Applications of large random matrices to high dimensional statistical signal processing

Gia-Thuy Pham

LIGM, Université Paris-Est Marne la Vallée.

February 28, 2017

Overview

(1) Background: Marchenko-Pastur and additive spatial spiked models
(2) Spatial-temporal information plus noise spiked models
(3) General spatial-temporal information plus noise models
4) Conclusion
(5) Perspectives
(1) Background: Marchenko-Pastur and additive spatial spiked models
(2) Spatial-temporal information plus noise spiked models
(3) General spatial-temporal information plus noise models

4 Conclusion
(5) Perspectives

Marchenko-Pastur distribution

$$
\mathbf{V}=\left(\begin{array}{cccc}
V_{11} & V_{12} & \ldots & V_{1 N} \\
V_{21} & V_{22} & \ldots & V_{2 N} \\
\vdots & \vdots & \vdots & \vdots \\
V_{M 1} & V_{M 2} & \ldots & V_{M N}
\end{array}\right)
$$

$\left(V_{i j}\right)_{1 \leq i \leq M, 1 \leq j \leq N}$ i.i.d. complex Gaussian random variables $\mathcal{C N}\left(0, \sigma^{2}\right)$. $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{N}$ columns of $\mathbf{V}, \mathbb{E}\left(\mathbf{v}_{n} \mathbf{v}_{n}^{*}\right)=\sigma^{2} \mathbf{I}_{M}$

Empirical covariance matrix:

$$
\frac{\mathbf{V} \mathbf{V}^{*}}{N}=\frac{1}{N} \sum_{n=1}^{N} \mathbf{v}_{n} \mathbf{v}_{n}^{*}
$$

Marchenko-Pastur distribution

Empirical distribution of the eigenvalues of $\frac{\mathrm{V} \mathrm{V}^{*}}{N}$

- $\hat{\lambda}_{1, N} \geq \hat{\lambda}_{2, N} \geq \ldots \geq \hat{\lambda}_{M, N}$ eigenvalues of $\frac{\mathrm{VV}^{*}}{N}$
- Empirical eigenvalue distribution: $\hat{\mu}_{N}=\frac{1}{M} \sum_{i=1}^{M} \delta\left(\lambda-\hat{\lambda}_{i, N}\right)$

Asymptotic behaviour of $\hat{\mu}_{N} \longleftrightarrow$ Behaviour of the histograms of the eigenvalues $\left(\hat{\lambda}_{i, N}\right)_{i=1, \ldots, M}$

Well known case: M fixed, N increases i.e. $d_{N}=\frac{M}{N}$ small

- $\frac{\mathbf{V} \mathbf{V}^{*}}{N} \simeq \mathbb{E}\left(\mathbf{v}_{n} \mathbf{v}_{n}^{*}\right)=\sigma^{2} \mathbf{I}_{M}$ by the law of large numbers
- $\hat{\mu}_{N} \xrightarrow{N \rightarrow+\infty} \delta\left(\sigma^{2}\right)$

If $N \gg M$, the eigenvalues of $\frac{\mathrm{V} \mathbf{V}^{*}}{N}$ are concentrated around σ^{2}

Illustration

Histogram of the eigenvalues of $\frac{\mathrm{V} \mathbf{V}^{*}}{N}, M=256, d_{N}=\frac{M}{N}=\frac{1}{256}, \sigma^{2}=1$

Marchenko-Pastur distribution

M, N same order of magnitude, $d_{N}=\frac{M}{N} \rightarrow d$

$$
\hat{\mu}_{N} \nrightarrow \delta\left(\sigma^{2}\right) \text { because }\left\|\frac{\mathbf{v} \mathbf{V}^{*}}{N}-\sigma^{2} \mathbf{I}_{M}\right\| \nrightarrow 0
$$

Marchenko-Pastur distribution $\operatorname{MP}\left(\sigma^{2}, d\right)$: if $d \leq 1$

$$
d \mu_{\sigma^{2}, d}(\lambda)=\frac{1}{2 \pi \sigma^{2} d \lambda} \sqrt{\left(\lambda^{+}-\lambda\right)\left(\lambda-\lambda^{-}\right)} \mathbb{1}_{\left[\lambda^{-}, \lambda^{+}\right]} d \lambda
$$

where $\lambda^{ \pm}=\sigma^{2}(1 \pm \sqrt{d})^{2}$
Theorem (Marchenko-Pastur, 1967)
When $M, N \rightarrow+\infty, d_{N}=\frac{M}{N} \rightarrow d$, it holds that

$$
\hat{\mu}_{N} \rightarrow \mu_{d, \sigma^{2}}, \text { a.s }
$$

Result still true in the non Gaussian case

Illustration

Histogram of the eigenvalues of $\frac{\mathbf{V V}^{*}}{N}, M=256, d_{N}=\frac{M}{N}=\frac{1}{16}, \sigma^{2}=1$

Stieltjes transform

Definition

Let μ a measure (e.g a probability distribution) defined on \mathbb{R}^{+}, its Stieltjes transform is defined as

$$
m_{\mu}(z)=\int_{\mathbf{R}^{+}} \frac{1}{\lambda-z} d \mu(\lambda), z \in \mathbb{C} \backslash \mathbb{R}^{+}
$$

Remark

- $\mathbf{Q}_{\mathbf{V}, N}(z)=\left(\frac{\mathbf{V} \mathbf{V}^{*}}{N}-z \mathbf{I}_{M}\right)^{-1}$ resolvent of $\frac{\mathbf{V} \mathbf{V}^{*}}{N}$
- $m_{\hat{\mu}_{N}}(z)$ coincides with $\frac{1}{M} \operatorname{Tr} \mathbf{Q}_{\mathbf{V}, N}(z)$

Asymptotic regime: $d_{N}=\frac{M}{N} \rightarrow d$ It can be shown that $\lim _{N \rightarrow+\infty} m_{\hat{\mu}_{N}}(z)=m_{\mu_{d, \sigma^{2}}}(z)$ a.s, $z \in \mathbb{C} \backslash \mathbb{R}^{+}$.
Thus it implies that

$$
\hat{\mu}_{N} \rightarrow \mu_{d, \sigma^{2}}, \text { a.s }
$$

Important properties

- The eigenvalues of $\frac{\mathbf{V} \mathbf{V}^{*}}{N}$ concentrate in the neighbourhood of $\left[\sigma^{2}(1-\sqrt{d})^{2}, \sigma^{2}(1+\sqrt{d})^{2}\right]=\left[\lambda^{-}, \lambda^{+}\right]$
Denote $\mathbf{Q}_{\mathbf{V}, N}(z)=\left(\frac{\mathbf{V} \mathbf{V}^{*}}{N}-z \mathbf{I}_{M}\right)^{-1}, \tilde{\mathbf{Q}}_{\mathbf{V}, N}(z)=\left(\frac{\mathbf{V}^{*} \mathbf{V}}{N}-z \mathbf{I}_{N}\right)^{-1}$
- Uniformly, for each z in a compact subset of $\mathbb{C}-\left[\lambda^{-}, \lambda^{+}\right]$, for each sequences of unit M-dimensional vectors $\left(\mathbf{a}_{N}\right),\left(\mathbf{b}_{N}\right)$ and each sequences of N-dimensional vectors $\left(\tilde{\mathbf{a}}_{N}\right),\left(\tilde{\mathbf{b}}_{N}\right)$, we have that

