Applications of large random matrices to high dimensional statistical signal processing

Gia-Thuy Pham

LIGM, Université Paris-Est Marne la Vallée.

February 28, 2017

Gia-Thuy Pham (LIGM)

Large random matrices

February 28, 2017 1 / 53

Overview

1 Background : Marchenko-Pastur and additive spatial spiked models

- Spatial-temporal information plus noise spiked models
- 3 General spatial-temporal information plus noise models

4 Conclusion

5 Perspectives

Background : Marchenko-Pastur and additive spatial spiked models

- 2 Spatial-temporal information plus noise spiked models
- 3 General spatial-temporal information plus noise models
- 4 Conclusion
- 5 Perspectives

Marchenko-Pastur distribution

$$\mathbf{V} = \begin{pmatrix} V_{11} & V_{12} & \dots & V_{1N} \\ V_{21} & V_{22} & \dots & V_{2N} \\ \vdots & \vdots & \vdots & \vdots \\ V_{M1} & V_{M2} & \dots & V_{MN} \end{pmatrix}$$

 $(V_{ij})_{1 \leq i \leq M, 1 \leq j \leq N}$ i.i.d. complex Gaussian random variables $\mathcal{CN}(0, \sigma^2)$. $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_N$ columns of \mathbf{V} , $\mathbb{E}(\mathbf{v}_n \mathbf{v}_n^*) = \sigma^2 \mathbf{I}_M$

Empirical covariance matrix:

$$\frac{\mathbf{V}\mathbf{V}^*}{N} = \frac{1}{N}\sum_{n=1}^N \mathbf{v}_n \mathbf{v}_n^*$$

Marchenko-Pastur distribution

Empirical distribution of the eigenvalues of $\frac{VV^*}{N}$

- $\hat{\lambda}_{1,N} \geq \hat{\lambda}_{2,N} \geq \ldots \geq \hat{\lambda}_{M,N}$ eigenvalues of $\frac{\mathbf{VV}^*}{N}$
- Empirical eigenvalue distribution: $\hat{\mu}_N = \frac{1}{M} \sum_{i=1}^M \delta(\lambda \hat{\lambda}_{i,N})$

Asymptotic behaviour of $\hat{\mu}_N \longleftrightarrow$ Behaviour of the histograms of the eigenvalues $(\hat{\lambda}_{i,N})_{i=1,...,M}$

Well known case: *M* fixed, *N* increases i.e. $d_N = \frac{M}{N}$ small

•
$$\frac{\mathbf{V}\mathbf{V}^*}{N} \simeq \mathbb{E}(\mathbf{v}_n \mathbf{v}_n^*) = \sigma^2 \mathbf{I}_M$$
 by the law of large numbers
• $\hat{\mu}_N \xrightarrow{N \to +\infty} \delta(\sigma^2)$

If N >> M, the eigenvalues of $\frac{\mathbf{V}\mathbf{V}^*}{N}$ are concentrated around σ^2

イロト 不得下 イヨト イヨト 二日

Illustration

Histogram of the eigenvalues of $\frac{\mathbf{VV}^*}{N}$, M = 256, $d_N = \frac{M}{N} = \frac{1}{256}$, $\sigma^2 = 1$

Gia-Thuy Pham (LIGM)

Large random matrices

February 28, 2017 6 / 53

æ

イロト イポト イヨト イヨト

Marchenko-Pastur distribution

M,N same order of magnitude, $d_N = \frac{M}{N} \rightarrow d$

$$\hat{\mu}_N \not\rightarrow \delta(\sigma^2)$$
 because $\|\frac{\mathbf{V}\mathbf{V}^*}{N} - \sigma^2 \mathbf{I}_M\| \not\rightarrow 0$

Marchenko-Pastur distribution $MP(\sigma^2, d)$: if $d \leq 1$

$$d\mu_{\sigma^2,d}(\lambda) = \frac{1}{2\pi\sigma^2 d\lambda} \sqrt{(\lambda^+ - \lambda)(\lambda - \lambda^-)} \mathbb{1}_{[\lambda^-, \lambda^+]} d\lambda$$

where $\lambda^{\pm} = \sigma^2 (1 \pm \sqrt{d})^2$

Theorem (Marchenko-Pastur, 1967) When $M, N \rightarrow +\infty$, $d_N = \frac{M}{N} \rightarrow d$, it holds that

 $\hat{\mu}_{N} \rightarrow \mu_{d,\sigma^{2}}, a.s$

Result still true in the non Gaussian case

Gia-Thuy Pham (LIGM)

Illustration

Histogram of the eigenvalues of $\frac{\mathbf{VV}^*}{N}$, M = 256, $d_N = \frac{M}{N} = \frac{1}{16}$, $\sigma^2 = 1$

Gia-Thuy Pham (LIGM)

February 28, 2017 8 / 53

æ

イロト イポト イヨト イヨト

Stieltjes transform

Definition

Let μ a measure (e.g a probability distribution) defined on $\mathbb{R}^+,$ its Stieltjes transform is defined as

$$m_{\mu}(z) = \int_{\mathbf{R}^+} rac{1}{\lambda-z} d\mu(\lambda), \, z \in \mathbb{C} ackslash \mathbb{R}^+$$

Remark

Asymptotic regime: $d_N = \frac{M}{N} \rightarrow d$

It can be shown that $\lim_{N\to+\infty} m_{\hat{\mu}_N}(z) = m_{\mu_{d,\sigma^2}}(z)$ a.s, $z \in \mathbb{C} \setminus \mathbb{R}^+$. Thus it implies that

$$\hat{\mu}_{N}
ightarrow \mu_{d,\sigma^{2}}, a.s$$

Gia-Thuy Pham (LIGM)

