Proximal methods for convex minimization of φ -divergences. Application to computer vision.

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

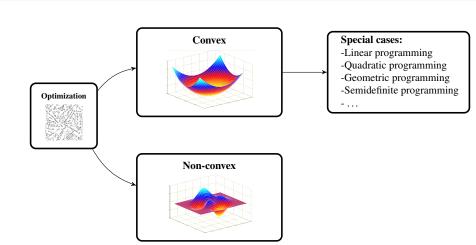
Mireille El Gheche

Supervised by Jean-Christophe Pesquet and Joumana Farah University of Paris-Est Lebanese University

27 May 2014

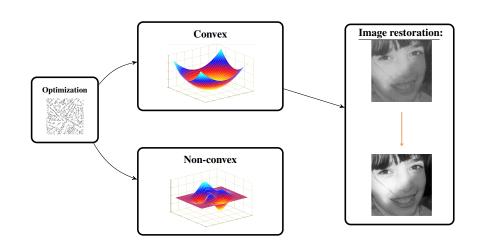
Proximal methods for convex minimization of φ -divergences. Application to computer vision.

OVERVIEW



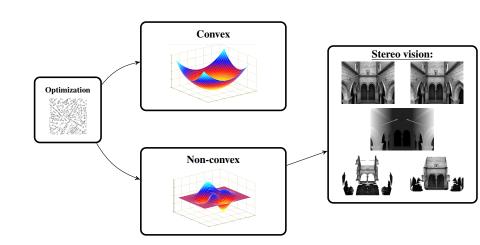
Proximal methods for convex minimization of φ -divergences. Application to computer vision.

OVERVIEW



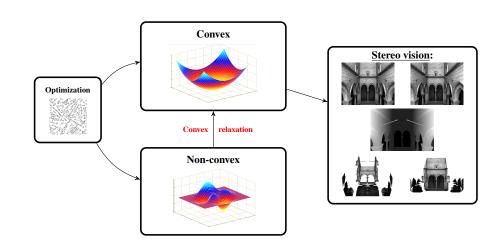
Proximal methods for convex minimization of φ -divergences. Application to computer vision.

OVERVIEW



Proximal methods for convex minimization of φ -divergences. Application to computer vision.

OVERVIEW



Proximal methods for convex minimization of φ -divergences. Application to computer vision.

CHALLENGES

INTRODUCTION

1. How to efficiently solve large-size non-smooth convex optimization problems?

Stereo vision

CHALLENGES

- 1. How to efficiently solve large-size non-smooth convex optimization problems?
 - Splitting proximal methods

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

CHALLENGES

- 1. How to efficiently solve large-size non-smooth convex optimization problems?
 - Splitting proximal methods
 - ▶ Primal-dual algorithms

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

CHALLENGES

- 1. How to efficiently solve large-size non-smooth convex optimization problems?
 - Splitting proximal methods
 - Primal-dual algorithms
- 2. Can we effectively solve nonconvex optimization problems via convex relaxation?

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

CHALLENGES

- 1. How to efficiently solve large-size non-smooth convex optimization problems?
 - Splitting proximal methods
 - Primal-dual algorithms
- 2. Can we effectively solve nonconvex optimization problems via convex relaxation?
 - ► Stereo vision

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

CHALLENGES

- 1. How to efficiently solve large-size non-smooth convex optimization problems?
 - Splitting proximal methods
 - Primal-dual algorithms
- 2. Can we effectively solve nonconvex optimization problems via convex relaxation?
 - Stereo vision
 - ► multi-view

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

CHALLENGES

- 1. How to efficiently solve large-size non-smooth convex optimization problems?
 - Splitting proximal methods
 - ► Primal-dual algorithms
- 2. Can we effectively solve nonconvex optimization problems via convex relaxation?
 - ► Stereo vision
 - multi-view
- 3. Which kind of measures constitute appropriate cost functions?

CHALLENGES

- 1. How to efficiently solve large-size non-smooth convex optimization problems?
 - Splitting proximal methods
 - ► Primal-dual algorithms
- 2. Can we effectively solve nonconvex optimization problems via convex relaxation?
 - ► Stereo vision
 - multi-view
- 3. Which kind of measures constitute appropriate cost functions?
 - \triangleright φ -divergences

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

CONTENTS

INTRODUCTION

DIVERGENCE PROXIMITY OPERATORS

Expressions and properties General form of optimization problems **Application** as a regularization term

STEREO DISPARITY ESTIMATION

Disparity and illumination variation estimation **Relaxation** (Taylor approximation) Optimization method and experimental results

MULTI-VIEW DISPARITY ESTIMATION

Sequence of disparity maps estimation **Relaxation** based on a multilabel approach Optimization method and experimental results

PUBLICATIONS

INTRODUCTION

Journal

C. Chaux, M. El Gheche, J. Farah, J.-C. Pesquet, and B. Pesquet-Popescu, A parallel proximal splitting method for disparity estimation from multicomponent images under illumination variation, in Journal of Mathematical Imaging and Vision, pages 1-12, 10.1007/s10851-012-0361-z, 2012.

Stereo vision

Journals in preparation:

- M. El Gheche et al., Proximity operators of some discrete information divergences, in preparation.
- M. El Gheche et al., Multi-view disparity estimation using a robust multi-label technique, in preparation. Conferences (5):
- M. El Gheche, A. Jezierska, J.-C. Pesquet and J. Farah, A proximal approach for signal recovery based on information measures, in EUSIPCO 2013.
- M. El Gheche, J.-C. Pesquet and J. Farah, A proximal approach for optimization problems involving Kullback divergences, in ICASSP 2013, Vancouver, Canada, 26-31 May 2013.
- M. El Gheche, C. Chaux, J.-C. Pesquet, J. Farah and B. Pesquet-Popescu, Disparity map estimation under convex constraints using proximal algorithms, in SIPS 2011, Pages 293-298, Beirut, Lebanon, 4-7 Oct. 2011.
- M. El Gheche, J.-C. Pesquet, C. Chaux, J. Farah et B. Pesquet-Popescu, Méthodes proximales pour l'estimation du champ de disparité à partir d'une paire d'images stéréoscopiques en présence de variations d'illumination, GRETSI 2011, Bordeaux, France, 5-8 Sep. 2011.
- M. El Gheche, J.-C. Pesquet, J. Farah, M. Kaaniche and B. Pesquet-Popescu, Proximal splitting methods for depth estimation, in ICASSP 2011, Pages 853-856, Prague, Czech Republic, 22-27 May 2011.

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

PROXIMAL ALGORITHMS

$$\underset{x \in \mathbb{R}^N}{\text{minimize}} \quad f(x) + g(Lx) + h(x)$$

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

PROXIMAL ALGORITHMS

$$\underset{x \in \mathbb{R}^N}{\text{minimize}} \quad f(x) + g(Lx) + h(x)$$

► $f \in \Gamma_0(\mathbb{R}^N)$ $\Gamma_0(\mathbb{R}^N)$: set of convex l.s.c. proper functions from \mathbb{R}^N to $]-\infty, +\infty]$

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

PROXIMAL ALGORITHMS

$$\underset{x \in \mathbb{R}^N}{\text{minimize}} \quad f(x) + g(Lx) + h(x)$$

- ► $f \in \Gamma_0(\mathbb{R}^N)$ $\Gamma_0(\mathbb{R}^N)$: set of convex l.s.c. proper functions from \mathbb{R}^N to $]-\infty, +\infty]$
- $L \in \mathbb{R}^{M \times N}$ and $g \in \Gamma_0(\mathbb{R}^M)$

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

PROXIMAL ALGORITHMS

$$\underset{x \in \mathbb{R}^N}{\text{minimize}} \quad f(x) + g(Lx) + h(x)$$

- ► $f \in \Gamma_0(\mathbb{R}^N)$ $\Gamma_0(\mathbb{R}^N)$: set of convex l.s.c. proper functions from \mathbb{R}^N to $]-\infty, +\infty]$
- $L \in \mathbb{R}^{M \times N}$ and $g \in \Gamma_0(\mathbb{R}^M)$
- ▶ $h: \mathbb{R}^N \mapsto]-\infty, +\infty]$ differentiable with ∇h Lipschitzian

PROXIMAL ALGORITHMS

•00

$$\underset{x \in \mathbb{R}^N}{\text{minimize}} \quad f(x) + g(Lx) + h(x)$$

- $f \in \Gamma_0(\mathbb{R}^N)$ $\Gamma_0(\mathbb{R}^N)$: set of convex l.s.c. proper functions from \mathbb{R}^N to $]-\infty,+\infty]$
- $L \in \mathbb{R}^{M \times N}$ and $q \in \Gamma_0(\mathbb{R}^M)$
- ▶ $h: \mathbb{R}^N \mapsto]-\infty, +\infty]$ differentiable with ∇h Lipschitzian

Possible choices for f and g:

- non-smooth functions (e.g. $\ell_{q,p}$ -norm, max, ...)

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

PROXIMAL ALGORITHMS

$$\underset{x \in \mathbb{R}^N}{\text{minimize}} \quad f(x) + g(Lx) + h(x)$$

- ► $f \in \Gamma_0(\mathbb{R}^N)$ $\Gamma_0(\mathbb{R}^N)$: set of convex l.s.c. proper functions from \mathbb{R}^N to $]-\infty, +\infty]$
- $L \in \mathbb{R}^{M \times N}$ and $g \in \Gamma_0(\mathbb{R}^M)$
- ▶ $h: \mathbb{R}^N \mapsto]-\infty, +\infty]$ differentiable with ∇h Lipschitzian

Possible choices for f and g:

- non-smooth functions (e.g. $\ell_{q,p}$ -norm, max, ...)
- indicator function of a closed convex subset $C \subset \mathbb{R}^N$

$$\iota_C(x) = \begin{cases} 0 & \text{if } x \in C \\ +\infty & \text{otherwise} \end{cases}$$

PROXIMAL ALGORITHMS

► Proximity operator of *f*

$$(\forall x \in \mathbb{R}^N)$$
 $\operatorname{prox}_f(x) = \operatorname{argmin}_{u \in \mathbb{R}^N} \frac{1}{2} ||u - x||^2 + f(u)$

PROXIMAL ALGORITHMS

INTRODUCTION

000

► Proximity operator of f

$$(\forall x \in \mathbb{R}^N) \quad \operatorname{prox}_f(x) = \operatorname{argmin}_{u \in \mathbb{R}^N} \frac{1}{2} ||u - x||^2 + f(u)$$

Stereo vision

▶ Projection onto C

$$(\forall x \in \mathbb{R}^N)$$
 $P_C(x) = \operatorname{prox}_{\iota_C}(x) = \operatorname{argmin}_{u \in C} \frac{1}{2} ||u - x||^2$

Stereo vision

PROXIMAL ALGORITHMS

INTRODUCTION

000

Parallel ProXimal Algorithm (PPXA+ [Pesquet & Pustelnik 2011])

$$f = h = 0$$

$$\gamma > 0, \lambda \in]0, 2[$$

$$(x_0, v_0) \in \mathbb{R}^N \times \mathbb{R}^M$$
For $n = 0, 1, ...$

$$\widetilde{x}_n = \operatorname{prox}_{\gamma g}(v_n)$$

$$\widehat{x}_n = (L^\top L)^{-1} L^\top \widetilde{x}_n$$

$$v_{n+1} = v_n + \lambda \left(L(2\widehat{x}_n - x_n) - \widetilde{x}_n \right)$$

$$x_{n+1} = x_n + \lambda (\widehat{x}_n - x_n)$$

Stereo vision

PROXIMAL ALGORITHMS

Introduction 00

Montone+Lipschitz Forward Backward Forward (M+L FBF [Combettes & Pesquet 2011])

 $\gamma \in \left[0, (\beta + ||L||)^{-1}\right]$ $(x_0, v_0) \in \mathbb{R}^N \times \mathbb{R}^M$

For
$$n = 0, 1, ...$$

$$\widehat{x}_n = L^\top v_n + \nabla h(x_n)$$

$$\widehat{v}_n = Lx_n$$

$$\widetilde{x}_n = \operatorname{prox}_{\gamma f}(x_n - \gamma \widehat{x}_n)$$

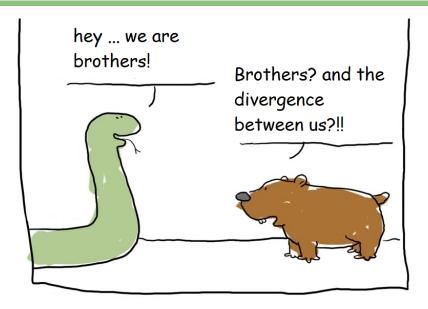
$$\widetilde{v}_n = \operatorname{prox}_{\gamma g^*}(v_n + \gamma \widehat{v}_n)$$

$$x_{n+1} = \widetilde{x}_n - \gamma (L^\top \widetilde{v}_n - \widehat{x}_n + \nabla h(\widetilde{x}_n))$$

$$v_{n+1} = \widetilde{v}_n + \gamma (L\widetilde{x}_n - \widehat{v}_n)$$

CONCLUSIONS

Proximal methods for convex minimization of φ -divergences. Application to computer vision.