$$
\begin{gathered}
\mathbf{a}_{N}^{*}\left(\mathbf{Q}_{\mathbf{V}, N}(z)-m_{d, \sigma^{2}}(z) \mathbf{l}_{M}\right) \mathbf{b}_{N} \rightarrow 0 \text { a.s } \\
\tilde{\mathbf{a}}_{N}^{*}\left(\tilde{\mathbf{Q}}_{\mathbf{V}, N}(z)-\tilde{m}_{d, \sigma^{2}}(z) \mathbf{I}_{N}\right) \tilde{\mathbf{b}}_{N} \rightarrow 0 \text { a.s } \\
\mathbf{a}_{N}^{*}\left(\mathbf{Q}_{\mathbf{V}, N}(z) \mathbf{V}_{N}\right) \tilde{\mathbf{b}}_{N} \rightarrow 0 \text { a.s }
\end{gathered}
$$

The additive spatial spiked model

Observations: M-dimensional vectors, N snapshots

- $\mathbf{y}_{n}=\mathbf{A}_{N} \mathbf{s}_{n}+\mathbf{v}_{n}, n=1, \ldots, N$
- $\mathbf{Y}_{N}=\left(\mathbf{y}_{1}, \ldots, \mathbf{y}_{N}\right)$
- $\mathbf{Y}_{N}=\mathbf{A}_{N} \mathbf{S}_{N}+\mathbf{V}_{N}$
- $\left(\left(\mathbf{V}_{N}\right)_{i, j}\right)_{1 \leq i \leq M, 1 \leq j \leq N} \stackrel{\text { i.i.d }}{\sim} \mathcal{C N}\left(0, \sigma^{2}\right)$
- \mathbf{A}_{N} a $M \times K$ matrix, \mathbf{S}_{N} a $K \times N$ matrix, both deterministic
- $\operatorname{Rank}\left(\mathbf{A}_{N}\right)=K$

Asymptotic regime: $N \rightarrow \infty, d_{N}=\frac{M}{N} \rightarrow d$, and K is fixed.
$\mathbf{Y}_{N}=$ Matrix with Gaussian iid elements + fixed rank perturbation.

Behaviour of eigenvalues and eigenvectors of $\frac{\mathbf{Y}_{N} \mathbf{Y}_{N}^{*}}{N}$

Notations

Spectral factorizations:
$\frac{\mathbf{A}_{N} \mathbf{S}_{N} \mathbf{S}_{N}^{*} \mathbf{A}_{N}^{*}}{N}=\left[\begin{array}{lll}\mathbf{u}_{1, N} & \cdots & \mathbf{u}_{K, N}\end{array}\right]\left[\begin{array}{lll}\lambda_{1, N} & & \\ & \ddots & \\ & & \lambda_{K, N}\end{array}\right]\left[\begin{array}{lll}\mathbf{u}_{1, N} & \cdots & \mathbf{u}_{K, N}\end{array}\right]$
where $\lambda_{1, N} \geq \cdots \geq \lambda_{K, N}$.

$$
\frac{\mathbf{Y}_{N} \mathbf{Y}_{N}^{*}}{N}=\left[\begin{array}{lll}
\hat{\mathbf{u}}_{1, N} & \cdots & \hat{\mathbf{u}}_{M, N}
\end{array}\right]\left[\begin{array}{lll}
\hat{\lambda}_{1, N} & & \\
& \ddots & \\
& & \hat{\lambda}_{M, N}
\end{array}\right]\left[\begin{array}{lll}
\hat{\mathbf{u}}_{1, N} & \cdots & \hat{\mathbf{u}}_{M, N}
\end{array}\right]^{*}
$$

where $\hat{\lambda}_{1, N} \geq \cdots \geq \hat{\lambda}_{M, N}$.

Impact of the signal component on the eigenvalues and eigenvectors of $\frac{\mathbf{Y}_{N} \mathbf{Y}_{N}^{*}}{N}$

If M is fixed and $N \rightarrow+\infty, d_{N}=\frac{M}{N} \simeq 0$

- $\frac{\mathbf{Y}_{N} \mathbf{Y}_{N}^{*}}{N} \simeq \mathbb{E}\left(\frac{\mathbf{Y} \mathbf{Y}^{*}}{N}\right)=\mathbf{A}_{N} \frac{\mathbf{S}_{N} \mathbf{S}_{N}^{*}}{N} \mathbf{A}_{N}^{*}+\sigma^{2} \mathbf{I}$
- $\hat{\lambda}_{k, N} \simeq \lambda_{k, N}+\sigma^{2}$ and $\hat{\mathbf{u}}_{k, N} \simeq \mathbf{u}_{k, N}$ if $1 \leq k \leq K$
- $\hat{\lambda}_{k, N} \simeq \sigma^{2}$ if $k>K$

In our asymptotic regime: $M, N \rightarrow+\infty d_{N}=\frac{M}{N} \rightarrow d$

- The asymptotic distribution of $M-K$ smallest eigenvalues of $\frac{\mathbf{Y}_{N_{N}}^{*}}{N}$ is the Marchenko-Pastur
- Depending on the ratios $\left(\frac{\lambda_{k, N}}{\sigma^{2}}\right)_{k=1, \ldots, K}$, at most K eigenvalues of $\frac{\mathbf{Y}_{N} \mathbf{Y}_{N}^{*}}{N}$ may escape from the support of the Marchenko Pastur and have a deterministic behaviour (more complicated than $\lambda_{k, N}+\sigma^{2}$)

Illustration

Histogram of the eigenvalues of $\frac{\mathbf{Y}_{N} \mathbf{Y}_{N}^{*}}{N}, d_{N}=\frac{M}{N}=1 / 3, N=192, K=2, \lambda_{1}=6.25, \lambda_{2}=4$, $\sigma^{2}=1$

Main result on the eigenvalues and eigenvectors

Theorem : Benaych-Georges and Nadakuditi, 2011

- Assume that $\lambda_{k, N} \rightarrow \lambda_{k}$ for $k=1, \ldots, K$.
- Let K_{s} the number of $\left(\lambda_{k}\right)$ greater than $\sigma^{2} \sqrt{d}$.