Important properties

• The eigenvalues of $\frac{\mathbf{V}\mathbf{V}^*}{N}$ concentrate in the neighbourhood of $[\sigma^2(1-\sqrt{d})^2, \sigma^2(1+\sqrt{d})^2] = [\lambda^-, \lambda^+]$ Denote $\mathbf{Q}_{\mathbf{V},N}(z) = (\frac{\mathbf{V}\mathbf{V}^*}{N} - z\mathbf{I}_M)^{-1}$, $\tilde{\mathbf{Q}}_{\mathbf{V},N}(z) = (\frac{\mathbf{V}^*\mathbf{V}}{N} - z\mathbf{I}_N)^{-1}$ • Uniformly, for each z in a compact subset of $\mathbb{C} - [\lambda^-, \lambda^+]$, for each sequences of unit *M*-dimensional vectors $(\mathbf{a}_N), (\mathbf{b}_N)$ and each sequences of *N*-dimensional vectors $(\tilde{\mathbf{a}}_N), (\tilde{\mathbf{b}}_N)$, we have that

$$\begin{aligned} \mathbf{a}_{N}^{*}(\mathbf{Q}_{\mathbf{V},N}(z) - m_{d,\sigma^{2}}(z)\mathbf{I}_{M})\mathbf{b}_{N} &\to 0 \text{ a.s} \\ \tilde{\mathbf{a}}_{N}^{*}(\tilde{\mathbf{Q}}_{\mathbf{V},N}(z) - \tilde{m}_{d,\sigma^{2}}(z)\mathbf{I}_{N})\tilde{\mathbf{b}}_{N} &\to 0 \text{ a.s} \\ \mathbf{a}_{N}^{*}(\mathbf{Q}_{\mathbf{V},N}(z)\mathbf{V}_{N})\tilde{\mathbf{b}}_{N} &\to 0 \text{ a.s} \end{aligned}$$

To be used in 16, 22, 26

The additive spatial spiked model

Observations: M-dimensional vectors, N snapshots

•
$$y_n = A_N s_n + v_n, \ n = 1, ..., N$$

•
$$\mathbf{Y}_N = (\mathbf{y}_1, ..., \mathbf{y}_N)$$

•
$$\mathbf{Y}_N = \mathbf{A}_N \mathbf{S}_N + \mathbf{V}_N$$

•
$$((\mathbf{V}_N)_{i,j})_{1 \leq i \leq M, 1 \leq j \leq N} \stackrel{i.i.d}{\sim} \mathcal{CN}(0, \sigma^2)$$

- \mathbf{A}_N a $M \times K$ matrix, \mathbf{S}_N a $K \times N$ matrix, both deterministic
- $Rank(\mathbf{A}_N) = K$

Asymptotic regime: $N \to \infty$, $d_N = \frac{M}{N} \to d$, and K is fixed.

 \mathbf{Y}_N = Matrix with Gaussian iid elements + fixed rank perturbation.

Behaviour of eigenvalues and eigenvectors of $\frac{\mathbf{Y}_N \mathbf{Y}_N^*}{N}$

Gia-Thuy Pham (LIGM)

Notations

Spectral factorizations:

$$\frac{\mathbf{A}_{N}\mathbf{S}_{N}\mathbf{S}_{N}^{*}\mathbf{A}_{N}^{*}}{N} = \begin{bmatrix} \mathbf{u}_{1,N} & \cdots & \mathbf{u}_{K,N} \end{bmatrix} \begin{bmatrix} \lambda_{1,N} & & \\ & \ddots & \\ & & \lambda_{K,N} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{1,N} & \cdots & \mathbf{u}_{K,N} \end{bmatrix}^{*}$$

where $\lambda_{1,N} \geq \cdots \geq \lambda_{K,N}$.

$$\frac{\mathbf{Y}_{N}\mathbf{Y}_{N}^{*}}{N} = \begin{bmatrix} \hat{\mathbf{u}}_{1,N} & \cdots & \hat{\mathbf{u}}_{M,N} \end{bmatrix} \begin{bmatrix} \hat{\lambda}_{1,N} & & \\ & \ddots & \\ & & \hat{\lambda}_{M,N} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{u}}_{1,N} & \cdots & \hat{\mathbf{u}}_{M,N} \end{bmatrix}^{*}$$

where $\hat{\lambda}_{1,N} \geq \cdots \geq \hat{\lambda}_{M,N}$.

→ Ξ →

< 4 → <

э

Impact of the signal component on the eigenvalues and eigenvectors of $\frac{\mathbf{Y}_N \mathbf{Y}_N^*}{N}$

If *M* is fixed and $N \to +\infty$, $d_N = \frac{M}{N} \simeq 0$

•
$$\frac{\mathbf{Y}_{N}\mathbf{Y}_{N}^{*}}{N} \simeq \mathbb{E}\left(\frac{\mathbf{Y}\mathbf{Y}^{*}}{N}\right) = \mathbf{A}_{N}\frac{\mathbf{S}_{N}\mathbf{S}_{N}^{*}}{N}\mathbf{A}_{N}^{*} + \sigma^{2}\mathbf{I}$$

•
$$\hat{\lambda}_{k,N} \simeq \lambda_{k,N} + \sigma^2$$
 and $\hat{\mathbf{u}}_{k,N} \simeq \mathbf{u}_{k,N}$ if $1 \le k \le K$

•
$$\hat{\lambda}_{k,N} \simeq \sigma^2$$
 if $k > K$

In our asymptotic regime: $M, N \to +\infty d_N = \frac{M}{N} \to d$

- The asymptotic distribution of M K smallest eigenvalues of $\frac{\mathbf{Y}_N \mathbf{Y}_N^*}{N}$ is the Marchenko-Pastur
- Depending on the ratios $(\frac{\lambda_{k,N}}{\sigma^2})_{k=1,...,K}$, at most K eigenvalues of $\frac{\mathbf{Y}_N \mathbf{Y}_N^*}{N}$ may escape from the support of the Marchenko Pastur and have a deterministic behaviour (more complicated than $\lambda_{k,N} + \sigma^2$)

イロト イポト イヨト イヨト

Illustration

February 28, 2017 14 / 53

< 🗗 🕨

Main result on the eigenvalues and eigenvectors

Theorem : Benaych-Georges and Nadakuditi, 2011

- Assume that $\lambda_{k,N} \rightarrow \lambda_k$ for $k = 1, \dots, K$.
- Let K_s the number of (λ_k) greater than $\sigma^2 \sqrt{d}$. Then for $k = 1, ..., K_s$,

$$\hat{\lambda}_{k,N} \xrightarrow[N \to \infty]{\text{a.s.}}
ho_k = rac{(\lambda_k + \sigma^2)(\lambda_k + \sigma^2 d)}{\lambda_k} > \sigma^2 (1 + \sqrt{d})^2$$

and for $K_s + 1 \leq k \leq K$

$$\hat{\lambda}_{K_k,N} \xrightarrow[N \to \infty]{a.s.} \sigma^2 (1 + \sqrt{d})^2$$

