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ABSTRACT

In this paper, we aim at synthesizing a texture from a high-
resolution patch and a low-resolution image. To do so, we
solve a nonconvex optimization problem that involves a statis-
tical prior and a Fourier spectrum constraint. The numerical
analysis shows that the proposed approach achieves better re-
sults (in terms of visual quality) than state-of-the-art methods
tailored to super-resolution or texture synthesis.

Index Terms— Texture synthesis, Super resolution,
Wasserstein distance, Random phase texture, Proximal al-
gorithms, Nonconvex optimization.

1. INTRODUCTION

Texture synthesis consists of creating a large, coherent, and
non-periodic texture image from a given sample. In this pa-
per, we deal with the problem of texture synthesis under the
assumption that a low-resolution version of the sought texture
is available in addition of the given high-resolution sample.
Roughly speaking, based on the down-sampling factor r, the
following two cases may occur:

• If r is low, the resulting problem is similar to image
reconstruction, with the addition of a high-resolution
patch.

• If r is high, the resulting problem is similar to texture
synthesis, with the addition of a low-resolution image.

The present paper is placed in the second context.

1.1. Related work

The problem addressed in this paper is closely related to tex-
ture synthesis. In fact, when no low-resolution is available,
the two problems are identical. Existing texture synthesis
algorithms can be broadly categorized into region-growing
local methods and optimization-based global methods. Local
approaches grow the texture one pixel (or patch) at a time,
while maintaining the spatial coherence with nearby pixels by
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modeling the neighborhoods with Markov fields and fractal
models [1, 2]. A weakness of these methods is that the spatial
coherence between pixels is enforced at a local scale. A possi-
ble approach to circumvent this limitation consists of resorting
to a small patch from which to grow the texture [3], or by
using a multiscale setting [4, 5]. Global methods process the
entire texture as a whole, using some criteria for measuring
its similarity with a small texture patch. For example, the
latter can be modeled with a statistical descriptor based on
histograms [6] and Fourier coefficients [7].
Recently, an approach has been proposed in [8, 9], which
introduces a preliminary step of dictionary learning for exploit-
ing the given patch, and (not least) the Wasserstein distance
for comparing the histograms of the entire texture with an
extended version of the small patch. While the Wasserstein
distance is well-known in image processing and computer
vision under the name “earth mover distance” [10], it was
only recently expanded to the context of texture synthesis
[11, 9, 12].
Under the assumption that the main texture characteristics are
contained in their Fourier magnitude [13], many works have
shown that an efficient synthesis method is achieved when the
texture phase is randomized [7, 9]. However, The resulting
algorithm is limited to non-structured textures [14].

Regarding the problem considered in this paper, the au-
thors in [15] propose to recover the high-resolution image from
a pair of images: a complete low-resolution image and a high-
resolution but incomplete one (sample). The resulting problem
is solved using an extension of the nonlocal total variation
model, where a set of connections is built between the missing
high-resolution pixels and a set of pixels that lies in the sample.
However, to interpolate the missing data, the authors in [16]
design a new nonlocal graph that provides better connections
between the missing pixels and the high-resolution pixels. Ad-
ditionally, they introduce a histogram-based statistical prior
modeled by a sum of Wasserstein distances between the his-
togram of some linear transformations of the texture.
The work in [17] exploits a patch-based nonlocal regularization
and a Generalized Gaussian model of the texture gradients,
whose parameters are learned on the high-resolution patch.
Differently from [15] and [16], the authors in [17] use a prior
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on the spatial covariance of the synthesized image.
In this paper, we propose a variational method that com-

bines a histogram-based statistical prior [16] and a constraint
on the power spectral density [17]. The main novelty of the
proposed approach w.r.t. [16] lies in introducing a spectral con-
straint instead of the nonlocal regularization, and in consider-
ing the texture synthesis problem from free noise acquisitions
with a high down-sampling factor. On the other hand, the orig-
inality of our technique w.r.t. [17] is twofolds: (i) the ability to
consider multi-histogram priors without being constrained to
a parametric model, (ii) the global optimization procedure that
we carry out using a recent primal dual proximal algorithm.

