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CHALLENGES

1. How to efficiently solve large-size non-smooth convex
optimization problems?

I Splitting proximal methods
I Primal-dual algorithms

2. Can we effectively solve nonconvex optimization problems via
convex relaxation ?

I Stereo vision
I multi-view

3. Which kind of measures constitute appropriate cost functions ?

I ϕ-divergences
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PROXIMAL ALGORITHMS

minimize
x∈RN

f(x) + g(Lx) + h(x)

I f ∈ Γ0(RN )

Γ0(RN ): set of convex l.s.c. proper functions from RN to
]−∞,+∞]

I L ∈ RM×N and g ∈ Γ0(RM )
I h : RN 7→ ]−∞,+∞] differentiable with∇h Lipschitzian

- non-smooth functions (e.g. `q,p-norm, max, ...)
- indicator function of a closed convex subset C ⊂ RN

ιC(x) =

{
0 if x ∈ C
+∞ otherwise
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PROXIMAL ALGORITHMS

I Proximity operator of f

(∀x ∈ RN ) proxf (x) = argminu∈RN
1

2
‖u− x‖2 + f(u)

I Projection onto C

(∀x ∈ RN ) PC(x) = proxιC (x) = argminu∈C
1

2
‖u− x‖2
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PROXIMAL ALGORITHMS

Parallel ProXimal Algorithm (PPXA+ [Pesquet & Pustelnik 2011] )

f = h = 0
γ > 0, λ ∈ ]0, 2[
(x0, v0) ∈ RN × RM

For n = 0, 1, . . .
x̃n = proxγg(vn)

x̂n = (L>L)−1L>x̃n

vn+1 = vn + λ
(
L(2x̂n − xn)− x̃n

)
xn+1 = xn + λ(x̂n − xn)
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PROXIMAL ALGORITHMS

Montone+Lipschitz Forward Backward Forward
(M+L FBF [Combettes & Pesquet 2011])
γ ∈

]
0, (β + ‖L‖)−1

[
(x0, v0) ∈ RN × RM

For n = 0, 1, . . .
x̂n = L>vn +∇h(xn)
v̂n = Lxn
x̃n = proxγf (xn − γx̂n)
ṽn = proxγg∗(vn + γv̂n)

xn+1 = x̃n − γ
(
L>ṽn − x̂n +∇h(x̃n)

)
vn+1 = ṽn + γ(Lx̃n − v̂n)
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OBJECTIVE

General formulation

minimize
x∈RN

D(Ax,Bx) +

S∑
s=1

Rs(Lsx)

where

I A,B ∈ RP×N

I D ∈ Γ0(RP × RP )

I ∀s ∈ {1, . . . , S}, Ls ∈ RKs×N and Rs ∈ Γ0(RKs)
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OBJECTIVE

Particular case

minimize
(p,q)∈(RP )2

D(p, q) +

S∑
s=1

Rs(Usp+ Vsq)

where

I x = [p> q>]>, with p = (p(i))1≤i≤P and q = (q(i))1≤i≤P
I A = [I 0] and B = [0 I]

I (∀s ∈ {1, . . . , S}), Ls = [Us Vs] and Us, Vs ∈ (RKs×P )2
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SCOPE OF PRIMAL-DUAL PROXIMAL ALGORITHMS

1. separable case: D(p, q) =

P∑
i=1

φ
(i)
1 (p(i)) + φ

(i)
2 (q(i))

(∀i ∈ {1, . . . , P}) φ
(i)
1 , φ(i)2 ∈ Γ0(R)

2. non-separable case:

I D(p, q) =

P∑
i=1

φ(i)(αp(i) + β q(i))

(∀i ∈ {1, . . . , P}) φ(i) ∈ Γ0(R) and (α, β) ∈ R2

I D = ιC with C being a closed convex subset of R2P

I D = φ ◦ dC with dC = ‖ · −PC · ‖
φ ∈ Γ0(R)
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MOTIVATIONS

Additive information measures:

D(p, q) =

P∑
i=1

Φ(p(i), q(i))

where

(
∀(υ, ξ) ∈ R2) Φ(υ, ξ) =



ξϕ
(υ
ξ

)
if υ ∈ [0,+∞[ and ξ ∈ ]0,+∞[

υ lim
ζ→+∞

ϕ(ζ)

ζ
if υ ∈ ]0,+∞[ and ξ = 0

0 if υ = ξ = 0

+∞ otherwise

and ϕ ∈ Γ0(R), ϕ : R→ [0,+∞] is twice differentiable on ]0,+∞[.
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RELATED WORK