 Finally, for all deterministic sequences of unit vectors (a_N), (b_N), for k = 1, ..., K_s

$$\mathbf{a}_N^* \hat{\mathbf{u}}_{k,N} \hat{\mathbf{u}}_{k,N}^* \mathbf{b}_N = \frac{\lambda_k^2 - \sigma^4 d}{\lambda_k (\lambda_k + \sigma^2 d)} \mathbf{a}_N^* \mathbf{u}_{k,N} \mathbf{u}_{k,N}^* \mathbf{b}_N + o(1), \ a.s$$

 $\lambda_{K_s} > \sigma^2 \sqrt{d}$ "Signal Subspace Separation Condition"

프 에 에 프 어

< 4 P→ 4

Important remarks

It does not necessitate \mathbf{V}_N i.i.d entries, the fundamental conditions are that

• The eigenvalues of $\frac{\mathbf{V}_N \mathbf{V}_N^*}{N}$ concentrate in the neighbourhood of $[\sigma^2(1-\sqrt{d})^2, \sigma^2(1+\sqrt{d})^2] = [\lambda^-, \lambda^+]$

• Uniformly, for each z in a compact subset of $\mathbb{C} - [\lambda^-, \lambda^+]$, for each sequences of unit *M*-dimensional vectors $(\mathbf{a}_N), (\mathbf{b}_N)$ and each sequences of *N*-dimensional vectors $(\tilde{\mathbf{a}}_N), (\tilde{\mathbf{b}}_N)$, we have that

$$\begin{split} \mathbf{a}_{N}^{*}(\mathbf{Q}_{\mathbf{V},N}(z) - m_{d,\sigma^{2}}(z)\mathbf{I}_{M})\mathbf{b}_{N} &\to 0 \text{ a.s.} \\ \mathbf{\tilde{a}}_{N}^{*}(\mathbf{\tilde{Q}}_{\mathbf{V},N}(z) - \tilde{m}_{d,\sigma^{2}}(z)\mathbf{I}_{N})\mathbf{\tilde{b}}_{N} &\to 0 \text{ a.s.} \\ \mathbf{a}_{N}^{*}(\mathbf{Q}_{\mathbf{V},N}(z)\mathbf{V}_{N})\mathbf{\tilde{b}}_{N} &\to 0 \text{ a.s.} \end{split}$$

For $z \in \mathbb{C} - \mathbb{R}^+$

$$\mathbf{Q}_{N}(z) = \left(\frac{\mathbf{Y}_{N}\mathbf{Y}_{N}^{*}}{N} - z\mathbf{I}_{M}\right)^{-1}, \ \mathbf{F}_{N}(z) = \left(-z(1 + \sigma^{2}\tilde{m}_{d,\sigma^{2}}(z)) + \frac{\frac{\mathbf{A}_{N}\mathbf{S}_{N}\mathbf{S}_{N}^{*}\mathbf{A}_{N}^{*}}{N}}{1 + \sigma^{2}dm_{d,\sigma^{2}}(z)}\right)^{-1}$$
$$\mathbf{a}_{N}^{*}(\mathbf{Q}_{N}(z) - \mathbf{F}_{N}(z))\mathbf{b}_{N} \to 0 \text{ a.s}$$

Background : Marchenko-Pastur and additive spatial spiked models

2 Spatial-temporal information plus noise spiked models

3 General spatial-temporal information plus noise models

4 Conclusion

The observed signal

Observations: M-dimensional vectors, N snapshots

•
$$\mathbf{y}_n = \sum_{p=0}^{P-1} \mathbf{h}_p s_{n-p} + \mathbf{v}_n = [\mathbf{h}(z)] s_n + \mathbf{v}_n$$

- $(s_n)_{n \in \mathbb{Z}}$ scalar deterministic sequence
- $\mathbf{h}(z) = \sum_{p=0}^{P-1} \mathbf{h}_p z^{-p}$ unknown SIMO transfer function
- $(\mathbf{v}_n)_{n \in \mathbb{Z}}$ temporally and spatially white complex Gaussian noise with variance σ^2 .

Associated spatial model with P sources

•
$$\mathbf{y}_n = \mathbf{A}\mathbf{s}_n + \mathbf{v}_n$$

•
$$A = (h_{P-1}, ..., h_0)$$

•
$$\mathbf{s}_n = (s_{n-(P-1)}, s_{n-(P-1)+1}, \dots, s_n)^{-1}$$

•
$$\mathbf{Y} = \mathbf{AS} + \mathbf{V}$$

• S is a Hankel matrix, not taken into account

イロト イポト イヨト イヨト

The extended observed signal

 $(y_{k,n})_{n\in\mathbb{Z}}$ scalar signal received on sensor k.

For *L* an integer, define for each *n L*-dimensional vector $\mathbf{y}_{k,n}^{(L)}$ by: $\mathbf{y}_{k,n}^{(L)} = (y_{k,n}, y_{k,n+1}, \dots, y_{k,n+L-1})^T$ and *ML*-dimensional vector $\mathbf{y}_n^{(L)}$ by: $\mathbf{y}_n^{(L)} = \begin{pmatrix} \mathbf{y}_{1,n}^{(L)} \\ \vdots \\ \mathbf{y}_{M,n}^{(L)} \end{pmatrix}$

Define $ML \times N$ matrix $\mathbf{Y}_N^{(L)}$ by: $\mathbf{Y}_N^{(L)} = \left(\mathbf{y}_1^{(L)}, \dots, \mathbf{y}_N^{(L)}\right)$

$$\mathbf{Y}_{N}^{(L)}$$
 is a block-Hankel matrix

$$\mathbf{Y}_{N}^{(L)} \text{ is given by:}$$

$$\mathbf{\bullet} \ \mathbf{Y}_{N}^{(L)} = \begin{bmatrix} \mathbf{Y}_{1,N}^{(L)} \\ \vdots \\ \mathbf{Y}_{M,N}^{(L)} \end{bmatrix}$$

Where for each k, $\mathbf{Y}_{k,N}^{(L)}$ is the $L \times N$ Hankel matrix

$$\mathbf{Y}_{k,N}^{(L)} = \begin{pmatrix} y_{k,1} & y_{k,2} & \cdots & y_{k,N} \\ y_{k,2} & y_{k,3} & \cdots & y_{k,N+1} \\ y_{k,3} & \cdots & \cdots & y_{k,N+2} \\ \vdots & \vdots & \vdots & \vdots \\ y_{k,L} & y_{k,L+1} & \cdots & y_{k,N+L-1} \end{pmatrix}$$