Proximal methods for convex minimization of φ -divergences. Application to computer vision.

OBJECTIVE

General formulation

where

$$A, B \in \mathbb{R}^{P \times N}$$

$$D \in \Gamma_0(\mathbb{R}^P \times \mathbb{R}^P)$$

$$\blacktriangleright \ \forall s \in \{1, \dots, S\}, L_s \in \mathbb{R}^{K_s \times N} \text{ and } R_s \in \Gamma_0(\mathbb{R}^{K_s})$$

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

OBJECTIVE

Particular case

where

$$ightharpoonup x = [p^{ op} \ q^{ op}]^{ op}, \text{ with } p = (p^{(i)})_{1 \leq i \leq P} \text{ and } q = (q^{(i)})_{1 \leq i \leq P}$$

•
$$A = [I \ 0] \text{ and } B = [0 \ I]$$

$$lack (\forall s \in \{1,\ldots,S\}), L_s = [U_s \ V_s] \text{ and } U_s, V_s \in (\mathbb{R}^{K_s \times P})^2$$

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

SCOPE OF PRIMAL-DUAL PROXIMAL ALGORITHMS

1. separable case:
$$D(p,q) = \sum_{i=1}^{P} \phi_1^{(i)}(p^{(i)}) + \phi_2^{(i)}(q^{(i)})$$

$$(\forall i \in \{1, \dots, P\}) \ \phi_1^{(i)}, \phi_2^{(i)} \in \Gamma_0(\mathbb{R})$$

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

SCOPE OF PRIMAL-DUAL PROXIMAL ALGORITHMS

1. separable case:
$$D(p,q) = \sum_{i=1}^{P} \phi_1^{(i)}(p^{(i)}) + \phi_2^{(i)}(q^{(i)})$$

$$(\forall i \in \{1, \dots, P\}) \ \phi_1^{(i)}, \phi_2^{(i)} \in \Gamma_0(\mathbb{R})$$

2. non-separable case:

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

SCOPE OF PRIMAL-DUAL PROXIMAL ALGORITHMS

1. separable case:
$$D(p,q) = \sum_{i=1}^{P} \phi_1^{(i)}(p^{(i)}) + \phi_2^{(i)}(q^{(i)})$$

$$(\forall i \in \{1, \dots, P\}) \ \phi_1^{(i)}, \phi_2^{(i)} \in \Gamma_0(\mathbb{R})$$

2. non-separable case:

$$D(p,q) = \sum_{i=1}^{P} \phi^{(i)}(\alpha p^{(i)} + \beta q^{(i)})$$

$$(\forall i \in \{1, \dots, P\}) \ \phi^{(i)} \in \Gamma_0(\mathbb{R}) \text{ and } (\alpha, \beta) \in \mathbb{R}^2$$

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

SCOPE OF PRIMAL-DUAL PROXIMAL ALGORITHMS

1. separable case:
$$D(p,q) = \sum_{i=1}^{P} \phi_1^{(i)}(p^{(i)}) + \phi_2^{(i)}(q^{(i)})$$

$$(\forall i \in \{1, \dots, P\}) \ \phi_1^{(i)}, \phi_2^{(i)} \in \Gamma_0(\mathbb{R})$$

2. non-separable case:

$$D(p,q) = \sum_{i=1}^{P} \phi^{(i)}(\alpha p^{(i)} + \beta q^{(i)})$$

$$(\forall i \in \{1, \dots, P\}) \ \phi^{(i)} \in \Gamma_0(\mathbb{R}) \text{ and } (\alpha, \beta) \in \mathbb{R}^2$$

• $D = \iota_C$ with C being a closed convex subset of \mathbb{R}^{2P}

SCOPE OF PRIMAL-DUAL PROXIMAL ALGORITHMS

1. separable case: $D(p,q) = \sum_{i=1}^{P} \phi_1^{(i)}(p^{(i)}) + \phi_2^{(i)}(q^{(i)})$

$$(\forall i \in \{1, \dots, P\}) \ \phi_1^{(i)}, \phi_2^{(i)} \in \Gamma_0(\mathbb{R})$$

2. non-separable case:

►
$$D(p,q) = \sum_{i=1}^{P} \phi^{(i)}(\alpha p^{(i)} + \beta q^{(i)})$$

 $(\forall i \in \{1, \dots, P\}) \ \phi^{(i)} \in \Gamma_0(\mathbb{R}) \text{ and } (\alpha, \beta) \in \mathbb{R}^2$
► $D = \iota_G \text{ with } G \text{ being a closed convex subset of } \mathbb{R}^2$

• $D = \iota_C$ with C being a closed convex subset of \mathbb{R}^{2P}

$$D = \phi \circ d_C \text{ with } d_C = \| \cdot -P_C \cdot \|$$

$$\phi \in \Gamma_0(\mathbb{R})$$

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

12/48

MOTIVATIONS

Additive information measures:

$$D(p,q) = \sum_{i=1}^{P} \Phi(p^{(i)}, q^{(i)})$$

where

$$\left(\forall (\upsilon,\xi) \in \mathbb{R}^2\right) \quad \Phi(\upsilon,\xi) = \begin{cases} \xi \varphi\left(\frac{\upsilon}{\xi}\right) & \text{if } \upsilon \in [0,+\infty[\text{ and } \xi \in]0,+\infty[\\ \upsilon \lim_{\zeta \to +\infty} \frac{\varphi(\zeta)}{\zeta} & \text{if } \upsilon \in]0,+\infty[\text{ and } \xi = 0 \\ 0 & \text{if } \upsilon = \xi = 0 \\ +\infty & \text{otherwise} \end{cases}$$

and $\varphi \in \Gamma_0(\mathbb{R}), \varphi \colon \mathbb{R} \to [0, +\infty]$ is twice differentiable on $]0, +\infty[$.

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

RELATED WORK

INTRODUCTION

Optimization problems involving information measures:

- X One of the two variables is fixed [Byrne 1993], [Richardson 1972], [Dupé et al. 2009], [Pustelnik et al. 2011], [Steidl et al. 2012]
- Alternating minimization [Blahut 1972], [Arimoto 1972], [Bauschke 2011]

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

RELATED WORK

INTRODUCTION

Optimization problems involving information measures:

- X One of the two variables is fixed [Byrne 1993], [Richardson 1972], [Dupé et al. 2009], [Pustelnik et al. 2011], [Steidl et al. 2012]
- Alternating minimization [Blahut 1972], [Arimoto 1972], [Bauschke 2011]

Contributions:

- ✓ Proximity operator of two-variable convex functions
- ✓ General form of optimization problems
- ✓ Application to image restoration

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

EXAMPLES OF φ -DIVERGENCES [BASSEVILLE 2010]

► Kullback-Leibler : $\varphi(\zeta) = \zeta \ln \zeta - \zeta + 1$

$$\Phi \colon (\upsilon, \xi) \mapsto \begin{cases} \upsilon \ln \left(\frac{\upsilon}{\xi}\right) + \xi - \upsilon & \text{if } (\upsilon, \xi) \in]0, +\infty[^2\\ \xi & \text{if } \upsilon = 0 \text{ and } \xi \in [0, +\infty[\\ +\infty & \text{otherwise.} \end{cases}$$

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

Examples of φ -divergences [Basseville 2010]

• Kullback-Leibler : $\varphi(\zeta) = \zeta \ln \zeta - \zeta + 1$

▶ Jeffreys-Kullback : $\varphi(\zeta) = (\zeta - 1) \ln \zeta$

$$\Phi \colon (\upsilon, \xi) \mapsto \begin{cases} (\upsilon - \xi) \big(\ln \upsilon - \ln \xi \big) & \text{if } (\upsilon, \xi) \in]0, +\infty[^2 \\ 0 & \text{if } \upsilon = \xi = 0 \\ +\infty & \text{otherwise.} \end{cases}$$

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

Examples of φ -divergences [Basseville 2010]

• Kullback-Leibler : $\varphi(\zeta) = \zeta \ln \zeta - \zeta + 1$

▶ Jeffreys-Kullback : $\varphi(\zeta) = (\zeta - 1) \ln \zeta$

• Hellinger : $\varphi(\zeta) = \zeta + 1 - 2\sqrt{\zeta}$

$$\Phi \colon (v,\xi) \mapsto \begin{cases} (\sqrt{v} - \sqrt{\xi})^2 & \text{if } (v,\xi) \in [0,+\infty[^2\\ +\infty & \text{otherwise.} \end{cases}$$

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

EXAMPLES OF φ -DIVERGENCES [BASSEVILLE 2010]

Kullback-Leibler: $\varphi(\zeta) = \zeta \ln \zeta - \zeta + 1$

• Jeffreys-Kullback : $\varphi(\zeta) = (\zeta - 1) \ln \zeta$

► Hellinger : $\varphi(\zeta) = \zeta + 1 - 2\sqrt{\zeta}$ ► Chi square : $\varphi(\zeta) = (\zeta - 1)^2$

$$\Phi \colon (\upsilon,\xi) \mapsto \begin{cases} \frac{(\upsilon-\xi)^2}{\xi} & \text{if } \upsilon \in [0,+\infty[\text{ and } \xi \in]0,+\infty[\\ 0 & \text{if } \upsilon=\xi=0 \\ +\infty & \text{otherwise.} \end{cases}$$

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

Examples of φ -divergences [Basseville 2010]

► Kullback-Leibler : $\varphi(\zeta) = \zeta \ln \zeta - \zeta + 1$

▶ Jeffreys-Kullback : $\varphi(\zeta) = (\zeta - 1) \ln \zeta$

▶ Hellinger : $\varphi(\zeta) = \zeta + 1 - 2\sqrt{\zeta}$

• Chi square : $\varphi(\zeta) = (\zeta - 1)^2$

• $I_{\alpha}, \alpha \in]0,1[$: $\varphi(\zeta) = 1 - \alpha + \alpha \zeta - \zeta^{\alpha}$

$$\Phi \colon (\upsilon,\xi) \mapsto \begin{cases} \alpha\upsilon + (1-\alpha)\xi - \upsilon^\alpha \xi^{1-\alpha} & \text{if } \upsilon \in [0,+\infty[\text{ and } \xi \in [0,+\infty[\\ +\infty & \text{ otherwise} \end{cases}$$

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

DIVERGENCE PROXIMITY OPERATOR

$$\textbf{Separability:} \quad \big(\forall p = (p^{(i)})_{1 \leq i \leq P} \in \mathbb{R}^P \big) \big(\forall q = (q^{(i)})_{1 \leq i \leq P} \in \mathbb{R}^P \big)$$

$$D(p,q) = \sum_{i=1}^{P} \Phi(p^{(i)}, q^{(i)})$$

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

DIVERGENCE PROXIMITY OPERATOR

Separability:
$$(\forall p = (p^{(i)})_{1 \leq i \leq P} \in \mathbb{R}^P) (\forall q = (q^{(i)})_{1 \leq i \leq P} \in \mathbb{R}^P)$$

$$D(p,q) = \sum_{i=1}^{P} \Phi(p^{(i)}, q^{(i)})$$

Proximity operator .

$$(\forall \bar{p} = (\bar{p}^{(i)})_{1 \leq i \leq P} \in \mathbb{R}^P) (\forall \bar{q} = (\bar{q}^{(i)})_{1 \leq i \leq P} \in \mathbb{R}^P)$$
$$\operatorname{prox}_D(\bar{p}, \bar{q}) = \left(\operatorname{prox}_{\Phi}(\bar{p}^{(i)}, \bar{q}^{(i)})\right)_{1 \leq i \leq P}.$$

$$\left(\bar{l}^{(i)}\right)\Big)_{1\leq i\leq P}$$

15/48

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

DIVERGENCE PROXIMITY OPERATOR

Let $\gamma \in]0, +\infty[$ and $(\overline{v}, \overline{\xi}) \in \mathbb{R}^2$.

$$\boxed{ \operatorname{prox}_{\gamma \Phi}(\overline{v}, \overline{\xi}) = \left(\overline{v} - \gamma \vartheta_{-}(\widehat{\zeta}), \overline{\xi} - \gamma \vartheta_{+}(\widehat{\zeta})\right)}$$

where $\hat{\zeta} < \chi_+$ is the unique minimizer of strictly convex function ψ on $]\chi_-, +\infty[$.