Then for $k=1, \ldots, K_{s}$,

$$
\hat{\lambda}_{k, N} \xrightarrow[N \rightarrow \infty]{\text { a.s. }} \rho_{k}=\frac{\left(\lambda_{k}+\sigma^{2}\right)\left(\lambda_{k}+\sigma^{2} d\right)}{\lambda_{k}}>\sigma^{2}(1+\sqrt{d})^{2}
$$

and for $K_{s}+1 \leq k \leq K$

$$
\hat{\lambda}_{K_{k}, N} \xrightarrow[N \rightarrow \infty]{\text { a.s. }} \sigma^{2}(1+\sqrt{d})^{2}
$$

- Finally, for all deterministic sequences of unit vectors $\left(\mathbf{a}_{N}\right),\left(\mathbf{b}_{N}\right)$, for $k=1, \ldots, K_{s}$

$$
\mathbf{a}_{N}^{*} \hat{\mathbf{u}}_{k, N} \hat{\mathbf{u}}_{k, N}^{*} \mathbf{b}_{N}=\frac{\lambda_{k}^{2}-\sigma^{4} d}{\lambda_{k}\left(\lambda_{k}+\sigma^{2} d\right)} \mathbf{a}_{N}^{*} \mathbf{u}_{k, N} \mathbf{u}_{k, N}^{*} \mathbf{b}_{N}+o(1) \text {, a.s }
$$

$\lambda_{K_{s}}>\sigma^{2} \sqrt{d}$ "Signal Subspace Separation Condition"

Important remarks

It does not necessitate \mathbf{V}_{N} i.i.d entries, the fundamental conditions are that

- The eigenvalues of $\frac{\mathbf{V}_{N} \mathbf{V}_{N}^{*}}{N}$ concentrate in the neighbourhood of $\left[\sigma^{2}(1-\sqrt{d})^{2}, \sigma^{2}(1+\sqrt{d})^{2}\right]=\left[\lambda^{-}, \lambda^{+}\right]$
- Uniformly, for each z in a compact subset of $\mathbb{C}-\left[\lambda^{-}, \lambda^{+}\right]$, for each sequences of unit M-dimensional vectors $\left(\mathbf{a}_{N}\right),\left(\mathbf{b}_{N}\right)$ and each sequences of N-dimensional vectors $\left(\tilde{\mathbf{a}}_{N}\right),\left(\tilde{\mathbf{b}}_{N}\right)$, we have that

$$
\begin{gathered}
\mathbf{a}_{N}^{*}\left(\mathbf{Q}_{\mathbf{v}, N}(z)-m_{d, \sigma^{2}}(z) \mathbf{I}_{M}\right) \mathbf{b}_{N} \rightarrow 0 \text { a.s } \\
\tilde{\mathbf{a}}_{N}^{*}\left(\tilde{\mathbf{Q}}_{\mathbf{v}, N}(z)-\tilde{m}_{d, \sigma^{2}}(z) \mathbf{I}_{N}\right) \tilde{\mathbf{b}}_{N} \rightarrow 0 \text { a.s } \\
\mathbf{a}_{N}^{*}\left(\mathbf{Q}_{\mathbf{v}, N}(z) \mathbf{V}_{N}\right) \tilde{b}_{N} \rightarrow 0 \text { a.s }
\end{gathered}
$$

For $z \in \mathbb{C}-\mathbb{R}^{+}$

$$
\begin{aligned}
& \mathbf{Q}_{N}(z)=\left(\frac{\mathbf{Y}_{N} \mathbf{Y}_{N}^{*}}{N}-z \mathbf{l}_{M}\right)^{-1}, \mathbf{F}_{N}(z)=\left(-z\left(1+\sigma^{2} \tilde{m}_{d, \sigma^{2}}(z)\right)+\frac{\left.\frac{\mathbf{A}_{N} \mathbf{s}_{N} \mathbf{s}_{N}^{*} \mathbf{A}_{N}^{*}}{1+\sigma^{2} d m_{d, \sigma^{2}}(z)}\right)^{-1}}{}\right. \\
& \mathbf{a}_{N}^{*}\left(\mathbf{Q}_{N}(z)-\mathbf{F}_{N}(z)\right) \mathbf{b}_{N} \rightarrow 0 \text { a.s }
\end{aligned}
$$

(1) Background: Marchenko-Pastur and additive spatial spiked models
(2) Spatial-temporal information plus noise spiked models
(3) General spatial-temporal information plus noise models

4 Conclusion
(5) Perspectives

The observed signal

Observations: M-dimensional vectors, N snapshots

- $\mathbf{y}_{n}=\sum_{p=0}^{P-1} \mathbf{h}_{p} s_{n-p}+\mathbf{v}_{n}=[\mathbf{h}(z)] s_{n}+\mathbf{v}_{n}$
- $\left(s_{n}\right)_{n \in \mathbb{Z}}$ scalar deterministic sequence
- $\mathbf{h}(z)=\sum_{p=0}^{P-1} \mathbf{h}_{p} z^{-P}$ unknown SIMO transfer function
- $\left(\mathbf{v}_{n}\right)_{n \in \mathbb{Z}}$ temporally and spatially white complex Gaussian noise with variance σ^{2}.

Associated spatial model with P sources

- $\mathbf{y}_{n}=\mathbf{A} \mathbf{s}_{n}+\mathbf{v}_{n}$
- $\mathbf{A}=\left(\mathbf{h}_{P-1}, \ldots, \mathbf{h}_{0}\right)$
- $\mathbf{s}_{n}=\left(s_{n-(P-1)}, s_{n-(P-1)+1}, \ldots, s_{n}\right)^{T}$
- $\mathbf{Y}=\mathbf{A S}+\mathbf{V}$
- \mathbf{S} is a Hankel matrix, not taken into account

The extended observed signal

$\left(y_{k, n}\right)_{n \in \mathbb{Z}}$ scalar signal received on sensor k.
For L an integer, define for each $n L$-dimensional vector $\mathbf{y}_{k, n}^{(L)}$ by:
$\mathbf{y}_{k, n}^{(L)}=\left(y_{k, n}, y_{k, n+1}, \ldots, y_{k, n+L-1}\right)^{T}$ and $M L$-dimensional vector $\mathbf{y}_{n}^{(L)}$ by:
$\mathbf{y}_{n}^{(L)}=\left(\begin{array}{c}\mathbf{y}_{1, n}^{(L)} \\ \vdots \\ \mathbf{y}_{M, n}^{(L)}\end{array}\right)$

Define $M L \times N$ matrix $\mathbf{Y}_{N}^{(L)}$ by:
$\mathbf{Y}_{N}^{(L)}=\left(\mathbf{y}_{1}^{(L)}, \ldots, \mathbf{y}_{N}^{(L)}\right)$
$\mathbf{Y}_{N}^{(L)}$ is a block-Hankel matrix
$\mathbf{Y}_{N}^{(L)}$ is given by:

$$
\text { - } \mathbf{Y}_{N}^{(L)}=\left[\begin{array}{c}
\mathbf{Y}_{1, N}^{(L)} \\
\vdots \\
\mathbf{Y}_{M, N}^{(L)}
\end{array}\right]
$$

Where for each $k, \mathbf{Y}_{k, N}^{(L)}$ is the $L \times N$ Hankel matrix

$$
\mathbf{Y}_{k, N}^{(L)}=\left(\begin{array}{cccc}
y_{k, 1} & y_{k, 2} & \cdots & y_{k, N} \\
y_{k, 2} & y_{k, 3} & \cdots & y_{k, N+1} \\
y_{k, 3} & \cdots & \cdots & y_{k, N+2} \\
\vdots & \vdots & \vdots & \vdots \\
y_{k, L} & y_{k, L+1} & \cdots & y_{k, N+L-1}
\end{array}\right)
$$

