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ABSTRACT

Markov Chain Monte Carlo sampling algorithms are efficient
Bayesian tools to explore complicated posterior distributions.
However, sampling in large scale problems remains a chal-
lenging task since the Markov chain is very sensitive to the
dependencies between the signal samples. In this paper, we
are mainly interested in Langevin based MCMC sampling
algorithms that allow us to speed up the convergence by con-
trolling the direction of sampling and/or exploiting the cor-
relation structure of the target signal. However, these tech-
niques may sometimes fail to explore efficiently the target
space because of poor mixing properties of the chain or the
high cost of each iteration. By adding some auxiliary vari-
ables, we show that the resulting conditional distribution of
the target signal is much simpler to explore by using these
algorithms. Experiments performed in the context of mul-
ticomponent image restoration illustrate that the proposed
approach can achieve substantial performance improvement
compared with standard algorithms.

1. INTRODUCTION

In many applications, because of the imperfection of acquisi-
tion systems, the observed data is a degraded version of the
original one. Throughout this paper, we will consider the fol-
lowing degradation model, in which the observation z ∈ RN
is related to some unknown random signal of interest x ∈ RQ
by

z = Hx + w, (1)

where the matrix H ∈ RN×Q corresponds to a linear degra-
dation operator, eventually combined with a linear transform
(e.g., Fourier transform), and w ∼ N (0, σ2) models some ac-
quisition noise. In the following, we address the problem of
estimating x from the observations y.
To obtain meaningful solutions, the problem must be regular-
ized using additional informations about the unknown signal
x. In the Bayesian setting, the prior knowledge about x is
modeled by a prior distribution p(x). To infer the unknown
signal, we can rely on the posterior distribution p(x|y) ex-
pressed by

p(x|z) =
p(x)p(z|x)∫

RQ p(u)p(z|u)du
. (2)

Let us denote by J the minus-log of p(x|z). The most com-
monly used inferences are the Maximum A Posteriori (MAP)
and the Minimum Mean Square Error (MMSE) estimators [1].
On the one hand, the MAP estimator is defined as the mode
of the posterior distribution, or, equivalently, as the mini-
mizer of J . On the other hand, the MMSE estimator aims

at finding a solution that minimizes the expected quadratic
estimation error and thus reduces to the computation of the
posterior mean. However, the exact posterior mean cannot
be calculated since, in most cases, it can only be known up
to a multiplicative constant. Moreover, when the problem di-
mension Q is large, the computation of the involved integral
becomes intractable. An alternative is to use Monte Carlo
Markov Chain (MCMC) methods [2–5]. The general idea of
such methods is as follows: even if it is difficult to draw di-
rectly independent samples from a complicated distribution
π, one can often find a way of constructing an irreducible
Markov chain whose stationary distribution is π so that, after
a sufficient number of iterations, the samples drawn by the
MCMC algorithm follow the distribution of interest. From
these samples, a good summary about the desired distribu-
tion is obtained, from which one can compute efficient esti-
mates of useful statistics such as the mean and the variance.
MCMC algorithms only need, in general, to know the ex-
pression of the target density up to an additive multiplica-
tive constant, which is actually the case of most of posterior
distributions encountered in the context of inverse problems.
However, many standard MCMC algorithms become ineffi-
cient when the problem dimension becomes large [6, 7]. In
fact, their convergence may be very slow and they tend to
generate samples that are highly correlated and thus fail to
explore the full parameter space, leading to an incomplete
description of the target density. Some solutions have been
devised to alleviate this difficulty. Many works have proposed
to use some local information about the target density to ex-
plore the parameter space more efficiently in order to speed
up the convergence of the algorithms. This information can
be included using the first order derivatives of the posterior
logarithm which leads to the famous class of the Langevin
based MCMC algorithms [8, 9]. Other works have proposed
to fight against slow mixing by introducing some auxiliary
variables to the model which have shown to exhibit good
performance [10–13]. For instance, two well known exam-
ples of auxiliary variable MCMC methods, are hybrid Monte
Carlo [14] and slice sampling [15,16].
In this paper, we propose to combine these two approaches to
construct a new sampling algorithm that remains efficient in
high dimensional problems. In Section 2, we will do a survey
on Langevin based MCMC sampling methods and emphasize
the main difficulties encountered with these algorithms. In
Section 3, we show how to integrate auxiliary variables meth-
ods in Langevin based MCMC sampling algorithms in order
to improve their efficiency. In Section 4, we present an ap-
plication of our method through an example of multispectral



image restoration, before drawing some conclusions.

