ⊂ {1, . . . , N} with cardinality|S| =
∑

j∈S Nj .
For every s ∈ {1, . . . , S}, the matrixLs in (1) can

be decomposed as
[
L

(1)
s |. . .|L

(J)
s

]
, where, for everyj ∈

{1, . . . , J}, L(j)
s ∈ RPs×Nj . Finally, we denote byL(S)

s ∈

RPs×|S|, the columnwise concatenation of matrices(L
(j)
s )j∈S .

A similar notation is used for the (rowwise) block decompo-
sition of the gradient∇F (x) at some given vectorx ∈ RN .

2.2. Block separable quadratic majorant function

The majorize-minimize approaches [17, 18, 19] often rely on
the use of a surrogate function which constitutes a quadratic
tangent majorant functions for Criterion (1). Let̃x ∈ RN

x = x(1) x(j) x(J)

x(S)
=

Fig. 1. Example of block subset, with Card(S) = 3. Each block
has here 16 components.

and, for everyx ∈ RN , let A(x) ∈ RN×N be a symmetric
positive matrix. The quadratic function

(∀x ∈ R
N ) Q(x, x̃) = F (x̃) +∇F (x̃)⊤(x− x̃)

+
1

2
(x− x̃)⊤A(x̃)(x− x̃),

is said to be atangent majorant for F at x̃, if

(∀x ∈ R
N ) Q(x, x̃) ≥ F (x) and Q(x̃, x̃) = F (x̃). (2)

In the sequel we will assume the existence of matrices fulfill-
ing (2) of the form

(∀x ∈ R
N ) A(x) =

S∑

s=1

L⊤
s Diag {ωs(Lsx)}Ls, (3)

where, for everys ∈ {1, . . . , S}, Ls is aPs ×N real-valued
matrix andωs is a function fromRPs to ]0,+∞[Ps whose
expression depends on the properties of the potentialfs [5,
Tab. I]. For instance, iffs is βs-Lipschitz differentiable with
βs ∈]0,+∞[, we can chooseωs(·) = βs1Ps

, where1Ps
is a

vector with lengthPs whose components are all equal to one.
In order to derive our block-coordinate algorithm, we

need to define, for every nonempty set of blocksS ∈
{1, . . . , J}, a quadratic majorant function of the restriction
of F to these blocks. According to [20, Rem. 2.4], for every
x̃ ∈ RN , a possible choice is

(∀v ∈ R
|S|)

Q
(S)

A(S)(v, x̃) = F (x̃) +∇F (S)(x̃)⊤(v − x̃(S))

+
1

2
(v − x̃(S))⊤A(S)(x̃)(v − x̃(S)), (4)

where

(∀x ∈ R
N ) A(S)(x) = ([A(x)]p,p)p∈S

. (5)

However, in practice, the matrices defined in (5) do not nec-
essarily have a block diagonal structure so thatQ

(S)

A(S)(·, x̃) is
not separable with respect to each blockj ∈ S. Therefore,
its minimization cannot be performed efficiently in a parallel
manner. The following lemma defining block diagonal ma-
trices majorizing (5) will be the cornerstone of the parallel
structure of our algorithm:



Lemma 1. Let S ⊂ {1, . . . , J}. For every j ∈ S , for every
x ∈ RN , let matrix B(j)(x) ∈ RNj×Nj be given by

B(j)(x) =

S∑

s=1

(
(L(j)

s )⊤Diag {bs(Lsx)}L
(j)
s

)
, (6)

where, for every s ∈ {1, . . . , S} and p ∈ {1, . . . , Ps}, the
p-th component of vector bs(Lsx) is1

[bs(Lsx)]p = [ωs(Lsx)]p[|L
(S)
s |1|S|]p/[|L

(j)
s |1Nj

]p. (7)

Then, for every x ∈ RN , A(S)(x) � B(S)(x), where

B(S)(x) = BDiag
{(

B(j)(x)
)
j∈S

}
(i.e. the block diagonal

matrix with |S| blocks equal to B(j)(x), j ∈ S).

The proof of Lemma 1 is omitted due to the lack of space.
It makes a clever use of Jensen’s inequality, following tech-
niques similar to those in [21, Sec. III] (see also [13, Sec. III-
A]).