Expression of $\mathbf{Y}_{N}^{(L)}$

- $\mathbf{Y}_{k, N}^{(L)}=\mathbf{H}_{k}^{(L)} \mathbf{S}_{N}^{(L)}+\mathbf{V}_{k, N}^{(L)}$
- where $\mathbf{H}_{k}^{(L)}$ is a $L \times(P+L-1)$ Toeplitz matrix and $\mathbf{S}_{N}^{(L)}$ is a $(P+L-1) \times N$ Hankel matrix
- $\mathbf{Y}_{N}^{(L)}=\left(\begin{array}{c}\mathbf{H}_{1}^{(L)} \\ \vdots \\ \mathbf{H}_{M}^{(L)}\end{array}\right) \mathbf{S}_{N}^{(L)}+\mathbf{V}_{N}^{(L)}=\mathbf{H}^{(L)} \mathbf{S}_{N}^{(L)}+\mathbf{V}_{N}^{(L)}$
- $\mathbf{Y}_{N}^{(L)}$ block-Hankel Information plus Noise random matrix
- $\operatorname{Rank}\left(\mathbf{H}^{(L)} \mathbf{S}_{N}^{(L)}\right) \leq P+L-1$

Eigenvalues / eigenvectors of the empirical spatio-temporal covariance matrix $\frac{\mathbf{Y}_{N}^{(L)} \mathbf{Y}_{N}^{(L) *}}{N}$?

Asymptotic behaviour of the eigenvalues of $\frac{\mathbf{V}_{N}^{(L)} \mathbf{v}_{N}^{(L) *}}{N}$.
Asymptotic regime

- $M \rightarrow+\infty, N \rightarrow+\infty, c_{N}=\frac{M L}{N} \rightarrow c$
- L may converge towards $+\infty$ but in such a way that $\frac{L}{N} \rightarrow 0$

Theorem [Loubaton, 2014]

- The empirical eigenvalue distribution of $\frac{\mathbf{v}_{N}^{(L)} \mathbf{v}_{N}^{(L) *}}{N^{2}}$ has almost surely the same asymptotic behaviour than $\operatorname{MP}\left(\sigma^{2}, c\right)$
- If moreover $L=\mathcal{O}\left(N^{\alpha}\right)$ with $\alpha<2 / 3$, nearly equivalent to $\frac{L}{M^{2}} \rightarrow 0$, then:
all the non zero eigenvalues of $\frac{\mathbf{v}_{N}^{(L)} \mathbf{v}_{N}^{(L) *}}{N}$ lie in a neighbourhood of $\left[\sigma^{2}(1-\sqrt{c})^{2}, \sigma^{2}(1+\sqrt{c})^{2}\right]$.

Moreover, we have proved that if $z \in \mathbb{C} \backslash\left[\sigma^{2}(1-\sqrt{c})^{2}, \sigma^{2}(1+\sqrt{c})^{2}\right]$, the bilinear forms of matrices $\mathbf{Q}_{\mathbf{V}, N}(z)=\left(\frac{\mathbf{v}_{N}^{(L)} \mathbf{v}_{N}^{(L) *}}{N}-z \mathbf{I}_{M L}\right)^{-1}$ and $\tilde{\mathbf{Q}}_{\mathbf{V}, N}(z)=\left(\frac{\mathbf{v}_{N}^{(L) *} \mathbf{v}_{N}^{(L)}}{N}-z \mathbf{I}_{N}\right)^{-1}$ behave as if the entries of $\mathbf{V}_{N}^{(L)}$ were i.i.d.

Illustration

Histogram of the eigenvalues of $\frac{\mathbf{v}_{N}^{(L)} \mathbf{v}_{N}^{(L) *}}{N}, c_{N}=\frac{M L}{N}=\frac{1}{2}, N=16384, M=256, L=32 \sigma^{2}=1$
$\mathrm{N}=16384 \mathrm{M}=\mathbf{2 5 6} \mathrm{L}=32$

Asymptotic behaviour of the largest eigenvalues and associated eigenvectors of $\frac{\mathbf{Y}_{N}^{(L)} \mathbf{Y}_{N}^{(L) *}}{N}$
Additive spatio-temporal spiked models asymptotic regime

- $M \rightarrow+\infty, N \rightarrow+\infty, d_{N}=\frac{M}{N} \rightarrow d$
- L and P do not scale with M and N

The rank $P+L-1$ of signal matrix $\mathbf{H}^{(L)} \mathbf{S}_{N}^{(L)}$ does not scale with M and N

$$
\mathbf{Y}_{N}^{(L)}=\mathbf{H}^{(L)} \mathbf{S}_{N}^{(L)}+\mathbf{V}_{N}^{(L)}
$$

$\frac{\mathbf{v}_{N}^{(L)} \mathbf{v}_{N}^{(L) *}}{N}$ satisfies the properties that allow to use Benaych-Nadakuditi result.

Assumption

$\left(\lambda_{k, N}^{(L)}\right)_{k=1, \ldots, P+L-1}$ non zero eigenvalues of $\mathbf{H}^{(L)} \frac{\mathbf{s}_{N}^{(L)} \mathbf{s}_{N}^{(L) *}}{N} \mathbf{H}^{(L) *}$ converge towards $\lambda_{1}^{(L)}>\lambda_{2}^{(L)}>\ldots>\lambda_{P+L-1}^{(L)}$ when $N \rightarrow+\infty$.

Notations

Spectral factorizations:

where $\lambda_{1, N}^{(L)} \geq \cdots \geq \lambda_{P+L-1, N}^{(L)}$.

$$
\frac{\mathbf{Y}_{N}^{(L)} \mathbf{Y}_{N}^{(L) *}}{N}=\left[\begin{array}{lll}
\hat{\mathbf{u}}_{1, N} & \cdots & \hat{\mathbf{u}}_{M L, N}
\end{array}\right]\left[\begin{array}{lll}
\hat{\lambda}_{1, N}^{(L)} & & \\
& \ddots & \\
& & \hat{\lambda}_{M L, N}^{(L)}
\end{array}\right]\left[\begin{array}{c}
\hat{\mathbf{u}}_{1, N}^{*} \\
\vdots \\
\hat{\mathbf{u}}_{M L, N}^{*}
\end{array}\right]
$$

where $\hat{\lambda}_{1, N}^{(L)} \geq \cdots \geq \hat{\lambda}_{M L, N}^{(L)}$.