Optimization problems involving information measures:

7 One of the two variables is fixed [Byrne 1993], [Richardson 1972], [Dupé et

al. 2009], [Pustelnik et al. 2011], [Steidl et al. 2012]

7 Alternating minimization [Blahut 1972], [Arimoto 1972], [Bauschke 2011]

Contributions:
3 Proximity operator of two-variable convex functions

3 General form of optimization problems

3 Application to image restoration
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EXAMPLES OF ϕ-DIVERGENCES [BASSEVILLE 2010]

I Kullback-Leiblerk: ϕ(ζ) = ζ ln ζ − ζ + 1

I Jeffreys-Kullback : ϕ(ζ) = (ζ − 1) ln ζ

I HellingerKullback: ϕ(ζ) = ζ + 1− 2
√
ζ

I Chi squarellbackk : ϕ(ζ) = (ζ − 1)2

I Iα, α ∈]0, 1[ulbak : ϕ(ζ) = 1− α+ αζ − ζα

Φ: (υ, ξ) 7→


υ ln

(
υ
ξ

)
+ ξ − υ if (υ, ξ) ∈ ]0,+∞[2

ξ if υ = 0 and ξ ∈ [0,+∞[

+∞ otherwise.



INTRODUCTION Divergences Stereo vision CONCLUSIONS

Proximal methods for convex minimization of ϕ-divergences. Application to computer vision. 14/48

EXAMPLES OF ϕ-DIVERGENCES [BASSEVILLE 2010]

I Kullback-Leiblerk: ϕ(ζ) = ζ ln ζ − ζ + 1

I Jeffreys-Kullback : ϕ(ζ) = (ζ − 1) ln ζ

I HellingerKullback: ϕ(ζ) = ζ + 1− 2
√
ζ

I Chi squarellbackk : ϕ(ζ) = (ζ − 1)2

I Iα, α ∈]0, 1[ulbak : ϕ(ζ) = 1− α+ αζ − ζα

Φ: (υ, ξ) 7→


(υ − ξ)

(
ln υ − ln ξ) if (υ, ξ) ∈ ]0,+∞[2

0 if υ = ξ = 0

+∞ otherwise.



INTRODUCTION Divergences Stereo vision CONCLUSIONS

Proximal methods for convex minimization of ϕ-divergences. Application to computer vision. 14/48

EXAMPLES OF ϕ-DIVERGENCES [BASSEVILLE 2010]

I Kullback-Leiblerk: ϕ(ζ) = ζ ln ζ − ζ + 1

I Jeffreys-Kullback : ϕ(ζ) = (ζ − 1) ln ζ

I HellingerKullback: ϕ(ζ) = ζ + 1− 2
√
ζ

I Chi squarellbackk : ϕ(ζ) = (ζ − 1)2

I Iα, α ∈]0, 1[ulbak : ϕ(ζ) = 1− α+ αζ − ζα

haha

Φ: (υ, ξ) 7→

{
(
√
υ −
√
ξ)2 if (υ, ξ) ∈ [0,+∞[2

+∞ otherwise.
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DIVERGENCE PROXIMITY OPERATOR

Separability:
(
∀p = (p(i))1≤i≤P ∈ RP

)(
∀q = (q(i))1≤i≤P ∈ RP

)
D(p, q) =

P∑
i=1

Φ(p(i), q(i))

.
(∀p̄ = (p̄(i))1≤i≤P ∈ RP ) (∀q̄ = (q̄(i))1≤i≤P ∈ RP )

proxD(p̄, q̄) =
(

proxΦ(p̄(i), q̄(i))
)

1≤i≤P
.

Proximity operator

E
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DIVERGENCE PROXIMITY OPERATOR

Let γ ∈ ]0,+∞[ and (υ, ξ) ∈ R2.

proxγΦ(υ, ξ) =
(
υ − γ ϑ−(ζ̂), ξ − γ ϑ+(ζ̂)

)
where ζ̂ < χ+ is the unique minimizer of strictly convex function ψ on ]χ−,+∞[.

