Texture Synthesis Guided by a Low-Resolution Image

M. El Gheche^{1,2}, *J.-F.* Aujol¹, *Y.* Berthoumieu², *C.-A.* Deledalle¹, *R.* Fablet³

¹IMB and ²IMS CNRS laboratories,

IPB, Université de Bordeaux, Talence, France {mireille.el-gheche, yannick.berthoumieu}@u-bordeaux.fr

{jean-francois.aujol, charles-alban.deledalle}@math.u-bordeaux1.fr

³Institut Mines-Télécom, Télécom Bretagne; UMR 6285 LabSTICC Technopôle Brest Iroise, Brest, France ronan.fablet@telecom-bretagne.eu

- Introduction

Texture synthesis: creating a large, coherent, and nonperiodic texture image from a given sample.

A low-resolution version of the sought texture is available in addition to the given high-resolution sample.

- Notations

Γ₀(ℝ^N): the class of lower semi-continuous convex functions from ℝ^N to] − ∞, +∞] such that dom f ≠ Ø.
f*: the conjugate of the function f.

• β -Lipschitz continuous gradient of a differentiable

 $\bar{x} \in \mathbb{R}^N$: the unknown signal to be recovered $(N = N_1 \times N_2)$ $z^{(1)} \in \mathbb{R}^Q$: the complete low-resolution image $z^{(2)} \in \mathbb{R}^M$: the given sample

 $\boldsymbol{z}^{(1)} = D\bar{\boldsymbol{x}}, \quad \boldsymbol{z}^{(2)} = M\bar{\boldsymbol{x}},$

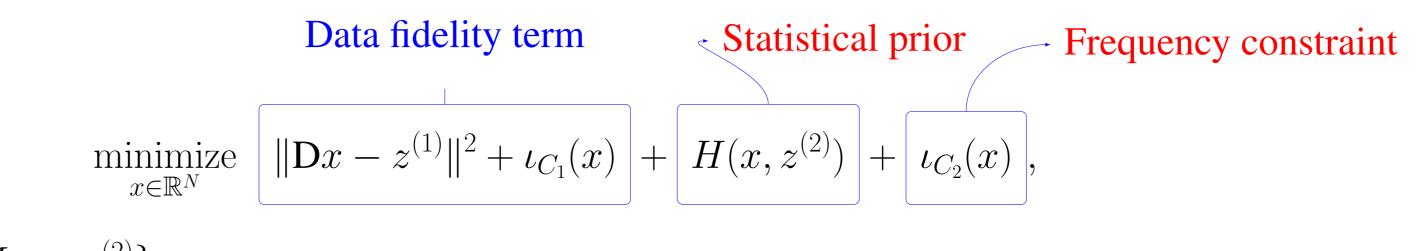
 $\mathbf{D} \in \mathbb{R}^{Q \times N}$: spatial down-sampling operator,

 $\mathbf{M} \in \mathbb{R}^{M \times N}$: a selection operator that extracts the patch from \bar{x} .

To recover \bar{x} from the observations $z^{(1)}$ and $z^{(2)}$, We propose a variational approach that leads to solving the following optimization problem:

Problem formulation

convex function f: if $(\forall (x, y) \in \mathbb{R}^N \times \mathbb{R}^N) ||\nabla f(x) - \nabla f(y)|| \le \beta ||x - y||,$ where $\beta \in]0, +\infty[.$ • ι_C : is the indicator function of C, equal to 0 on C and $+\infty$ otherwise (C be a nonempty subset of \mathbb{R}^N).



where $C_1 = \{ x \in \mathbb{R}^N | Mx = z^{(2)} \}.$

Statistical prior

The Wasserstein distance between the histograms of two images $u \in \mathbb{R}^N$ and $v \in \mathbb{R}^N$ is defined as follows [1]:

 $\mathcal{W}_2^2(
u_u,
u_v) = \min_{\sigma \in \Sigma_N} \|u - v \circ \sigma\|^2,$

 ν_u and ν_v : normalized histograms of u and $v, v \circ \sigma$: permutation of the vector v, Σ_N : the set of all the permutations of N-length vectors. For grayscale images, the optimal permutation σ^* is computed as $\sigma^* = \sigma_v \circ \sigma_u^{-1}$.