2. MARKOV CHAIN MONTE CARLO
SAMPLING ALGORITHMS

2.1. Metropolis-Hastings algorithm

One the most commonly used MCMC samplers is the
Metropolis Hastings (MH) algorithm. In order to draw a
sample from a target distribution π, it generates a sample
according to some proposal density q and accept or reject it
with an acceptance probability related to π [17,18]. Note that
the choice of the proposal distribution q has a critical impact
on the performance of the MH algorithm. Indeed, it should
be both a good approximation of the target density and it
should be easy to sample from. Various MCMC algorithms
have been proposed as special instances of MH algorithm,
based on specific choices for the proposal distribution. One
simple proposal is provided by the random walks algorithm
for which q(x, .) = N (x, ε2) with ε > 0. This proposal is
easy to implement, but it does not tolerate large moves in
the parameter space. Hence, the convergence is generally
slow especially in large dimensional problems and the result-
ing samples may be highly correlated. Other sophisticated
algorithms use some informations about the target density to
construct appropriate candidate moves. Here, we will focus
on the particular case of Langevin-based MCMC algorithms,
that we describe below.

2.2. Langevin based MCMC

Langevin-based MCMC algorithms construct proposals that
account for a directional component pushing the chain to-
wards areas of high probability (i.e. where most samples
lie) with the aim to accelerate the convergence of the algo-
rithm [8]. This is achieved by using the gradient direction
of J at the current state, in combination with some sym-
metric definite positive matrix Q that may reflect possible
correlation structures between coefficients. Hence, using a
discrete-time forward Euler approximation of the Langevin
diffusion on RQ, Langevin-based MCMC algorithms propose
samples at each iteration t according to the following scheme:

x̃ ∼ N
(

xt − ε2

2
Q(xt)−1∇J (xt), ε2Q(xt)−1

)
, (3)

where xt is the current state and ε is a positive constant.
In the simple case when Q(·) ≡ IQ, we recover the stan-
dard MALA algorithm [8,9,19]. It has been shown, in recent
works [20–24], that the use of varying preconditioning matri-
ces allows to accelerate MALA algorithm. These matrices are
usually tuned according to the past behavior of the Markov
chain, using some deterministic optimization strategies. For
example, when Q(xt) is chosen at each iteration to be the
Hessian matrix of J at xt, the drift term of the algorithm re-
duces to a scaled Newton step for minimizing J [23,24]. How-
ever, in practice, such strategy has a very high computational
load since it requires the computation of the Hessian matrix
and its inverse at each iteration. Moreover, in many scenarios,
the Hessian matrix is not positive definite or well conditioned
which may cause numerical problems. One appealing alterna-
tive has been introduced in [25]. It proposes preconditioning
matrices tuned according to a Majorize-Minimize approach.

This method offers a great flexibility since, under some mild
hypotheses, it is always possible to define a quadratic func-
tion majorizing J that approximate well the target density
and whose curvature matrix can be computed with a lower
computational cost [25,26].

2.3. Discussion

As already pointed out, the numerical efficiency of Langevin-
based MCMC sampling algorithms relies both on the use of
a proposal providing tight approximations of the target den-
sity and that are simple to sample from. Let us focus on the
resolution of the inverse problem (1). If the coefficients of
the unknown signal x are not correlated, and the dimension
of the problem is low, the best strategy is probably to em-
ploy the standard MALA algorithm [8]. However, in large
scale problems, most of posterior distributions arising in real
world applications exhibit strong dependencies between the
coefficients of the signal. In this case, standard MALA algo-
rithm may fail to provide a well mixed chain. One can instead
expect better numerical performance with more sophisticated
scaling matrices that make possible large moves in the direc-
tions that reflect the dependence structure. However, in this
case, sampling from the proposal becomes generally compli-
cated in practice as the problem dimension increases due to
the high cost of each iteration since the curvature matrix be-
comes difficult to handle. Consequently, the main difficulty
for all these algorithms is related to the presence of two dif-
ferent sources of correlations which may come from the like-
lihood or from the prior information. The operator H in the
likelihood may induce high interactions between coefficients
on a very wide neighborhood even when the coefficients are
supposed independent in the prior law. One can pass to an-
other domain where H can be diagonalised, for example the
Fourier domain when H is circulant. However, the problem
remains when we take into account the prior dependencies
between the coefficients as the prior covariance matrix can-
not usually be diagonalised in the same domain as H. One
should therefore handle these two sources of correlations sep-
arately. In the following, we propose to alleviate this problem
by adding some auxiliary variables to the model.