DIVERGENCE PROXIMITY OPERATOR

Let $\gamma \in]0, +\infty[$ and $(\overline{v}, \overline{\xi}) \in \mathbb{R}^2$.

$$prox_{\gamma\Phi}(\overline{v},\overline{\xi}) = (\overline{v} - \gamma \vartheta_{-}(\widehat{\zeta}), \overline{\xi} - \gamma \vartheta_{+}(\widehat{\zeta}))$$

where $\hat{\zeta} < \chi_+$ is the unique minimizer of strictly convex function ψ on $]\chi_-, +\infty[$.

*
$$\psi :]0, +\infty[\to \mathbb{R} : \zeta \mapsto \zeta \varphi(\zeta^{-1}) - \Theta(\zeta) + \frac{\gamma^{-1}\overline{\upsilon}}{2}\zeta^2 - \gamma^{-1}\overline{\xi}\zeta$$

where Θ denote a primitive of the function $\zeta \mapsto \zeta \varphi'(\zeta^{-1})$ on $]0, +\infty[$

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

DIVERGENCE PROXIMITY OPERATOR

Kullback-Leibler:

INTRODUCTION

Let $\gamma > 0$ and $(\overline{v}, \overline{\xi}) \in \mathbb{R}^2$,

$$\mathrm{prox}_{\gamma\Phi}(\overline{\upsilon},\overline{\xi}) = \begin{cases} \left(\overline{\upsilon} + \gamma\ln\widehat{\zeta},\overline{\xi} + \gamma(\widehat{\zeta}^{-1} - 1)\right) & \text{if } \exp(\overline{\upsilon}/\gamma) > 1 - \gamma^{-1}\overline{\xi} \\ (0,0) & \text{otherwise} \end{cases}$$

where $\widehat{\zeta}$ is the minimizer on $]\exp(-\overline{\upsilon}/\gamma), +\infty[$ of

$$\psi(\zeta) \quad = \quad \Big(\frac{\zeta^2}{2} \ - \ 1\Big) \ln \zeta \ + \ \frac{1}{2} \Big(\gamma^{-1} \overline{v} \ - \ \frac{1}{2}\Big) \zeta^2 \ + \ (1 \ - \ \gamma^{-1} \overline{\xi}) \zeta.$$

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

DIVERGENCE PROXIMITY OPERATOR

Jeffrey-Kullback:

INTRODUCTION

Let $\gamma > 0$ and $(\overline{v}, \overline{\xi}) \in \mathbb{R}^2$.

$$\operatorname{prox}_{\gamma\Phi}(\overline{\upsilon},\overline{\xi}) = \begin{cases} \left(\overline{\upsilon} + \gamma \left(\ln \widehat{\zeta} + \widehat{\zeta} - 1\right), \overline{\xi} - \gamma \left(\ln \widehat{\zeta} - \widehat{\zeta}^{-1} + 1\right)\right) & \text{if } W(e^{1-\gamma^{-1}\overline{\upsilon}})W(e^{1-\gamma^{-1}\overline{\xi}}) < 1\\ (0,0) & \text{otherwise} \end{cases}$$

where, $\hat{\zeta}$ is the minimizer on $W(e^{1-\gamma^{-1}\overline{v}})$, $+\infty$ of

$$\psi(\zeta) = \left(\frac{\zeta^2}{2} + \zeta - 1\right) \ln \zeta + \frac{\zeta^3}{3} + \frac{1}{2} \left(\gamma^{-1} \overline{v} - \frac{3}{2}\right) \zeta^2 - \gamma^{-1} \overline{\xi} \zeta.$$

DIVERGENCE PROXIMITY OPERATOR

Hellinger:

INTRODUCTION

Let $\gamma > 0$ and $(\overline{v}, \overline{\xi}) \in \mathbb{R}^2$

$$\operatorname{prox}_{\gamma\Phi}(\overline{v},\overline{\xi}) = \begin{cases} \left(\overline{v} + \gamma(\rho - 1), \overline{\xi} + \gamma\left(\frac{1}{\rho} - 1\right)\right) & \text{if } (\overline{v} < \gamma \text{ and} \\ (1 - \gamma^{-1}\overline{v})(1 - \gamma^{-1}\overline{\xi}) < 1) \\ & \text{or } \overline{v} \ge \gamma \\ (0,0) & \text{otherwise} \end{cases}$$

Stereo vision

where ρ is the unique solution on $]\max(1-\gamma^{-1}\overline{v},0),+\infty[$ of the equation:

$$\rho^4 + (\gamma^{-1}\overline{v} - 1)\rho^3 + (1 - \gamma^{-1}\overline{\xi})\rho - 1 = 0.$$

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

DIVERGENCE PROXIMITY OPERATOR

Chi-Square:

Let $\gamma > 0$ and $(\overline{v}, \overline{\xi}) \in \mathbb{R}^2$

$$\mathrm{prox}_{\gamma\Phi}(\overline{v},\overline{\xi}) = \begin{cases} \left(\overline{v} + 2\gamma(1-\rho), \overline{\xi} + \gamma(\rho^2 - 1)\right) & \text{if } \overline{v} > -2\gamma \\ & \text{and } \overline{\xi} > -\overline{v}\left(1 + (4\gamma)^{-1}\overline{v}\right) \\ \left(0, \max(\overline{\xi} - \gamma, 0)\right) & \text{otherwise} \end{cases}$$

where ρ is the unique solution on $]0, 1 + \gamma^{-1}\overline{\nu}/2[$ of

$$\rho^3 + (1 + \gamma^{-1}\overline{\xi})\rho = 2 + \gamma^{-1}\overline{v}.$$

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

DIVERGENCE PROXIMITY OPERATOR

I_{α} divergence:

Let $\gamma > 0$ and $(\overline{v}, \overline{\xi}) \in \mathbb{R}^2$

$$\operatorname{prox}_{\gamma\Phi}(\overline{v},\overline{\xi}) = \begin{cases} \left(\overline{v} + \gamma\alpha(\widehat{\zeta}^{1-\alpha} - 1), \overline{\xi} + \gamma(1-\alpha)(\widehat{\zeta}^{-\alpha} - 1)\right) & \text{if } \left(\overline{v} < \gamma\alpha \text{ and } \right. \\ \left. \left(1 - \frac{\gamma^{-1}\overline{\xi}}{(1-\alpha)}\right) < \left(1 - \frac{\overline{v}}{\gamma\alpha}\right)^{\frac{\alpha}{\alpha-1}}\right) \\ & \text{or } \overline{v} \ge \gamma\alpha \\ & \text{otherwise} \end{cases}$$

where $\hat{\zeta}$ is the unique solution on $\left[\left(\max \left(1 - \frac{\overline{v}}{\gamma \alpha}, 0 \right) \right)^{\frac{1}{1-\alpha}}, +\infty \right]$ of

$$\alpha \hat{\zeta}^2 + (\gamma^{-1} \overline{v} - \alpha) \hat{\zeta}^{\alpha+1} + (1 - \alpha - \gamma^{-1} \overline{\xi}) \hat{\zeta}^{\alpha} = 1 - \alpha.$$

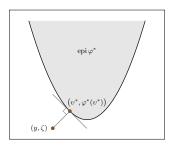
Proximal methods for convex minimization of φ -divergences. Application to computer vision.

EPIGRAPHICAL PROJECTION

Let $\varphi^* \in \Gamma_0(\mathbb{R})$ the Fenchel-conjugate function of the restriction of φ on $[0, +\infty[$ and Φ is the perspective function of φ on $[0, +\infty[\times]0, +\infty[$.

The epigraph of φ^* is given by

$$\left(\forall (v^*, \xi^*) \in \mathbb{R}^2\right) \qquad \operatorname{epi} \varphi^* = \left\{(v^*, \xi^*) \in \mathbb{R}^2 \mid \varphi^*(v^*) \le \xi^*\right\}$$



⇒ useful tool for splitting complex convex constraints

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

EPIGRAPHICAL PROJECTION

Let $\varphi^* \in \Gamma_0(\mathbb{R})$ the Fenchel-conjugate function of the restriction of φ on $[0, +\infty[$ and Φ is the perspective function of φ on $[0, +\infty[\times]0, +\infty[$.

The projection onto $epi \varphi^*$ is given by

$$\left(\forall (y,\zeta) \in \mathbb{R}^2\right) \qquad \mathsf{P}_{\mathrm{epi}\,\varphi^*}(y,\zeta) = (y,-\zeta) - \mathrm{prox}_\Phi(y,-\zeta).$$

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

EPIGRAPHICAL PROJECTION

Let $\varphi^* \in \Gamma_0(\mathbb{R})$ the Fenchel-conjugate function of the restriction of φ on $[0, +\infty[$ and Φ is the perspective function of φ on $[0, +\infty[\times]0, +\infty[$.

The projection onto $\operatorname{epi} \varphi^*$ is given by

$$(\forall (y,\zeta) \in \mathbb{R}^2)$$
 $\mathsf{P}_{\mathrm{epi}\,\varphi^*}(y,\zeta) = (y,-\zeta) - \mathrm{prox}_{\Phi}(y,-\zeta).$

Kullback-Leible

$$\varphi^*(\zeta^*) = e^{\zeta^*} - 1$$

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

EPIGRAPHICAL PROJECTION

Let $\varphi^* \in \Gamma_0(\mathbb{R})$ the Fenchel-conjugate function of the restriction of φ on $[0, +\infty[$ and Φ is the perspective function of φ on $[0, +\infty[\times]0, +\infty[$.

The projection onto $\operatorname{epi} \varphi^*$ is given by

$$(\forall (y,\zeta) \in \mathbb{R}^2)$$
 $\mathsf{P}_{\mathrm{epi}\,\varphi^*}(y,\zeta) = (y,-\zeta) - \mathrm{prox}_{\Phi}(y,-\zeta).$

Jeffreys-Kullbacl

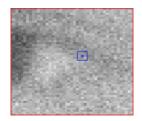
$$\varphi^*(\zeta^*) = W(e^{1-\zeta^*}) + (W(e^{1-\zeta^*}))^{-1} + \zeta^* - 2$$

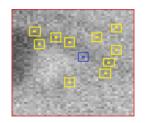
Proximal methods for convex minimization of φ -divergences. Application to computer vision.

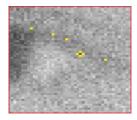
APPLICATION TO IMAGE RESTORATION

Non-local Total Variation:

$$NLTV(x) = \sum_{s \in \mathcal{A}} \left(\sum_{n \in \mathcal{N}_s \subset \mathcal{W}_s} \omega_{s,n} |x^{(s)} - x^{(n)}|^p \right)^{1/p}$$







Proximal methods for convex minimization of φ -divergences. Application to computer vision.