Results on eigenvalues of $\frac{\mathbf{V}_{N}^{(L)} \mathbf{V}_{N}^{(L) *}}{N}$ and bilinear forms of $\mathbf{Q}_{\mathbf{V}, N}(z)$ and

$$
\tilde{\mathbf{Q}}_{\mathbf{V}, N}(z) \text { allow to prove }
$$

Theorem

Let K_{L} the number of $\lambda_{k}^{(L)}$ greater than $\sigma^{2} \sqrt{d L}$

- For $k=1, \ldots, K_{L}$

$$
\begin{aligned}
& \hat{\lambda}_{k, N}^{(L)} \xrightarrow[N \rightarrow \infty]{\text { a.s. }} \rho_{k}^{(L)}=\frac{\left(\lambda_{k}^{(L)}+\sigma^{2}\right)\left(\lambda_{k}^{(L)}+\sigma^{2} d L\right)}{\lambda_{k}^{(L)}}>\sigma^{2}(1+\sqrt{d L})^{2} \\
& \text { while for } k=K_{L}+1, \ldots, P+L-1
\end{aligned}
$$

$$
\hat{\lambda}_{k, N}^{(L)} \xrightarrow[N \rightarrow \infty]{\text { a.s. }} \sigma^{2}(1+\sqrt{d L})^{2}
$$

- For $k=1, \ldots, K_{L}$, for all deterministic sequences of $M L$-dimensional

$$
\begin{aligned}
& \text { unit vectors } \mathbf{a}_{N}, \mathbf{b}_{N} \\
& \qquad \mathbf{a}_{N}^{*} \hat{\mathbf{u}}_{k, N} \hat{\mathbf{u}}_{k, N}^{*} \mathbf{b}_{N}=\frac{\left(\lambda_{k}^{(L)}\right)^{2}-\sigma^{4} d L}{\lambda_{k}^{(L)}\left(\lambda_{k}^{(L)}+\sigma^{2} d L\right)} \mathbf{a}_{N}^{*} \mathbf{u}_{k, N} \mathbf{u}_{k, N}^{*} \mathbf{b}_{N}+o(1)
\end{aligned}
$$

Application to the analysis of subspace DoA estimation using spatial smoothing schemes

The original model

- $\mathbf{y}_{n}=\left[\mathbf{a}_{M}\left(\varphi_{1}\right), \ldots, \mathbf{a}_{M}\left(\varphi_{K}\right)\right] \mathbf{s}_{n}+\mathbf{v}_{n}=\mathbf{A}_{M} \mathbf{s}_{n}+\mathbf{v}_{n}$
- $\mathbf{a}_{M}(\phi)=\frac{1}{\sqrt{M}}\left(1, e^{\imath \phi}, \cdots, e^{\imath(M-1) \phi}\right)^{T}$
- $\mathbf{Y}_{N}=\mathbf{A}_{M} \mathbf{S}_{N}+\mathbf{V}_{N}$

$$
\text { Results known when } \frac{M}{N} \rightarrow 0 \text { and } \frac{M}{N} \rightarrow c>0
$$

Context

- Source localization using subspace method when M, N large, but $N \ll M$
- Spatial smoothing can be used in this context

Spatial smoothing

$L<M$: artificially create $N L$ snapshots of dimension $M-L+1$.

$$
\mathcal{Y}_{n}^{(L)}=\left(\begin{array}{ccccc}
\mathbf{y}_{1, n} & \mathbf{y}_{2, n} & \ldots & \ldots & \mathbf{y}_{L, n} \\
\mathbf{y}_{2, n} & \mathbf{y}_{3, n} & \ldots & \ldots & \mathbf{y}_{L+1, n} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\mathbf{y}_{M-L+1, n} & \mathbf{y}_{M-L+2, n} & \ldots & \ldots & \mathbf{y}_{M, n}
\end{array}\right)
$$

$$
\mathbf{Y}_{N}^{(L)}=\left(\mathcal{Y}_{1}^{(L)}, \ldots, \mathcal{Y}_{N}^{(L)}\right)
$$

Properties of $\mathbf{Y}_{N}^{(L)}$

- $\mathbf{Y}_{N}^{(L)}=\mathbf{A}^{(L)}\left(\mathbf{S}_{N} \otimes \mathbf{I}_{L}\right)+\mathbf{V}_{N}^{(L)}$
- $\mathbf{A}^{(L)}\left(\mathbf{S}_{N} \otimes \mathbf{I}_{L}\right)$ is a rank K deterministic $(M-L+1) \times N L$ matrix
- Range $\left(\mathbf{A}^{(L)}\right)=\operatorname{sp}\left\{\mathbf{a}_{M-L+1}\left(\varphi_{k}\right), k=1, \ldots, K\right\}$

Application to the analysis of subspace DoA estimation using spatial smoothing schemes

The asymptotic regime

- $M \rightarrow+\infty, N=\mathcal{O}\left(M^{\beta}\right), 1 / 3<\beta \leq 1, L=\mathcal{O}\left(M^{\alpha}\right), 0 \leq \alpha<2 / 3$
- $e_{N}=\frac{M-L+1}{N L} \simeq \frac{M}{N L} \rightarrow e$

Remark

The structure of $\mathbf{V}_{N}^{(L) *}$:

$$
\mathcal{V}_{n}^{(L) *}=\left(\begin{array}{ccccc}
\mathbf{v}_{1, n}^{*} & \mathbf{v}_{2, n}^{*} & \ldots & \ldots & \mathbf{v}_{M-L+1, n}^{*} \\
\mathbf{v}_{2, n}^{*} & \mathbf{v}_{3, n}^{*} & \ldots & \ldots & \mathbf{v}_{M-L+2, n}^{*} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\mathbf{v}_{L, n}^{*} & \mathbf{v}_{L+1, n}^{*} & \cdots & \cdots & \mathbf{v}_{M, n}^{*}
\end{array}\right) \Longrightarrow \mathbf{V}_{N}^{(L) *}=\left[\begin{array}{c}
\mathcal{V}_{1}^{(L) *} \\
\vdots \\
\mathcal{V}_{N}^{(L) *}
\end{array}\right]
$$

Application to the analysis of subspace DoA estimation

 using spatial smoothing schemesProperties of the eigenvalues of $\frac{\mathbf{V}_{N}^{(L)} \mathbf{v}_{N}^{(L) *}}{N L}$.

- Non zero eigenvalues of $\frac{\mathbf{v}_{N}^{(L)} \mathbf{v}_{N}^{(L) *}}{N L}=$ non zero eigenvalues of $\frac{\mathbf{v}_{N}^{(L) *} \mathbf{v}_{N}^{(L)}}{N L}$
- Properties of the eigenvalues of $\frac{\mathbf{v}_{N}^{(L) *} \mathbf{v}_{N}^{(L)}}{N L}$ already evaluated before
- Just exchange $N \Longleftrightarrow M-L+1$ and $M \Longleftrightarrow N$

Possible to use Benaych-Georges/Nadakuditi results

Assumption

The K non zero eigenvalues $\left(\lambda_{k, N}\right)_{k=1, \ldots, K}$ of matrix $\frac{\mathbf{A}^{(L)}\left(\mathbf{S}_{N} \mathbf{S}_{N}^{*} \otimes \mathbf{I}_{L}\right) \mathbf{A}^{(L) *}}{N L}$ converge towards $\lambda_{1}>\ldots>\lambda_{K}>\sigma^{2} \sqrt{e}$

Results

G-MUSIC subspace method can be used and analysed from the statistical point of view in the high dimensional context

Subspace separation condition

Comparison smoothed / unsmoothed when L does not converge $+\infty$.