Z ψ : ]0,+∞[→ R : ζ 7→ ζϕ(ζ−1)−Θ(ζ) + γ−1υ
2
ζ2 − γ−1ξζ

where Θ denote a primitive of the function ζ 7→ ζϕ′(ζ−1) on ]0,+∞[

K ϑ− : ]0,+∞[→ R : ζ 7→ ϕ′(ζ−1)

K ϑ+ : ]0,+∞[→ R : ζ 7→ ϕ(ζ−1)− ζ−1ϕ′(ζ−1)

E χ− = inf
{
ζ ∈ ]0,+∞[

∣∣ ϑ−(ζ) < γ−1υ
}

E χ+ = sup
{
ζ ∈ ]0,+∞[

∣∣ ϑ+(ζ) < γ−1ξ
}
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DIVERGENCE PROXIMITY OPERATOR

Kullback-Leibler:
.
Let γ > 0 and (υ, ξ) ∈ R2,

proxγΦ(υ, ξ) =

{(
υ + γ ln ζ̂, ξ + γ(ζ̂−1 − 1)

)
if exp(υ/γ) > 1− γ−1ξ

(0, 0) otherwise

where ζ̂ is the minimizer on ] exp(−υ/γ),+∞[ of

ψ(ζ) =
(ζ2

2
− 1

)
ln ζ +

1

2

(
γ−1υ − 1

2

)
ζ2 + (1 − γ−1ξ)ζ.
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DIVERGENCE PROXIMITY OPERATOR

Jeffrey-Kullback:
.
Let γ > 0 and (υ, ξ) ∈ R2,

proxγΦ(υ, ξ) =


(
υ + γ

(
ln ζ̂ + ζ̂ − 1), ξ − γ

(
ln ζ̂ − ζ̂−1 + 1)

)
if W (e1−γ−1υ)W (e1−γ−1ξ) < 1

(0, 0) otherwise

where, ζ̂ is the minimizer on ]W (e1−γ−1υ),+∞[ of

ψ(ζ) =
(ζ2

2
+ ζ − 1

)
ln ζ +

ζ3

3
+

1

2

(
γ−1υ − 3

2

)
ζ2 − γ−1ξζ.
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DIVERGENCE PROXIMITY OPERATOR

Hellinger:
.
Let γ > 0 and (υ, ξ) ∈ R2

proxγΦ(υ, ξ) =



(
υ + γ(ρ− 1), ξ + γ

(
1
ρ
− 1
))

if (υ < γ and

(1− γ−1υ)(1− γ−1ξ) < 1)

or υ ≥ γ
(0, 0) otherwise

where ρ is the unique solution on ] max(1− γ−1υ, 0),+∞[ of the equation:

ρ4 + (γ−1υ − 1)ρ3 + (1− γ−1ξ)ρ− 1 = 0.
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DIVERGENCE PROXIMITY OPERATOR

Chi-Square:
.
Let γ > 0 and (υ, ξ) ∈ R2

proxγΦ(υ, ξ) =


(
υ + 2γ(1− ρ), ξ + γ(ρ2 − 1)

)
if υ > −2γ

and ξ > −υ
(
1 + (4γ)−1υ

)(
0,max(ξ − γ, 0)

)
otherwise

where ρ is the unique solution on ]0, 1 + γ−1υ/2[ of

ρ3 + (1 + γ−1ξ)ρ = 2 + γ−1υ.
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DIVERGENCE PROXIMITY OPERATOR

Iα divergence:
.
Let γ > 0 and (υ, ξ) ∈ R2

proxγΦ(υ, ξ) =



(
υ + γα(ζ̂1−α − 1), ξ + γ(1− α)(ζ̂−α − 1)

)
if
(
υ < γα and(

1− γ−1ξ
(1−α)

)
<
(

1− υ
γα

) α
α−1

)
or υ ≥ γα

(0, 0) otherwise

where ζ̂ is the unique solution on
](

max
(
1− υ

γα
, 0
)) 1

1−α ,+∞
[

of

αζ̂2 + (γ−1υ − α)ζ̂α+1 + (1− α− γ−1ξ)ζ̂α = 1− α.
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EPIGRAPHICAL PROJECTION

Let ϕ∗ ∈ Γ0(R) the Fenchel-conjugate function of the restriction of ϕ on [0,+∞[
and Φ is the perspective function of ϕ on [0,+∞[× ]0,+∞[.

The epigraph of ϕ∗ is given by(
∀(υ∗, ξ∗) ∈ R2) epiϕ∗ =

{
(υ∗, ξ∗) ∈ R2

∣∣ ϕ∗(υ∗) ≤ ξ∗}

epiϕ∗

(
υ∗, ϕ∗(υ∗)

)
(y, ζ)

⇒ useful tool for splitting complex convex constraints
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EPIGRAPHICAL PROJECTION

Let ϕ∗ ∈ Γ0(R) the Fenchel-conjugate function of the restriction of ϕ on [0,+∞[
and Φ is the perspective function of ϕ on [0,+∞[× ]0,+∞[.