NLTV as dissimilarity measure:

$$NLTV(x) = \sum_{s \in \mathcal{A}} \left(\sum_{n \in \mathcal{N}_s \subset \mathcal{W}_s} \omega_{s,n} |x^{(s)} - x^{(n)}|^p \right)^{1/p}$$

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

NLTV as dissimilarity measure:

$$NLTV(x) = \sum_{s \in \mathcal{A}} \left(\sum_{n \in \mathcal{N}_s \subset \mathcal{W}_s} \omega_{s,n} |x^{(s)} - x^{(n)}|^p \right)^{1/p}$$
$$= \sum_{s \in \mathcal{A}} \left\| \left[\omega_{s,n} \left(x^{(s)} - x^{(n)} \right) \right]_{n \in \mathcal{N}_s} \right\|_p$$

Stereo vision

NLTV as dissimilarity measure:

INTRODUCTION

$$NLTV(x) = \sum_{s \in \mathcal{A}} \left(\sum_{n \in \mathcal{N}_s \subset \mathcal{W}_s} \omega_{s,n} | x^{(s)} - x^{(n)} |^p \right)^{1/p}$$

$$= \sum_{s \in \mathcal{A}} \left\| \left[\omega_{s,n} \left(x^{(s)} - x^{(n)} \right) \right]_{n \in \mathcal{N}_s} \right\|_p$$

$$= \sum_{s \in \mathcal{A}} \left\| \left[\omega_{s,n} x^{(s)} \right]_{n \in \mathcal{N}_s} - \left[\omega_{s,n} x^{(n)} \right]_{n \in \mathcal{N}_s} \right\|_p$$

Stereo vision

21/48

NLTV as dissimilarity measure:

INTRODUCTION

$$NLTV(x) = \sum_{s \in \mathcal{A}} \left(\sum_{n \in \mathcal{N}_s \subset \mathcal{W}_s} \omega_{s,n} | x^{(s)} - x^{(n)} |^p \right)^{1/p}$$

$$= \sum_{s \in \mathcal{A}} \left\| \left[\omega_{s,n} \left(x^{(s)} - x^{(n)} \right) \right]_{n \in \mathcal{N}_s} \right\|_p$$

$$= \sum_{s \in \mathcal{A}} \left\| \left[\omega_{s,n} x^{(s)} \right]_{n \in \mathcal{N}_s} - \left[\omega_{s,n} x^{(n)} \right]_{n \in \mathcal{N}_s} \right\|_p$$

$$= \sum_{s \in \mathcal{A}} \left\| A_s x - B_s x \right\|_p$$

NLTV as dissimilarity measure:

$$NLTV(x) = \sum_{s \in \mathcal{A}} \left(\sum_{n \in \mathcal{N}_s \subset \mathcal{W}_s} \omega_{s,n} | x^{(s)} - x^{(n)} |^p \right)^{1/p}$$

$$= \sum_{s \in \mathcal{A}} \left\| \left[\omega_{s,n} \left(x^{(s)} - x^{(n)} \right) \right]_{n \in \mathcal{N}_s} \right\|_p$$

$$= \sum_{s \in \mathcal{A}} \left\| \left[\omega_{s,n} x^{(s)} \right]_{n \in \mathcal{N}_s} - \left[\omega_{s,n} x^{(n)} \right]_{n \in \mathcal{N}_s} \right\|_p$$

$$= \sum_{s \in \mathcal{A}} \left\| A_s x - B_s x \right\|_p$$

$$= D(Ax, Bx) \qquad \text{(with } A = [A_s]_{s \in \mathcal{A}} \text{ and } B = [B_s]_{s \in \mathcal{A}}$$

NLTV as dissimilarity measure:

$$NLTV(x) = \sum_{s \in \mathcal{A}} \left(\sum_{n \in \mathcal{N}_s \subset \mathcal{W}_s} \omega_{s,n} | x^{(s)} - x^{(n)} |^p \right)^{1/p}$$

$$= \sum_{s \in \mathcal{A}} \left\| \left[\omega_{s,n} \left(x^{(s)} - x^{(n)} \right) \right]_{n \in \mathcal{N}_s} \right\|_p$$

$$= \sum_{s \in \mathcal{A}} \left\| \left[\omega_{s,n} x^{(s)} \right]_{n \in \mathcal{N}_s} - \left[\omega_{s,n} x^{(n)} \right]_{n \in \mathcal{N}_s} \right\|_p$$

$$= \sum_{s \in \mathcal{A}} \left\| A_s x - B_s x \right\|_p$$

$$= D(Ax, Bx) \qquad \text{(with } A = [A_s]_{s \in \mathcal{A}} \text{ and } B = [B_s]_{s \in \mathcal{A}})$$

 \Rightarrow use more general forms for D.

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

Dissimilarity based on ℓ_p -norms:

$$D(a,b) = \sum_{s \in A} \|a^{(s)} - b^{(s)}\|_p$$

where
$$a = Ax = (a^{(s)})_{s \in \mathcal{A}}$$
 and $b = Bx = (b^{(s)})_{s \in \mathcal{A}}$

Dissimilarity based on ℓ_p -norms:

$$D(a,b) = \sum_{s \in A} \|a^{(s)} - b^{(s)}\|_{p}$$

Stereo vision

where
$$a = Ax = (a^{(s)})_{s \in \mathcal{A}}$$
 and $b = Bx = (b^{(s)})_{s \in \mathcal{A}}$

Dissimilarity based on φ -divergences:

$$D(a,b) = \sum_{s \in \mathcal{A}} \sum_{m=1}^{|\mathcal{N}_s|} b^{(s,m)} \varphi\left(\frac{a^{(s,m)}}{b^{(s,m)}}\right)$$

where
$$a^{(s)}=(a^{(s,m)})_{1\leq m\leq |\mathcal{N}_s|}$$
 and $b^{(s)}=(b^{(s,m)})_{1\leq m\leq |\mathcal{N}_s|}$

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

DEGRADATION MODEL

$$z = H\overline{w} + n$$

- $ightharpoonup \overline{w}$: original image in \mathbb{R}^N ,
- ▶ H: linear operator from \mathbb{R}^N to \mathbb{R}^Q ,
- ▶ n: zero-mean white Gaussian noise in \mathbb{R}^Q ,
- z: degraded image of size Q.

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

DEGRADATION MODEL

INTRODUCTION

$$z = H\overline{w} + n$$

- $ightharpoonup \overline{w}$: original image in \mathbb{R}^N ,
- H: linear operator from \mathbb{R}^N to \mathbb{R}^Q ,
- n: zero-mean white Gaussian noise in \mathbb{R}^Q ,
- z: degraded image of size Q.

$$\underbrace{\frac{1}{w \in \mathbb{R}^{N}}}_{\text{Data fidelity term}} \underbrace{\frac{1}{2\lambda} \|Hw - z\|^{2}}_{\text{Data fidelity term}} + \underbrace{\frac{D(Aw, Bw)}{E(Aw, Bw)}}_{\text{Regularization term}} + \underbrace{\frac{U_{C}(w)}{E(Aw, Bw)}}_{\text{Convex constraint}} + \underbrace{\frac{U$$

$$\lambda \in]0, +\infty[.$$

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

RESULTS



Original image:

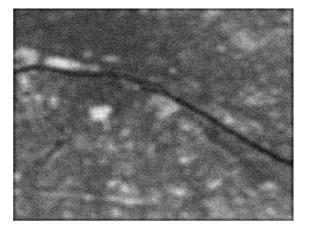
Stereo vision

Conclusions 0000

24/48

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

RESULTS



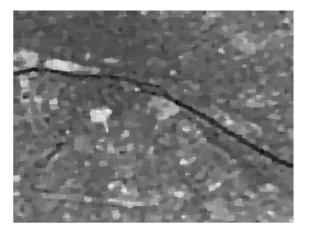
Original image:

Degraded image:

SNR= 13.14 dB, SSIM=0.284

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

RESULTS



Original image:

Degraded image: SNR= 13.14 dB, SSIM=0.284

 $\ell_{1,2}$ – TV result:

SNR= 15.29 dB, SSIM=0.467

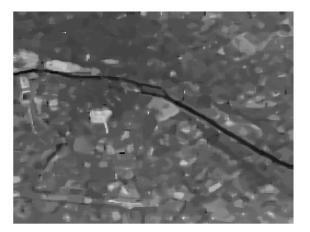
Stereo vision

Conclusions 0000

24/48

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

RESULTS



Original image:

Degraded image:

SNR= 13.14 dB, SSIM=0.284

 $\ell_{1,2} - \mathrm{TV}$ result:

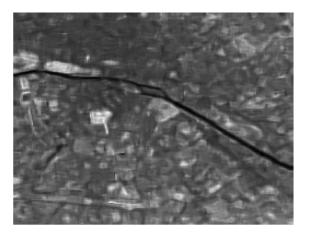
SNR= 15.29 dB, SSIM=0.467

 $\ell_{1,2} - \text{NLTV result:}$

SNR= 15.70 dB, SSIM=0.504

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

RESULTS



Original image:

Degraded image:

SNR= 13.14 dB, SSIM=0.284

 $\ell_{1,2} - \mathrm{TV}$ result:

SNR= 15.29 dB, SSIM=0.467

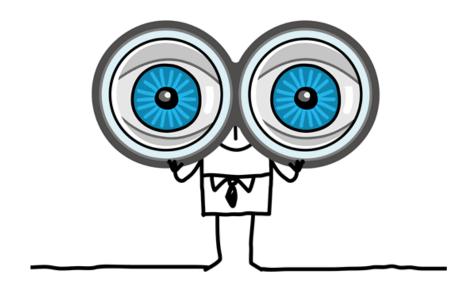
 $\ell_{1,2} - \text{NLTV result:}$

SNR= 15.70 dB, SSIM=0.504

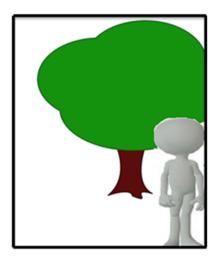
JK - NLTV result:

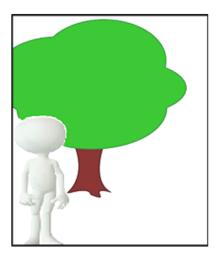
SNR= 16.01 dB, SSIM=0.548

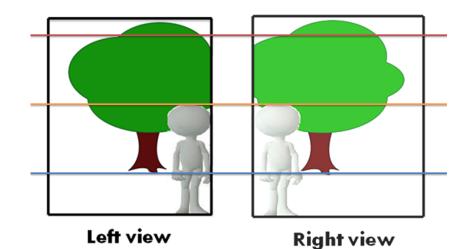
Proximal methods for convex minimization of φ -divergences. Application to computer vision.

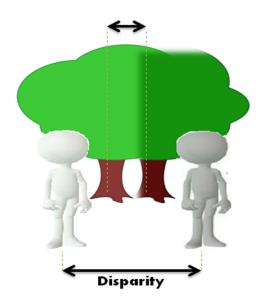


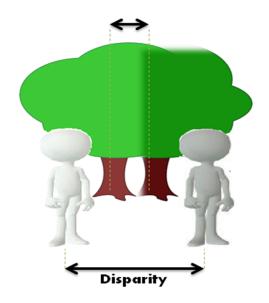
Proximal methods for convex minimization of φ -divergences. Application to computer vision.