Expression of $\mathbf{Y}_N^{(L)}$

•
$$\mathbf{Y}_{k,N}^{(L)} = \mathbf{H}_{k}^{(L)} \mathbf{S}_{N}^{(L)} + \mathbf{V}_{k,N}^{(L)}$$

• where $\mathbf{H}_{k}^{(L)}$ is a $L \times (P + L - 1)$ Toeplitz matrix and $\mathbf{S}_{N}^{(L)}$ is a $(P + L - 1) \times N$ Hankel matrix
• $\mathbf{Y}_{N}^{(L)} = \begin{pmatrix} \mathbf{H}_{1}^{(L)} \\ \vdots \\ \mathbf{H}_{M}^{(L)} \end{pmatrix} \mathbf{S}_{N}^{(L)} + \mathbf{V}_{N}^{(L)} = \mathbf{H}^{(L)} \mathbf{S}_{N}^{(L)} + \mathbf{V}_{N}^{(L)}$
• $\mathbf{Y}_{N}^{(L)}$ block-Hankel Information plus Noise random matrix
• $Rank(\mathbf{H}^{(L)} \mathbf{S}_{N}^{(L)}) \leq P + L - 1$

Eigenvalues / eigenvectors of the empirical spatio-temporal covariance matrix $\frac{\mathbf{Y}_{N}^{(L)}\mathbf{Y}_{N}^{(L)*}}{N}$?

Asymptotic behaviour of the eigenvalues of $\frac{\mathbf{v}_N^{(L)}\mathbf{v}_N^{(L)*}}{N}$.

Asymptotic regime

•
$$M \to +\infty$$
, $N \to +\infty$, $c_N = \frac{ML}{N} \to c$

• L may converge towards $+\infty$ but in such a way that $\frac{L}{N} \to 0$

Theorem [Loubaton, 2014]

- The empirical eigenvalue distribution of $\frac{\mathbf{v}_N^{(L)}\mathbf{v}_N^{(L)*}}{N}$ has almost surely the same asymptotic behaviour than $MP(\sigma^2, c)$
- If moreover $L = O(N^{\alpha})$ with $\alpha < 2/3$, nearly equivalent to $\frac{L}{M^2} \to 0$, then:

► all the non zero eigenvalues of $\frac{\mathbf{v}_N^{(l)}\mathbf{v}_N^{(l)*}}{N}$ lie in a neighbourhood of $[\sigma^2(1-\sqrt{c})^2, \sigma^2(1+\sqrt{c})^2]$.

Moreover, we have proved that if $z \in \mathbb{C} \setminus [\sigma^2(1-\sqrt{c})^2, \sigma^2(1+\sqrt{c})^2]$, the bilinear forms of matrices $\mathbf{Q}_{\mathbf{V},N}(z) = (\frac{\mathbf{v}_N^{(L)}\mathbf{v}_N^{(L)*}}{N} - z\mathbf{I}_{ML})^{-1}$ and $\tilde{\mathbf{Q}}_{\mathbf{V},N}(z) = (\frac{\mathbf{v}_N^{(L)*}\mathbf{v}_N^{(L)}}{N} - z\mathbf{I}_N)^{-1}$ behave as if the entries of $\mathbf{V}_N^{(L)}$ were i.i.d.

Illustration

▲ 同 ▶ → ● 三

Asymptotic behaviour of the largest eigenvalues and associated eigenvectors of $\frac{\mathbf{Y}_{N}^{(L)}\mathbf{Y}_{N}^{(L)*}}{N}$

Additive spatio-temporal spiked models asymptotic regime

•
$$M o +\infty$$
, $N o +\infty$, $d_N = rac{M}{N} o a$

• L and P do not scale with M and N

The rank P + L - 1 of signal matrix $\mathbf{H}^{(L)} \mathbf{S}_N^{(L)}$ does not scale with M and N

$$\mathbf{Y}_N^{(L)} = \mathbf{H}^{(L)} \mathbf{S}_N^{(L)} + \mathbf{V}_N^{(L)}$$

 $\frac{\mathbf{V}_N^{(L)}\mathbf{V}_N^{(L)*}}{N}$ satisfies the properties that allow to use Benaych-Nadakuditi result.

Assumption

$$(\lambda_{k,N}^{(L)})_{k=1,\dots,P+L-1}$$
 non zero eigenvalues of $\mathbf{H}^{(L)} \frac{\mathbf{S}_{N}^{(L)} \mathbf{S}_{N}^{(L)*}}{N} \mathbf{H}^{(L)*}$ converge towards $\lambda_{1}^{(L)} > \lambda_{2}^{(L)} > \dots > \lambda_{P+L-1}^{(L)}$ when $N \to +\infty$.

Gia-Thuy Pham (LIGM)

Notations

Spectral factorizations:

$$\frac{\mathbf{H}^{(L)}\mathbf{S}_{N}^{(L)}\mathbf{S}_{N}^{(L)*}\mathbf{H}^{(L)*}}{N} = \begin{bmatrix} \mathbf{u}_{1,N} & \cdots & \mathbf{u}_{P+L-1,N} \end{bmatrix} \begin{bmatrix} \lambda_{1,N}^{(L)} & & & \\ & \ddots & & \\ & & \lambda_{P+L-1,N}^{(L)} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{1,N}^{*} \\ \vdots \\ \mathbf{u}_{P+L-1,N}^{*} \end{bmatrix}$$

where
$$\lambda_{1,N}^{(L)} \geq \cdots \geq \lambda_{P+L-1,N}^{(L)}$$

$$\frac{\mathbf{Y}_{N}^{(L)}\mathbf{Y}_{N}^{(L)*}}{N} = \begin{bmatrix} \hat{\mathbf{u}}_{1,N} & \cdots & \hat{\mathbf{u}}_{ML,N} \end{bmatrix} \begin{bmatrix} \hat{\lambda}_{1,N}^{(L)} & & \\ & \ddots & \\ & & \hat{\lambda}_{ML,N}^{(L)} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{u}}_{1,N}^{*} \\ \vdots \\ \hat{\mathbf{u}}_{ML,N}^{*} \end{bmatrix}$$

where $\hat{\lambda}_{1,N}^{(L)} \geq \cdots \geq \hat{\lambda}_{ML,N}^{(L)}$.