The projection onto epiϕ∗ is given by(
∀(y, ζ) ∈ R2) Pepiϕ∗(y, ζ) = (y,−ζ)− proxΦ(y,−ζ).
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The projection onto epiϕ∗ is given by(
∀(y, ζ) ∈ R2) Pepiϕ∗(y, ζ) = (y,−ζ)− proxΦ(y,−ζ).

Kullback-Leibler

ϕ∗(ζ∗) = eζ
∗
− 1
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EPIGRAPHICAL PROJECTION

Let ϕ∗ ∈ Γ0(R) the Fenchel-conjugate function of the restriction of ϕ on [0,+∞[
and Φ is the perspective function of ϕ on [0,+∞[× ]0,+∞[.

The projection onto epiϕ∗ is given by(
∀(y, ζ) ∈ R2) Pepiϕ∗(y, ζ) = (y,−ζ)− proxΦ(y,−ζ).

Jeffreys-Kullback

ϕ∗(ζ∗) = W (e1−ζ∗) +
(
W (e1−ζ∗)

)−1
+ ζ∗ − 2
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APPLICATION TO IMAGE RESTORATION

Non-local Total Variation:

NLTV(x) =
∑
s∈A

( ∑
n∈Ns⊂Ws

ωs,n|x(s) − x(n)|p
)1/p
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NLTV as dissimilarity measure:

NLTV(x) =
∑
s∈A

( ∑
n∈Ns⊂Ws

ωs,n|x(s) − x(n)|p
)1/p

=
∑
s∈A

∥∥∥∥[ωs,n (x(s) − x(n))
]
n∈Ns

∥∥∥∥
p

=
∑
s∈A

∥∥∥∥[ωs,n x(s)
]
n∈Ns

−
[
ωs,n x

(n)
]
n∈Ns

∥∥∥∥
p

=
∑
s∈A

‖Asx−Bsx‖p

= D(Ax,Bx) (with A = [As]s∈A and B = [Bs]s∈A)

⇒ use more general forms for D.
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Dissimilarity based on `p-norms:

D(a, b) =
∑
s∈A

∥∥∥a(s) − b(s)
∥∥∥
p

where a = Ax = (a(s))s∈A and b = Bx = (b(s))s∈A

Dissimilarity based on ϕ-divergences:

D(a, b) =
∑
s∈A

|Ns|∑
m=1

b(s,m)ϕ

(
a(s,m)

b(s,m)

)

where a(s) = (a(s,m))1≤m≤|Ns| and b(s) = (b(s,m))1≤m≤|Ns|
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DEGRADATION MODEL

z = Hw + n

I w: original image in RN ,

I H: linear operator from RN to RQ,

I n: zero-mean white Gaussian noise in RQ,

I z: degraded image of size Q.

minimize
w∈RN

1

2λ
‖Hw − z‖2︸ ︷︷ ︸

Data fidelity term

+ D(Aw,Bw)︸ ︷︷ ︸
Regularization term

A,B∈RP×N

+ ιC(w)︸ ︷︷ ︸
Convex constraint
C=[0,255]N

λ ∈]0,+∞[.
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RESULTS

Original image:

Degraded image:
SNR= 13.14 dB, SSIM=0.284

`1,2 − TV result:
SNR= 15.29 dB, SSIM=0.467

`1,2 −NLTV result:
SNR= 15.70 dB, SSIM=0.504

JK −NLTV result:
SNR= 16.01 dB, SSIM=0.548
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DISPARITY

Definition

u : R2 7→ R2

(i1, i2) 7→ (i1 − i′1, i2 − i′2)



INTRODUCTION Divergences Stereo vision CONCLUSIONS

Proximal methods for convex minimization of ϕ-divergences. Application to computer vision. 26/48

DISPARITY

Definition

u : R2 7→ R2

(i1, i2) 7→ (i1 − i′1, i2 − i′2)



INTRODUCTION Divergences Stereo vision CONCLUSIONS

Proximal methods for convex minimization of ϕ-divergences. Application to computer vision. 26/48

DISPARITY

Definition

u : R2 7→ R
(i1, i2) 7→ i1 − i′1i2 − i′2



INTRODUCTION Divergences Stereo vision CONCLUSIONS

Proximal methods for convex minimization of ϕ-divergences. Application to computer vision. 26/48

DISPARITY

Definition

u(i1, i2) = i1 − i′1 =
Bf

Z
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DISPARITY

Definition

u(i1, i2) = i1 − i′1 =
Bf

Z

Objective

Find for each pixel in the left image I1 : R2 7→ RK a corresponding pixel in the right
image I2 : R2 7→ RK .