The remainder of this paper is organized as follows. In
Sec. 2, we present the texture synthesis as a nonconvex opti-
mization problem. In Sec. 3, we propose to solve this problem
by an iterative scheme based on proximal methods. Experi-
mental results, showing the accuracy of the resulting images
comparing with the state-of-the-art methods, are given in Sec.
4. Finally, some conclusions are drawn in Sec. 5.

1.2. Notations

Let ‖ · ‖ be the standard Euclidean norm, and let Id be the
identity matrix. The domain of a function f : RN →] −
∞,+∞] is dom f = {x ∈ RN |f(x) < +∞}. Γ0(RN ) is
the class of lower semi-continuous convex functions from
RN to ] −∞,+∞] such that dom f 6= ∅. Let f ∈ Γ0(RN ).
The conjugate of f is the function f∗ ∈ Γ0(RN ) defined by
f∗ : RN →]−∞,+∞] : u 7→ supx∈RN x>u− f(x). When
f is Gâteaux-differentiable at y ∈ RN , ∂f(y) = {∇f(y)}
where∇f(y) is the gradient of f at y. A differentiable convex
function has β-Lipschitz continuous gradient∇f if (∀(x, y) ∈
RN × RN ) ‖∇f(x) − ∇f(y)‖ ≤ β‖x − y‖, where β ∈
]0,+∞[. Let C be a nonempty subset of RN , then ιC is the
indicator function of C, equal to 0 on C and +∞ otherwise.

2. PROPOSED APPROACH

Let x̄ ∈ RN be the unknown signal to be recovered (which
generally corresponds to an image of size N = N1 × N2.),
z(1) ∈ RQ the complete low-resolution image, and z(2) ∈ RM
the given sample 1 such that such that

z(1) = Dx̄, z(2) = Mx̄, (1)

where D ∈ RQ×N stands for spatial down-sampling by a
dyadic factor in each direction yielding Q = 2−rN , and M ∈
RM×N is a selection operator that extracts the patch from x̄.

To recover x̄ from the observations z(1) and z(2), We pro-
pose a variational approach that leads to solving the following
optimization problem:

minimize
x∈RN

‖Dx− z(1)‖2 + ιC1(x) +H(x, z(2)) + ιC2(x),

(2)

1A sample denotes a small patch of the synthesized image.

where C1 = {x ∈ RN |Mx = z(2)}. Beside the data fidelity
terms w.r.t. the observations z(1) and z(2), we use two addi-
tional pieces of information: a termH(·, z(2)) conveying some
histogram-based statistics, and a Fourier spectrum constraint
C2. The histogram-based term is modeled through the Wasser-
stein distance discussed in Section 2.1, while the frequency
constraint is presented in Section 2.2.

2.1. Statistical prior

The Wasserstein distance between the histograms2 of two im-
ages u ∈ RN and v ∈ RN is defined as follows [11, 9]:

W2
2 (νu, νv) = min

σ∈ΣN

‖u− v ◦ σ‖2, (3)

where νu and νv are the normalized histograms of u and v,
the symbol v ◦ σ denotes a permutation of the vector v, and
ΣN is the set of all the permutations of N -length vectors. For
grayscale images, the optimal permutation σ∗ is computed as

σ∗ = σv ◦ σ−1
u , (4)

where σv (resp. σu) denotes the permutation operator that
arranges the pixels of v (resp. u) in ascending order. In our
case, however, the two images have a different number of
pixels (u ∈ RN and v ∈ RM , with M < N ). Hence, we
replicate the patch v so as to obtain a larger image ṽ ∈ RN
such that the normalized histogram νṽ is equal to νv . Although
the Wasserstein distance is nonconvex (due to the histogram
transformation), its gradient is Lipschitz-continuous and takes
the following form [8, 12]

∇uW2
2 (νu, νṽ) = 2(u− ṽ ◦ σṽ ◦ σ−1

u ). (5)

This property allows us to employ the Wasserstein distance
into the optimization algorithm presented in Section 3.