∃ → (∃ →

E

Results on eigenvalues of $\frac{\mathbf{V}_{N}^{(L)}\mathbf{V}_{N}^{(L)*}}{N}$ and bilinear forms of $\mathbf{Q}_{\mathbf{V},N}(z)$ and $\tilde{\mathbf{Q}}_{\mathbf{V},N}(z)$ allow to prove

Theorem

Let K_L the number of $\lambda_k^{(L)}$ greater than $\sigma^2 \sqrt{dL}$

• For
$$k = 1, \dots, K_L$$

 $\hat{\lambda}_{k,N}^{(L)} \xrightarrow[N \to \infty]{a.s.} \rho_k^{(L)} = \frac{(\lambda_k^{(L)} + \sigma^2) (\lambda_k^{(L)} + \sigma^2 dL)}{\lambda_k^{(L)}} > \sigma^2 (1 + \sqrt{dL})^2$
while for $k = K_L + 1, \dots, P + L - 1$

$$\hat{\lambda}_{k,N}^{(L)} \xrightarrow[N \to \infty]{\text{a.s.}} \sigma^2 (1 + \sqrt{dL})^2$$

• For $k = 1, ..., K_L$, for all deterministic sequences of *ML*-dimensional unit vectors $\mathbf{a}_N, \mathbf{b}_N$ $\mathbf{a}_N^* \hat{\mathbf{u}}_{k,N} \hat{\mathbf{u}}_{k,N}^* \mathbf{b}_N = \frac{\left(\lambda_k^{(L)}\right)^2 - \sigma^4 dL}{\lambda_k^{(L)} \left(\lambda_k^{(L)} + \sigma^2 dL\right)} \mathbf{a}_N^* \mathbf{u}_{k,N} \mathbf{u}_{k,N}^* \mathbf{b}_N + o(1)$

- 3

イロト イポト イヨト イヨト

Application to the analysis of subspace DoA estimation using spatial smoothing schemes

The original model

•
$$\mathbf{y}_n = [\mathbf{a}_M(\varphi_1), ..., \mathbf{a}_M(\varphi_K)]\mathbf{s}_n + \mathbf{v}_n = \mathbf{A}_M \mathbf{s}_n + \mathbf{v}_n$$

•
$$\mathbf{a}_M(\phi) = rac{1}{\sqrt{M}} (1, e^{\imath \phi}, \cdots, e^{\imath (M-1)\phi})^T$$

•
$$\mathbf{Y}_N = \mathbf{A}_M \mathbf{S}_N + \mathbf{V}_N$$

Results known when $\frac{M}{N} \rightarrow 0$ and $\frac{M}{N} \rightarrow c > 0$

Context

- Source localization using subspace method when M,N large, but N << M
- Spatial smoothing can be used in this context

(4 冊 ト 4 三 ト 4 三 ト

Spatial smoothing

L < M: artificially create *NL* snapshots of dimension M - L + 1.

$$\mathbf{Y}_{N}^{(L)} = \left(\mathcal{Y}_{1}^{(L)}, \dots, \mathcal{Y}_{N}^{(L)}\right)$$

Properties of $\mathbf{Y}_{N}^{(L)}$

•
$$\mathbf{Y}_N^{(L)} = \mathbf{A}^{(L)}(\mathbf{S}_N \otimes \mathbf{I}_L) + \mathbf{V}_N^{(L)}$$

• $A^{(L)}(S_N \otimes I_L)$ is a rank K deterministic $(M - L + 1) \times NL$ matrix

• Range($\mathbf{A}^{(L)}$) = sp{ $\mathbf{a}_{M-L+1}(\varphi_k), k = 1, \dots, K$ }

Application to the analysis of subspace DoA estimation using spatial smoothing schemes

The asymptotic regime

•
$$M \to +\infty$$
, $N = \mathcal{O}(M^{\beta})$, $1/3 < \beta \le 1$, $L = \mathcal{O}(M^{\alpha})$, $0 \le \alpha < 2/3$
• $e_N = \frac{M - L + 1}{NL} \simeq \frac{M}{NL} \to e$

Remark

The structure of
$$\mathbf{V}_N^{(L)*}$$

Gia-Thuy Pham (LIGM)

February 28, 2017 29 / 53

э

 $\bullet \equiv \bullet$

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Application to the analysis of subspace DoA estimation using spatial smoothing schemes

Properties of the eigenvalues of $\frac{\mathbf{v}_N^{(L)}\mathbf{v}_N^{(L)*}}{NL}$.

- Non zero eigenvalues of $\frac{\mathbf{v}_N^{(L)}\mathbf{v}_N^{(L)*}}{NL}$ = non zero eigenvalues of $\frac{\mathbf{v}_N^{(L)*}\mathbf{v}_N^{(L)}}{NL}$
- Properties of the eigenvalues of $\frac{\mathbf{V}_{N}^{(L)*}\mathbf{V}_{N}^{(L)}}{NL}$ already evaluated before
- Just exchange $N \iff M L + 1$ and $M \iff N$

Possible to use Benaych-Georges/Nadakuditi results

Assumption

The K non zero eigenvalues $(\lambda_{k,N})_{k=1,...,K}$ of matrix $\frac{\mathbf{A}^{(L)}(\mathbf{S}_N\mathbf{S}_N^*\otimes\mathbf{I}_L)\mathbf{A}^{(L)*}}{NL}$ converge towards $\lambda_1 > ... > \lambda_K > \sigma^2 \sqrt{e}$

Results

G-MUSIC subspace method can be used and analysed from the statistical point of view in the high dimensional context

Gia-Thuy Pham (LIGM)

Large random matrices

Subspace separation condition

Comparison smoothed / unsmoothed when L does not converge $+\infty$.

•
$$\frac{\mathbf{S}_N \mathbf{S}_N^*}{N}
ightarrow \mathbf{D}$$
, **D** diagonal

• unsmoothed:
$$\lambda_{K} \left(\mathbf{A}_{M}^{*} \mathbf{A}_{M} \mathbf{D} \right) > \sigma^{2} \sqrt{\frac{M}{N}}$$

• smoothed:
$$\lambda_{K} \left(\mathbf{A}_{M-L}^{*} \mathbf{A}_{M-L} \mathbf{D} \right) > \frac{\sigma^{2}}{\sqrt{L}} \sqrt{\frac{M}{N}} = \sigma^{2} \sqrt{\frac{M}{NL}}$$

Discussion

• If
$$L \ll M$$
, $\lambda_K \left(\mathbf{A}_{M-L}^* \mathbf{A}_{M-L} \mathbf{D} \right) \simeq \lambda_K \left(\mathbf{A}_M^* \mathbf{A}_M \mathbf{D} \right)$

- Clear improvement of the subspace separation condition if L << M
- If *L* increases too much, the diminution of the number of antennas due to the spatial smoothing becomes dominant.