I1(i1, i2) = I2(i′1, i
′
2)

v : R2 → [0,+∞[
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DISPARITY

Definition

u(i1, i2) = i1 − i′1 =
Bf

Z

Objective

Find for each pixel in the left image I1 : R2 7→ RK a corresponding pixel in the right
image I2 : R2 7→ RK .

v(i1, i2)I1(i1, i2) = I2(i1 − u(i1, i2), i2)

v : R2 → [0,+∞[
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PROBLEM FORMULATION

Let s = (i1, i2)

Let A be the image support and O be the occlusion pixels.

Variational method

J̃(u,v) =
K∑
k=1

∑
s∈A\O

φ(k)(v(s)I
(k)
1 (s)− I(k)

2 (i1 − u(s), i2))

∀k ∈ {1, . . . ,K}, φ(k) belongs to Γ0(R).

J̃ is non-convex w.r.t. the variable u.
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PROBLEM FORMULATION

Variational method

J̃(u,v) =

K∑
k=1

∑
s∈A\O

φ(k)(v(s)I
(k)
1 (s)− I(k)

2 (i1 − u(s), i2))

I First-order Taylor expansion of the disparity compensated right image around
an initial value

for every k ∈ {1, . . . ,K} and s ∈ A,

I
(k)
2 (i1 − u(s), i2) ' I(k)

2 (i1 − ū(s), i2)− (u(s)− ū(s))∇(1)I
(k)
2 (i1 − ū(s), i2)

where∇(1)I
(k)
2 denotes the horizontal gradient of the k-th component of the

right image.
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2 (i1 − ū(s), i2)

where∇(1)I
(k)
2 denotes the horizontal gradient of the k-th component of the

right image.



INTRODUCTION Divergences Stereo vision CONCLUSIONS

Proximal methods for convex minimization of ϕ-divergences. Application to computer vision. 27/48

PROBLEM FORMULATION

Variational method

J̃(u,v) =

K∑
k=1

∑
s∈A\O

φ(k)(v(s)I
(k)
1 (s)− I(k)

2 (i1 − u(s), i2))

Convex relaxation:
I First-order Taylor expansion of the disparity compensated right image around

an initial value

for every k ∈ {1, . . . ,K} and s ∈ A,

I
(k)
2 (i1 − u(s), i2) ' I(k)
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CONVEX FORMULATION

J(u,v) =
K∑
k=1

∑
s∈A\O

φ(k)(T
(k)
1 (s)u(s) + T

(k)
2 (s)v(s)− r(k)(s))

where, for every k ∈ {1, . . . ,K} and s ∈ A,
T (k)

1
(s) = ∇(1)I

(k)
2 (i1 − ū(s), i2)

T (k)
2

(s) = I
(k)
1 (s)

r(k)(s) = I
(k)
2 (i1 − ū(s), i2) + ū(s)T

(k)
1 (s).

Let w = (u,v), (∀s ∈ A)w(s) =

[
u(s)
v(s)

]
, T(k)(s) = [T

(k)
1 (s), T

(k)
2 (s)]

J(w) =

K∑
k=1

∑
s∈A\O

φ(k)(T(k)(s)w(s)− r(k)(s))
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SET THEORETIC ESTIMATION

J(w) =
K∑
k=1

∑
s∈A\O

φ(k)(T(k)(s)w(s)− r(k)(s))

Advantages
- Ability to consider multicomponent images with illumination variation

- Flexibility in minimizing various convex similarity measures (`1, `2,
divergences . . . )

Proximity operator X

- The minimization of functional J is an ill-posed problem.
(infinite number of solutions due to the fact that two variables have to be
determined for each pixel).

- Additional constraints are required to regularize the solution.
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CONVEX CONSTRAINTS

Range values:
S1,1 = {u ∈ R|A| |
(∀s ∈ A) umin ≤ u ≤ umax}, umin ≥ 0
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CONVEX CONSTRAINTS

Total variation:
S1,2 =

{
u ∈ R|A|

∣∣ TV(u) ≤ τ2
}

,
τ2 ≥ 0
TV(u) =∑

s∈A

√
|∇̂(1)u(s)|2 + |∇̂(2)u(s)|2

∇̂(1) and ∇̂(2): discrete gradients
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CONVEX CONSTRAINTS

Frame analysis constraint:
S′1,2 ={
u ∈ R|A|

∣∣ ∑Q
q=1 ηq|(Fu)q| ≤ τ ′2

}
F : R|A| → RQwith Q ≥ |A|,
(ηq)1≤q≤Q ∈ [0,+∞[Q and τ ′2 > 0.
F>F = νI , where ν > 0
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CONVEX CONSTRAINTS

Second-order constraint:
S1,3 =

{
u ∈ R|A|

∣∣ TV2(u) ≤ τ3
}

,
τ3 > 0.

