A BLOCK PARALLEL MAJORIZE-MINIMIZE MEMORY GRADIENT ALGORITHM
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ABSTRACT employed to find a minimizer of (1). In the case of large scale

In the field of 3D image recovery, huge amounts of data nee'cﬁn';’}?neizzichzy c?rri?hbrlr?r;bsl,ea'tom d"’gﬁ\r/:rh?;:g:ﬁ: ;]Su:ge?ggn an
to be processed. Parallel optimization methods are then (?lp 9

main interest since they allow to overcome memory limita- utions in a reasonable time.

tion issues, while benefiting from the intrinsic accelenati When all the involved functionsf;):<<s are differen-
provided by recent multicore computing architectures. Irfiable onR”Y (but non necessarily convex), state-of-the art
this context, we propose a Block Parallel Majorize-Minimiz Smooth optimization methods are nonlinear conjugate gradi
Memory Gradient (BP3MG) algorithm for solving large scaleent (NLCG) and low memory BFGS (L-BFGS) algorithms [1,
optimization problems. This algorithm combines a block2, 3]. The Majorize-Minimize Memory Gradient (3MG) algo-
coordinate strategy with an efficient parallel update. Tiwe p fithm [4, 5] can be viewed as a special instance of NLCG with
posed method is applied to a 3D microscopy image restorgptimal stepsize and optimal conjugacy parameter and, when
tion problem involving a depth-variant blur, where itisslmo ~ more than one previous direction is employed in the subspace

to lead to significant computational time savings with respe as a particular L-BFGS algorithm with optimal combination
to a sequential approach. of memory directions. The main advantage of 3MG algorithm

is its high efficiency since it relies on a Majorize-Minimize
(MM) approach, combined with a subspace acceleration tech-
nigue. At each iteration, a quadratic majorizing approxima
tion of (1) at the current iterate is constructed, and the itex
erate results from its minimization within a two-dimensbn

1. INTRODUCTION subspace spanned by the current gradient and the previous

direction. In addition, the 3MG algorithm enjoys nice con-

In many inverse problems encountered in image processingergence properties which have been investigated in [4] in
one has to generate an image estiniate R by minimiz-  the convex case, and in [6] in the non-convex case. Com-
ing an appropriate cost functiafi, which has the following  parisons with graph-cut based discrete optimization nuxtho
composite form: and primal-dual proximal algorithms on a number of image
restoration problems have also shown the good performance
of 3MG in terms of practical convergence speed [6, 7, 8, 9].
However, when the size of the problem becomes increasingly
large, as it may happen in 3D image processing or video pro-
where, forevery € {1,...,5}, L, € RP=*N P, ¢ N*, and cessing, running this kind of algorithm becomes difficulted
f, is a function fromR?* to R. In the context of maximum t0 memory limitation issues.
a posteriori estimationl.; is a degradation operator (forin-  An efficient way to overcome difficulties related to mem-
stance, a convolution operator) related to the acquisfiien  ory requirements in optimization algorithm consists intdo
cess andf; measures the fidelity between the data and the oling a parallel block alternating minimization approach,[10
servation model in accordance with the noise statistice Th11, 12]. The target vector is split into non-overlappingdi®
remaining terms £ )2<s< s act as regularization functions in- of reduced dimension and, at each iteration of the algorithm
corporatinga priori information on the sought solution, or few blocks are selected, and updated in a parallel manner ac-
more generally on a linear transform of it, thanks to masrice cording to a given optimization scheme. This strategy aslow
(Ls)2<s<s- Iterative optimization methods must generally beto control the required memory, since the number of blocks
can be set by the user to the number of available processors.