2.3. BP3MG algorithm

We are now ready to present our algorithm. At each iteration
k ∈ N, a subsetSk ⊂ {1, . . . , J} of block indices with car-
dinality C ∈ N∗, is selected.C typically corresponds to the
number of available processors. The corresponding blocks
are then updated thanks to a local 3MG iteration, correspond-
ing to the minimization ofQ(Sk)

B
(Sk)

(
·,xk

)
within the subspace

spanned by the columns ofD(S)
k = BDiag{(D

(j)
k )j∈S}

where, for everyk ∈ N andj ∈ Sk,

D
(j)
k =

{
−∇F (j)(xk) if j /∈

⋃k−1
ℓ=0 Sℓ,[

−∇F (j)(xk)
∣∣x(j)

k − x
(j)
k−1] otherwise.

(8)

The above condition onj simply allows us to distinguish
blocks which have never been updated, from the blocks
which have been updated at least once. Thanks to the block-
separable structure of the majorant functions, theC selected
blocks with indicesj ∈ Sk can be updated in a parallel
manner, leading to the following new algorithm:

Initialize x0 ∈ RN .
For k = 0, 1, 2, . . .

Select Sk ⊂ {1, . . . , J} s.t. |Sk| = C
Parfor j ∈ Sk

Compute ∇F (j)(xk)

Compute B
(j)
k (xk) using (6)

Construct D
(j)
k using (8)

u
(j)
k = −

(
(D

(j)
k )⊤B

(j)
k (xk)D

(j)
k

)†

(D
(j)
k )⊤∇F (j)(xk)

x
(j)
k+1 = x

(j)
k +D

(j)
k u

(j)
k

Set , for everyj ∈ {1, . . . , J} \ Sk, x
(j)
k+1 = x

(j)
k .

Share
(
x
(j)
k+1

)
j∈Sk

between all cores.
(9)

1The notation|M | is used to denote the matrix whose elements are equal
to the absolute value of those ofM .

Hereabove,(·)† denotes the pseudo inverse operation. The
selection rule for the blocks plays an important role in the
convergence analysis. Actually, it suffices to assume a quasi-
cyclic rule, where the blocks are updated in an arbitrary order,
as soon as each one is updated at least once per a finite num-
berK ∈ N∗ of iterations. Under this assumption, the mono-
tonic convergence of the criterion sequence(F (xk))k∈N to
a (locally) optimal value can be established, using the same
theoretical tools as in [20].

It is important to emphasize, that, because of Expressions
(1) and (6), in practice, it is not necessary to send the full
vectorxk+1 to all the cores, at iterationk. Actually, let j ∈
{1, . . . , J} and letJj be the index set of the components of
vectorxk+1 belonging to thej-th block. Only the compo-
nents ofxk+1 with indices in

Nj =

S⋃

s=1

{
n ∈ {1, . . . , N}|(∃p ∈ Ps,j) [Ls]p,n 6= 0

}
,

wherePs,j = {p ∈ {1, . . . , Ps} |(∃j ∈ Jj) [Ls]p,j 6= 0}, are
required to compute the gradient and the majorant matrix that
are useful for the update of thej-th block. The cardinality of
Nj is usually very small with respect toN . For instance, if
S = 1 andL1 is a discrete gradient operator with one pixel
neighborhood, then|Nj | = 3.

3. APPLICATION TO 3D IMAGE DECONVOLUTION

3.1. Observation model

We focus on the following linear degradation model:

y = Hx+ b, (10)

wherex ∈ RN represents the 3D original (unknown) image
of sizeN = NX ×NY ×NZ, y ∈ RN is the observed image,
H is a linear operator modeling a 3D convolution with depth
variant blur, andb is a realization of an additive random noise.
The goal is to solve the associated inverse problem, i.e. to find
an estimate ofx from y.