TV2(u) =
∑

s∈A

√
|∇̂2u(s)u(s)|2

∇̂2u(s): discrete Hessian operator
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CONVEX CONSTRAINTS

Range values:
S2,1 = {v ∈ R|A| | (∀s ∈ A)
vmin ≤ v(s) ≤ vmax}, vmin ≥ 0
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CONVEX CONSTRAINTS

First-order smoothness constraint:
S2,2 =

{
v ∈ R|A|

∣∣ ‖∇̂v‖2`2 ≤ κ2

}
,

κ2 > 0
‖∇̂v‖`2 =

(
∑

s∈A |∇̂(1)v(s)|2 + |∇̂(2)v(s)|2)1/2.
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CONVEX CONSTRAINTS

Second-order constraint:
S2,3 =

{
v ∈ R|A|

∣∣ ‖∇̂2v‖2`2 ≤ κ3

}
,

κ3 > 0
∇̂2u(s): discrete Hessian operator
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PROPOSED APPROACH

General formulation

minimize
Liw∈Ci,i∈{1,...,m}

K∑
k=1

∑
s∈A\O

φ(k)(T(k)(s)w(s)− r(k)(s))

I The PPXA+ algorithm can be employed to minimize J on some closed convex
constraint sets (Ci)1≤i≤m.

I It consists of computing, in parallel, the projections onto the different convex
sets and the proximity operator of the criterion J .
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RESULTS (GRAY LEVEL IMAGES)

`2-norm:
MAE= 0.83, Err = 3.62%

Kullback-Leibler:
MAE= 0.82, Err = 3.36%

Jeffreys-Kullback:
MAE= 0.83, Err= 3.44%
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RESULTS (`1-NORM)

Gray level images:
MAE= 1.26, Err = 13%

color images:
MAE= 1.10, Err = 11%
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Multi-label approach
Multiple images
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DISPARITY ESTIMATION

Variational method

f(u) =
∑
s∈A

ψ(I1(s), I2(i1 − u(s), i2))

ψ ∈ Γ0(R).
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MULTI-LABEL APPROACH

The disparity u is quantized over Q+ 1 quantization levels r0, r1, . . . , rQ
(r0 < r1 < · · · < rQ)

(∀ s ∈ A) u(s) = r0 +

Q∑
q=1

(rq − rq−1)θq(s)

where θ = (θ1, . . . , θQ) ∈ B such that

(∀ q ∈ {1, . . . , Q})(∀ s ∈ A) θq(s) =

{
1 if u(s) ≥ rq
0 otherwise

and

B = {θ ∈ ({0, 1}P )Q| (∀ s ∈ A) 1 ≥ θ1(s) ≥ · · · ≥ θQ(s) ≥ 0}.
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CONVEX FORMULATION CREMERS ET AL. [2011]

f̃(θ) =
∑
s∈A

Q∑
q=0

ψ(I1(s), I2(i1 − rq, i2))(θq(s)− θq+1(s))

The minimization problem can be expressed as:

minimize
θ∈B

f̃(θ) + µ

Q∑
q=1

(rq − rq−1) tv(θq), µ > 0.

Convex relaxation:

minimize
θ∈R

f̃(θ) + µ

Q∑
q=1

(rq − rq−1) tv(θq) µ > 0.
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OPTIMIZATION PROBLEM

minimize
θ∈R

g(θ) + µ

Q∑
q=1

(rq − rq−1) tv(θq)

Data fidelity: g : R → R, ψj1,2(s) = ψ(I1(s), I2(i1 − j, i2))

(∀ θ ∈ R) g(θ) = f̃(θ)−
∑

s∈A\O

ψr01,2(s) = 〈ς | θ〉,

where ς = (ς1, . . . , ςQ) ∈ (R|A|)Q, such that

ςq(s) = 1(s)(ψ
rq
1,2(s)− ψrq−1

1,2 (s))

1(s) = 1 if s ∈ An \ O and 0 otherwise.