- $\frac{\mathbf{S}_{N} \mathbf{S}_{N}^{*}}{N} \rightarrow \mathbf{D}, \mathbf{D}$ diagonal
- unsmoothed: $\lambda_{K}\left(\mathbf{A}_{M}^{*} \mathbf{A}_{M} \mathbf{D}\right)>\sigma^{2} \sqrt{\frac{M}{N}}$
- smoothed: $\lambda_{K}\left(\mathbf{A}_{M-L}^{*} \mathbf{A}_{M-L} \mathbf{D}\right)>\frac{\sigma^{2}}{\sqrt{L}} \sqrt{\frac{M}{N}}=\sigma^{2} \sqrt{\frac{M}{N L}}$

Discussion

- If $L \ll M, \lambda_{K}\left(\mathbf{A}_{M-L}^{*} \mathbf{A}_{M-L} \mathbf{D}\right) \simeq \lambda_{K}\left(\mathbf{A}_{M}^{*} \mathbf{A}_{M} \mathbf{D}\right)$
- Clear improvement of the subspace separation condition if $L \ll M$
- If L increases too much, the diminution of the number of antennas due to the spatial smoothing becomes dominant.

Illustration I.

Empirical MSE of the improved subspace estimate of θ_{1} for $L=2,4,8,16$ w.r.t. SNR.

IIlustration II.

Empirical MSE of the improved subspace estimate of θ_{1} for

$$
L=16,32,64,128 \text { w.r.t. SNR. }
$$

Application to the loading factor estimation of trained

 spatio-temporal Wiener filters
Context

- $\mathbf{y}_{n}=\sum_{p=0}^{P-1} \mathbf{h}_{p} s_{n-p}+\mathbf{v}_{n}=[\mathbf{h}(z)] s_{n}+\mathbf{v}_{n},[\mathbf{h}(z)]$ unknown
- Training sequence $\left(s_{n}\right)_{n=1, \ldots, N}$ available at the receiver side
- Estimate $\mathbf{g}^{(L)}, M L$-dimensional vector minimizing $\mathbb{E}\left|s_{n}-\mathbf{g}^{(L)} * \mathbf{y}_{n}^{(L)}\right|^{2}$
- Regularized least-squares estimate: $\hat{\mathbf{g}}_{\lambda}^{(L)}=\left(\frac{\mathbf{Y}_{N}^{(L)} \mathbf{Y}_{N}^{(L) *}}{N}+\lambda \mathbf{I}\right)^{-1}\left(\frac{1}{N} \sum_{n=1}^{N} \mathbf{y}_{n}^{(L)} s_{n}^{*}\right)$
- Regularization necessary when $M L>N$, performance improved when $\frac{M L}{N}$ is not small enough
- Choose λ when M and N large and of the same order of magnitude
- Mestre-Lagunas IEEE SP 2006, $\mathbf{h}(z)=\mathbf{h}_{0}$ known (no training sequence), temporally white but spatially correlated noise + interference with unknown covariance matrix, $L=1$

The SINR provided by filter $\hat{\mathbf{g}}_{\lambda}^{(L)}$

$$
\hat{\mathbf{g}}_{\lambda}^{(L)} \text { is used to reconstruct } s_{n} \text {, for } n>N
$$

The signal to information plus noise ratio (SINR) mesures the performance of the reconstruction

$$
\operatorname{SINR}\left(\hat{\mathbf{g}}_{\lambda}^{(L)}\right)=\frac{\left|\hat{\mathbf{g}}_{\lambda}^{(L) *} \mathbf{h}_{P}^{(L)}\right|^{2}}{\hat{\mathbf{g}}_{\lambda}^{(L) *} \mathbf{H}_{-P}^{(L)} \mathbf{H}_{-P}^{(L) *} \hat{\mathbf{g}}_{\lambda}^{(L)}+\sigma^{2}\left\|\hat{\mathbf{g}}_{\lambda}^{(L)}\right\|^{2}}
$$

$\mathbf{h}_{P}^{(L)}$ column P of matrix $\mathbf{H}^{(L)}, \mathbf{H}_{-P}^{(L)}$ matrix obtained from $\mathbf{H}^{(L)}$ by deleting column P.
$\operatorname{SINR}\left(\hat{\mathbf{g}}_{\lambda}^{(L)}\right)$ is a random variable because $\hat{\mathbf{g}}_{\lambda}^{(L)}$ depends on the noise corrupting the signal $\left(\mathbf{y}_{n}\right)_{n=1, \ldots, N}$ received during the transmission of the training sequence.

Main results

$$
\operatorname{SINR}\left(\hat{\mathbf{g}}_{\lambda}^{(L)}\right)=\frac{\left|\hat{\mathbf{g}}_{\lambda}^{(L) *} \mathbf{h}_{P}^{(L)}\right|^{2}}{\hat{\mathbf{g}}_{\lambda}^{(L) *} \mathbf{H}_{-P}^{(L)} \mathbf{H}_{-P}^{(L) *} \hat{\mathbf{g}}_{\lambda}^{(L)}+\sigma^{2}\left\|\hat{\mathbf{g}}_{\lambda}^{(L)}\right\|^{2}}
$$

Main results: When M and N converge towards $+\infty$ at the same rate, and that P and L are fixed

- $\operatorname{SINR}\left(\hat{\mathbf{g}}_{\lambda}^{(L)}\right)$ converges a.s. towards a deterministic term $\phi_{L}(\lambda)$ depending on λ and on $\sigma^{2}, \mathbf{H}^{(L)}$.
- While $\mathbf{H}^{(L)}$ is unknown at the receiver side, possible to estimate consistently $\phi_{L}(\lambda)$ for each $\lambda \geq 0$ by $\hat{\phi}_{L}(\lambda)$ from $\left(\mathbf{y}_{n}\right)_{n=1, \ldots, N}$
- $\lambda_{\text {opt }}$ is estimated as the argmax of the consistent estimator $\lambda \rightarrow \hat{\phi}_{L}(\lambda)$.

Discussion

$$
\text { Assume } \frac{\mathbf{s}_{N}^{(L)} \mathbf{S}_{N}^{(L) *}}{N}=\mathbf{I}_{P+L-1}
$$

Assume $d_{N} L=\frac{M L}{N}<1$ and $\lambda=0$. Denote by γ the SINR provided by the true Wiener filter:

$$
\gamma=\frac{\mathbf{h}_{P}^{(L) *}\left(\mathbf{H}^{(L)} \mathbf{H}^{(L) *}+\sigma^{2} \mathbf{I}\right)^{-1} \mathbf{h}_{P}^{(L)}}{1-\mathbf{h}_{P}^{(L) *}\left(\mathbf{H}^{(L)} \mathbf{H}^{(L) *}+\sigma^{2} \mathbf{I}\right)^{-1} \mathbf{h}_{P}^{(L)}}
$$