Illustration I.

Empirical MSE of the improved subspace estimate of θ_1 for L = 2, 4, 8, 16w.r.t. SNR.

Gia-Thuy Pham (LIGM)

Illustration II.

Empirical MSE of the improved subspace estimate of θ_1 for L = 16, 32, 64, 128 w.r.t. SNR.

イロト イポト イヨト イヨト

Application to the loading factor estimation of trained spatio-temporal Wiener filters

Context

•
$$\mathbf{y}_n = \sum_{p=0}^{P-1} \mathbf{h}_p s_{n-p} + \mathbf{v}_n = [\mathbf{h}(z)]s_n + \mathbf{v}_n$$
 , $[\mathbf{h}(z)]$ unknown

- Training sequence $(s_n)_{n=1,...,N}$ available at the receiver side
- Estimate $\mathbf{g}^{(L)}$, *ML*-dimensional vector minimizing $\mathbb{E}|s_n \mathbf{g}^{(L)*}\mathbf{y}_n^{(L)}|^2$
- Regularized least-squares estimate:

$$\hat{\mathbf{g}}_{\lambda}^{(L)} = \left(\frac{\mathbf{Y}_{N}^{(L)}\mathbf{Y}_{N}^{(L)*}}{N} + \lambda \mathbf{I}\right)^{-1} \left(\frac{1}{N}\sum_{n=1}^{N}\mathbf{y}_{n}^{(L)}\boldsymbol{s}_{n}^{*}\right)$$

- Regularization necessary when ML > N, performance improved when $\frac{ML}{N}$ is not small enough
- Choose λ when M and N large and of the same order of magnitude
- Mestre-Lagunas IEEE SP 2006, $\mathbf{h}(z) = \mathbf{h}_0$ known (no training sequence), temporally white but spatially correlated noise + interference with unknown covariance matrix, L = 1

The SINR provided by filter $\hat{\mathbf{g}}_{\lambda}^{(L)}$

$\hat{\mathbf{g}}_{\lambda}^{(L)}$ is used to reconstruct s_n , for n > N

The signal to information plus noise ratio (SINR) mesures the performance of the reconstruction

$$\mathsf{SINR}(\hat{\mathbf{g}}_{\lambda}^{(L)}) = \frac{|\hat{\mathbf{g}}_{\lambda}^{(L)*}\mathbf{h}_{P}^{(L)}|^{2}}{\hat{\mathbf{g}}_{\lambda}^{(L)*}\mathbf{H}_{-P}^{(L)*}\mathbf{h}_{-P}^{(L)*}\hat{\mathbf{g}}_{\lambda}^{(L)} + \sigma^{2} \|\hat{\mathbf{g}}_{\lambda}^{(L)}\|^{2}}$$

 $\mathbf{h}_{P}^{(L)}$ column P of matrix $\mathbf{H}^{(L)}$, $\mathbf{H}_{-P}^{(L)}$ matrix obtained from $\mathbf{H}^{(L)}$ by deleting column P.

SINR($\hat{\mathbf{g}}_{\lambda}^{(L)}$) is a random variable because $\hat{\mathbf{g}}_{\lambda}^{(L)}$ depends on the noise corrupting the signal $(\mathbf{y}_n)_{n=1,...,N}$ received during the transmission of the training sequence.

イロト 不得 トイヨト イヨト 二日

Main results

$$\mathsf{SINR}(\hat{\mathbf{g}}_{\lambda}^{(L)}) = \frac{|\hat{\mathbf{g}}_{\lambda}^{(L)*}\mathbf{h}_{P}^{(L)}|^{2}}{\hat{\mathbf{g}}_{\lambda}^{(L)*}\mathbf{H}_{-P}^{(L)*}\mathbf{H}_{-P}^{(L)*}\hat{\mathbf{g}}_{\lambda}^{(L)} + \sigma^{2}\|\hat{\mathbf{g}}_{\lambda}^{(L)}\|^{2}}$$

Main results: When *M* and *N* converge towards $+\infty$ at the same rate, and that *P* and *L* are fixed

- SINR(ĝ_λ^(L)) converges a.s. towards a deterministic term φ_L(λ) depending on λ and on σ², H^(L).
- While $\mathbf{H}^{(L)}$ is unknown at the receiver side, possible to estimate consistently $\phi_L(\lambda)$ for each $\lambda \ge 0$ by $\hat{\phi}_L(\lambda)$ from $(\mathbf{y}_n)_{n=1,...,N}$
- λ_{opt} is estimated as the argmax of the consistent estimator $\lambda \rightarrow \hat{\phi}_L(\lambda)$.

Discussion

Assume
$$\frac{\mathbf{S}_N^{(L)}\mathbf{S}_N^{(L)*}}{N} = \mathbf{I}_{P+L-1}$$

Assume $d_N L = \frac{ML}{N} < 1$ and $\lambda = 0$. Denote by γ the SINR provided by the true Wiener filter:

$$\gamma = \frac{\mathbf{h}_{P}^{(L)*} \left(\mathbf{H}^{(L)}\mathbf{H}^{(L)*} + \sigma^{2}\mathbf{I}\right)^{-1}\mathbf{h}_{P}^{(L)}}{1 - \mathbf{h}_{P}^{(L)*} \left(\mathbf{H}^{(L)}\mathbf{H}^{(L)*} + \sigma^{2}\mathbf{I}\right)^{-1}\mathbf{h}_{P}^{(L)}}$$