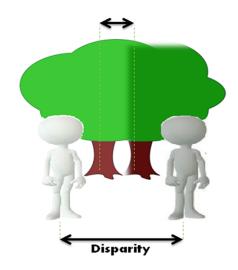






•00000000 0000000000

INTRODUCTION

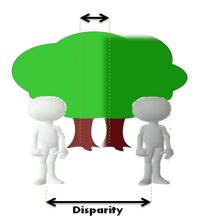


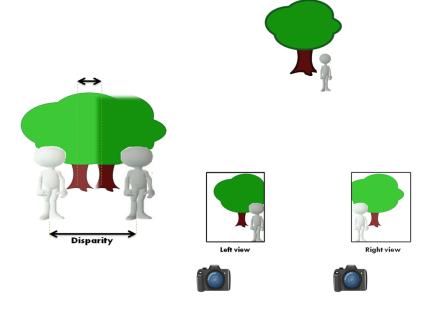
•00000000 0000000000

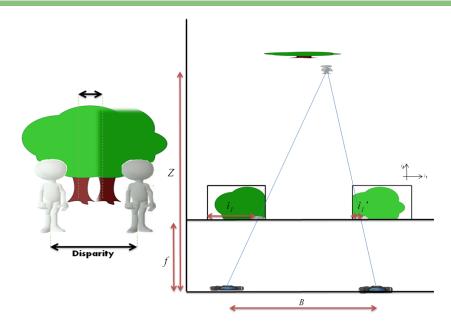
25/48

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

INTRODUCTION







 Conclusions 0000

26/48

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

DISPARITY

$$u: \mathbb{R}^2 \mapsto \mathbb{R}^2$$

 $(i_1, i_2) \mapsto (i_1 - i'_1, i_2 - i'_2)$

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

DISPARITY

$$u: \mathbb{R}^2 \mapsto \mathbb{R}^2$$

 $(i_1, i_2) \mapsto (i_1 - i'_1, i_2 - i'_2)$

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

DISPARITY

$$u: \mathbb{R}^2 \mapsto \mathbb{R}$$

$$(i_1, i_2) \mapsto i_1 - i_1'$$

 Conclusions 0000

26/48

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

DISPARITY

$$u(i_1, i_2) = i_1 - i_1' = \frac{Bf}{Z}$$

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

DISPARITY

Definition

$$u(i_1, i_2) = i_1 - i_1' = \frac{Bf}{Z}$$

Objective

Find for each pixel in the left image $I_1 : \mathbb{R}^2 \mapsto \mathbb{R}^K$ a corresponding pixel in the right image $I_2 : \mathbb{R}^2 \mapsto \mathbb{R}^K$.

$$I_1(i_1, i_2) = I_2(i'_1, i'_2)$$

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

DISPARITY

Definition

$$u(i_1, i_2) = i_1 - i_1' = \frac{Bf}{Z}$$

Objective

Find for each pixel in the left image $I_1: \mathbb{R}^2 \to \mathbb{R}^K$ a corresponding pixel in the right image $I_2 : \mathbb{R}^2 \to \mathbb{R}^K$.

$$I_1(i_1, i_2) = I_2(i_1 - u(i_1, i_2), i_2)$$

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

DISPARITY

Definition

$$u(i_1, i_2) = i_1 - i_1' = \frac{Bf}{Z}$$

Objective

Find for each pixel in the left image $I_1: \mathbb{R}^2 \to \mathbb{R}^K$ a corresponding pixel in the right image $I_2 : \mathbb{R}^2 \to \mathbb{R}^K$.

$$v(i_1, i_2)I_1(i_1, i_2) = I_2(i_1 - u(i_1, i_2), i_2)$$

$$v: \mathbb{R}^2 \to [0, +\infty[$$

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

PROBLEM FORMULATION

Let $s = (i_1, i_2)$

Let A be the image support and O be the occlusion pixels.

Variational method

$$\widetilde{J}(\mathbf{u}, \mathbf{v}) = \sum_{k=1}^{K} \sum_{\mathbf{s} \in \mathcal{A} \setminus \mathcal{O}} \phi^{(k)}(v(\mathbf{s}) I_1^{(k)}(\mathbf{s}) - I_2^{(k)}(i_1 - u(\mathbf{s}), i_2))$$

 $\forall k \in \{1, \dots, K\}, \phi^{(k)} \text{ belongs to } \Gamma_0(\mathbb{R}).$

PROBLEM FORMULATION

Let $s = (i_1, i_2)$

INTRODUCTION

Let \mathcal{A} be the image support and \mathcal{O} be the occlusion pixels.

Variational method

$$\widetilde{J}(\mathbf{u}, \mathbf{v}) = \sum_{k=1}^{K} \sum_{\mathbf{s} \in A \setminus \mathcal{O}} \phi^{(k)}(v(\mathbf{s}) I_1^{(k)}(\mathbf{s}) - I_2^{(k)}(i_1 - u(\mathbf{s}), i_2))$$

 $\forall k \in \{1, \dots, K\}, \phi^{(k)} \text{ belongs to } \Gamma_0(\mathbb{R}).$

 \widetilde{J} is non-convex w.r.t. the variable \mathbf{u} .

OOOO CONCLUSIONS

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

27/48

PROBLEM FORMULATION

Variational method

$$\widetilde{J}(\mathbf{u}, \mathbf{v}) = \sum_{k=1}^{K} \sum_{\mathbf{s} \in \mathcal{A} \setminus \mathcal{O}} \phi^{(k)}(v(\mathbf{s}) I_1^{(k)}(\mathbf{s}) - I_2^{(k)}(i_1 - u(\mathbf{s}), i_2))$$

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

PROBLEM FORMULATION

Variational method

$$\widetilde{J}(\mathbf{u}, \mathbf{v}) = \sum_{k=1}^{K} \sum_{\mathbf{s} \in A \setminus C} \phi^{(k)}(v(\mathbf{s}) I_1^{(k)}(\mathbf{s}) - I_2^{(k)}(i_1 - u(\mathbf{s}), i_2))$$

Convex relaxation:

► First-order Taylor expansion of the disparity compensated right image around an initial value

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

PROBLEM FORMULATION

Variational method

$$\widetilde{J}(\mathbf{u}, \mathbf{v}) = \sum_{k=1}^{K} \sum_{\mathbf{s} \in A \setminus \mathcal{O}} \phi^{(k)}(v(\mathbf{s}) I_1^{(k)}(\mathbf{s}) - I_2^{(k)}(i_1 - u(\mathbf{s}), i_2))$$

Convex relaxation:

► First-order Taylor expansion of the disparity compensated right image around an initial value

for every $k \in \{1, ..., K\}$ and $s \in A$,

$$I_2^{(k)}(i_1 - \mathbf{u}(\mathbf{s}), i_2) \simeq I_2^{(k)}(i_1 - \bar{u}(\mathbf{s}), i_2) - (\mathbf{u}(\mathbf{s}) - \bar{u}(\mathbf{s}))\nabla^{(1)}I_2^{(k)}(i_1 - \bar{u}(\mathbf{s}), i_2)$$

where $\nabla^{(1)}I_2^{(k)}$ denotes the horizontal gradient of the k-th component of the right image.

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

CONVEX FORMULATION

INTRODUCTION

$$J(\mathbf{u}, \mathbf{v}) = \sum_{k=1}^{K} \sum_{\mathbf{s} \in A \setminus C} \phi^{(k)} (T_1^{(k)}(\mathbf{s}) u(\mathbf{s}) + T_2^{(k)}(\mathbf{s}) v(\mathbf{s}) - r^{(k)}(\mathbf{s}))$$

where, for every $k \in \{1, ..., K\}$ and $s \in A$,

$$\begin{cases} T_1^{(k)}(\mathbf{s}) = \nabla^{(1)} I_2^{(k)}(i_1 - \bar{u}(\mathbf{s}), i_2) \\ T_2^{(k)}(\mathbf{s}) = I_1^{(k)}(\mathbf{s}) \\ r^{(k)}(\mathbf{s}) = I_2^{(k)}(i_1 - \bar{u}(\mathbf{s}), i_2) + \bar{u}(\mathbf{s}) T_1^{(k)}(\mathbf{s}). \end{cases}$$

Let
$$\mathbf{w} = (\mathbf{u}, \mathbf{v}), \quad (\forall \mathbf{s} \in \mathcal{A}) \ w(\mathbf{s}) = \begin{bmatrix} u(\mathbf{s}) \\ v(\mathbf{s}) \end{bmatrix}, \ \mathbf{T}^{(k)}(\mathbf{s}) = [T_1^{(k)}(\mathbf{s}), T_2^{(k)}(\mathbf{s})]$$

$$J(\mathbf{w}) = \sum_{k=1}^{K} \sum_{\mathbf{s} \in A \setminus \mathcal{O}} \phi^{(k)}(\mathbf{T}^{(k)}(\mathbf{s}) w(\mathbf{s}) - r^{(k)}(\mathbf{s}))$$

SET THEORETIC ESTIMATION

$$J(\mathbf{w}) = \sum_{k=1}^{K} \sum_{\mathbf{s} \in A \setminus \mathcal{O}} \phi^{(k)}(\mathbf{T}^{(k)}(\mathbf{s}) w(\mathbf{s}) - r^{(k)}(\mathbf{s}))$$

Advantages

INTRODUCTION

- Ability to consider multicomponent images with illumination variation

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

SET THEORETIC ESTIMATION

$$J(\mathbf{w}) = \sum_{k=1}^{K} \sum_{\mathbf{s} \in A \setminus \mathcal{O}} \phi^{(k)}(\mathbf{T}^{(k)}(\mathbf{s}) w(\mathbf{s}) - r^{(k)}(\mathbf{s}))$$

Advantages

INTRODUCTION

- Ability to consider multicomponent images with illumination variation
- Flexibility in minimizing various convex similarity measures (ℓ_1 , ℓ_2 , divergences ...)

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

SET THEORETIC ESTIMATION

$$J(\mathbf{w}) = \sum_{k=1}^{K} \sum_{\mathbf{s} \in A \setminus \mathcal{O}} \phi^{(k)}(\mathbf{T}^{(k)}(\mathbf{s})w(\mathbf{s}) - r^{(k)}(\mathbf{s}))$$

Advantages

INTRODUCTION

- Ability to consider multicomponent images with illumination variation
- Flexibility in minimizing various convex similarity measures (ℓ_1 , ℓ_2 , divergences ...)

Proximity operator ✓

SET THEORETIC ESTIMATION

$$J(\mathbf{w}) = \sum_{k=1}^{K} \sum_{\mathbf{s} \in A \setminus \mathcal{O}} \phi^{(k)}(\mathbf{T}^{(k)}(\mathbf{s}) w(\mathbf{s}) - r^{(k)}(\mathbf{s}))$$

Stereo vision

0000000000

Advantages

INTRODUCTION

- Ability to consider multicomponent images with illumination variation
- Flexibility in minimizing various convex similarity measures (ℓ_1 , ℓ_2 , divergences ...)

Proximity operator ✓

- The minimization of functional J is an ill-posed problem. (infinite number of solutions due to the fact that two variables have to be determined for each pixel).
- Additional **constraints** are required to regularize the solution.

Conclusions 0000

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

30/48

CONVEX CONSTRAINTS

Conclusions 0000

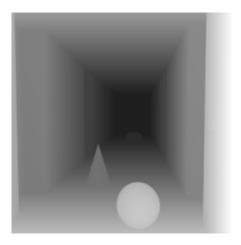
Proximal methods for convex minimization of φ -divergences. Application to computer vision.

30/48

CONVEX CONSTRAINTS

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

CONVEX CONSTRAINTS

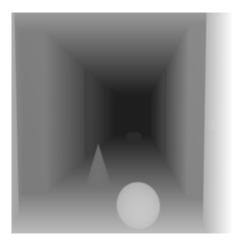


Range values:

$$S_{1,1} = \{ \mathbf{u} \in \mathbb{R}^{|\mathcal{A}|} \mid (\forall \mathbf{s} \in \mathcal{A}) \ u_{\min} \le u \le u_{\max} \}, u_{\min} \ge 0$$

30/48

CONVEX CONSTRAINTS



Total variation:

$$S_{1,2} = \{\mathbf{u} \in \mathbb{R}^{|\mathcal{A}|} \mid TV(\mathbf{u}) \le \tau_2\},$$

$$\tau_2 \ge 0$$

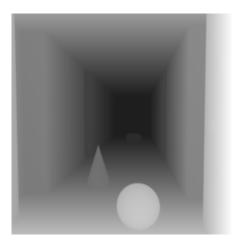
$$TV(\mathbf{u}) =$$

$$\sum_{\mathbf{s} \in \mathcal{A}} \sqrt{|\widehat{\nabla^{(1)}} u(\mathbf{s})|^2 + |\widehat{\nabla^{(2)}} u(\mathbf{s})|^2}$$

$$\widehat{\nabla^{(1)}} \text{ and } \widehat{\nabla^{(2)}} \text{: discrete gradients}$$

30/48

CONVEX CONSTRAINTS



Frame analysis constraint:

Frame analysis constraint:
$$S'_{1,2} = \left\{ \mathbf{u} \in \mathbb{R}^{|\mathcal{A}|} \mid \sum_{q=1}^{Q} \eta_q | (F\mathbf{u})_q | \le \tau'_2 \right\}$$