× nonconvex (due to the histogram transformation)

✓ gradient is Lipschitz-continuous, $\nabla_u \mathcal{W}_2^2(\nu_u, \nu_{\tilde{v}}) = 2(u - \tilde{v} \circ \sigma_{\tilde{v}} \circ \sigma_u^{-1}).$

We define the term H as $H(x, z^{(2)}) = \sum_{s=1}^{4} \alpha_s \mathcal{W}_2^2(\nu_{L_s x}, \nu_{\tilde{z}_s^{(2)}})$ where, for every $\forall s \in \{1, \dots, 4\}, \alpha_s > 0, z_s^{(2)} = L_s z^{(2)}, \tilde{z}_s^{(2)}$ is the extension of $z_s^{(2)}$ (after the linear transformation), and for every $s \in \{1, \dots, 4\}, L_s \in \mathbb{R}^{N_s \times N}$ is defined as follows: L_1 : the identity matrix $(N_1 = N), L_2$: the concatenation of the horizontal and vertical difference operators $(N_2 = 2N), L_3$: the concatenation of the diagonal difference operators $(N_3 = 2N), L_4$: the isotropic Laplacian operator $(N_4 = N)$. **Frequency constraint**

Textures having the same second-order statistics share a common auto-covariance and, therefore, a common Fourier magnitude \rightarrow we search for an image $x \in \mathbb{R}^N$ such that

$$\forall m, |\hat{x}(m)| = |\hat{z}^{(2)}(m)|.$$

 \hat{x} (resp. $\hat{z}^{(2)}$) is the orthogonal discrete Fourier transform of x (resp. $z^{(2)}$) We rewrite the fourier spectrum constraint as

 $C_2 = \{ x \in \mathbb{R}^N | \forall m, \exists \varphi(m) : \hat{x}(m) = e^{i\varphi(m)} \hat{z}^{(2)}(m) \}$

Since x and $z^{(2)}$ are real images, $\varphi(m)$ must be antisymmetric modulo 2π .

- Proximity operator

Let f be a proper l.s.c. convex function. For every $\overline{x} \in \mathcal{H}$, there exists a unique minimizer of the function

 $f + \frac{1}{2} \| \cdot - \overline{x} \|^2$

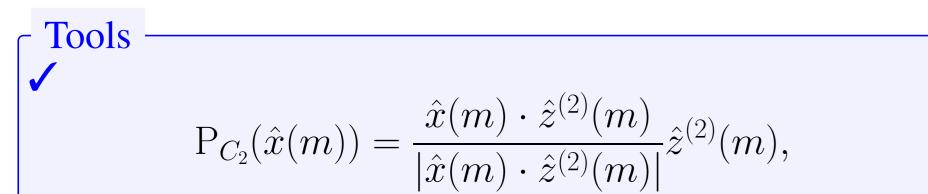
This minimizer is called the *proximity operator* of f at \overline{x} and is denoted by $\operatorname{prox}_{f} \overline{x}$. **Property:** $\operatorname{prox}_{\iota_{C}} = \operatorname{P}_{C}$.