Then, the limit SINR $\phi_L(0)$ provided by $\hat{\mathbf{g}}_0^{(L)}$ is given by

$$\phi_L(0) = \gamma \; rac{(1-d_N L)\gamma}{\gamma+d_N}$$

SINR loss equal to $(1 - d_N L) rac{\gamma}{\gamma + d_N}$

Some insights on the deterministic behaviour of the SINR

Expression of
$$\hat{\mathbf{g}}_{\lambda}^{(L)} = \left(\frac{\mathbf{Y}_{N}^{(L)}\mathbf{Y}_{N}^{(L)*}}{N} + \lambda \mathbf{I}\right)^{-1} \left(\frac{1}{N}\sum_{n=1}^{N}\mathbf{y}_{n}^{(L)}s_{n}^{*}\right)$$
$$\mathbf{Q}_{N}(-\lambda) = \left(\frac{\mathbf{Y}_{N}^{(L)}\mathbf{Y}_{N}^{(L)*}}{N} + \lambda \mathbf{I}\right)^{-1}, \mathbf{u}_{N} = \left(\frac{1}{\sqrt{N}}(s_{1}, \dots, s_{N})\right)^{*},$$
$$\hat{\mathbf{g}}_{\lambda}^{(L)} = \mathbf{Q}_{N}(-\lambda)\frac{\mathbf{Y}_{N}^{(L)}}{\sqrt{N}}\mathbf{u}_{N}$$

-47 ▶

Some insights on the deterministic behaviour of the SINR

$$\mathsf{SINR}(\hat{\mathbf{g}}_{\lambda}^{(L)}) = \frac{|\hat{\mathbf{g}}_{\lambda}^{(L)*}\mathbf{h}_{P}^{(L)}|^{2}}{\hat{\mathbf{g}}_{\lambda}^{(L)*}\mathbf{H}_{-P}^{(L)}\mathbf{H}_{-P}^{(L)*}\hat{\mathbf{g}}_{\lambda}^{(L)} + \sigma^{2}\|\hat{\mathbf{g}}_{\lambda}^{(L)}\|^{2}}$$

Evaluate the behaviour of

|**a**^{*}_N **g**^(L)_λ|² for each deterministic *ML*-dimensional vector **a**_N.
 ||**g**^(L)_λ||².

Equivalently

•
$$\mathbf{a}_N^* \mathbf{Q}_N(-\lambda) \frac{\mathbf{Y}_N^{(L)}}{\sqrt{N}} \mathbf{b}_N$$

• $\mathbf{a}_N^* \frac{\mathbf{Y}_N^{(L)*}}{\sqrt{N}} \mathbf{Q}_N(-\lambda)^2 \frac{\mathbf{Y}_N^{(L)}}{\sqrt{N}} \mathbf{b}_N = \mathbf{a}_N^* \left(\frac{d}{dz} \Big|_{z=-\lambda} (z \tilde{\mathbf{Q}}(z)) \right) \mathbf{b}_N$

Gia-Thuy Pham (LIGM)

Illustration

 $M = 40, N = 200, d_N = \frac{M}{N} = \frac{1}{5}, P = 5, (\mathbf{h}_p)_{p=0,...,4}$ random directional vectors

 $\phi_L(\lambda)$ vs λ for various values of L.

Gia-Thuy Pham (LIGM)

イロト 不得下 イヨト イヨト 二日

Illustration

M = 40, N = 200, P = 5, L = 5, $(\mathbf{h}_p)_{p=0,\dots,4}$ random directional vectors

Figure: RRMSE (Root Relative Mean Square Error) of different diagonal loading methods versus L

Gia-Thuy Pham (LIGM)

Background : Marchenko-Pastur and additive spatial spiked models

2 Spatial-temporal information plus noise spiked models

3 General spatial-temporal information plus noise models

General spatial-temporal information plus noise models

$$\mathbf{Y}_N^{(L)} = \mathbf{H}^{(L)} \mathbf{S}_N^{(L)} + \mathbf{V}_N^{(L)}$$

Extend the results to the case $P,L
ightarrow +\infty$

The general model

•
$$\mathbf{Y}_N^{(L)} = \mathbf{A}_N + \mathbf{V}_N^{(L)}$$

• \mathbf{A}_N deterministic, $\sup_N \left\| \frac{\mathbf{A}_N}{\sqrt{N}} \right\| < +\infty$, not necessary structured, *Rank*(\mathbf{A}_N) not necessary finite.

Asymptotic regime

$$N o +\infty$$
, $c_N = rac{ML}{N} o c$, where $0 < c < +\infty$, $L = \mathcal{O}(N^{lpha})$, $lpha < rac{2}{3}$.

Behaviour of
$$\mathbf{Q}_N(z) = \left(\frac{\mathbf{Y}_N^{(L)}\mathbf{Y}_N^{(L)*}}{N} - z\mathbf{I}_{ML}\right)^{-1}$$
 and $\tilde{\mathbf{Q}}_N(z) = \left(\frac{\mathbf{Y}_N^{(L)*}\mathbf{Y}_N^{(L)}}{N} - z\mathbf{I}_N\right)^{-1}$

Deterministic equivalent matrices

Theorem

The resolvents $\mathbf{Q}_N(z) = (\mathbf{Y}_N \mathbf{Y}_N^* - \mathbf{I}_{ML})^{-1}$ and $\tilde{\mathbf{Q}}_N(z) = (\mathbf{Y}_N^* \mathbf{Y}_N - \mathbf{I}_N)^{-1}$ have the same behaviour than the deterministic matrices $\mathbf{T}_N(z)$, $\tilde{\mathbf{T}}_N(z)$ defined as

$$\begin{cases} \mathbf{T}_{N}(z) = \left[-z \left(\mathbf{I}_{ML} + \sigma^{2} \mathbf{I}_{M} \otimes \mathcal{T}_{L,L}(\tilde{\mathbf{T}}_{N}^{T}(z)) \right) + \mathbf{A}_{N} \left(\mathbf{I}_{N} + \sigma^{2} c_{N} \mathcal{T}_{N,L}^{(M)}(\mathbf{T}_{N}^{T}(z)) \right)^{-1} \mathbf{A}_{N}^{*} \right]^{-1} \\ \tilde{\mathbf{T}}_{N}(z) = \left[-z \left(\mathbf{I}_{N} + \sigma^{2} c_{N} \mathcal{T}_{N,L}^{(M)}(\mathbf{T}_{N}^{T}(z)) \right) + \mathbf{A}_{N}^{*} \left(\mathbf{I}_{ML} + \sigma^{2} \mathbf{I}_{M} \otimes \mathcal{T}_{L,L}(\tilde{\mathbf{T}}_{N}^{T}(z)) \right)^{-1} \mathbf{A}_{N} \right]^{-1} \end{cases}$$