Index Terms— Majorization-Minimization ; Block-
alternating optimization ; Parallel algorithm ; Memory dira
ent technique ; 3D deconvolution ; Depth-varying blur.
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(Vz eRY) F(z)=)_ fi(L.x) (1)

s=1

*This work was supported by the CNRS Imag’In project underig2@mn5s ) ) )
OPTIMISME. Several works in the context of image restoration, have



shown that MM algorithms benefit from a high potential of
parallelization [13, 14]. These studies are based on thefuse
majorant functions having a particular block separablacstr
ture that leads inherently to parallel update schemes which
may be of great interest when the optimization is performed
on multicore systems or GPGPU boards. The usage of block
alternating techniques in MM strategies has also beentinves
gated (see, for instance, [15, 16]). However, up to our knowl
edge, the resulting methods do not present any parall@-strurig, 1. Example of block subset, with Cail) = 3. Each block
ture, as only one block must be updated per iteration, so thaks here 16 components.
the gain in terms of memory usage is usually obtained at the
expense of a substantial decrease of the convergence 3ate [1 .
In this work we propose a new Block Parallel 3MG and_, .for Everyr € RY, IetA.(:c) < RNXN be a symmetric
(BP3MG) algorithm for smooth, possibly nonconvex, opti- positive matrix. The quadratic function
mization problems involving massive datasets. The prapose N ~ ~ T ~
method hpas two key bene?‘its: it takes advantage Iz)fa:icent (v €RY) Q@) =F@)+VF@) (2-3)
technological advances in parallel computing on multicore + l(w _ %)TA(i)(w ),
architectures and it allows the computation load to beradlo 2
to the number of available processors. We show that theds said to be @angent majorant for F" atz, if

new features result in a highly accelerated method for sglvi N N o _
a 3D deblurring problem with depth-variant blur. (Ve € RY) Q(z,z) > F(z) and Q(z,z) = F(2). (2)

The paper is organized as follows: in Section 2 we introqn the sequel we will assume the existence of matrices fulfill
duce the proposed BP3MG algorithm. In particular we dejng (2) of the form
scribe the block subspace and the block separable majorant
function used for its derivation. Section 3 describes alfmra
implementation of this method for the restoration of 3D mi-
croscopy images and shows its very good performance. Some
conclusions are drawn in Section 4. where, for every € {1,...,5}, Ly isaP; x N real-valued
matrix andw is a function fromR”* to ]0, +oco["* whose
expression depends on the properties of the potefifi§b,
Tab. I]. For instance, iff; is 3s-Lipschitz differentiable with
Bs €]0, +oo], we can chooses(-) = B;1p,, wherelp_ is a
vector with lengthP, whose components are all equal to one.
In our block-coordinate approach, the vector of unknowns In order to derive our block-coordinate algorithm, we
@ = (z,)1<n<n € RV is splitinto.J vectorsz?) of reduced heed to define, for every nonempty set of blocks €
dimensionV; # Owithj € {1,...,J} (N1+---+N; = N). {1,...,J}, a quadratic majorant function of the restriction
We will also need to define subsefs c {1,...,J} gath- of F' to these blocks. According to [20, Rem. 2.4], for every
ering such block indices as illustrated in Fig. 1. The vecZ € R", apossible choice is
tor of variables associated with a sgtis then denoted by

S
(Vo e RY) A(zx) =) L]Diag{ws(L.x)} Li, (3)

s=1

2. PROPOSED METHOD

2.1. Notation

xS = (a’(j))jes and it.s components arer,),.s Where (Vo €§ISI)
S c {1,..., N} with cardinality[S| = 3, s N;. Q¥ (v,2) = F(&) + VFS (&) (v — )
For everys € {1,...,S}, the matrix L, in (1) can 1 S SINT A(S) (= ()
be decomposed a%bgl) l.. .|L§J)}, where, for everyj € + §(v - AT -2, @)
{1,...,J}, LY) € RP-*N;_Finally, we denote byL..>) €  where
P x|S| ; ; T I
R o , the col_umpmse concatenation c_>f matncfé )jes- (Vz e RY) AS)(z) = (A@)]pp) s - (5)
A similar notation is used for the (rowwise) block decompo-
sition of the gradien¥ F'(z) at some given vectar ¢ RY. However, in practice, the matrices defined in (5) do not nec-

essarily have a block diagonal structure so aﬁﬂs) (,x)is
not separable with respect to each blgck S. Therefore,
its minimization cannot be performed efficiently in a paghll
The majorize-minimize approaches [17, 18, 19] often rely oomanner. The following lemma defining block diagonal ma-
the use of a surrogate function which constitutes a quadratirices majorizing (5) will be the cornerstone of the patalle
tangent majorant functions for Criterion (1). Letc € R  structure of our algorithm:

2.2. Block separable quadratic majorant function



Lemmal. LetS C {1,...,J}. Foreveryj € S, for every  Hereabove-)' denotes the pseudo inverse operation. The
x € RV, let matrix BY) () € RN:*Ni be given by selection rule for the blocks plays an important role in the
g convergence analysis. Actually, it suffices to assume aiquas
B(j)(w) _ Z ((ng))TDiag{bs(Lsx)} ng)) . (6) cyclic rule, where the blocks are updated in an arbnra_rya_nrd
as soon as each one is updated at least once per a finite num-
ber K € N* of iterations. Under this assumption, the mono-
tonic convergence of the criterion sequeriégxy))ren tO
a (locally) optimal value can be established, using the same
[bs(Lsz)], = [ws(Ls@)]p[| L |15 ]p/[| L |1n,]p. (7)  theoretical tools as in [20].
It is important to emphasize, that, because of Expressions
Then, for every = € RN’ A®(z) < BE)(z), where (1) and (6), in practice, it is not necessary to send the full
B (z) = BDiag{(B(J)(m))jeg} (i.e. theblock diagonal  vectora;,. ; to all the cores, at iteratioh. Actually, let;j ¢
matrix with |S| blocks equal to BU)(z), j € S). {1,...,J} and let]; be the index set of the components of
vector x, 1 belonging to thej-th block. Only the compo-
nents ofxy 1 with indices in

s=1

where, for every s € {1,...,S}andp € {1,..., P}, the
p-th component of vector b, (L, x) ist

The proof of Lemma 1 is omitted due to the lack of space

It makes a clever use of Jensen’s inequality, following tech

niques similar to those in [21, Sec. Ill] (see also [13, Ske. | s

A]) ,/\G = U {ne {1,,N}|(E|p€'PS7J) [Ls]p,7L7é0}7
s=1

2.3. BP3MG algorithm whereP, ; = {pe {1,..., B} |(3j € I;) [L],; # 0}, are

We are now ready to present our algorithm. At each iteratiomequired to compute the gradient and the majorant matrix tha
k € N, a subsetS;, C {1,...,J} of block indices with car- are useful for the update of thjeth block. The cardinality of
dinality C' € N*, is selected C' typically corresponds to the N is usually very small with respect . For instance, if
number of available processors. The corresponding block§ = 1 and L, is a discrete gradient operator with one pixel
are then updated thanks to a local 3MG iteration, corresponaheighborhood, thepV;| = 3.

ing to the minimization oQg’;,)k) (-, )) within the subspace

spanned by the columns d®\® = BDiag{(D{’);cs} 3. APPLICATION TO 3D IMAGE DECONVOLUTION

where, for everys € Nandj € S,

pi) _ | ~VFD (@) it 5 ¢ Uisy St
k= _ () @) _ ,.06) ;
[— VFU) (xy)|x;” —a”),] otherwise.

3.1. Observation model

(8)  We focus on the following linear degradation model:

The above condition on simply allows us to distinguish y=HzT +b, (10)
blocks which have never been updated, from the blocks o )
which have been updated at least once. Thanks to the blockN€re & R* represents the 3D original (unknown) image
separable structure of the majorant functions,@heelected  ©f SizeV = Nx x Ny x Nz,y € RV is the observed image,
blocks with indicesj € Sy can be updated in a parallel H is & linear operator modeling a 3D convolution with depth
manner, leading to the following new algorithm: variant blur, and is a realization of an additive random noise.
The goal is to solve the associated inverse problem, i.endo fi

Initialize  xo € RY. an estimate of from y.
For £k=0,1,2,...
Select S, c {1,...,J} st |Sk|=C I :
Parfor j € S 3.2. Objective function
Compute VF(j)(ka) A hybrid penalized least squares criterion involving a sthoo
Compute B,(j)(sck) using (6) 3D regularization term is used for the objective functiBn
Construct D,gj) using (8) [9]. Then, F takes the form (1) with
) ) ) N\t ) )
ul) = — ((D,Q”)TB,S)(%)D,@) (DYYTVFO (z,) o PL=N,Li=H, f = | —y|?,
@ _ ) (4),,()
(Bkj+1—w] —|—ij ’U,k] ‘ 4 OPQZN,L2:IN1f2:77d[21 . B
Set, for everyj € {1,...,J}\ Sk, 9353421 = acfj). m—
Share (zy),). between all cores o Py=2N, Ly =[(V*)"(V)]",
L JESK
©) fo(Lsm) = XS, (VX)) + (VYala)? + 62,