Possibility to handle nonconvex similarity measures
ψ=| · |, ψ=min{| · |, ε}, ψ=| · |

1
2 , ψ= min{| · |

1
2 , ε}
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OPTIMIZATION PROBLEM

minimize
θ∈R

g(θ) + µ

Q∑
q=1

(rq − rq−1) tv(θq)

Regularization Discrete total variation

Proximity operator X
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OPTIMIZATION PROBLEM

minimize
θ∈R

g(θ) + µ

Q∑
q=1

(rq − rq−1) tv(θq)

Convex set
θn ∈ R ⇔ (θ ∈ E1 and Lθ ∈ E2)

where E1 = ([0, 1]P )Q, E2 = ([0,+∞[P )Q−1 and L : (RP )Q → (RP )Q−1 is a
linear operator, calculating the successive differences between the Q components of θ

Projection onto closed convex sets E1 and E2 X
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MULTIVIEW DISPARITY ESTIMATION

N images

(∀(n,m) ∈ {1, . . . , N}2, n 6= m) un,m = αn,mun,kn

αn,m = m−n
kn−n
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MULTIVIEW DISPARITY ESTIMATION

N images

f̃n(un,kn) =
N∑
m=1
m 6=n

∑
s∈Dn,m

ψ(In(s)− Ikn(i1 − αn,mun,kn(s), i2))

kn = n+ 1, ψ ∈ Γ0(R), and Dn,m ⊂ An: unoccluded pixel between n-th and m-th view.
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MULTIVIEW DISPARITY ESTIMATION

N images

f̃n(un,kn) =
N∑
m=1
m 6=n

∑
s∈Dn,m

ψ(In(s)− Im(i1 − αn,mun,kn(s), i2))

kn = n+ 1, ψ ∈ Γ0(R), and Dn,m ⊂ An: unoccluded pixel between n-th and m-th view.
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MULTIVIEW DISPARITY ESTIMATION

Discretization

(∀ s ∈ An) u
(s)
n,kn

= r0 +

Q∑
q=1

(rq − rq−1)θ(s)
n,q

where

(∀ q ∈ {1, . . . , Q})(∀ s ∈ An) θ(s)
n,q =

{
1 if u

(s)
n,kn

≥ rq
0 otherwise
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MULTIVIEW DISPARITY ESTIMATION

minimize
θn∈R

gn(θn) + µ

Q∑
q=1

(rq − rq−1) tv(θn,q)

Data fidelity: gn : R→ R

(∀ θn ∈ R) gn(θn) =

Q∑
q=1

∑
s∈An

〈ςn,q | θn,q〉 = 〈ςn | θn〉,

where ςn = (ςn,1, . . . , ςn,Q) ∈ (RP )Q, such that

ς(s)n,q =

N∑
m=1
m 6=n

1n,m(s)(ψ
αn,mrq
n,m − ψαn,mrq−1

n,m )

1n,m(s) = 1 if s ∈ Dn,m and 0 otherwise.
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RESULTS (TRUNCATED `1-NORM)

Two images:
MAE= 0.56, Err = 4.29%

Three images:
MAE=0.48, Err = 4.08%

Five images:
MAE=0.48, Err= 3.82%
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CONTRIBUTIONS

Divergence

I New expressions for the proximity operator of several ϕ-divergences.

I General form of optimization problem (joint minimization w.r.t. of the two
variables).

I Application to image restoration.

I Divergence proximity operator for epigraphical projections
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CONTRIBUTIONS

Stereo vision

I Evaluation of the potential of a convex optimization approach to deal with
disparity estimation under illumination variation.

I Relaxation using Taylor approximation.

I Ability to consider various distance measure and multicomponent images with
illumination variation.

Multi-view

I Convex optimization for disparity map sequence.

I Relaxation based on multilabel approach.

I Possibility of handling nonconvex similarity measures.
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PERSPECTIVES

I ϕ-divergence in segmentation (Histograms based method).

Input image result rounded result
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PERSPECTIVES

I ϕ-divergence in blind deconvolution.

I Epigraphical projection in allocation problem.
I Exploiting the dependence among the disparity sequence maps.
I Disparity and motion from a multi-view video sequence.
I Combining the discrete and continuous methods.
I Extension to view synthesis application.
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ILLUMINATION VARIATION

Artifical illumination

Find for each pixel in the left image I1 : R2 7→ RK a corresponding pixel in the right
image I2 : R2 7→ RK .

∀k ∈ {1, . . . ,K}, v(k)(i1, i2)I
(k)
1 (i1, i2) = I

(k)
2 (i1 − u(i1, i2), i2)

v : R2 → [0,+∞[

I The spectrum of the illumination source changes in function of
the power.