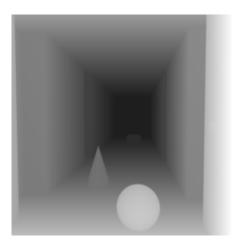
$$F \colon \mathbb{R}^{|\mathcal{A}|} \to \mathbb{R}^Q \text{ with } Q \ge |\mathcal{A}|,$$

$$(\eta_q)_{1 \le q \le Q} \in [0, +\infty[^Q \text{ and } \tau'_2 > 0.$$

$$F^\top F = \nu I, \text{ where } \nu > 0$$

30/48

CONVEX CONSTRAINTS



Second-order constraint:

$$S_{1,3} = \{ \mathbf{u} \in \mathbb{R}^{|\mathcal{A}|} \mid \mathrm{TV}_2(\mathbf{u}) \le \tau_3 \}, \\ \tau_3 > 0.$$

$$TV_2(\mathbf{u}) = \sum_{\mathbf{s} \in \mathcal{A}} \sqrt{|\widehat{\nabla}^2 \mathbf{u}(\mathbf{s}) u(\mathbf{s})|^2}$$

 $\widehat{\nabla}^2 \mathbf{u}(\mathbf{s})$: discrete Hessian operator

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

CONVEX CONSTRAINTS

INTRODUCTION

Range values:

$$S_{2,1} = \{ \mathbf{v} \in \mathbb{R}^{|\mathcal{A}|} \mid (\forall \mathbf{s} \in \mathcal{A}) \ v_{\min} \leq v(\mathbf{s}) \leq v_{\max} \}, v_{\min} \geq 0$$

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

CONVEX CONSTRAINTS

First-order smoothness constraint: $S_{2,2} = \{ \mathbf{v} \in \mathbb{R}^{|\mathcal{A}|} \mid \|\widehat{\nabla} \mathbf{v}\|_{\ell_2}^2 \le \kappa_2 \},$ $\kappa_2 > 0$ $\|\widehat{\nabla} \mathbf{v}\|_{\ell^2} =$ $(\sum_{\mathbf{s} \in A} |\widehat{\nabla^{(1)}} v(\mathbf{s})|^2 + |\widehat{\nabla^{(2)}} v(\mathbf{s})|^2)^{1/2}.$

0000

31/48

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

CONVEX CONSTRAINTS

Second-order constraint:

Second-order constraint:

$$S_{2,3} = \left\{ \mathbf{v} \in \mathbb{R}^{|\mathcal{A}|} \mid \|\widehat{\nabla}^2 \mathbf{v}\|_{\ell_2}^2 \le \kappa_3 \right\},$$

$$\kappa_3 > 0$$

 $\widehat{\nabla^2} \mathbf{u}(\mathbf{s})$: discrete Hessian operator

Conclusions 0000

32/48

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

PROPOSED APPROACH

General formulation

$$\underset{L_i w \in C_i, i \in \{1, \dots, m\}}{\text{minimize}} \sum_{k=1}^{K} \sum_{s \in \mathcal{A} \setminus \mathcal{O}} \phi^{(k)}(\mathbf{T}^{(k)}(\mathbf{s}) w(\mathbf{s}) - r^{(k)}(\mathbf{s}))$$

PROPOSED APPROACH

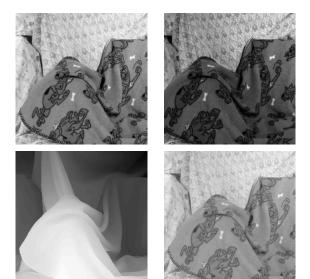
INTRODUCTION

$$\underset{L_i w \in C_i, i \in \{1, \dots, m\}}{\text{minimize}} \sum_{k=1}^{K} \sum_{s \in \mathcal{A} \setminus \mathcal{O}} \phi^{(k)}(\mathbf{T}^{(k)}(\mathbf{s}) w(\mathbf{s}) - r^{(k)}(\mathbf{s}))$$

- The PPXA+ algorithm can be employed to minimize J on some closed convex constraint sets $(C_i)_{1 \leq i \leq m}$.
- It consists of computing, in parallel, the projections onto the different convex sets and the proximity operator of the criterion J.

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

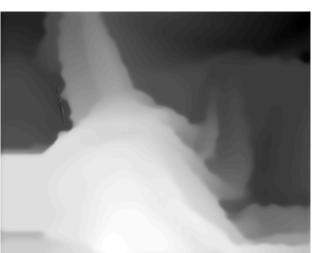
RESULTS (GRAY LEVEL IMAGES)



Proximal methods for convex minimization of φ -divergences. Application to computer vision.

RESULTS (GRAY LEVEL IMAGES)

INTRODUCTION



 ℓ_2 -norm: MAE = 0.83, Err = 3.62%

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

RESULTS (GRAY LEVEL IMAGES)

INTRODUCTION

 ℓ_2 -norm:

MAE = 0.83, Err = 3.62%

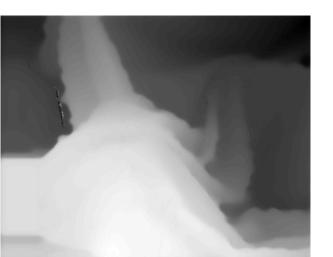
Kullback-Leibler:

MAE = 0.82, Err = 3.36%

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

RESULTS (GRAY LEVEL IMAGES)

INTRODUCTION



 ℓ_2 -norm:

MAE = 0.83, Err = 3.62%

Kullback-Leibler:

MAE = 0.82, Err = 3.36%

Jeffreys-Kullback:

MAE= 0.83, Err= 3.44%

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

RESULTS (ℓ_1 -NORM)

INTRODUCTION

Stereo vision

000000000

RESULTS (ℓ_1 -NORM)

INTRODUCTION

Gray level images: MAE = 1.26, Err = 13%

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

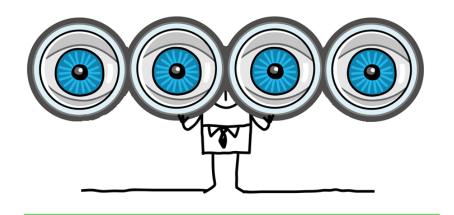
RESULTS (ℓ_1 -NORM)

INTRODUCTION

Gray level images: MAE = 1.26, Err = 13%

color images:

MAE = 1.10, Err = 11%



Multi-label approach
Multiple images

35/48

DISPARITY ESTIMATION

Variational method

$$f(\mathbf{u}) = \sum_{\mathbf{s} \in \mathcal{A}} \psi(\underline{I_1(\mathbf{s})}, I_2(i_1 - \underline{u(\mathbf{s})}, i_2))$$

 $\psi \in \Gamma_0(\mathbb{R}).$

MULTI-LABEL APPROACH

The disparity \boldsymbol{u} is quantized over Q+1 quantization levels r_0, r_1, \ldots, r_Q $(r_0 < r_1 < \cdots < r_O)$

$$(\forall \mathbf{s} \in \mathcal{A})$$
 $u(\mathbf{s}) = r_0 + \sum_{q=1}^{Q} (r_q - r_{q-1})\theta_q(\mathbf{s})$

Stereo vision 0.000000000

where $\theta = (\theta_1, \dots, \theta_Q) \in \mathcal{B}$ such that

$$(\forall \ q \in \{1,\dots,Q\})(\forall \ \mathbf{s} \in \mathcal{A}) \qquad \theta_q(\mathbf{s}) = \begin{cases} 1 & \text{if} \ \ u(\mathbf{s}) \geq r_q \\ 0 & \text{otherwise} \end{cases}$$

and

INTRODUCTION

$$\mathcal{B} = \{ \theta \in (\{0,1\}^P)^Q | (\forall \mathbf{s} \in \mathcal{A}) \ 1 \ge \theta_1(\mathbf{s}) \ge \dots \ge \theta_Q(\mathbf{s}) \ge 0 \}.$$

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

CONVEX FORMULATION

CREMERS ET AL. [2011]

$$\widetilde{f}(\theta) = \sum_{\mathbf{s} \in A} \sum_{q=0}^{Q} \psi(I_1(\mathbf{s}), I_2(i_1 - r_q, i_2)) (\theta_q(\mathbf{s}) - \theta_{q+1}(\mathbf{s}))$$

The minimization problem can be expressed as:

$$\underset{\theta \in \mathcal{B}}{\text{minimize}} \quad \widetilde{f}(\theta) + \mu \sum_{q=1}^{Q} (r_q - r_{q-1}) \operatorname{tv}(\theta_q), \quad \mu > 0.$$

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

CONVEX FORMULATION

CREMERS ET AL. [2011]

$$\widetilde{f}(\theta) = \sum_{\mathbf{s}, \mathbf{s}} \sum_{\mathbf{s}, \mathbf{s}}^{Q} \psi(I_1(\mathbf{s}), I_2(i_1 - r_q, i_2)) (\theta_q(\mathbf{s}) - \theta_{q+1}(\mathbf{s}))$$

The minimization problem can be expressed as:

$$\underset{\theta \in \mathcal{B}}{\text{minimize}} \ \ \widetilde{f}(\theta) + \mu \sum_{q=1}^{Q} (r_q - r_{q-1}) \operatorname{\mathsf{tv}}(\theta_q), \quad \mu > 0.$$

where

$$\mathcal{B} = \{ \theta \in (\{0,1\}^P)^Q | (\forall \mathbf{s} \in \mathcal{A}) \ 1 \ge \theta_1(\mathbf{s}) \ge \dots \ge \theta_Q(\mathbf{s}) \ge 0 \}.$$

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

CONVEX FORMULATION

CREMERS ET AL. [2011]

$$\widetilde{f}(\theta) = \sum_{\mathbf{s} \in A} \sum_{\mathbf{s} \in A} \psi(I_1(\mathbf{s}), I_2(i_1 - r_q, i_2))(\theta_q(\mathbf{s}) - \theta_{q+1}(\mathbf{s}))$$

The minimization problem can be expressed as:

$$\underset{\theta \in \mathcal{B}}{\text{minimize}} \ \ \widetilde{\widetilde{f}}(\theta) + \mu \sum_{q=1}^{Q} (r_q - r_{q-1}) \operatorname{\mathsf{tv}}(\theta_q), \quad \mu > 0.$$

Convex relaxation:

$$\underset{\theta \in \mathcal{R}}{\text{minimize}} \quad \widetilde{f}(\theta) + \mu \sum_{q=1}^{Q} (r_q - r_{q-1}) \operatorname{tv}(\theta_q)$$

where

$$\mathcal{R} = \{ \theta \in ([0,1]^P)^Q | (\forall \mathbf{s} \in \mathcal{A}) \ 1 \ge \theta_1(\mathbf{s}) \ge \dots \ge \theta_Q(\mathbf{s}) \ge 0 \}.$$

OPTIMIZATION PROBLEM

INTRODUCTION

$$\underset{\theta \in \mathcal{R}}{\text{minimize}} \ \ \underline{g(\theta)} + \mu \sum_{q=1}^{Q} (r_q - r_{q-1}) \operatorname{tv}(\theta_q)$$

Stereo vision

0000000000

Data fidelity:
$$g: \mathcal{R} \to \mathbb{R}$$
, $\psi_{1,2}^j(s) = \psi(I_1(\mathbf{s}), I_2(i_1 - j, i_2))$
$$(\forall \ \theta \in \mathcal{R}) \qquad g(\theta) = \widetilde{f}(\theta) - \sum_{\mathbf{s} \in \mathcal{A} \setminus \mathcal{O}} \psi_{1,2}^{r_0}(s) = \langle \varsigma \mid \theta \rangle,$$

where $\varsigma = (\varsigma_1, \dots, \varsigma_Q) \in (\mathbb{R}^{|\mathcal{A}|})^Q$, such that

$$\varsigma_q(\mathbf{s}) = \mathbf{1}(\mathbf{s})(\psi_{1,2}^{r_q}(s) - \psi_{1,2}^{r_{q-1}}(s))$$

1(s) = 1 if $s \in A_n \setminus \mathcal{O}$ and 0 otherwise.

