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.
Texture synthesis: creating a large, coherent, and non-
periodic texture image from a given sample.

Û A low-resolution version of the sought texture is avail-
able in addition to the given high-resolution sample.

Introduction

.

.
• Γ0(RN): the class of lower semi-continuous convex
functions from RN to ]−∞,+∞] such that dom f 6= ∅.
• f ∗: the conjugate of the function f .
• β-Lipschitz continuous gradient of a differentiable
convex function f :
if (∀(x, y) ∈ RN×RN) ‖∇f (x)−∇f (y)‖ ≤ β‖x−y‖,
where β ∈]0,+∞[.
• ιC: is the indicator function of C, equal to 0 on C and
+∞ otherwise (C be a nonempty subset of RN). .

Notations

.

x̄ ∈ RN : the unknown signal to be recovered (N = N1 ×N2)
z(1) ∈ RQ : the complete low-resolution image
z(2) ∈ RM : the given sample

z(1) = Dx̄, z(2) = Mx̄,

blablablablablablabD ∈ RQ×N : spatial down-sampling operator,

blablablablablablablablabla M ∈ RM×N : a selection operator that extracts the patch from x̄.
To recover x̄ from the observations z(1) and z(2), We propose a variational approach that leads to solving the following
optimization problem:

minimize
x∈RN

‖Dx− z(1)‖2 + ιC1
(x)

Data fidelity term

+ H(x, z(2))

Statistical prior

+ ιC2
(x)

Frequency constraint

,

where C1 = {x ∈ RN |Mx = z(2)}.

Problem formulation

The Wasserstein distance between the histograms of two images u ∈ RN and v ∈ RN is defined as follows [1]:

W2
2(νu, νv) = min

σ∈ΣN

‖u− v ◦ σ‖2,

νu and νv: normalized histograms of u and v, v ◦ σ: permutation of the vector v, ΣN : the set of all the permutations of N -length vectors. For grayscale images, the optimal

permutation σ∗ is computed as σ∗ = σv ◦ σ−1u . .

7 nonconvex (due to the histogram transformation)

3 gradient is Lipschitz-continuous, ∇uW2
2(νu, νṽ) = 2(u− ṽ ◦ σṽ ◦ σ−1

u ).

.

We define the term H as bbbbbbbbbbbbbbbbbb H(x, z(2)) =
∑4

s=1αsW2
2(νLsx, νz̃(2)s

)
where, for every ∀s ∈ {1, . . . , 4}, αs > 0, z(2)s = Lsz

(2), z̃(2)s is the extension of z(2)s (after the linear transformation), and for every s ∈ {1, . . . , 4}, Ls ∈ RNs×N is defined as

follows: L1: the identity matrix (N1 = N ), L2: the concatenation of the horizontal and vertical difference operators (N2 = 2N ), L3: the concatenation of the diagonal difference

operators (N3 = 2N ), L4: the isotropic Laplacian operator (N4 = N ).

Statistical prior .

Textures having the same second-order statistics share
a common auto-covariance and, therefore, a common
Fourier magnitude Ü we search for an image x ∈ RN

such that
∀m, |x̂(m)| = |ẑ(2)(m)|.

x̂ (resp. ẑ(2)) is the orthogonal discrete Fourier transform of x (resp. z(2))

We rewrite the fourier spectrum constraint as

C2 = {x ∈ RN | ∀m, ∃ ϕ(m) : x̂(m) = eiϕ(m)ẑ(2)(m)}

Since x and z(2) are real images, ϕ(m) must be antisym-
metric modulo 2π. .

Frequency constraint

.
Let f be a proper l.s.c. convex function. For every
x ∈ H, there exists a unique minimizer of the function

f +
1

2
‖ · −x‖2

This minimizer is called the proximity operator of f at
x and is denoted by proxfx.
Property: proxιC = PC.

Proximity operator

.

Algorithm 1 FBPD [2]
INITIALIZATION⌊

Choose
(
x[0], y[0]

)
∈ Rn × RKn

set τ > 0 and ω > 0 such that τ (β/2 + ω) < 1

FOR l = 0, 1, . . .
x̂[l] = ∇f (x[l]) + y[l]

x[l+1] = P{M ·=z(2)}
(
x[l] − τ x̂[l])

ŷ[l] =
(
2x[l+1] − x[l])

y[l+1] = y[l] + ω ŷ[l] − PC2

(
y[l] + ω ŷ[l])

.
3

PC2
(x̂(m)) =

x̂(m) · ẑ(2)(m)

|x̂(m) · ẑ(2)(m)|
ẑ(2)(m),

where x · y denotes the hermitian product.

3

P{M·=z(2)}(x) = x + M>(z(2) −Mx).

3 The gradient of the sum of the remaining terms, that is
f (x) = ‖Dx− z(1)‖2 +

∑4
s=1αsW2

2(νLsx, νz̃(2)s
), reads

∇f = 2 D>(Dx− z(1))

+ 2

4∑
s=1

αsL
>
s (Lsx− z̃(2)

s ◦ σz̃(2)s
◦ σ−1

Lsx
),

where∇f is β-Lipschitz with β = 2(1+
∑4

1αs‖Ls‖2).

Tools

bla Low-Resolution texture bla Approach of [3] Proposed approach (without C2) True image

High-Resolution patch Approach of [4] Proposed approach
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[1] G. Tartavel, Y. Gousseau, and G. Peyré, “Variational texture synthesis with sparsity and spectrum constraints,” J. Math. Imaging Vision, vol. 52, no. 1, pp. 124–144, May 2015.

[2] Laurent Condat, “A primal-dual splitting method for convex optimization involving lipschitzian, proximable and linear composite terms,” J. of Optim. Theory and Appl., vol. 158, no. 2, pp. 460–479, Aug. 2013.

[3] W. Dong, L. Zhang, G. Shi, and X. Wu, “Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization,” IEEE Trans. Image Process., vol. 20, no. 7, pp. 1838–1857, Jul. 2011.

[4] J. Portilla and E. P. Simoncelli, “A parametric texture model based on joint statistics of complex wavelet coefficients,” Int. J. Comput. Vision, vol. 40, no. 1, pp. 49–71, Oct. 2000.