I Color changes.
I Illumination variation variable per color component.
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Image segmentation
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CONSIDERED PROBLEM

Partition the image domain Ω = {1, . . . , N} into J regions...

Ω1

Ω2

Ω3

w

Multi-class representation:

u(w) = (u
(w)
1 , . . . , u

(w)
J )

Region histogram:

pj = (p
(1)
j , . . . , p

(L)
j )
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CONSIDERED PROBLEM

... so that the local histograms in each region Ωj are similar.

w

0 

2 

4 

6 

8 

10 

12 

1 2 3 4 5 6 7 8 9 10 

Local histogram:

qw = (q
(1)
w , . . . , q

(L)
w )
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VARIATIONAL APPROACH

Multi-label relaxation within a jointly minimization [Qiao et al. 2014]

minimize
u,p

J∑
j=1

‖∇uj‖1,2+λ

J∑
j=1

N∑
w=1

L∑
`=1

Φ(q(`)
w , p

(`)
j ) u

(w)
j subj. to

(∀w ∈ {1, . . . , N}) u(w) ∈ [0,+∞[J ,

J∑
j=1

u
(w)
j = 1,

(∀j ∈ {1, . . . , J}) pj ∈ [0,+∞[L,

L∑
`=1

p
(`)
j = 1,

where λ > 0.
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PROPOSED REFORMULATION

I We rewrite the non-convex function as:
N∑

w=1

L∑
`=1

Φ(q(`)w , p
(`)
j )u

(w)
j

=

N∑
w=1

L∑
`=1

Φ(q(`)w u
(w)
j , p

(`)
j u

(w)
j )

I and we introduce the rank-one matrix:

I so that the above function can be replaced by:

N∑
w=1

L∑
`=1

Φ(q(`)w , p
(`)
j )u

(w)
j →

N∑
w=1

L∑
`=1

Φ(q(`)w u
(w)
j , v

(`,w)
j )
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PROBLEM REFORMULATION

We reformulate the original problem

as follows:

minimize
u,p

J∑
j=1

‖∇uj‖1,2+λ

J∑
j=1

N∑
w=1

L∑
`=1

Φ(q(`)
w , p

(`)
j )u

(w)
j subj. to

(∀w ∈ {1, . . . , N}) u(w) ∈ [0,+∞[J ,

J∑
j=1

u
(w)
j = 1,

(∀j ∈ {1, . . . , J}) pj ∈ [0,+∞[L,

L∑
`=1

p
(`)
j = 1.
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PROBLEM REFORMULATION

We reformulate the original problem as follows:

minimize
u,v

J∑
j=1

‖∇uj‖1,2+λ

J∑
j=1

N∑
w=1

L∑
`=1

Φ(q(`)
w u

(w)
j , v

(`,w)
j ) subj. to
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u
(w)
j = 1,

(∀j ∈ {1, . . . , J}) vj ∈ [0,+∞[L×N ,

L∑
`=1

v
(`,w)
j = u

(w)
j ,

(∀j ∈ {1, . . . , J}) rank(vj) ≤ 1.
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CONVEX RELAXATION

We relax the rank-one constraint by the nuclear norm:

minimize
u,v

J∑
j=1

‖∇uj‖1,2 + λ

J∑
j=1

N∑
w=1

L∑
`=1

Φ(q(`)w u
(w)
j , v

(`,w)
j ) + µ

J∑
j=1

‖vj‖∗

subj. to


(∀w ∈ {1, . . . , N}) u(w) ∈ [0,+∞[J ,

J∑
j=1

u
(w)
j = 1,

(∀j ∈ {1, . . . , J}) vj ∈ [0,+∞[L×N ,

L∑
`=1

v
(`,w)
j = u

(w)
j .
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INTERACTIVE SEGMENTATION

We also add a constraint to allow for user-defined scribbles:

minimize
u,v

J∑
j=1

‖∇uj‖1,2 + λ

J∑
j=1

N∑
w=1

L∑
`=1

Φ(q(`)w u
(w)
j , v

(`,w)
j ) + µ

J∑
j=1

‖vj‖∗

subj. to



(∀w ∈ {1, . . . , N}) u(w) ∈ [0,+∞[J ,

J∑
j=1

u
(w)
j = 1,

(∀j ∈ {1, . . . , J}) vj ∈ [0,+∞[L×N ,

L∑
`=1

v
(`,w)
j = u

(w)
j ,

(∀j ∈ {1, . . . , J}) (∀w ∈ Uj) u
(w)
j = 1.
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