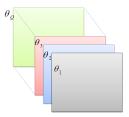
Possibility to handle nonconvex similarity measures $\psi = |\cdot|, \psi = \min\{|\cdot|, \epsilon\}, \psi = |\cdot|^{\frac{1}{2}}, \psi = \min\{|\cdot|^{\frac{1}{2}}, \epsilon\}$

OPTIMIZATION PROBLEM

INTRODUCTION

$$\underset{\theta \in \mathcal{R}}{\text{minimize}} \ g(\theta) + \mu \sum_{q=1}^{Q} (r_q - r_{q-1}) \operatorname{tv}(\theta_q)$$

Regularization Discrete total variation



Proximity operator ✓

Stereo vision

Conclusions 0000

38/48

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

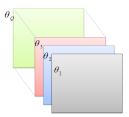
OPTIMIZATION PROBLEM

$$\underset{\theta \in \mathcal{R}}{\text{minimize}} \ g(\theta) + \mu \sum_{q=1}^{Q} (r_q - r_{q-1}) \operatorname{tv}(\theta_q)$$

Convex set

$$\theta_n \in \mathcal{R} \Leftrightarrow (\theta \in E_1 \text{ and } L\theta \in E_2)$$

where $E_1 = ([0,1]^P)^Q$, $E_2 = ([0,+\infty[^P)^{Q-1} \text{ and } L:(\mathbb{R}^P)^Q \to (\mathbb{R}^P)^{Q-1} \text{ is a linear operator, calculating the successive differences between the } Q \text{ components of } \theta$



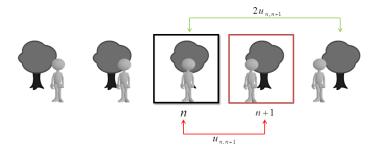
Projection onto closed convex sets E_1 and E_2 \checkmark

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

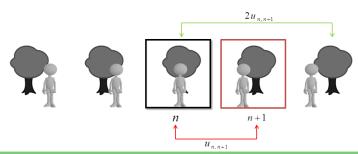
MULTIVIEW DISPARITY ESTIMATION

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

MULTIVIEW DISPARITY ESTIMATION



MULTIVIEW DISPARITY ESTIMATION



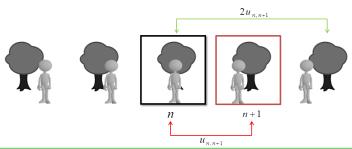
N images

$$(\forall (n,m) \in \{1,\ldots,N\}^2, n \neq m)$$
 $u_{n,m} = \alpha_{n,m} u_{n,k_n}$

$$\alpha_{n,m} = \frac{m-n}{k_n-n}$$

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

MULTIVIEW DISPARITY ESTIMATION



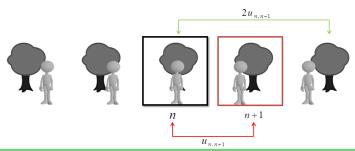
N image

$$\widetilde{f_n}(\mathbf{u}_{n,k_n}) = \sum_{\mathbf{s} \in \mathcal{D}_{n,m}} \psi(I_n(\mathbf{s}) - I_{k_n}(i_1 - \mathbf{u}_{n,k_n}(\mathbf{s}), i_2))$$

 $k_n=n+1, \psi\in\Gamma_0(\mathbb{R}),$ and $\mathcal{D}_{n,m}\subset\mathcal{A}_n$: unoccluded pixel between n-th and m-th view.

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

MULTIVIEW DISPARITY ESTIMATION



N image

$$\widetilde{f_n}(\mathbf{u}_{n,k_n}) = \sum_{\substack{m=1\\m\neq n}}^{N} \sum_{\mathbf{s} \in \mathcal{D}_{n,m}} \psi(I_n(\mathbf{s}) - I_m(i_1 - \alpha_{n,m} \mathbf{u}_{n,k_n}(\mathbf{s}), i_2))$$

 $k_n=n+1, \psi\in\Gamma_0(\mathbb{R})$, and $\mathcal{D}_{n,m}\subset\mathcal{A}_n$: unoccluded pixel between n-th and m-th view.

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

MULTIVIEW DISPARITY ESTIMATION

Discretization

$$(\forall \mathbf{s} \in \mathcal{A}_n)$$
 $u_{n,k_n}^{(\mathbf{s})} = r_0 + \sum_{q=1}^{Q} (r_q - r_{q-1}) \theta_{n,q}^{(\mathbf{s})}$

where

INTRODUCTION

$$(\forall \ q \in \{1, \dots, Q\})(\forall \ \mathbf{s} \in \mathcal{A}_n) \qquad \theta_{n,q}^{(\mathbf{s})} = \begin{cases} 1 & \text{if} \ \ u_{n,k_n}^{(\mathbf{s})} \geq r_q \\ 0 & \text{otherwise} \end{cases}$$

MULTIVIEW DISPARITY ESTIMATION

$$\underset{\theta_n \in \mathcal{R}}{\text{minimize}} \ g_n(\theta_n) + \mu \sum_{q=1}^{Q} (r_q - r_{q-1}) \operatorname{tv}(\theta_{n,q})$$

Stereo vision 00000000000

Data fidelity: $q_n: \mathcal{R} \to \mathbb{R}$

INTRODUCTION

$$(\forall \theta_n \in \mathcal{R}) \qquad g_n(\theta_n) = \sum_{q=1}^{Q} \sum_{\mathbf{s} \in \mathcal{A}_n} \langle \varsigma_{n,q} \mid \theta_{n,q} \rangle = \langle \varsigma_n \mid \theta_n \rangle,$$

where $\varsigma_n = (\varsigma_{n,1}, \dots, \varsigma_{n,Q}) \in (\mathbb{R}^P)^Q$, such that

$$\varsigma_{n,q}^{(\mathbf{s})} = \sum_{\substack{m=1\\m\neq n}}^{N} \mathbf{1}_{n,m}(\mathbf{s}) (\psi_{n,m}^{\alpha_{n,m}r_q} - \psi_{n,m}^{\alpha_{n,m}r_{q-1}})$$

 $1_{n,m}(\mathbf{s}) = 1$ if $\mathbf{s} \in \mathcal{D}_{n,m}$ and 0 otherwise.

Stereo vision

000000000

RESULTS (TRUNCATED ℓ_1 -NORM)

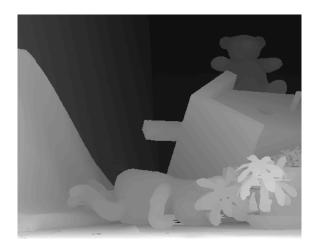
INTRODUCTION

Stereo vision

000000000

RESULTS (TRUNCATED ℓ_1 -NORM)

INTRODUCTION



Proximal methods for convex minimization of φ -divergences. Application to computer vision.

RESULTS (TRUNCATED ℓ_1 -NORM)

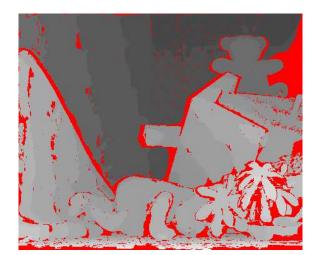
INTRODUCTION

Two images: MAE = 0.56, Err = 4.29%

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

RESULTS (TRUNCATED ℓ_1 -NORM)

INTRODUCTION



Two images:

MAE = 0.56, Err = 4.29%

Three images:

MAE=0.48, Err = 4.08%

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

RESULTS (TRUNCATED ℓ_1 -NORM)

INTRODUCTION

Two images:

MAE = 0.56, Err = 4.29%

Three images:

MAE=0.48, Err = 4.08%

Five images:

MAE=0.48, Err= 3.82%

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

RESULTS

INTRODUCTION

Stereo vision

000000000

RESULTS

INTRODUCTION



43/48

RESULTS

INTRODUCTION

Our approach: Err = 3.10%

Stereo vision

000000000

RESULTS

Our approach:

Err = 3.10%

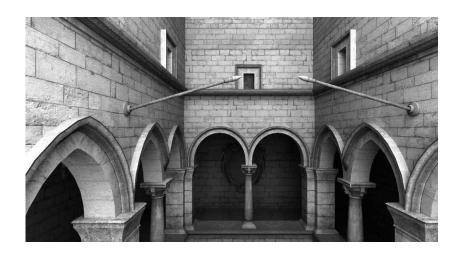
Graph cut Woodford et al. [2009]: Err = 4.84%

Execution time

 $\frac{\mathrm{T_{MultiLabel}}}{\mathrm{T_{Graph-cut}}} = 0.906$

43/48

44/48



Stereo vision

Conclusions 0000

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

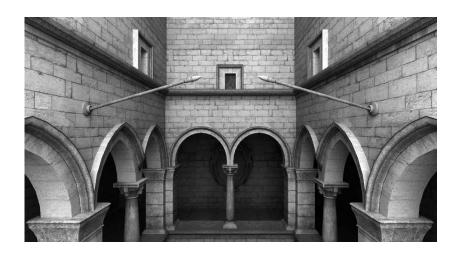
44/48

Stereo vision

Conclusions 0000

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

44/48



Divergences

Stereo vision

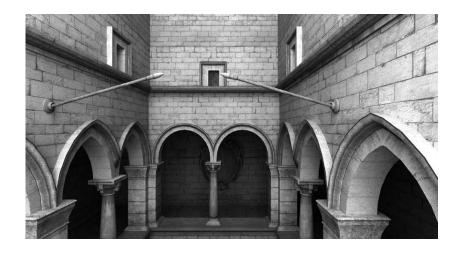
Conclusions 0000

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

44/48



44/48



Conclusions 0000

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

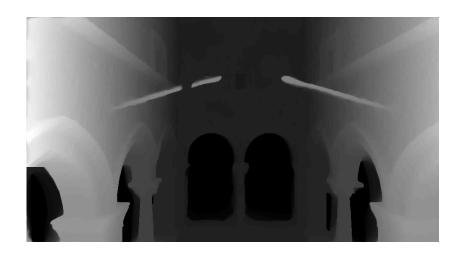
44/48



Conclusions 0000

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

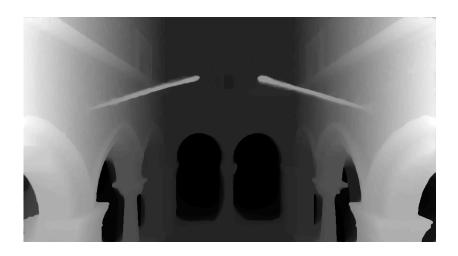
44/48



Conclusions 0000

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

44/48



Conclusions 0000

44/48

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

 Conclusions 0000

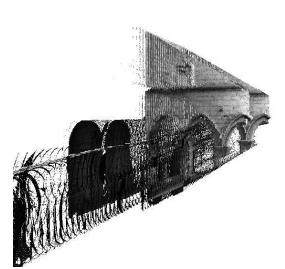
Proximal methods for convex minimization of φ -divergences. Application to computer vision.

44/48

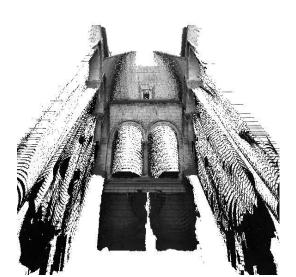
Conclusions 0000

44/48

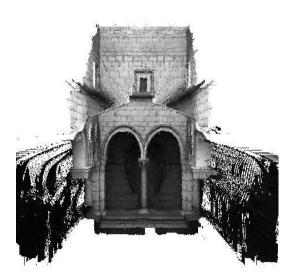
Proximal methods for convex minimization of φ -divergences. Application to computer vision.



Proximal methods for convex minimization of φ -divergences. Application to computer vision.

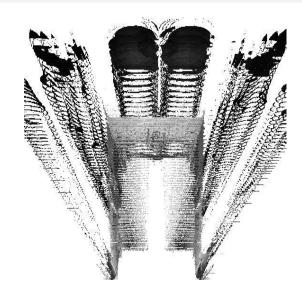


Proximal methods for convex minimization of φ -divergences. Application to computer vision.

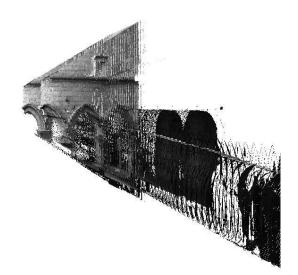


Proximal methods for convex minimization of φ -divergences. Application to computer vision.

DISPARITY MAP SEQUENCE



Proximal methods for convex minimization of φ -divergences. Application to computer vision.



Proximal methods for convex minimization of φ -divergences. Application to computer vision.