1The notatior| M | is used to denote the matrix whose elements are equal
to the absolute value of those B e PL=N,L;=V? fy=x||?



where(n, A, 6, k) € (0, +00)*, VX € RVXN VY ¢ RVXN,
VZ e RV*N are discrete gradient operators alofyy, and
Z directions g is the distance to a sét, and(zmin, Tmax) €
R? are some minimal and maximal bounds on the sought inz
tensity values. The same matrices as in [9] are used for defil

ing (3).

trates the great potential of parallelization of the praubal-
gorithm.

3.3. Implementation

The BP3MG algorithm derived in Section 2 has been imple:
mented in MATLAB® (2015b) using the Message Passing
Interface comman@&PMD of the Parallel Computing Tool-
box ™. More precisely, the blocks correspond to the- N7
2D slices of the 3D volume. For a given number of active
coresC, the first core is used as a master process while th
C = C — 1 remaining cores are used as slave processes. Tl
master process carries out the main loop of Algorithm (9). A
each iteratiork € N, it selectsC block indices, stored i,
and sends to each slave the required data allowing it to apdat
the j-th block withj € Si.. The slave processes perform their
tasks simultaneously to compute the variatﬂe%ll)
and finally send their results to the master.

Fig. 2. Original (left), degraded (middle) and restored (right)
images corresponding to slices= 6 (top) andz = 18 (bot-
tom) of the 3D volumd-l yBr ai n.

JESK’

3.4. Experimental results

We considered two image restoration scenarii described b' |
Model (10). The 3D microscopical imagEsyBr ai n? with
size N = 256 x 256 x 48 andTube? with size N = 284 x
280 x 48 are considered fag. In both cases, the linear opera- =
tor H models a 3D depth-varying Gaussian blur, with kernel ¢

size5 x 5 x 11. For each depth € {1,..., Nz}, the blur
kernel is characterized by different variance and rotagian
rameters(ox(z),ov(z),0z(2), oy (2),¢z(z)), following the
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model from [22]. In practice, the values of these five pa-
rameters are chosen randomly and independently, following
a uniform distribution for every, leading to a blurred signal Fig. 3. Ratio between the computation time for one core and
to noise ratio (BSNR) equal th4.09 dB (resp. 12.58 dB).  the computation time for' cores (crosses) with linear fit-
A zero-mean white Gaussian noise with standard deviatioting (dotted line), for the restoration & yBr ai n (left) and
0.02 is then added to the blurred volume, leading to a SNRTube (right).
equal t013.42 dB (resp. 11.53 dB). The regularization pa-

rameterg\, 4, k,n), and(Zmin, Tmax) = (0, 1) are chosen so

as to maximize the SNR of the restored volume. Here, we

obtain a final SNR equal t06.98 dB (resp.14.47 dB). Fig. 2

displays some examples of original, degraded and restored

slices, for two slices oFl yBr ai n. In Fig. 3, we plot, for

different values of the number of active co@sthe ratio be-

tween the required computation time for one core versus the = ™| . ) . .

actual computational time, for reaching the stopping tite Minimize Memory Gradient algorithm for handling large-siz

lzx — 25_1] < 1077||z4||. The computations were per- optimization problems such as those encountered in 3D image
4] < .

formed on an Intel(R) Xeon(R) CPU E5-2670v3 @ 2 30GHZrestoration with depth-variant blur. In this context, oxper-
with 24 physical cores. The result of a linear fitting illus- imental results illustrate the high efficiency of the progs
method in terms of acceleration for multi-core architeesur

Our future work will focus on the implementation in other
languages that may lead to a further improved performance.

4. CONCLUSION

Ié] this paper, we have presented a new Block Parallel Maeriz

2http://imagej.nih.goviij/plugins/3dviewer/
Shitp://adm.irbbarcelona.org/image-j-fiji
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