In this work, inspired from [16], we define the term H in
(2) as

H(x, z(2)) =

4∑
s=1

αsW2
2 (νLsx, νz̃(2)s

) (6)

where, for every ∀s ∈ {1, . . . , 4}, αs > 0, z(2)
s = Lsz

(2), z̃(2)
s

is the extension of z(2)
s (after the linear transformation), and

for every s ∈ {1, . . . , 4}, Ls ∈ RNs×N is defined as follows

• L1: the identity matrix (N1 = N ).

• L2: the concatenation of the horizontal and vertical
difference operators (N2 = 2N ).

• L3: the concatenation of the diagonal difference opera-
tors (N3 = 2N ).

• L4: the isotropic Laplacian operator (N4 = N ).

2The histogram of a signal refers to a histogram of the pixel intensity
values.



Fig. 1. From top to bottom: “Street”, “Wall”. From the left to the right: low-resolution image (which was up-sampled by a factor
4 for visualization purposes), high-resolution patch (25% of the total image), true image, the proposed approach without the
spectral constraint, the proposed approach with the spectral constraint, the approach of [18] and the approach of [19].

2.2. Fourier Spectrum constraint

Textures having the same second-order statistics share a com-
mon auto-covariance and, therefore, a common Fourier magni-
tude. So it is meaningful to introduce a constraint enforcing
texture characteristics while preserving the Fourier magnitude,
through a random phase textures. Hence, inspired from [17],
we search for an image x ∈ RN such that

∀m, |x̂(m)| = |ẑ(2)(m)|, (7)

where x̂ (resp. ẑ(2)) is the orthogonal discrete Fourier trans-
form of x (resp. z(2)), whose coefficients read

x̂(m) =
1

N1N2

∑
p∈RN

x(p)e−2iπ(
p1n1
N1

+
p2n2
N2

). (8)

Consequently, Eq. (7) can be rewritten as a Fourier spectrum
constraint defined as

C2 = {x ∈ RN | ∀m, ∃ ϕ(m) : x̂(m) = eiϕ(m)ẑ(2)(m)}
(9)

Since x and z(2) are real images, ϕ(m) of Eq. (9) must be
antisymmetric modulo 2π. The projection onto the convex
set C2 consists in putting together the phase and the modulus,
whose expression is given in Sec. 3.

Discussion We observed that Gaussian textures could be ac-
curately synthesized using the spectral constraint introduced
in Eq. (9). However, for structural textures with important
oscillations, the latter hypothesis is not valid. Nonetheless, tak-
ing into account the statistical information through histogram
priors and the low frequencies provided by the low-resolution
acquisition, the proposed approach (see Eq. (2)) infers the
correct structures and details of the sample to the estimated
texture, leading to improved results w.r.t. the classical spectral
prior considered alone.

3. OPTIMIZATION

The solution of Eq. (2) requires an efficient algorithm for
dealing with problems involving nonsmooth functions and
linear operators. Recently, it has been shown experimentally
that primal-dual proximal methods [20, 21, 22, 23, 24, 25],
which were originally designed for convex optimization, can
be also applied to nonconvex problems in some circumstances
[26, 27]. In the convex setting, the key tool of these methods is
the proximity operator [28] of a lower semicontinuous convex
function f : RN 7→]−∞; +∞], defined as

(∀y ∈ RN ) proxf (y) = argmin
z∈RN

f(z) +
1

2
‖z − y‖2 .

Proximity operators enjoy many properties [29]. In partic-
ular, they generalize the notion of projection onto a closed
convex set C, in the sense that proxιC = PC . Among the
wide array of existing proximal algorithms, we employ the
Forward-Backward Primal Dual method (FBPD) [24] reported
in Algorithm 1.