3.2. Objective function

A hybrid penalized least squares criterion involving a smooth
3D regularization term is used for the objective functionF
[9]. Then,F takes the form (1) with

• P1 = N , L1 = H, f1 = 1
2‖ · −y‖2,

• P2 = N , L2 = IN , f2 = η d2[xmin,xmax]N
,

• P3 = 2N , L3 = [(V X)⊤(V Y)⊤]⊤,

f3(L3x) = λ
∑N

n=1

√
([V Xx]n)

2
+ ([V Yx]n)

2
+ δ2,

• P4 = N , L4 = V Z, f4 = κ‖ · ‖2,



where(η, λ, δ, κ) ∈ (0,+∞)4, V X ∈ RN×N , V Y ∈ RN×N ,
V Z ∈ RN×N are discrete gradient operators alongX,Y, and
Z directions,dE is the distance to a setE, and(xmin, xmax) ∈
R2 are some minimal and maximal bounds on the sought in-
tensity values. The same matrices as in [9] are used for defin-
ing (3).

3.3. Implementation

The BP3MG algorithm derived in Section 2 has been imple-
mented in MATLABR© (2015b) using the Message Passing
Interface commandSPMD of the Parallel Computing Tool-
boxTM . More precisely, the blocks correspond to theJ = NZ

2D slices of the 3D volume. For a given number of active
coresC, the first core is used as a master process while the
C = C − 1 remaining cores are used as slave processes. The
master process carries out the main loop of Algorithm (9). At
each iterationk ∈ N, it selectsC block indices, stored inSk,
and sends to each slave the required data allowing it to update
thej-th block withj ∈ Sk. The slave processes perform their
tasks simultaneously to compute the variables

(
x
(j)
k+1

)
j∈Sk

,
and finally send their results to the master.

3.4. Experimental results

We considered two image restoration scenarii described by
Model (10). The 3D microscopical imagesFlyBrain2 with
sizeN = 256 × 256 × 48 andTube3 with sizeN = 284 ×
280×48 are considered forx. In both cases, the linear opera-
tor H models a 3D depth-varying Gaussian blur, with kernel
size5 × 5 × 11. For each depthz ∈ {1, . . . , NZ}, the blur
kernel is characterized by different variance and rotationpa-
rameters(σX(z), σY(z), σZ(z), ϕY(z), ϕZ(z)), following the
model from [22]. In practice, the values of these five pa-
rameters are chosen randomly and independently, following
a uniform distribution for everyz, leading to a blurred signal
to noise ratio (BSNR) equal to14.09 dB (resp. 12.58 dB).
A zero-mean white Gaussian noise with standard deviation
0.02 is then added to the blurred volume, leading to a SNR
equal to13.42 dB (resp. 11.53 dB). The regularization pa-
rameters(λ, δ, κ, η), and(xmin, xmax) = (0, 1) are chosen so
as to maximize the SNR of the restored volume. Here, we
obtain a final SNR equal to16.98 dB (resp.14.47 dB). Fig. 2
displays some examples of original, degraded and restored
slices, for two slices ofFlyBrain. In Fig. 3, we plot, for
different values of the number of active coresC, the ratio be-
tween the required computation time for one core versus the
actual computational time, for reaching the stopping criterion
‖xk − xk−1‖ 6 10−5‖xk‖. The computations were per-
formed on an Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30GHz
with 24 physical cores. The result of a linear fitting illus-

2http://imagej.nih.gov/ij/plugins/3d−viewer/
3http://adm.irbbarcelona.org/image-j-fiji

trates the great potential of parallelization of the proposed al-
gorithm.

Fig. 2. Original (left), degraded (middle) and restored (right)
images corresponding to slicesz = 6 (top) andz = 18 (bot-
tom) of the 3D volumeFlyBrain.
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Fig. 3. Ratio between the computation time for one core and
the computation time forC cores (crosses) with linear fit-
ting (dotted line), for the restoration ofFlyBrain (left) and
Tube (right).

4. CONCLUSION

In this paper, we have presented a new Block Parallel Majorize-
Minimize Memory Gradient algorithm for handling large-size
optimization problems such as those encountered in 3D image
restoration with depth-variant blur. In this context, our exper-
imental results illustrate the high efficiency of the proposed
method in terms of acceleration for multi-core architectures.
Our future work will focus on the implementation in other
languages that may lead to a further improved performance.
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