3. INTRODUCING AUXILIARY VARIABLES

An important class of MCMC methods is based on a remark-
able trick: replace an initial difficult problem by a higher
dimensional one (having more variables) but that is easier
to solve than the original problem. Thus, to generate sam-
ples from π, an auxiliary variable u is added with a given
conditional distribution p(x|u). A Markov chain is then con-
structed by alternating the update of u and x i.e drawing
samples from their conditional distribution. Such an MCMC
scheme may lead to conditional distributions that are eas-
ier to simulate and may achieve substantial gain in terms
of efficiency and mixing properties compared with standard
methods.
Let us consider the problem model defined in (1) and define
the auxiliary variable u ∈ RQ such that the conditional dis-
tribution of u given x ∈ RQ is

p(u|x) = N
(
(IQ + C)−1x, σ2α(IQ + C)−1) , (4)



where C = B(IQ −B)−1, B = αH∗H and α > 0 is a chosen
constant such that α‖H∗H‖ < 1. Note that (IQ + C)−1 =
IQ − αH∗H. Then, the minus-log of the joint distribution of
x and u is given by

f(x,u) =
1

2σ2α

(
‖u− x‖2 + u>C>u− 2α z>Hx

)
− log p(x). (5)

It can be noticed that computing the global minimizer of J
reduces to minimize each of the partial functions f(x, .) and
f(.,u). For this reason, this method has been used in some
variational applications for image restoration in [27]. More-
over, this technique has been adopted to facilitate sampling
using classical Metropolis-Hastings algorithm and Gibbs sam-
pler in the maximum likelihood estimation approach proposed
in [28]. From (5), it follows that the minus-log of the condi-
tional distribution of x given z and u is defined up to an
additive constant as follows

J (x|u) =
1

2σ2α

(
‖u− x‖2 − 2α z>Hx

)
− log p(x). (6)

Hence, in (6), the original problem now reduces to solve a
denoising problem where the variance of the noise is σ2α.
Another step is added in the MCMC algorithm to sample the
auxiliary variable u from (4). The main steps of the proposed
algorithm can be summarized as follows:

For t = 0, 1, . . .

Step 1: Generate

x̃ ∼ N
(
xt − ε2

2
Q(xt)−1∇J (xt|ut), ε2Q(xt)−1

)
Step 2: Accept (xt+1 = x̃) with probablity

α(xt, x̃) = min

(
1,
π(x̃)q(x̃,xt)

π(xt)q(xt, x̃)

)
Step3: Generate
ut+1 ∼ N

(
(IQ − αH∗H)xt+1, σ2α(IQ − αH∗H)

)
.

Note that, when H is circulant, sampling from (4) can be effi-
ciently handled in the Fourier domain. The new proposal (6)
is generally simpler to sample from, since the two operators
reflecting the correlation between the coefficients of the target
signal induced from the likelihood and the prior are dissoci-
ated. Correlations from the likelihood are no longer related
directly to the target signal but only through the auxiliary
variable u. In the particular case when the coefficient of the
signal are supposed to be uncorrelated, one can sample the
coefficients of the signal independently. Otherwise, we pro-
pose to use Langevin based MCMC algorithms. In particular,
it is possible to construct an efficient curvature matrix that
takes into account the prior correlation and that can be easily
handled.

4. SIMULATION RESULTS

4.1. Problem formulation

We address the problem of recovering a multicomponent im-
age x ∈ RQ with B components degraded by an operator
H ∈ RN×Q modeling spatially invariant blur and a zero-mean
additive Gaussian noise with variance σ2. To tackle this prob-
lem, we propose to make use of a sparse representation of
the image. Let F ∈ RQ×Q denotes a discrete wavelet trans-
form (DWT) and c ∈ RQ the vector of wavelet coefficients

i.e c = Fx . Note that the wavelets coefficients are grouped
into M subbands of size Qm corresponding to a specific ori-
entation and scale. For all m ∈ {1, . . . ,M}, q ∈ {1, . . . , Qm}
let Pm,q be the permutation matrix of size B × Q that al-
lows us to access to the vector of coefficients cm,q ∈ RB in a
given location q through all the B channel i.e cm,q = Pm,qc.
Following [25,29], we assume that for every m ∈ {1, . . . ,M},
q ∈ {1, . . . , Qm}, the vectors (cm,q)

Qm
q=1 are realizations of a

random vector following a Generalized Multivariate Exponen-
tial Power (GMEP) distribution with scale matrix Σm and
shape parameter βm. Thus, the minus-log of the prior likeli-
hood is given up to an additive constant by

− log p(x) =

M∑
m=1

Qm∑
q=1

ψm(‖Σ−1/2
m PmqFx− am‖) (7)

where, for every m ∈ {1, . . . ,M}, am ∈ RB and for all t ∈
R, ψm(t) = 1

2
(t2 + δm)βm where δm > 0 is an additional

parameter added to ensure the differentiability of the function
for all βm > 0.