For $z \in \mathbb{C} \setminus \mathbb{R}^+$,

• $\frac{1}{ML} \operatorname{Tr} \left[(\mathbf{Q}_N(z) - \mathbf{T}_N(z)) \mathbf{B}_N \right] \to 0, \frac{1}{N} \operatorname{Tr} \left[(\tilde{\mathbf{Q}}_N(z) - \tilde{\mathbf{T}}_N(z)) \tilde{\mathbf{B}}_N \right] \to 0, a.s$ • If $\alpha < \frac{2}{3}, \frac{L}{M^2} \to 0, \|\mathbf{Q}_N(z) - \mathbf{T}_N(z)\| \to 0, \|\tilde{\mathbf{Q}}_N(z) - \tilde{\mathbf{T}}_N(z)\| \to 0, a.s$

イロト 不得下 イヨト イヨト 二日

Application to the initial model

• If
$$\mathbf{A}_N = \mathbf{H}^{(L)} \mathbf{S}_N^{(L)}$$

•
$$Rank(\mathbf{A}_N) = P + L - 1 = \mathcal{O}(N^{\alpha})$$

Signal assumption

•
$$\sup_N \|\mathbf{H}^{(L)}\| < +\infty \Longleftrightarrow \sup_{M,L,
u} \|\mathbf{h}(e^{2\imath\pi
u})\|^2 < +\infty$$

• $(s_n)_{n\in\mathbb{Z}}$ a real i.i.d sequence

3

-

< 47 ▶ <

Application to the initial model

Theorem

For $z \in \mathbb{C} \setminus \mathbb{R}^+$, it holds that

$$\begin{split} \|\mathbf{T}_N(z) - \mathbf{F}_N(z)\| &\to 0 \\ \|\mathbf{\tilde{T}}_N(z) - \mathbf{\tilde{F}}_N(z)\| &\to 0 \end{split}$$

where

$$\mathbf{F}_{N}(z) = \left(-z(1+\sigma^{2}\tilde{m}_{c,\sigma^{2}}(z))\mathbf{I}_{ML} + \frac{\mathbf{H}^{(L)}\mathbf{H}^{(L)*}}{1+\sigma^{2}cm_{c,\sigma^{2}}(z)}\right)^{-1}$$
$$\tilde{\mathbf{F}}_{N}(z) = \left(-z(1+\sigma^{2}cm_{c,\sigma^{2}}(z))\mathbf{I}_{N} + \frac{\frac{\mathbf{S}_{N}^{(L)*}}{\sqrt{N}}\mathbf{H}^{(L)*}\mathbf{H}^{(L)}\frac{\mathbf{S}_{N}^{(L)}}{\sqrt{N}}}{1+\sigma^{2}\tilde{m}_{c,\sigma^{2}}(z)}\right)^{-1}$$

As a consequence,

$$\begin{split} \|\mathbf{Q}_N(z)-\mathbf{F}_N(z)\| &\to 0, \ a.s \\ \|\tilde{\mathbf{Q}}_N(z)-\tilde{\mathbf{F}}_N(z)\| &\to 0, \ a.s \end{split}$$

Gia-Thuy Pham (LIGM)

Application to the loading factor estimation of trained spatio-temporal Wiener filters

$$\mathsf{SINR}(\hat{\mathbf{g}}_{\lambda}^{(L)}) = \frac{|\hat{\mathbf{g}}_{\lambda}^{(L)*}\mathbf{h}_{P}^{(L)}|^{2}}{\hat{\mathbf{g}}_{\lambda}^{(L)*}\mathbf{H}_{-P}^{(L)*}\mathbf{H}_{-P}^{(L)*}\hat{\mathbf{g}}_{\lambda}^{(L)} + \sigma^{2}\|\hat{\mathbf{g}}_{\lambda}^{(L)}\|^{2}}$$

Asymptotic regime

$$M, N \to +\infty$$
, $c_N = \frac{ML}{N} \to c$, $P, L = \mathcal{O}(N^{\alpha})$, $0 < \alpha < \frac{1}{2}$, $\frac{L}{M} \to 0$.

Evaluate the behaviour of

•
$$|\mathbf{a}^* \mathbf{Q}_N(-\lambda) \frac{\mathbf{Y}_N^{(L)}}{\sqrt{N}} \mathbf{b}_N|^2$$

• $\mathbf{a}_N^* \frac{\mathbf{Y}_N^{(L)*}}{\sqrt{N}} \mathbf{Q}_N(-\lambda) \mathbf{H}_{-P}^{(L)*} \mathbf{H}_{-P}^{(L)} \mathbf{Q}_N(-\lambda) \frac{\mathbf{Y}_N^{(L)}}{\sqrt{N}} \mathbf{b}_N$
• $\mathbf{a}_N^* \frac{\mathbf{Y}_N^{(L)*}}{\sqrt{N}} \mathbf{Q}_N(-\lambda)^2 \frac{\mathbf{Y}_N^{(L)}}{\sqrt{N}} \mathbf{b}_N = \mathbf{a}_N^* \left(\frac{d}{dz} \Big|_{z=-\lambda} (z \tilde{\mathbf{Q}}_N(z)) \right) \mathbf{b}_N$

Same results as the case where P, L are fixed

Gia-Thuy Pham (LIGM)

Background : Marchenko-Pastur and additive spatial spiked models

2 Spatial-temporal information plus noise spiked models

General spatial-temporal information plus noise models

5 Perspectives

< 🗗 🕨

Conclusion

Spatial-temporal spiked models

- Behaviour of the largest eigenvalues and eigenvectors of $\frac{\mathbf{Y}_N^{(L)}\mathbf{Y}_N^{(L)*}}{N}$
- Application to detection of a wideband signal
- Loading factor estimation for trained regularized spatio-temporal Wiener filtering
- Analysis of spatial smoothing schemes in narrow band array processing

General spatial-temporal information plus noise models

- Behaviour of resolvent and co-resolvent of $\frac{\mathbf{Y}_{N}^{(L)}\mathbf{Y}_{N}^{(L)*}}{N}$
- Loading factor estimation for trained regularized spatio-temporal Wiener filtering

Background : Marchenko-Pastur and additive spatial spiked models

2 Spatial-temporal information plus noise spiked models

3 General spatial-temporal information plus noise models

4 Conclusion

Perspectives

- Convergence rate of normalized trace, bilinear forms and spectral norms of the resolvents towards deterministic equivalents.
- Improvement of the convergence conditions for the SINR ($\frac{L}{N} \rightarrow 0, \\ \frac{L}{M^2} \rightarrow 0)$
- Second order of the detection test.

PhD student

First year !! Last year !!

э

→ Ξ →

▲御 ▶ ▲ 国 ▶