Then, the limit $\operatorname{SINR} \phi_{L}(0)$ provided by $\hat{\mathbf{g}}_{0}^{(L)}$ is given by

$$
\phi_{L}(0)=\gamma \frac{\left(1-d_{N} L\right) \gamma}{\gamma+d_{N}}
$$

SINR loss equal to $\left(1-d_{N} L\right) \frac{\gamma}{\gamma+d_{N}}$

Some insights on the deterministic behaviour of the SINR

Expression of $\hat{\mathbf{g}}_{\lambda}^{(L)}$

$$
\begin{gathered}
\hat{\mathbf{g}}_{\lambda}^{(L)}=\left(\frac{\mathbf{Y}_{N}^{(L)} \mathbf{Y}_{N}^{(L) *}}{N}+\lambda \mathbf{l}\right)^{-1}\left(\frac{1}{N} \sum_{n=1}^{N} \mathbf{y}_{n}^{(L)} s_{n}^{*}\right) \\
\mathbf{Q}_{N}(-\lambda)=\left(\frac{\mathbf{Y}_{N}^{(L)} \mathbf{Y}_{N}^{(L) *}}{N}+\lambda \mathbf{I}\right)^{-1}, \mathbf{u}_{N}=\left(\frac{1}{\sqrt{N}}\left(s_{1}, \ldots, s_{N}\right)\right)^{*}, \\
\hat{\mathbf{g}}_{\lambda}^{(L)}=\mathbf{Q}_{N}(-\lambda) \frac{\mathbf{Y}_{N}^{(L)}}{\sqrt{N}} \mathbf{u}_{N}
\end{gathered}
$$

Some insights on the deterministic behaviour of the SINR

$$
\operatorname{SINR}\left(\hat{\mathbf{g}}_{\lambda}^{(L)}\right)=\frac{\left|\hat{\mathbf{g}}_{\lambda}^{(L) *} \mathbf{h}_{P}^{(L)}\right|^{2}}{\hat{\mathbf{g}}_{\lambda}^{(L) *} \mathbf{H}_{-P}^{(L)} \mathbf{H}_{-P}^{(L)} \hat{\mathbf{g}}_{\lambda}^{(L)}+\sigma^{2}\left\|\hat{\mathbf{g}}_{\lambda}^{(L)}\right\|^{2}}
$$

Evaluate the behaviour of

- $\left|\mathbf{a}_{N}^{*} \hat{\mathbf{g}}_{\lambda}^{(L)}\right|^{2}$ for each deterministic $M L$-dimensional vector \mathbf{a}_{N}.
- $\left\|\hat{\mathbf{g}}_{\lambda}^{(L)}\right\|^{2}$.

Equivalently

- $\mathbf{a}_{N}^{*} \mathbf{Q}_{N}(-\lambda) \frac{\mathbf{Y}_{N}^{(L)}}{\sqrt{N}} \mathbf{b}_{N}$
- $\mathbf{a}_{N}^{*} \frac{\mathbf{Y}_{N}^{(L) *}}{\sqrt{N}} \mathbf{Q}_{N}(-\lambda)^{\mathbf{2}_{N}^{(L)}} \frac{\mathbf{V}^{N}}{\sqrt{N}} \mathbf{b}_{N}=\mathbf{a}_{N}^{*}\left(\left.\frac{d}{d z}\right|_{z=-\lambda}(z \tilde{\mathbf{Q}}(z))\right) \mathbf{b}_{N}$

Illustration

$M=40, N=200, d_{N}=\frac{M}{N}=\frac{1}{5}, P=5,\left(\mathbf{h}_{p}\right)_{p=0, \ldots, 4}$ random directional

$\phi_{L}(\lambda)$ vs λ for various values of L.

Illustration

$M=40, N=200, P=5, L=5,\left(\mathbf{h}_{p}\right)_{p=0, \ldots, 4}$ random directional vectors

Figure: RRMSE (Root Relative Mean Square Error) of different diagonal loading methods versus L
(1) Background: Marchenko-Pastur and additive spatial spiked models
(2) Spatial-temporal information plus noise spiked models
(3) General spatial-temporal information plus noise models

4 Conclusion
(5) Perspectives

General spatial-temporal information plus noise models

$$
\mathbf{Y}_{N}^{(L)}=\mathbf{H}^{(L)} \mathbf{S}_{N}^{(L)}+\mathbf{V}_{N}^{(L)}
$$

Extend the results to the case $P, L \rightarrow+\infty$
The general model

- $\mathbf{Y}_{N}^{(L)}=\mathbf{A}_{N}+\mathbf{V}_{N}^{(L)}$
- \mathbf{A}_{N} deterministic, $\sup _{N}\left\|\frac{\mathbf{A}_{N}}{\sqrt{N}}\right\|<+\infty$, not necessary structured, $\operatorname{Rank}\left(\mathbf{A}_{N}\right)$ not necessary finite.

Asymptotic regime
$N \rightarrow+\infty, c_{N}=\frac{M L}{N} \rightarrow c$, where $0<c<+\infty, L=\mathcal{O}\left(N^{\alpha}\right), \alpha<\frac{2}{3}$.
Behaviour of $\mathbf{Q}_{N}(z)=\left(\frac{\mathbf{Y}_{N}^{(L)} \mathbf{Y}_{N}^{(L) *}}{N}-z \mathbf{I}_{M L}\right)^{-1}$ and $\tilde{\mathbf{Q}}_{N}(z)=\left(\frac{\mathbf{Y}_{N}^{(L)} \mathbf{Y}_{N}^{(L)}}{N}-z \mathbf{I}_{N}\right)^{-1}$

Deterministic equivalent matrices

Theorem

The resolvents $\mathbf{Q}_{N}(z)=\left(\mathbf{Y}_{N} \mathbf{Y}_{N}^{*}-\mathbf{I}_{M L}\right)^{-1}$ and $\tilde{\mathbf{Q}}_{N}(z)=\left(\mathbf{Y}_{N}^{*} \mathbf{Y}_{N}-\mathbf{I}_{N}\right)^{-1}$ have the same behaviour than the deterministic matrices $\mathbf{T}_{N}(z), \tilde{\mathbf{T}}_{N}(z)$ defined as

$$
\left\{\begin{array}{l}
\mathbf{T}_{N}(z)=\left[-z\left(\mathbf{I}_{M L}+\sigma^{2} \mathbf{I}_{M} \otimes \mathcal{T}_{L, L}\left(\tilde{\mathbf{T}}_{N}^{T}(z)\right)\right)+\mathbf{A}_{N}\left(\mathbf{I}_{N}+\sigma^{2} c_{N} \mathcal{T}_{N, L}^{(M)}\left(\mathbf{T}_{N}^{T}(z)\right)\right)^{-1} \mathbf{A}_{N}^{*}\right]^{-1} \\
\tilde{\mathbf{T}}_{N}(z)=\left[-z\left(\mathbf{I}_{N}+\sigma^{2} c_{N} \mathcal{T}_{N, L}^{(M)}\left(\mathbf{T}_{N}^{T}(z)\right)\right)+\mathbf{A}_{N}^{*}\left(\mathbf{I}_{M L}+\sigma^{2} \mathbf{I}_{M} \otimes \mathcal{T}_{L, L}\left(\tilde{\mathbf{T}}_{N}^{T}(z)\right)\right)^{-1} \mathbf{A}_{N}\right]^{-1}
\end{array}\right.
$$