CONTRIBUTIONS

INTRODUCTION

Divergence

- New expressions for the proximity operator of several φ -divergences.
- General form of optimization problem (joint minimization w.r.t. of the two variables).
- Application to image restoration.
- Divergence proximity operator for epigraphical projections

CONCLUSIONS 0000

46/48

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

CONTRIBUTIONS

INTRODUCTION

Stereo vision

- Evaluation of the potential of a convex optimization approach to deal with disparity estimation under illumination variation.
- Relaxation using Taylor approximation.
- Ability to consider various distance measure and multicomponent images with illumination variation.

CONTRIBUTIONS

INTRODUCTION

Stereo vision

- Evaluation of the potential of a convex optimization approach to deal with disparity estimation under illumination variation.
- Relaxation using Taylor approximation.
- Ability to consider various distance measure and multicomponent images with illumination variation.

Multi-view

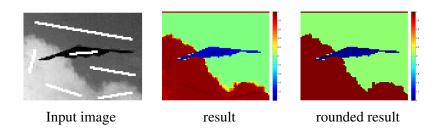
- Convex optimization for disparity map sequence.
- Relaxation based on multilabel approach.
- Possibility of handling nonconvex similarity measures.

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

PERSPECTIVES

INTRODUCTION

• φ -divergence in segmentation (Histograms based method).



CONCLUSIONS 0000

48/48

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

PERSPECTIVES

• φ -divergence in blind deconvolution.

PERSPECTIVES

INTRODUCTION

- \triangleright φ -divergence in blind deconvolution.
- Epigraphical projection in allocation problem.

48/48

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

PERSPECTIVES

- \triangleright φ -divergence in blind deconvolution.
- Epigraphical projection in allocation problem.
- Exploiting the dependence among the disparity sequence maps.

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

PERSPECTIVES

- \triangleright φ -divergence in blind deconvolution.
- Epigraphical projection in allocation problem.
- Exploiting the dependence among the disparity sequence maps.
- Disparity and motion from a multi-view video sequence.

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

PERSPECTIVES

- \triangleright φ -divergence in blind deconvolution.
- Epigraphical projection in allocation problem.
- Exploiting the dependence among the disparity sequence maps.
- Disparity and motion from a multi-view video sequence.
- Combining the discrete and continuous methods.

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

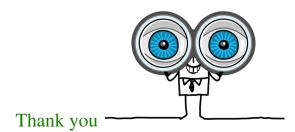
PERSPECTIVES

- \triangleright φ -divergence in blind deconvolution.
- Epigraphical projection in allocation problem.
- Exploiting the dependence among the disparity sequence maps.
- Disparity and motion from a multi-view video sequence.
- Combining the discrete and continuous methods.
- Extension to view synthesis application.

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

PERSPECTIVES

- \triangleright φ -divergence in blind deconvolution.
- Epigraphical projection in allocation problem.
- Exploiting the dependence among the disparity sequence maps.
- Disparity and motion from a multi-view video sequence.
- Combining the discrete and continuous methods.
- Extension to view synthesis application.



ILLUMINATION VARIATION

Artifical illumination

Find for each pixel in the left image $I_1 : \mathbb{R}^2 \mapsto \mathbb{R}^K$ a corresponding pixel in the right image $I_2 : \mathbb{R}^2 \mapsto \mathbb{R}^K$.

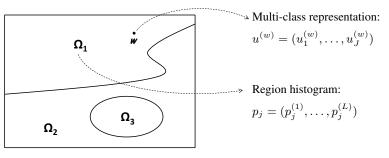
$$\forall k \in \{1, \dots, K\}, \quad \mathbf{v}^{(k)}(i_1, i_2) I_1^{(k)}(i_1, i_2) = I_2^{(k)}(i_1 - u(i_1, i_2), i_2)$$
$$v \colon \mathbb{R}^2 \to [0, +\infty[$$

- ► The spectrum of the illumination source changes in function of the power.
- ► Color changes.
- ▶ Illumination variation variable per color component.

Image segmentation

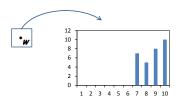
CONSIDERED PROBLEM

Partition the image domain $\Omega = \{1, \dots, N\}$ into J regions...



CONSIDERED PROBLEM

... so that the local histograms in each region Ω_i are *similar*.



Local histogram:

$$\mathsf{q}_w = (\mathsf{q}_w^{(1)}, \dots, \mathsf{q}_w^{(L)})$$

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

VARIATIONAL APPROACH

Multi-label relaxation within a jointly minimization [Qiao et al. 2014]

$$\begin{aligned} & \underset{u,p}{\text{minimize}} & & \sum_{j=1}^{J} \|\nabla u_j\|_{1,2} + \lambda \sum_{j=1}^{J} \sum_{w=1}^{N} \sum_{\ell=1}^{L} \Phi(\mathsf{q}_w^{(\ell)}, p_j^{(\ell)}) \; u_j^{(w)} \quad \text{subj. to} \\ & & \begin{cases} (\forall w \in \{1, \dots, N\}) & u^{(w)} \in [0, +\infty[^J, \sum_{j=1}^{J} u_j^{(w)} = 1, \\ (\forall j \in \{1, \dots, J\}) & p_j & \in [0, +\infty[^L, \sum_{\ell=1}^{L} p_j^{(\ell)} = 1, \end{cases} \end{aligned}$$

where $\lambda > 0$.

PROPOSED REFORMULATION

▶ We rewrite the non-convex function as:

$$\sum_{w=1}^N \sum_{\ell=1}^L \Phi(\mathbf{q}_w^{(\ell)}, p_j^{(\ell)}) \, u_j^{(w)}$$

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

PROPOSED REFORMULATION

▶ We rewrite the non-convex function as:

$$\sum_{w=1}^{N} \sum_{\ell=1}^{L} \Phi(\mathbf{q}_w^{(\ell)}, p_j^{(\ell)}) \, u_j^{(w)} = \sum_{w=1}^{N} \sum_{\ell=1}^{L} \Phi(\mathbf{q}_w^{(\ell)} \, u_j^{(w)}, p_j^{(\ell)} \, u_j^{(w)})$$

PROPOSED REFORMULATION

▶ We rewrite the non-convex function as:

$$\sum_{w=1}^{N} \sum_{\ell=1}^{L} \Phi(\mathbf{q}_w^{(\ell)}, p_j^{(\ell)}) \, u_j^{(w)} = \sum_{w=1}^{N} \sum_{\ell=1}^{L} \Phi(\mathbf{q}_w^{(\ell)} \, u_j^{(w)}, p_j^{(\ell)} \, u_j^{(w)})$$

▶ and we introduce the rank-one matrix:

$$(v_j^{(\ell,w)})_{1 \le \ell \le L, 1 \le w \le N} = (p_j^{(\ell)} u_j^{(w)})_{1 \le \ell \le L, 1 \le w \le N}$$

PROPOSED REFORMULATION

▶ We rewrite the non-convex function as:

$$\sum_{w=1}^{N} \sum_{\ell=1}^{L} \Phi(\mathbf{q}_w^{(\ell)}, p_j^{(\ell)}) \, u_j^{(w)} = \sum_{w=1}^{N} \sum_{\ell=1}^{L} \Phi(\mathbf{q}_w^{(\ell)} \, u_j^{(w)}, p_j^{(\ell)} \, u_j^{(w)})$$

▶ and we introduce the rank-one matrix:

$$v_j = p_j u_j^{\top} \in \mathbb{R}^{L \times N}$$

PROPOSED REFORMULATION

▶ We rewrite the non-convex function as:

$$\sum_{w=1}^{N} \sum_{\ell=1}^{L} \Phi(\mathbf{q}_w^{(\ell)}, p_j^{(\ell)}) \, u_j^{(w)} = \sum_{w=1}^{N} \sum_{\ell=1}^{L} \Phi(\mathbf{q}_w^{(\ell)} \, u_j^{(w)}, p_j^{(\ell)} \, u_j^{(w)})$$

▶ and we introduce the rank-one matrix:

$$v_j = p_j u_j^{\top} \in \mathbb{R}^{L \times N}$$

so that the above function can be replaced by:

$$\left| \sum_{w=1}^{N} \sum_{\ell=1}^{L} \Phi(\mathbf{q}_{w}^{(\ell)}, p_{j}^{(\ell)}) \, u_{j}^{(w)} \right| \quad \rightarrow \quad \sum_{w=1}^{N} \sum_{\ell=1}^{L} \Phi(\mathbf{q}_{w}^{(\ell)} \, u_{j}^{(w)}, v_{j}^{(\ell,w)}) \right|$$

PROBLEM REFORMULATION

We reformulate the original problem

$$\begin{split} & \underset{u,p}{\text{minimize}} & \sum_{j=1}^{J} \|\nabla u_j\|_{1,2} + \lambda \sum_{j=1}^{J} \sum_{w=1}^{N} \sum_{\ell=1}^{L} \Phi(\mathsf{q}_w^{(\ell)}, p_j^{(\ell)}) \, u_j^{(w)} \quad \text{subj. to} \\ & \left\{ (\forall w \in \{1, \dots, N\}) \qquad u^{(w)} \in [0, +\infty[^J, \quad \sum_{j=1}^{J} u_j^{(w)} = 1, \\ (\forall j \in \{1, \dots, J\}) \qquad p_j \quad \in [0, +\infty[^L, \quad \sum_{\ell=1}^{L} p_j^{(\ell)} = 1. \\ \end{matrix} \right. \end{split}$$

PROBLEM REFORMULATION

We reformulate the original problem as follows:

$$\begin{aligned} & \underset{u,v}{\text{minimize}} & & \sum_{j=1}^{J} \|\nabla u_j\|_{1,2} + \lambda \sum_{j=1}^{J} \sum_{w=1}^{N} \sum_{\ell=1}^{L} \Phi(\mathsf{q}_w^{(\ell)} \, u_j^{(w)}, v_j^{(\ell,w)}) & \text{subj. to} \\ & & \begin{cases} (\forall w \in \{1, \dots, N\}) & u^{(w)} \in [0, +\infty[^J, \sum_{j=1}^{J} u_j^{(w)} = 1, \\ (\forall j \in \{1, \dots, J\}) & v_j \in [0, +\infty[^{L \times N}, v_j = p_j u_j^\top. \end{cases} \end{aligned}$$

PROBLEM REFORMULATION

We reformulate the original problem as follows:

$$\begin{aligned} & \underset{u,v}{\text{minimize}} & & \sum_{j=1}^{J} \|\nabla u_j\|_{1,2} + \lambda \sum_{j=1}^{J} \sum_{w=1}^{N} \sum_{\ell=1}^{L} \Phi(\mathsf{q}_w^{(\ell)} \, u_j^{(w)}, v_j^{(\ell,w)}) & \text{subj. to} \\ & & \begin{cases} (\forall w \in \{1, \dots, N\}) & u^{(w)} \in [0, +\infty[^J, \sum_{j=1}^{J} u_j^{(w)} = 1, \\ (\forall j \in \{1, \dots, J\}) & v_j \in [0, +\infty[^{L \times N}, \sum_{\ell=1}^{L} v_j^{(\ell,w)} = u_j^{(w)}, \\ (\forall j \in \{1, \dots, J\}) & \text{rank}(v_j) \leq 1. \end{cases}$$

CONVEX RELAXATION

We relax the rank-one constraint by the nuclear norm:

$$\begin{aligned} & & \underset{u,v}{\text{minimize}} & & & \sum_{j=1}^{J} \|\nabla u_j\|_{1,2} + \lambda \sum_{j=1}^{J} \sum_{w=1}^{N} \sum_{\ell=1}^{L} \Phi(\mathsf{q}_w^{(\ell)} \, u_j^{(w)}, v_j^{(\ell,w)}) + \mu \sum_{j=1}^{J} \|v_j\|_* \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ &$$

Proximal methods for convex minimization of φ -divergences. Application to computer vision.

INTERACTIVE SEGMENTATION

We also add a constraint to allow for user-defined scribbles:

$$\begin{aligned} & \text{minimize} & & \sum_{j=1}^{J} \| \nabla u_j \|_{1,2} + \lambda \sum_{j=1}^{J} \sum_{w=1}^{N} \sum_{\ell=1}^{L} \Phi(\mathsf{q}_w^{(\ell)} \, u_j^{(w)}, v_j^{(\ell,w)}) + \mu \sum_{j=1}^{J} \| v_j \|_* \\ & & \\ &$$