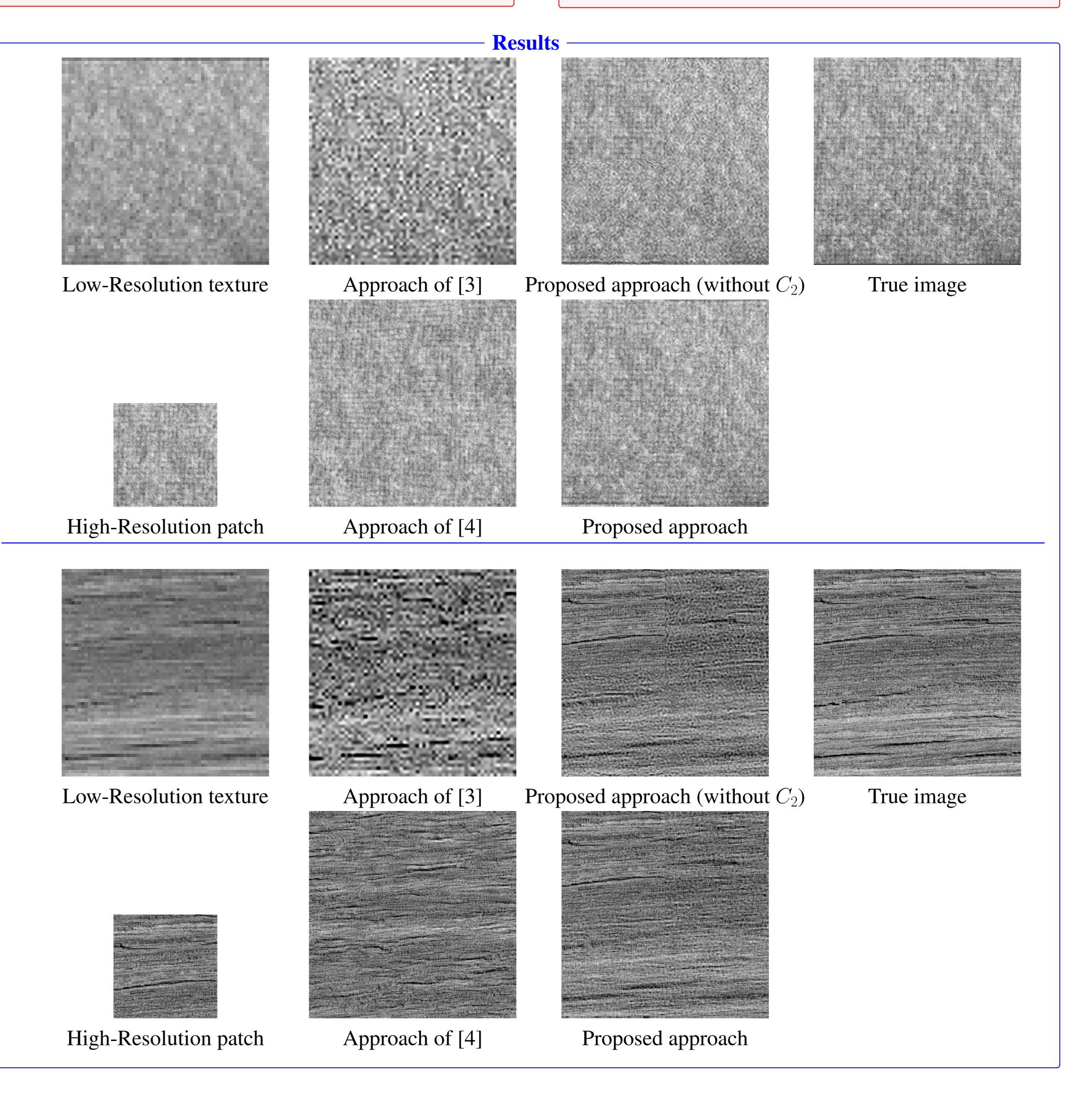
Algorithm 1 FBPD [2] INITIALIZATION

 $\begin{bmatrix} \text{Choose}\left(x^{[0]}, y^{[0]}\right) \in \mathbb{R}^n \times \mathbb{R}^{Kn} \\ \text{set } \tau > 0 \text{ and } \omega > 0 \text{ such that } \tau \left(\beta/2 + \omega\right) < 1 \end{bmatrix}$

For l = 0, 1, ...

$$\begin{aligned} \widehat{x}^{[l]} &= \nabla f(x^{[l]}) + y^{[l]} \\ x^{[l+1]} &= \mathcal{P}_{\{\mathbf{M} \cdot = \mathbf{z}^{(2)}\}} \left(x^{[l]} - \tau \, \widehat{x}^{[l]} \right) \\ \widehat{y}^{[l]} &= \left(2x^{[l+1]} - x^{[l]} \right) \\ y^{[l+1]} &= y^{[l]} + \omega \, \widehat{y}^{[l]} - \mathcal{P}_{C_2} \left(y^{[l]} + \omega \, \widehat{y}^{[l]} \right) \end{aligned}$$





$$\begin{split} \|\hat{x}(m) \cdot \hat{z}^{(2)}(m)\|^{2} & (ne), \\ \|\hat{x}(m) \cdot \hat{z}^{(2)}(m)\|^{2} & (ne), \\ \text{where } x \cdot y \text{ denotes the hermitian product.} \\ & \\ P_{\{\mathbf{M} \cdot = z^{(2)}\}}(x) = x + \mathbf{M}^{\top}(z^{(2)} - \mathbf{M}x). \\ & \\ \text{The gradient of the sum of the remaining terms, that is} \\ & f(x) = \|\mathbf{D}x - z^{(1)}\|^{2} + \sum_{s=1}^{4} \alpha_{s} \mathcal{W}_{2}^{2}(\nu_{L_{s}x}, \nu_{\tilde{z}^{(2)}_{s}}), \text{ reads} \\ & \\ \nabla f = 2 \mathbf{D}^{\top}(\mathbf{D}x - z^{(1)}) \\ & + 2 \sum_{s=1}^{4} \alpha_{s} L_{s}^{\top}(L_{s}x - \tilde{z}_{s}^{(2)} \circ \sigma_{\tilde{z}^{(2)}_{s}} \circ \sigma_{L_{s}x}^{-1}), \\ & \\ \text{where } \nabla f \text{ is } \beta \text{-Lipschitz with } \beta = 2(1 + \sum_{s=1}^{4} \alpha_{s} \|L_{s}\|^{2}). \end{split}$$

References

[1] G. Tartavel, Y. Gousseau, and G. Peyré, "Variational texture synthesis with sparsity and spectrum constraints," J. Math. Imaging Vision, vol. 52, no. 1, pp. 124–144, May 2015.

[2] Laurent Condat, "A primal-dual splitting method for convex optimization involving lipschitzian, proximable and linear composite terms," *J. of Optim. Theory and Appl.*, vol. 158, no. 2, pp. 460–479, Aug. 2013.
[3] W. Dong, L. Zhang, G. Shi, and X. Wu, "Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization," *IEEE Trans. Image Process.*, vol. 20, no. 7, pp. 1838–1857, Jul. 2011.
[4] J. Portilla and E. P. Simoncelli, "A parametric texture model based on joint statistics of complex wavelet coefficients," *Int. J. Comput. Vision*, vol. 40, no. 1, pp. 49–71, Oct. 2000.