For $z \in \mathbb{C} \backslash \mathbb{R}^{+}$,

- $\frac{1}{M L} \operatorname{Tr}\left[\left(\mathbf{Q}_{N}(z)-\mathbf{T}_{N}(z)\right) \mathbf{B}_{N}\right] \rightarrow 0, \frac{1}{N} \operatorname{Tr}\left[\left(\tilde{\mathbf{Q}}_{N}(z)-\tilde{\mathbf{T}}_{N}(z)\right) \tilde{\mathbf{B}}_{N}\right] \rightarrow 0$, a.s
- If $\alpha<\frac{2}{3}, \frac{L}{M^{2}} \rightarrow 0,\left\|\mathbf{Q}_{N}(z)-\mathbf{T}_{N}(z)\right\| \rightarrow 0,\left\|\tilde{\mathbf{Q}}_{N}(z)-\tilde{\mathbf{T}}_{N}(z)\right\| \rightarrow 0$, a.s

Application to the initial model

- If $\mathbf{A}_{N}=\mathbf{H}^{(L)} \mathbf{S}_{N}^{(L)}$
- $\operatorname{Rank}\left(\mathbf{A}_{N}\right)=P+L-1=\mathcal{O}\left(N^{\alpha}\right)$

Signal assumption

- $\sup _{N}\left\|\mathbf{H}^{(L)}\right\|<+\infty \Longleftrightarrow \sup _{M, L, \nu}\left\|\mathbf{h}\left(e^{2 \imath \pi \nu}\right)\right\|^{2}<+\infty$
- $\left(s_{n}\right)_{n \in \mathbb{Z}}$ a real i.i.d sequence

Application to the initial model

Theorem
For $z \in \mathbb{C} \backslash \mathbb{R}^{+}$, it holds that

$$
\begin{aligned}
& \left\|\mathbf{T}_{N}(z)-\mathbf{F}_{N}(z)\right\| \rightarrow 0 \\
& \left\|\tilde{\boldsymbol{T}}_{N}(z)-\tilde{\mathbf{F}}_{N}(z)\right\| \rightarrow 0
\end{aligned}
$$

where

$$
\begin{gathered}
\mathbf{F}_{N}(z)=\left(-z\left(1+\sigma^{2} \tilde{m}_{c, \sigma^{2}}(z)\right) \mathbf{I}_{M L}+\frac{\mathbf{H}^{(L)} \mathbf{H}^{(L) *}}{1+\sigma^{2} c m_{c, \sigma^{2}}(z)}\right)^{-1} \\
\tilde{\mathbf{F}}_{N}(z)=\left(-z\left(1+\sigma^{2} c m_{c, \sigma^{2}}(z)\right) \mathbf{I}_{N}+\frac{\frac{\mathbf{s}_{N}^{(L) *}}{\sqrt{N}} \mathbf{H}^{(L) *} \mathbf{H}^{(L)} \frac{\mathbf{s}_{N}^{(L)}}{\sqrt{N}}}{1+\sigma^{2} \tilde{m}_{c, \sigma^{2}}(z)}\right)^{-1}
\end{gathered}
$$

As a consequence,

$$
\begin{aligned}
& \left\|\mathbf{Q}_{N}(z)-\mathbf{F}_{N}(z)\right\| \rightarrow 0, \text { a.s } \\
& \left\|\tilde{\mathbf{Q}}_{N}(z)-\tilde{\mathbf{F}}_{N}(z)\right\| \rightarrow 0, \text { a.s }
\end{aligned}
$$

Application to the loading factor estimation of trained spatio-temporal Wiener filters

$$
\operatorname{SINR}\left(\hat{\mathbf{g}}_{\lambda}^{(L)}\right)=\frac{\left|\hat{\mathbf{g}}_{\lambda}^{(L) *} \mathbf{h}_{P}^{(L)}\right|^{2}}{\hat{\mathbf{g}}_{\lambda}^{(L) *} \mathbf{H}_{-P}^{(L)} \mathbf{H}_{-P}^{(L) *} \hat{\mathbf{g}}_{\lambda}^{(L)}+\sigma^{2}\left\|\hat{\mathbf{g}}_{\lambda}^{(L)}\right\|^{2}}
$$

Asymptotic regime
$M, N \rightarrow+\infty, c_{N}=\frac{M L}{N} \rightarrow c, P, L=\mathcal{O}\left(N^{\alpha}\right), 0<\alpha<\frac{1}{2}, \frac{L}{M} \rightarrow 0$.
Evaluate the behaviour of

- $\left|\mathbf{a}^{*} \mathbf{Q}_{N}(-\lambda) \frac{\mathbf{Y}_{N}^{(L)}}{\sqrt{N}} \mathbf{b}_{N}\right|^{2}$
- $\mathbf{a}_{N}^{*} \frac{\mathbf{Y}_{N}^{(L) *}}{\sqrt{N}} \mathbf{Q}_{N}(-\lambda) \mathbf{H}_{-P}^{(L) *} \mathbf{H}_{-P}^{(L)} \mathbf{Q}_{N}(-\lambda) \frac{\mathbf{Y}_{N}^{(L)}}{\sqrt{N}} \mathbf{b}_{N}$
- $\mathbf{a}_{N}^{*} \frac{\mathbf{Y}_{N}^{(L) *}}{\sqrt{N}} \mathbf{Q}_{N}(-\lambda)^{2} \frac{\mathbf{Y}_{N}^{(L)}}{\sqrt{N}} \mathbf{b}_{N}=\mathbf{a}_{N}^{*}\left(\left.\frac{d}{d z}\right|_{z=-\lambda}\left(z \tilde{\mathbf{Q}}_{N}(z)\right)\right) \mathbf{b}_{N}$

Same results as the case where P, L are fixed
(1) Background: Marchenko-Pastur and additive spatial spiked models
(2) Spatial-temporal information plus noise spiked models
(3) General spatial-temporal information plus noise models
(4) Conclusion
(5) Perspectives

Conclusion

Spatial-temporal spiked models

- Behaviour of the largest eigenvalues and eigenvectors of $\frac{\mathbf{Y}_{N}^{(L)} \mathbf{Y}_{N}^{(L) *}}{N}$
- Application to detection of a wideband signal
- Loading factor estimation for trained regularized spatio-temporal Wiener filtering
- Analysis of spatial smoothing schemes in narrow band array processing

General spatial-temporal information plus noise models

- Behaviour of resolvent and co-resolvent of $\frac{\mathbf{Y}_{N}^{(L)} \mathbf{Y}_{N}^{(L) *}}{N}$
- Loading factor estimation for trained regularized spatio-temporal Wiener filtering
(1) Background: Marchenko-Pastur and additive spatial spiked models
(2) Spatial-temporal information plus noise spiked models
(3) General spatial-temporal information plus noise models
(4) Conclusion
(5) Perspectives

Perspectives

- Convergence rate of normalized trace, bilinear forms and spectral norms of the resolvents towards deterministic equivalents.
- Improvement of the convergence conditions for the $\operatorname{SINR}\left(\frac{L}{N} \rightarrow 0\right.$, $\frac{L}{M^{2}} \rightarrow 0$)
- Second order of the detection test.

PhD student

First year !! Last year !!