4.2. Results

The test image is a Landsat Thematic Mapper image of size
256 × 256 having B = 6 channels. Hence, the problem di-
mension is Q = 393216. We consider the resolution of the
inverse problem defined in (1) where the original image is ar-
tificially degraded by a uniform blur of size 3× 3 and an ad-
ditive zero-mean white Gaussian noise with variance σ2 = 25
so that the initial signal-to-noise ratio (SNR) is 16.92 dB.
We adopt an orthonormal wavelet decomposition using the
Beylkin wavelet, and three resolution levels, hence M = 10.
For the subband corresponding to the approximation coeffi-
cients, we choose a Gaussian prior i.e βm = 2. For the re-
maining subbands, we fix δm = 0.0001 and βm = 0.5, which
yields a smoothed version of the Laplace distribution. We
aim to compute the MMSE estimator of the original image x
from the degraded version z using Langevin based sampling
algorithms with auxiliary variables. Since, we have adopted
an orthonormal basis, we can draw samples of the vector re-
grouping the wavelet coefficients of the B components, at a
given location and scale, in an independent manner. Thus,
the resolution of the initial high dimensional problem reduces
to the resolution of 256 × 256 small subproblems of size B.
To sample from the signal coefficients in each subproblem, we
propose to use either standard MALA algorithm, or a precon-
ditioned version (3MH) [25, 30] with the following curvature
matrix resulting from a Majorize-Minimize strategy :

(∀z ∈ RB) Qm,q(z) = µIB + Σ−1
m ωm,q(z), (8)

where ωm,q(z) = βm
(
z>Σ−1

m z + δm
)βm−1

and we choose the
stepsize ε to achieve an acceptance probability of approxi-
mately 0.45. Figure 1 shows the degraded image as well as
the MMSE estimator computed over 5000 samples after con-
vergence which corresponds to a final SNR equals to 20.03 dB.
Since the subproblems dimension is small, MALA and 3MH
behave similarly in this plot. However, one can note that
3MH algorithm is slightly better in term of mixing proper-
ties as depicted in Figure 2. We also compare the speed of
our proposed approach with standard MALA and 3MH algo-
rithms without use of auxiliary variables. Figure 3 shows the



Fig. 1. From top to bottom: Components 2, 3 and 6 of
the degraded image (left) and restored image (right). SNR=
(14.74 dB, 20.86 dB) ( 13.52 dB, 17.23 dB) (12.99 dB, 15.90
dB).

evolution of SNR with respect to the computational time for
the proposed algorithms (in solid lines) and standard algo-
rithms without use of auxiliary variables (in dashed lines). It
can be observed that the proposed algorithms reach stability
much faster than the standard methods. Indeed, since the
problem dimension is reduced, one can expect that the step-
size ε takes larger values compared with standard algorithms
so that the chain makes larger moves and explores the target
space fast and efficiently. In addition, note that for larger di-
mensional problem, one could further improve the efficiency
of the proposed algorithms by exploiting the parallel struc-
ture of the sampling tasks.
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Fig. 2. Autocorrelation plot using mean(xt) as scalar sum-
mary.
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Fig. 3. Convergence speed of standard algorithms compared
with the proposed sampling methods.

5. CONCLUSION

In this paper, we have proposed a method for improving
the efficiency and the mixing properties of Langevin based
MCMC sampling algorithms for high dimensional problems.
By adding some auxiliary variables to the model, we suc-
ceeded in addressing separately the different sources of cor-
relations in the target posterior density. Hence, the resulting
model makes sampling much easier. We have applied the
proposed algorithms to compute the MMSE estimator of a
multicomponent image from its blurred version. The coeffi-
cients of the target image are no longer updated jointly but
in parallel. Experimental results have shown the good perfor-
mance of this new approach compared with state-of-the-art
methods.
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