Algorithm 1 FBPD [24]
INITIALIZATIONChoose

(
x[0], y[0]

)
∈ Rn × RKn

set τ > 0 and ω > 0 such that τ (β/2 + ω) < 1

FOR l = 0, 1, . . .
x̂[l] = ∇f(x[l]) + y[l]

x[l+1] = P{M ·=z(2)}
(
x[l] − τ x̂[l]

)
ŷ[l] =

(
2x[l+1] − x[l]

)
y[l+1] = y[l] + ω ŷ[l] − PC2

(
y[l] + ω ŷ[l]

)
The operators required by this algorithm are detailed below.



Fig. 2. From top to bottom: “Woolen”, “Wood”. From the left to the right: low-resolution image (which was up-sampled by a
factor 8 for visualization purposes), high-resolution patch (25% of the total image), true image, the proposed approach without
the spectral constraint, the proposed approach with the spectral constraint, the approach of [18] and the approach of [19].

• The projection onto the set C2 is given by the following
expression

PC2
(x̂(m)) =

x̂(m) · ẑ(2)(m)

|x̂(m) · ẑ(2)(m)|
ẑ(2)(m), (10)

where x · y denotes the hermitian product.

• The projection onto the convex set associated to the
constraint Mx = z(2) is expressed as

P{M·=z(2)}(x) = x+ M>(z(2) −Mx). (11)

• The gradient of the sum of the remaining terms, that
is f(x) = ‖Dx − z(1)‖2 +

∑4
s=1 αsW2

2 (νLsx, νz̃(2)s
),

reads

∇f = 2 D>(Dx− z(1))

+ 2

4∑
s=1

αsL
>
s (Lsx− z̃(2)

s ◦ σz̃(2)s
◦ σ−1

Lsx
), (12)

where∇f is β-Lipschitz with β = 2(1+
∑4

1 αs‖Ls‖2).

Although there is no theoretical guarantee about the estimate
produced by Algorithm 1, in our experiments we observed that
it always converges to a stable solution.

4. EXPERIMENTAL RESULTS

4.1. Algorithm and Initialization

We address the problem by considering a hierarchical ap-
proach, which consists of initializing our algorithm with the
low-resolution image and iterating three consecutive steps: (i)
up-sample the initialization by a factor 2 using a bicubic inter-
polation, (ii) apply a patch-based approach [30], and (iii) run
the FBPD algorithm. These three steps are repeated in loop
until the size of the output signal is equal to the sought one
(512x512 in our case).

4.2. Results
This section provides numerical results of our synthesis al-
gorithm. We illustrate the effect of the Fourier constraint on
the outcome of Eq. (2). We compare our results to the most
classical synthesis method [31] and to that of super-resolution
method [18]. Fig. 1 gives two texture examples where the
down-sampling factor is equal to 4, and the sample amounts to
25% of the total image. As illustrated by these experiments, we
assess the performance achieved with and without the spectral
constraint. Using the proposed formulation (2), we obtain the
best visual results while the state-of-the-art super-resolution
method [18] tends to smooth the textures and the state-of-the-
art texture synthesis approaches [19] produce an image (by
replicating the patch) without exploiting information provided
by the low-resolution image. Hence, the results may be far
from the ground truth. Fig. 2 gives a similar example where the
down-sampling factor is equal to 8 and the sample amounts to
25% of the total image. The obtained results are better than the
ones achieved without the spectral prior. Formulation (2) leads
to a better texture reconstruction in the synthesized images
compared to the state-of-the-art methods. This is confirmed
by looking at the reconstructed textures and the low-resolution
image. Even if the synthesized image of [19] is close to the
sample but it is far from the low-resolution guide.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have investigated the application of texture
synthesis guided by a low resolution image. The proposed
approach is adequate for various texture images. It is also able
to exploit the potentials offered by multicore/GPU parallel
architectures. However, one of the current limitations of the
proposed method is that it is nonconvex, thus requiring a good
initialization. In our future work, we therefore plan to consider
a convex relaxation of the histogram prior in order to have a
convex minimization problem [32].
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